JP2003038409A - Dishwasher having electrolysed water generator - Google Patents

Dishwasher having electrolysed water generator

Info

Publication number
JP2003038409A
JP2003038409A JP2001234533A JP2001234533A JP2003038409A JP 2003038409 A JP2003038409 A JP 2003038409A JP 2001234533 A JP2001234533 A JP 2001234533A JP 2001234533 A JP2001234533 A JP 2001234533A JP 2003038409 A JP2003038409 A JP 2003038409A
Authority
JP
Japan
Prior art keywords
water
electrolyte
electrolyzed water
cleaning
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001234533A
Other languages
Japanese (ja)
Inventor
Yu Kawai
祐 河合
Shigeru Shirai
白井  滋
Keijiro Kunimoto
啓次郎 國本
Koji Oka
浩二 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001234533A priority Critical patent/JP2003038409A/en
Publication of JP2003038409A publication Critical patent/JP2003038409A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dishwasher for washing dishes with an electrolysed water generated by electrolysis without using a detergent containing a surface active agent. SOLUTION: This dishwasher is provided with the electrolysed water generator having an electrolysis cell 71 having an anode chamber 73 and a cathode chamber 74, an electrolyte supply means 81 for supplying an electrolyte at least to the anode chamber 73, and a control means 60 and adapted to generate electrolysed water having pH of 11.5 to 12.5 and chlorine ion concentration of 50 to 2,000 ppm by electrolysis. Thus, the dishes are washed with alkaline electrolytic water, thereby improving the washing effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気分解で生成す
る電解水を用いて、食器などを洗浄する食器洗浄機に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dishwasher for washing dishes and the like using electrolyzed water produced by electrolysis.

【0002】[0002]

【従来の技術】電解水生成装置には、水道等の給水設備
に接続され、流水状態で電解を行い、酸性水やアルカリ
水を生成する流水式と、給水設備に接続しない簡易、低
コスト構造で水を滞留状態で電解するバッチ方式があ
る。流水方式では即座に電解水が取水できるメリットが
あるが、酸化力の強い酸性水や還元力の強いアルカリ水
を得ようとした場合、電極の大型化が必要となり大電力
が必要となるとともに複雑な構成が必要となり、装置全
体のコストアップとなる。一方、バッチ方式では滞留状
態で電解するため長時間にわたる電解が可能であるが反
面簡易な構成で上記酸性水やアルカリ水が得られやすい
特徴がある。
2. Description of the Related Art An electrolyzed water generator is a running water type which is connected to a water supply facility such as a tap water and electrolyzes in running water to generate acidic water or alkaline water. There is a batch method in which water is electrolyzed in the retention state. The running water method has the advantage of being able to take in electrolyzed water immediately, but when attempting to obtain acidic water with strong oxidizing power or alkaline water with strong reducing power, it is necessary to increase the size of the electrode, which requires large power and is complicated. Therefore, the cost of the entire apparatus is increased. On the other hand, in the batch method, electrolysis is carried out in a staying state, so that electrolysis can be performed for a long time, but on the other hand, there is a feature that the above-mentioned acidic water or alkaline water is easily obtained.

【0003】従来この電位分解によって生成するpH値
の高いアルカリ水は洗浄力に優れるといわれている。こ
の洗浄水は、アルカリ性の電解水から調整された脱脂洗
浄水であって、洗浄水中のナトリウムイオン濃度+カリ
ウムイオン濃度が0.2ミリモル/リットル以上5ミリ
モル/リットル以下、塩素イオン濃度が1ミリモル/リ
ットル以下、pHを9以上12以下として、特に鉄、
鋼、銅、真鍮などの金属やプラスチック、セラミックな
どの洗浄に用いると、表面に付着した油分を剥離し、金
属などの腐食や表面劣化がなく、有機溶剤のような人体
への悪影響も見られないとしている。
Conventionally, it is said that alkaline water having a high pH value generated by this potential decomposition has excellent detergency. The washing water is degreasing washing water prepared from alkaline electrolyzed water, and has a sodium ion concentration + potassium ion concentration of 0.2 mmol / liter or more and 5 mmol / liter or less and a chloride ion concentration of 1 mmol. / Liter or less, pH 9 or more and 12 or less, especially iron,
When used for cleaning metals such as steel, copper, brass, etc., plastics, ceramics, etc., the oil that adheres to the surface is peeled off, there is no corrosion or surface deterioration of metals, etc., and adverse effects on the human body such as organic solvents are also seen. I do not.

【0004】しかし、これを一般的な食器に付着する蛋
白質や油脂質などの汚れを洗浄しようとすると、上記従
来例に示される条件ではナトリウムイオンやカリウムイ
オンが不足し、かつpH値も全体として低いため充分な
洗浄力があるとはいえない条件となっている。本発明者
の実施した油脂や蛋白質汚れを含む洗浄性能実験による
とpH11.5以下では全ての汚れに対して充分な洗浄
力があるといえない結果であった。また、ナトリウムイ
オン濃度が150ppm(6.5ミリモル/リットル)
を切るとpHが11.5以上であっても同様に充分な洗
浄効果が得られない結果となった。さらに、従来例のよ
うな塩素イオン濃度を1ミリモル/リットル(35pp
m)以下の低い電解水を生成するには、使用する被電解
水にイオン交換水を用いたり、添加する食塩の濃度を必
要以上に下げたり、また流水による電解を行わなければ
ならなかった。このような食塩濃度を下げた流水電解で
はpH8からpH10程度の電解水は容易に生成できる
が、洗浄性能の高いpH11からpH13のアルカリ水
を生成しようとすると電極に高電圧をかけて大電流を流
す必要がでてくる。そうすると装置が大掛かりになった
り、消費電力が大きくなったりするなどの問題もある。
However, when it is attempted to wash dirt such as proteins and oil lipids attached to general tableware, sodium ions and potassium ions are deficient under the conditions shown in the above conventional example, and the pH value as a whole is low. Since it is low, the condition is such that it cannot be said to have sufficient cleaning power. According to the cleaning performance experiment including oils and fats and protein stains conducted by the present inventor, it was found that a pH of 11.5 or less does not have sufficient detergency for all stains. Moreover, the sodium ion concentration is 150 ppm (6.5 mmol / liter).
When the pH value was cut, a sufficient washing effect was not obtained even when the pH was 11.5 or higher. Furthermore, the chlorine ion concentration as in the conventional example is 1 mmol / liter (35 pp
In order to produce low electrolyzed water of m or less, it was necessary to use ion-exchanged water as the electrolyzed water to be used, to reduce the concentration of salt to be added more than necessary, and to perform electrolysis with running water. Although electrolyzed water having a pH of about 8 to 10 can be easily produced by running water electrolysis with such a reduced salt concentration, a high voltage is applied to the electrode to generate a large current when attempting to produce alkaline water having a high cleaning performance of pH 11 to pH 13. It will need to be flushed. Then, there are problems that the device becomes large in size and power consumption becomes large.

【0005】このような電解水生成装置としては、図8
に示すように、電解槽1に、カソード室2と中間室3と
アノード室4の3つの室を設け、そのカソード室2と中
間室3およびアノード室4と中間室3は隔膜7、隔膜8
によって隔てられ、カソード室2にはカソード電極5、
アノード室4にはアノード電極6が設置され、各電極
5,6は直流電源装置に接続してある。そして、カソー
ド室2で生成した電解イオン水の貯槽12は、循環ポン
プ13により供給路10から電解槽1のカソード室2へ
循環供給する構成となっている。貯槽12内の電解イオ
ン水が目的のpHと酸化還元電位に達すれば、バルブ1
4を開いて採水路15から電解イオン水を採水するもの
である。
FIG. 8 shows such an electrolyzed water producing apparatus.
As shown in FIG. 3, the electrolytic cell 1 is provided with three chambers of a cathode chamber 2, an intermediate chamber 3 and an anode chamber 4, and the cathode chamber 2 and the intermediate chamber 3 and the anode chamber 4 and the intermediate chamber 3 are separated by a diaphragm 7 and a diaphragm 8 respectively.
Separated by a cathode electrode 5 in the cathode chamber 2,
An anode electrode 6 is installed in the anode chamber 4, and each of the electrodes 5 and 6 is connected to a DC power supply device. The electrolytic ionized water storage tank 12 generated in the cathode chamber 2 is circulated and supplied from the supply passage 10 to the cathode chamber 2 of the electrolytic tank 1 by the circulation pump 13. When the electrolyzed ionized water in the storage tank 12 reaches the target pH and redox potential, the valve 1
4 is opened and electrolytic ionized water is sampled from the water sampling channel 15.

【0006】しかしながら従来の構成では、アノード室
4および中間室3に電解質を含む水溶液を連続的に供給
し続けなければならず、実際に実用化しようとすると、
装置全体としては大型で複雑な構成となり、家庭やオフ
ィスなどに設置して、手軽に使用するイメージとはほど
遠いものであった。
However, in the conventional structure, it is necessary to continuously supply the aqueous solution containing the electrolyte to the anode chamber 4 and the intermediate chamber 3, and when it is actually put to practical use,
The entire device had a large and complicated structure, and it was far from the image of being easily installed and used in the home or office.

【0007】また流水式においても簡単な構成の例とし
て、図9に示すように、水道水や井戸水等の原水を通水
する電解槽21の内部に対向して電極板22,23設
け、この電解槽21の内部に塩水24をポンプ25によ
って添加する構成が知られている。なお、26は隔膜、
27は原水給水路、28は第1排水管、29は第2排水
管、30は正逆電圧切替器、31は直流電源である。
As an example of a simple structure in the running water system, as shown in FIG. 9, electrode plates 22 and 23 are provided so as to face the inside of an electrolytic cell 21 for passing raw water such as tap water or well water. A configuration is known in which salt water 24 is added to the inside of the electrolytic cell 21 by a pump 25. In addition, 26 is a diaphragm,
Reference numeral 27 is a raw water supply channel, 28 is a first drainage pipe, 29 is a second drainage pipe, 30 is a forward / reverse voltage switching device, and 31 is a DC power supply.

【0008】この構成において、原水給水路27から原
水を電解槽21内に流しながら、電解質である塩水(N
aCl)を陽極22近傍に添加することで、原水の電気
抵抗を低くして電気分解時の電圧を低下させて電気分解
を効率よく安定化させる作用と、電気分解の陽極22反
応により塩水の塩素イオンから塩素ガスが生成され、こ
の塩素ガスが原水に溶解することによって除菌力を有す
る次亜塩素酸(HClO)を効率よく生成するよう作用
をする。
In this structure, while the raw water is supplied from the raw water supply channel 27 into the electrolytic cell 21, salt water (N
aCl) in the vicinity of the anode 22 lowers the electric resistance of the raw water to lower the voltage during electrolysis to efficiently stabilize the electrolysis, and the reaction of the anode 22 of the electrolysis with chlorine in salt water. Chlorine gas is generated from the ions, and the chlorine gas dissolves in the raw water to effectively generate hypochlorous acid (HClO) having a disinfecting power.

【0009】しかし、この構成のものでは、原水の流量
に比例して食塩の添加量を調整しなければ、原水の塩分
濃度が変化し安定した電解水生成ができない。そのため
に原水の流量調整や食塩の添加量制御など高度の制御が
必要となってしまう。
However, with this construction, unless the amount of salt added is adjusted in proportion to the flow rate of the raw water, the salt concentration of the raw water changes and stable electrolyzed water cannot be produced. Therefore, advanced control such as adjustment of the flow rate of raw water and control of the amount of salt added becomes necessary.

【0010】また、隔膜26近傍は主に原水が流れるた
め塩水の濃度は高くならず、塩水のナトリウムイオンが
陰極23側へ移動しにくい構成となっている。これは陰
極水のpHを上げたり、ナトリウムイオン濃度を高める
ようには作用しにくい。したがって、この陰極水を洗浄
水として利用するには適さない構成となっていた。
Further, since the raw water mainly flows in the vicinity of the diaphragm 26, the concentration of the salt water does not increase and the sodium ion of the salt water is difficult to move to the cathode 23 side. This does not easily act to raise the pH of the cathode water or raise the sodium ion concentration. Therefore, the cathode water is not suitable for use as washing water.

【0011】また電解装置を備えた食器洗浄機の例とし
ては、図10に示すようなものがある。この食器洗浄機
は、被洗物を内部で洗浄するための洗浄室40と、洗浄
室40内に洗浄水をそのまま供給するための給水路41
と、洗浄室40内に供給する洗浄水を電気分解するため
の電解水生成装置42と、電解水生成装置42と洗浄室
40とを接続する通水路43とを有している。また給水
路41は管41aとこの管41aに設けられた給水弁4
1b等を有している。管41aの一端は洗浄室40に他
端は水道等の外部の給水設備へ接続され、水道水を洗浄
室40内に供給することができる。
An example of a dishwasher equipped with an electrolyzer is shown in FIG. This dishwasher is provided with a washing chamber 40 for washing an object to be washed therein and a water supply channel 41 for supplying washing water into the washing chamber 40 as it is.
And an electrolyzed water generation device 42 for electrolyzing the cleaning water supplied into the cleaning chamber 40, and a water passage 43 connecting the electrolyzed water generation device 42 and the cleaning chamber 40. Further, the water supply passage 41 includes a pipe 41a and a water supply valve 4 provided on the pipe 41a.
1b and so on. One end of the pipe 41a is connected to the cleaning chamber 40, and the other end is connected to an external water supply facility such as a water supply, so that tap water can be supplied into the cleaning chamber 40.

【0012】洗浄室40は被洗物を載置する網状ラック
40b、アーム形のノズル40d等を含む洗浄機構40
cと、排水管44aや排水ポンプ44b等を有する排水
路44とが設けられている。洗浄機構40cは洗浄室4
0の底部40aとノズル40dとをつなぐ管40f、こ
の管40fに設けられて洗浄水を圧送する洗浄ポンプ4
0gと、圧送された洗浄水を噴射する上述のノズル40
dとを有している。ノズル40dには、複数の噴射口4
0eが設けられ、ここからラック40bに載置されてい
る被洗物に向けて洗浄水を噴射する。洗浄ポンプ40g
が運転されると、洗浄水を被洗物に吹きつけて、被洗物
をむらなく洗浄する。
The washing chamber 40 includes a net-like rack 40b on which an article to be washed is placed, an arm-shaped nozzle 40d, and the like.
c, and a drainage channel 44 having a drainage pipe 44a, a drainage pump 44b, and the like. The cleaning mechanism 40c is the cleaning chamber 4
40f for connecting the bottom portion 40a of No. 0 and the nozzle 40d, and a cleaning pump 4 provided in this tube 40f for pumping cleaning water under pressure
0 g and the above-mentioned nozzle 40 for injecting the wash water pumped.
d and. The nozzle 40d has a plurality of injection ports 4
0e is provided, from which the cleaning water is sprayed toward the object to be cleaned placed on the rack 40b. Washing pump 40g
When is operated, the washing water is sprayed onto the article to be washed, and the article is washed evenly.

【0013】また電解水生成装置42は洗浄水を貯める
タンク42aと、タンク42aに貯められた洗浄水を電
気分解により酸性水とアルカリ性水とに分解する分解手
段42eと、分解された酸性水とアルカリ性水とをタン
ク42a内で区別する仕切り手段としてのイオン交換膜
等の隔膜42dとを有し、タンク42aには管41aか
ら分岐してタンク42aの内部に水道水を導くための管
45aや電磁弁45b等を含む分岐水路45と、通水路
43が接続されている。
The electrolyzed water producing device 42 includes a tank 42a for storing cleaning water, a decomposing unit 42e for decomposing the cleaning water stored in the tank 42a into acidic water and alkaline water by electrolysis, and decomposed acidic water. It has a diaphragm 42d such as an ion exchange membrane as a partitioning means for distinguishing it from alkaline water in the tank 42a, and the tank 42a has a pipe 45a for branching from the pipe 41a to introduce tap water into the tank 42a. The branch water passage 45 including the solenoid valve 45b and the like and the water passage 43 are connected.

【0014】タンク42a内部は、隔膜42dにより2
つの室42b,42cに仕切られ、一方の室42bには
陽電極42fが、他方の室42cには陰電極42gが配
置されている。これらの一対の電極42f、42gは電
源に接続され、これらは上述の分解手段42eを構成し
ている。
The inside of the tank 42a is covered by the diaphragm 42d.
It is divided into two chambers 42b and 42c, and a positive electrode 42f is arranged in one chamber 42b and a negative electrode 42g is arranged in the other chamber 42c. The pair of electrodes 42f and 42g are connected to a power source, and these constitute the above-mentioned disassembling means 42e.

【0015】電解水を生成する際には、タンク42a内
に所定量の食塩と分岐水路45からの水道水とが供給さ
れ、所定の濃度の食塩水が貯められる。この食塩水に所
定の直流電圧を所定時間印加し、陽電極側の室42bに
pH2〜3の強酸性水を、陰電極側の室42cにpH11〜
12の強アルカリ性水をそれぞれ生成する。
When the electrolyzed water is generated, a predetermined amount of salt and tap water from the branch water passage 45 are supplied into the tank 42a to store a predetermined concentration of salt water. A predetermined DC voltage is applied to this saline for a predetermined time, and the solution is placed in the chamber 42b on the positive electrode side.
Strong acidic water of pH 2-3 is added to the chamber 42c on the side of the negative electrode to pH 11
It produces 12 strongly alkaline waters, respectively.

【0016】また、タンク42aの各室42b,42c
は、分岐水路45から水がそれぞれ供給されるようにな
っている。通水路43はタンク42aの各室42b,4
2cと洗浄室40とを接続する管43aを有している。
管43aの一端は洗浄室40につながり、管43aの他
端は分岐してタンク42aの各室42b,42cの底部
にそれぞれつながり、室42bにつながる分岐した部分
に電磁弁43bが設けられ、室42cにつながる分岐し
た部分に電磁弁43cが設けられている。電磁弁43
b,43cを開閉することで、タンク42aの各室42
b,42cから択一的に洗浄水を流出させることができ
る。
Further, each chamber 42b, 42c of the tank 42a
Are supplied with water from the branch water channels 45, respectively. The water passage 43 is formed in each chamber 42b, 4 of the tank 42a.
It has a pipe 43a that connects 2c and the cleaning chamber 40.
One end of the pipe 43a is connected to the cleaning chamber 40, the other end of the pipe 43a is branched and connected to the bottoms of the chambers 42b and 42c of the tank 42a, and a solenoid valve 43b is provided at the branched portion connected to the chamber 42b. An electromagnetic valve 43c is provided at a branched portion connected to 42c. Solenoid valve 43
By opening and closing b and 43c, each chamber 42 of the tank 42a
The cleaning water can be alternatively discharged from b and 42c.

【0017】[0017]

【発明が解決しようとする課題】しかし上記pHの11
〜12アルカリ水を用いて一般的な食器に付着する汚
れ、例えばカレーやトンカツ、ハムエッグ、味噌汁等の
汚れを洗浄しようとすると、上記従来例に示される条件
ではナトリウムイオンやカリウムイオンが不足し、かつ
pH値も全体として低いため充分な洗浄力があるとはい
えない条件となっている。本発明者の実施したカレーや
トンカツ、ハムエッグ、味噌汁などの汚れを含む食洗機
での洗浄性能実験によるとpH11.5以下では全ての
汚れに対して充分な洗浄力があるといえない結果であっ
た。また、ナトリウムイオン濃度が150ppm(6.
5ミリモル/リットル)を切るとpHが11.5以上で
あっても同様に充分な洗浄効果が得られない結果となっ
た。
However, the above-mentioned pH of 11
~ 12 If you try to wash the dirt attached to general tableware with alkaline water, such as curry, pork cutlet, ham egg, miso soup, sodium ion and potassium ion are insufficient under the conditions shown in the above conventional example, Moreover, since the pH value is low as a whole, the condition is such that it cannot be said that there is sufficient detergency. According to the washing performance experiment conducted by the present inventor in a dishwasher containing stains such as curry, pork cutlet, ham egg, and miso soup, it cannot be said that a pH of 11.5 or less has sufficient washing power for all stains. there were. The sodium ion concentration is 150 ppm (6.
When the pH is less than 5 mmol / liter), a sufficient cleaning effect cannot be obtained even when the pH is 11.5 or higher.

【0018】本発明は、上記従来の課題を解決するもの
で、環境にやさしく、洗浄力に優れた安全な電解水を生
成する電解水生成装置を備えた食器洗浄機を提供するこ
とを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a dishwasher equipped with an electrolyzed water producing apparatus that produces safe electrolyzed water that is environmentally friendly and has excellent detergency. To do.

【0019】[0019]

【課題を解決するための手段】本発明は上記目的を達成
するために、本発明の電解水生成装置を備えた食器洗浄
機は、陽極と陰極との間にイオン透過性の隔膜が配置さ
れ、この隔膜によって陽極室と陰極室とが形成された電
解槽と、少なくとも前記陽極室に電解質を供給する電解
質供給手段と、前記陽極と陰極に電圧を印加して被電解
水を電解する制御手段とを備え、電気分解したとき、前
記陰極室に生成される電解水がpH11.5〜12.5
でかつ塩素イオン濃度が50〜2000ppmのアルカ
リ水を生成する構成としたものである。
In order to achieve the above object, the present invention provides a dishwasher equipped with the electrolyzed water producing apparatus of the present invention in which an ion-permeable diaphragm is arranged between an anode and a cathode. An electrolytic cell in which an anode chamber and a cathode chamber are formed by this diaphragm, an electrolyte supply means for supplying an electrolyte to at least the anode chamber, and a control means for electrolyzing water to be electrolyzed by applying a voltage to the anode and cathode The electrolyzed water produced in the cathode chamber has a pH of 11.5 to 12.5 when electrolyzed.
In addition, it is configured to generate alkaline water having a chlorine ion concentration of 50 to 2000 ppm.

【0020】被電解水を電解したとき、陽極室の電解質
が電解により、イオン透過性の隔膜を介してナトリウム
イオンやカリウムイオンなどの陽イオンが主に陰極室に
移行し、塩素イオンなどの陰イオンは陽極室に移行す
る。そして、前記陰極室にpH11.5〜12.5でか
つ塩素イオン濃度が50〜2000ppmののアルカリ
性の電解水が生成される。このようにして生成された電
解水は、油脂の鹸化や乳化作用および蛋白質に対する加
水分解作用を有し、食器に付着する汚れなどに対して洗
浄が可能になる。この洗浄効果の高い洗浄水を食器洗浄
機に用いることにより、食器洗浄機の噴流による物理的
洗浄効果と併さってさらに洗浄効果が向上する。
When the water to be electrolyzed is electrolyzed, the electrolyte in the anode chamber is electrolyzed, and cations such as sodium ions and potassium ions mainly move to the cathode chamber through the ion-permeable diaphragm, and anions such as chlorine ions are generated. Ions migrate to the anode chamber. Then, alkaline electrolyzed water having a pH of 11.5-12.5 and a chloride ion concentration of 50-2000 ppm is generated in the cathode chamber. The electrolyzed water thus produced has a saponification and emulsifying action on fats and oils and a hydrolyzing action on proteins, and can wash dirt and the like attached to dishes. By using the wash water having a high washing effect in the dishwasher, the washing effect is further improved in addition to the physical washing effect by the jet flow of the dishwasher.

【0021】[0021]

【発明の実施の形態】請求項1に記載の発明は、陽極と
陰極との間にイオン透過性の隔膜が配置され、この隔膜
によって陽極室と陰極室とが形成された電解槽と、少な
くとも陽極室に電解質を供給する電解質供給手段と、陽
極と陰極に電圧を印加して被電解水を電解する制御手段
とを有し、pHが11.5〜12.5でかつ塩素イオン
濃度が50〜2000ppmの電解水を電気分解により
生成する電解水生成装置を備えた食器洗浄機である。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 is an electrolytic cell in which an ion-permeable diaphragm is arranged between an anode and a cathode, and an anode chamber and a cathode chamber are formed by this diaphragm, It has an electrolyte supply means for supplying an electrolyte to the anode chamber and a control means for applying a voltage to the anode and the cathode to electrolyze the electrolyzed water, and has a pH of 11.5-12.5 and a chloride ion concentration of 50. It is a dishwasher equipped with an electrolyzed water generator that electrolyzes electrolyzed water of up to 2000 ppm.

【0022】これにより、陽極室内に供給される被電解
水に電解質を供給し、陽−陰極間に電圧が印可されると
電解質に含まれるイオンは電気吸引力により電極と逆極
性のイオンが隔膜を通過して移動することとなる。した
がって陽極室に導入された例えばナトリウムイオンやカ
リウムイオンなどの陽イオンは隔膜を経て陰極室へと即
座に移動する。また塩素イオンなどの陰イオンは陽極に
吸引されるため陰極室への移動は最小限にとどまる。こ
れにより、陰極室側での電解水がアルカリ性になる。
As a result, the electrolyte is supplied to the electrolyzed water supplied into the anode chamber, and when a voltage is applied between the positive electrode and the negative electrode, the ions contained in the electrolyte are ions having a polarity opposite to that of the electrodes due to the electric attraction force. Will move through. Therefore, cations such as sodium ions and potassium ions introduced into the anode chamber immediately move to the cathode chamber through the diaphragm. Further, since anions such as chlorine ions are attracted to the anode, their movement to the cathode chamber is minimized. As a result, the electrolyzed water on the cathode chamber side becomes alkaline.

【0023】またアルカリ水の特性としてpHが11.
5以上になると油脂の鹸化や乳化作用および蛋白質に対
する加水分解作用が顕著になるとともにOH−イオンに
よる汚れへの浸透作用や剥離作用が強まり洗浄力に優れ
た水となる。また、pH12.5以下のレベルであれば
皮膚や粘膜に刺激を与えることがないので安全である。
さらに、前記の剥離作用を阻害すると考えられる塩素イ
オンを実使用レベルで低く抑えることで安定した洗浄力
が容易に得られる。食器洗浄機は40〜60リットル毎
分の噴流を吐出しており、噴流による物理的洗浄効果も
大きく、この電解水を食器洗浄機に用いることにより、
従来の洗剤と同等レベルの洗浄効果を得ることができる
とともに、界面活性剤などを含んでおらず、環境にやさ
しい排水となる。
The pH of the alkaline water is 11.
When it is 5 or more, the saponification and emulsification action of fats and oils and the hydrolysis action on proteins become remarkable, and the action of penetrating into dirt and the peeling action by OH-ions are strengthened to give water excellent in detergency. Further, at a level of pH 12.5 or less, it is safe because it does not irritate the skin and mucous membranes.
Further, stable detergency can be easily obtained by suppressing the chlorine ion, which is considered to inhibit the above-mentioned peeling action, to a low level at the actual use level. The dishwasher discharges a jet flow of 40 to 60 liters per minute, and the physical washing effect of the jet is great. By using this electrolyzed water in the dishwasher,
It is possible to obtain the same level of cleaning effect as conventional detergents, and because it does not contain surfactants, it becomes environmentally friendly drainage.

【0024】請求項2に記載の発明は、陽極と陰極との
間にイオン透過性の隔膜が配置され、この隔膜によって
陽極室と陰極室とが形成された電解槽と、少なくとも陽
極室に電解質を供給する電解質供給手段と、陽極と陰極
に電圧を印加して被電解水を電解する制御手段とを有
し、pHが11.5〜12.5でかつナトリウムイオン
濃度が150〜700ppmの電解水を電気分解により
生成する電解水生成装置を備えた食器洗浄機である。
According to a second aspect of the present invention, an ion-permeable diaphragm is arranged between the anode and the cathode, and an electrolytic chamber in which an anode chamber and a cathode chamber are formed by this diaphragm, and an electrolyte in at least the anode chamber. Which has a pH of 11.5-12.5 and a sodium ion concentration of 150-700 ppm. It is a dishwasher equipped with an electrolyzed water generator that generates water by electrolysis.

【0025】これにより、電気分解により生成される電
解水がpH11.5〜12.5でかつナトリウムイオン
濃度が150〜700ppmのアルカリ水であるため、
前記の油脂の鹸化や乳化作用および蛋白質に対する加水
分解作用が強いといわれるナトリウムイオンを適度に加
えることで洗浄力がさらに向上する。食器洗浄機の噴流
による物理的洗浄効果に加え、剥離効果を大きくするこ
とで、従来の洗剤と同等レベルの洗浄効果を得ることが
できるとともに、界面活性剤などを含んでおらず、環境
にやさしい排水となる。
As a result, the electrolyzed water produced by electrolysis is alkaline water having a pH of 11.5-12.5 and a sodium ion concentration of 150-700 ppm.
The detergency is further improved by appropriately adding sodium ions, which are said to have a strong saponification and emulsification action on oils and fats and a hydrolyzing action on proteins. By increasing the peeling effect in addition to the physical cleaning effect of the jet of a dishwasher, it is possible to obtain the same level of cleaning effect as conventional detergents, and because it does not contain surfactants etc., it is environmentally friendly. It becomes drainage.

【0026】請求項3に記載の発明は、請求項1または
請求項2に記載した食器洗浄機において、陰極室で生成
した電解水を用いて洗浄槽内で洗浄後、陽極室で生成し
た電解水を洗浄槽内へ供給し混合した後、排水するよう
にしたものである。
The invention according to claim 3 is the dishwasher according to claim 1 or 2, wherein the electrolysis water produced in the cathode chamber is used to wash in a washing tank and then the electrolysis produced in the anode chamber. Water is supplied into the cleaning tank, mixed, and then drained.

【0027】これにより、pHが11.5以上の電解水
を用いて油脂の鹸化や乳化作用および蛋白質に対する加
水分解作用を有し、且つOH−イオンによる汚れへの浸
透作用や剥離作用を有する電解水で食器などに付着した
汚れを洗浄した後、アルカリ電解水の生成時に同時に生
成される酸性電解水を混合して排水することで、排水さ
れる電解水が弱アルカリ性〜中性領域になり、腐食性の
ある酸性水の腐食性を低減して排水することができ、排
水系の腐食を押さえることができる。
As a result, electrolytic water having a pH of 11.5 or more has the effects of saponifying and emulsifying fats and oils and hydrolyzing proteins, and has an action of penetrating into dirt by OH-ions and a peeling action. After washing dirt attached to tableware with water, by mixing and discharging acidic electrolyzed water that is simultaneously generated when alkaline electrolyzed water is generated, the electrolyzed water that is drained becomes a weak alkaline to neutral region, It is possible to reduce the corrosiveness of corrosive acidic water for drainage, and suppress corrosion of the drainage system.

【0028】請求項4に記載の発明は、請求項1または
2に記載した食器洗浄機において、陰極室で生成した電
解水を用いて洗浄槽内で洗浄後、陽極室で生成した電解
水を洗浄槽内で混合しながら洗浄動作を行うようにした
ものである。
The invention according to claim 4 is the dishwasher according to claim 1 or 2, wherein the electrolytic water generated in the cathode chamber is used to wash the electrolytic water generated in the anode chamber, and then the electrolytic water generated in the anode chamber is washed. The cleaning operation is performed while mixing in the cleaning tank.

【0029】これにより、pHが11.5以上の電解水
を用いて油脂の鹸化や乳化作用および蛋白質に対する加
水分解作用を有し且つOH−イオンによる汚れへの浸透
作用や剥離作用を有する電解水で食器などに付着した汚
れを洗浄した後、アルカリ電解水の生成時に同時に生成
される酸性電解水を混合して洗浄することで、電解質が
食塩などの場合に陽極室で生成される次亜塩素酸の有す
る酸化作用を有効に利用して、食器や食器洗浄機の洗浄
槽内の漂白・除菌と、食器から剥離或いはアルカリ電解
水に溶解した汚れに含まれる微生物を除菌することにな
る。よって、食器などの漂白・除菌ができるうえに、排
水に含まれる微生物による微生物汚染を防止することも
可能となる。
As a result, electrolyzed water having a pH of 11.5 or more has the effects of saponification and emulsification of fats and oils and hydrolysis of proteins, and has the effect of penetrating into dirt by OH-ions and stripping action. After cleaning the stains on the tableware, etc., by mixing with acidic electrolyzed water that is generated at the same time as the generation of alkaline electrolyzed water for cleaning, hypochlorous acid generated in the anode chamber when the electrolyte is salt etc. By effectively utilizing the oxidizing action of acid, it will bleach and disinfect the dishes and the washing tank of the dishwasher, and the microorganisms contained in the stains that are peeled from the dishes or dissolved in alkaline electrolyzed water. . Therefore, it is possible to bleach and sterilize tableware and the like, and also to prevent microbial contamination by microorganisms contained in the wastewater.

【0030】請求項5に記載の発明は、油脂や蛋白質な
どの通常の食器汚れを行う「洗浄モード」と、通常の洗
浄を行いながら漂白をも行う「漂白洗浄モード」を備
え、「洗浄モード」を選択した際は請求項3に記載の制
御方法を、「漂白洗浄モード」を選択した際は請求項4
に記載の制御方法を用いるようにしたものである。
The invention according to claim 5 is provided with a "washing mode" for performing ordinary dishwashing of oils and fats and proteins and a "bleaching washing mode" for performing bleaching while performing ordinary washing. When "" is selected, the control method according to claim 3 is selected, and when "bleach cleaning mode" is selected, the control method according to claim 3 is selected.
The control method described in 1) is used.

【0031】これにより、使用者が使用に応じてコース
を選択することで、食器洗浄機の洗浄槽にセットした食
器等の材質に応じて使い分けをすることができ、食器等
の色落ちや変色、変形・破損などを防ぐことができる。
As a result, the user can select the course according to the use, and the user can select the course according to the material of the tableware set in the washing tank of the dishwasher, and the discoloration or discoloration of the tableware etc. It can prevent deformation and damage.

【0032】請求項6に記載の発明は、請求項3〜5項
のいずれか1項に記載した食器洗浄機の陽極室及び陰極
室で生成した電解水を混合して洗浄した後に洗浄槽内及
び電解槽内を、水道水で洗浄濯ぎするようにしたもので
ある。
According to a sixth aspect of the present invention, in the washing tank after the electrolytic water generated in the anode chamber and the cathode chamber of the dishwasher according to any one of the third to fifth aspects is mixed and washed, Also, the inside of the electrolytic cell is washed and rinsed with tap water.

【0033】これにより、電解水を使用した後に、水道
水を通水或いは循環させることで、電解槽及び洗浄槽及
び循環経路に残存している電解水が水道水で希釈される
ようになり、それぞれのアルカリ水及び酸性水は中性水
となる。よって、酸性水やアルカリ水による腐食等を防
ぐことができる。
As a result, by running or circulating tap water after using the electrolyzed water, the electrolyzed water remaining in the electrolysis tank, the cleaning tank and the circulation path can be diluted with tap water. The respective alkaline water and acidic water become neutral water. Therefore, it is possible to prevent corrosion due to acidic water or alkaline water.

【0034】請求項7に記載の発明は、請求項1〜6項
のいずれか1項に記載した食器洗浄機において、洗剤を
用いずに水道水を加温して洗浄する「洗浄運転」を行っ
た後に、電解水を加温して洗浄する「電解洗浄運転」を
行ない、さらにその後、水道水を加温して洗浄する「濯
ぎ運転」を行うようにしたものである。
The invention according to claim 7 is a dishwasher according to any one of claims 1 to 6, wherein a "washing operation" is performed in which tap water is heated and washed without using a detergent. After that, the "electrolytic cleaning operation" of heating the electrolyzed water for cleaning is performed, and then the "rinsing operation" of heating the tap water for cleaning is performed.

【0035】これにより、食器等に付着した汚れを湯の
持つ洗浄力により予め洗浄槽より排出させることで、電
解水で洗浄する際の汚れ量を減少させることになり、電
解水による洗浄性が向上する。汚れ量に応じた多量の洗
剤を投入することなく、所定の電解水を供給すれば洗浄
性能を確保できるようになる。よって、湯の洗浄性能を
利用することで、最小限の洗浄性能を有する電解水を短
時間で生成可能となる。また、電解水生成装置の電極の
寿命やスケール付着などの信頼性面を向上させることが
できる。
Thus, the dirt attached to the dishes and the like is discharged from the cleaning tank in advance by the cleaning power of the hot water, so that the amount of dirt when cleaning with electrolytic water is reduced, and the cleaning performance with electrolytic water is improved. improves. By supplying a predetermined amount of electrolyzed water without adding a large amount of detergent according to the amount of dirt, the cleaning performance can be secured. Therefore, by utilizing the cleaning performance of hot water, it is possible to generate the electrolyzed water having the minimum cleaning performance in a short time. In addition, it is possible to improve the life of the electrode of the electrolyzed water generator and reliability such as scale adhesion.

【0036】請求項8に記載の発明は、請求項1〜7の
いずれか1項記載の電解水生成装置を備えた食器洗浄機
において、電解質供給手段に、陽極室で電解するのに適
した濃度より高濃度の電解質を収納する電解質タンク
と、高濃度の電解質を陽極室に供給する供給手段を備え
たものである。
The invention according to claim 8 is a dishwasher equipped with the electrolyzed water generator according to any one of claims 1 to 7, and is suitable for electrolyzing in an anode chamber in an electrolyte supply means. It is provided with an electrolyte tank for storing an electrolyte having a higher concentration than the concentration and a supply means for supplying the electrolyte with a high concentration to the anode chamber.

【0037】これにより、供給手段によって電解質タン
クの電解質が、少なくとも陽極室の被電解水に供給され
るので、手作業によって食塩水などを作成する必要がな
く、電解質濃度も安定するので所望のpH値やイオン濃
度の電解生成水が精度良く得られ洗浄性能も安定する。
また機器に組み込む際に小型化しやすい。
Since the electrolyte in the electrolyte tank is supplied to at least the electrolyzed water in the anode chamber by the supply means, it is not necessary to manually prepare saline solution or the like, and the electrolyte concentration is stabilized, so that the desired pH is obtained. The value and ion concentration of electrolyzed water can be obtained accurately, and the cleaning performance is stable.
In addition, it is easy to reduce the size when incorporating it into equipment.

【0038】請求項9に記載の発明は、請求項1〜8の
いずれか1項に記載の電解水生成装置を備えた食器洗浄
機において、電解水生成装置の隔膜を、陽イオン交換膜
としている。
[0038] A ninth aspect of the present invention is a dishwasher equipped with the electrolyzed water producing apparatus according to any one of the first to eighth aspects, wherein the diaphragm of the electrolyzed water producing apparatus is a cation exchange membrane. There is.

【0039】これにより、ナトリウムイオンやカリウム
イオンなどの陽イオンを陽極室から陰極室へ移動させ、
塩素イオンなどの陰イオンが陰極室に移動することを防
ぐことができるためより効率的に電解水を得ることがで
きる。
As a result, cations such as sodium ions and potassium ions are moved from the anode chamber to the cathode chamber,
Since it is possible to prevent anions such as chlorine ions from moving to the cathode chamber, electrolyzed water can be obtained more efficiently.

【0040】請求項10に記載の発明は、請求項8また
は9に記載の電解水生成装置を備えた食器洗浄機におい
て、電解槽内の電解質濃度を検出する電解質検知手段を
設け、電解質検知手段の検出値に応じて電解条件を制御
するものである。
According to a tenth aspect of the present invention, in a dishwasher equipped with the electrolytic water generating apparatus according to the eighth or ninth aspect, an electrolyte detecting means for detecting the electrolyte concentration in the electrolytic cell is provided, and the electrolyte detecting means is provided. The electrolysis conditions are controlled according to the detected value of.

【0041】これにより、電解質濃度が検出できるの
で、電解質供給手段の故障や電解質の供給不足が検知で
きる。また電解槽内の被電解水が不足している場合にも
同電解質検知手段が被電解水との接触状態の変化という
形で捉えられる。そこで異常を検知した場合は電解を中
止させたり、電解質濃度の大小によって電解時間や電解
電流を調整することで安定した電解水を生成して、食器
などを洗浄することができる。
As a result, since the electrolyte concentration can be detected, it is possible to detect a malfunction of the electrolyte supply means or an insufficient supply of electrolyte. Further, even when the electrolyzed water in the electrolytic cell is insufficient, the electrolyte detection means can be grasped as a change in the contact state with the electrolyzed water. Therefore, when an abnormality is detected, electrolysis can be stopped, or stable electrolyzed water can be generated by adjusting the electrolysis time or the electrolysis current depending on the magnitude of the electrolyte concentration to wash dishes or the like.

【0042】請求項11に記載の発明は、請求項10に
記載の電解水生成装置を備えた食器洗浄機において、電
解質検知手段の検出値が所定値に達するまで電解質を供
給するようにするもので、電解質供給手段の供給量のバ
ラツキを防止でき、毎回一定の電解水を生成することが
できる。
The eleventh aspect of the invention is a dishwasher equipped with the electrolyzed water producing apparatus according to the tenth aspect, in which the electrolyte is supplied until the detection value of the electrolyte detection means reaches a predetermined value. Thus, it is possible to prevent the variation in the supply amount of the electrolyte supply means, and to generate a constant amount of electrolyzed water every time.

【0043】請求項12に記載の発明は、請求項10ま
たは11に記載の電解水生成装置を備えた食器洗浄機に
おいて、電解質検知手段の検出値が所定範囲内の場合に
電解可能とするもので、この検出値が所定範囲から外れ
た場合は何か異常があると判断して電解を中止し、所定
範囲内であれば電解を行うようにできる。したがって生
成する電解水は所定範囲内の安定したものとなる。
According to a twelfth aspect of the present invention, in the dishwasher equipped with the electrolyzed water generating apparatus according to the tenth or eleventh aspect, electrolysis is possible when the detection value of the electrolyte detection means is within a predetermined range. Then, if the detected value is out of the predetermined range, it is determined that there is something abnormal and the electrolysis is stopped. If it is within the predetermined range, the electrolysis can be performed. Therefore, the generated electrolyzed water becomes stable within a predetermined range.

【0044】請求項13に記載の発明は、請求項10〜
12のいずれか1項に記載の電解水生成装置を備えた食
器洗浄機において、電解質検知を陽極と陰極間の電位ま
たは電流により検出するものである。この電極間の電位
または電流は被電解水の導電率と相関があり、電解質濃
度と導電率にも相関がある。したがって電極間の電位ま
たは電流から電解質濃度を容易の検出することができる
ので、電極と電解質検知手段が兼ねられ構成が簡単にな
る。
The invention according to claim 13 is the invention according to claim 10
In the dishwasher equipped with the electrolyzed water generator according to any one of 12, an electrolyte detection is detected by a potential or current between an anode and a cathode. The potential or current between the electrodes has a correlation with the conductivity of the electrolyzed water, and also has a correlation with the electrolyte concentration and the conductivity. Therefore, since the electrolyte concentration can be easily detected from the potential or the current between the electrodes, the electrode and the electrolyte detecting means can be used together to simplify the structure.

【0045】[0045]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0046】(実施例1)図1は本発明の第1の実施例
における電解水生成装置を有する食器洗浄機の構成図を
示す。図2は同実施例における電解水生成装置の構成図
を示す。図3、図4は同実施例における制御内容のフロ
ーチャートを示す。
(Embodiment 1) FIG. 1 shows a block diagram of a dishwasher having an electrolyzed water producing apparatus according to a first embodiment of the present invention. FIG. 2 shows a block diagram of the electrolyzed water generator in the same embodiment. 3 and 4 show flowcharts of control contents in the embodiment.

【0047】図1において、50は食器洗浄機の本体、
51は洗浄槽、52は食器を収納するかごで、53は洗
浄槽51の開口部に設けられた本体蓋である。54は給
水開閉弁である。70は漂白・除菌及び洗浄用の電解水
を生成する電解水生成装置である。55は給水開閉弁5
4から供給される水を直接洗浄槽51内に給水するか或
いは電解水生成装置70を介して洗浄槽51に給水する
ための給水回路の切替えを行う切替え弁である。56は
フロート式の水位検知手段で、給水開閉弁54を開成す
ることにより給水が行われるが、水位検知手段56によ
って、その水位が検知されて規定量が洗浄槽51に貯水
される。57は洗浄槽51内の下方側に配置された加熱
用ヒータであり、洗浄水を加熱する或いは食器を乾燥さ
せる際に使用する。58は洗浄水を循環させる循環ポン
プ、59は洗浄槽51の下方に配置された洗浄ノズルで
ある。60は洗浄ポンプ58等の運転を制御する制御手
段である。61は給水ホース、62は排水ホースであ
る。63は洗浄槽51に貯水した水を機外に排出するた
めの排水ポンプである。64は食器を乾燥させる際に使
用する送風機である。65は本体正面に設けられた操作
部である。
In FIG. 1, 50 is the main body of the dishwasher,
Reference numeral 51 is a washing tank, 52 is a basket for storing dishes, and 53 is a main body lid provided at the opening of the washing tank 51. Reference numeral 54 is a water supply on-off valve. Reference numeral 70 is an electrolyzed water generator that produces electrolyzed water for bleaching / sterilization and cleaning. 55 is a water supply on-off valve 5
4 is a switching valve that switches the water supply circuit for directly supplying the water supplied from No. 4 into the cleaning tank 51 or supplying the water to the cleaning tank 51 via the electrolytic water generating device 70. Reference numeral 56 denotes a float type water level detecting means for supplying water by opening the water supply opening / closing valve 54. The water level detecting means 56 detects the water level and stores a prescribed amount in the cleaning tank 51. Reference numeral 57 is a heater for heating, which is arranged on the lower side in the washing tank 51, and is used when heating washing water or drying dishes. Reference numeral 58 is a circulation pump for circulating cleaning water, and 59 is a cleaning nozzle arranged below the cleaning tank 51. Reference numeral 60 is a control means for controlling the operation of the cleaning pump 58 and the like. Reference numeral 61 is a water supply hose, and 62 is a drainage hose. Reference numeral 63 is a drainage pump for discharging the water stored in the cleaning tank 51 to the outside of the machine. 64 is a blower used when drying tableware. Reference numeral 65 denotes an operation unit provided on the front surface of the main body.

【0048】また図2において、71は電解槽であり、
イオン透過性の隔膜72によって陽極室73と陰極室7
4が形成されており、各々陽極75および陰極76が隔
膜72を介して対向配置されている。電解槽71の上方
には陽極水出口管77と陰極水出口管78が設けられて
いる。
In FIG. 2, 71 is an electrolytic cell,
Anode chamber 73 and cathode chamber 7 are formed by the ion-permeable diaphragm 72.
4 are formed, and an anode 75 and a cathode 76 are arranged to face each other with a diaphragm 72 in between. An anode water outlet pipe 77 and a cathode water outlet pipe 78 are provided above the electrolytic cell 71.

【0049】電解槽71への給水は切替弁79を介して
給水ホース80から行われる。この際切替弁79を陽極
室73側及び陰極室74側にそれぞれ切り替えた際に水
道水が満たされる。陽極室73及び陰極室74が満水に
なり溢れ出した場合は陽極水出口管77と陰極水出口管
78のそれぞれを経て洗浄槽51に水道水が注がれる構
成になっている。
Water is supplied to the electrolytic cell 71 from a water supply hose 80 via a switching valve 79. At this time, tap water is filled when the switching valve 79 is switched to the anode chamber 73 side and the cathode chamber 74 side, respectively. When the anode chamber 73 and the cathode chamber 74 are filled with water and overflow, tap water is poured into the cleaning tank 51 via the anode water outlet pipe 77 and the cathode water outlet pipe 78, respectively.

【0050】なお、電解槽71は外側から内部を目視確
認できるように少なくとも一部が透明または半透明の容
器としている。ここでは電解槽71を透明の樹脂で成型
し、電解槽71の側壁を外側に臨ませる構成としてい
る。これにより、電解槽71内部の水位が側面より確認
できるため、メンテナンス時に分解することなく確認が
できる。また、電解を長期間繰り返すと原水に含まれる
スケール成分が電極75、76や隔膜72さらに電解槽
71の内壁面に析出してくるため、これを定期的に洗浄
する必要があるが、そのためのスケール付着状況や洗浄
状態が目視確認できるので、メンテナンスが容易にな
る。
At least a part of the electrolytic cell 71 is a transparent or semi-transparent container so that the inside can be visually confirmed from the outside. Here, the electrolytic cell 71 is formed of a transparent resin so that the side wall of the electrolytic cell 71 faces the outside. As a result, the water level inside the electrolytic bath 71 can be confirmed from the side surface, so that it can be confirmed without disassembling during maintenance. Further, when electrolysis is repeated for a long time, scale components contained in the raw water are deposited on the electrodes 75 and 76, the diaphragm 72, and the inner wall surface of the electrolysis tank 71. Therefore, it is necessary to wash them regularly. Maintenance can be facilitated because the scale adhesion and cleaning status can be visually confirmed.

【0051】81は着脱自在のキャップ82および電解
質床83を有する電解質タンクであり、ここでは電解質
として食塩84が充填されている。電解質タンク81に
は陽極室73に設けられた給水口85からパルスポンプ
にてなる供給手段86によって電解槽71に入れられた
水道水が導入路87を経て電解質タンク81の上方に送
られる。導入された水は食塩84を溶解して飽和食塩水
となり、電解質床83および給液路88を通じて電解質
供給口89から電解質溶液が陽極室73に供給される構
成となっている。
Reference numeral 81 is an electrolyte tank having a detachable cap 82 and an electrolyte bed 83, in which salt 84 is filled as an electrolyte. To the electrolyte tank 81, tap water contained in the electrolytic cell 71 is fed from the water supply port 85 provided in the anode chamber 73 to the upper part of the electrolyte tank 81 through the introduction path 87 by the supply means 86 which is a pulse pump. The introduced water dissolves the salt 84 to become saturated saline, and the electrolyte solution is supplied to the anode chamber 73 from the electrolyte supply port 89 through the electrolyte bed 83 and the liquid supply passage 88.

【0052】陽極室73に供給される飽和食塩水は、原
水に対して比重が大きいため陽極室73の底部に沈んで
溜まる。この底に溜まった状態の高濃度の食塩水は電解
を開始すると、陽極75表面に発生する酸素や塩素ガス
が上昇する際の対流により陽極75と隔膜72の間に水
と混合しながら誘引され、最終的には全てが混合された
状態となる。
The saturated saline solution supplied to the anode chamber 73 has a large specific gravity with respect to the raw water and therefore sinks and accumulates at the bottom of the anode chamber 73. When the high-concentration saline solution accumulated in the bottom starts electrolysis, it is attracted while mixing with water between the anode 75 and the diaphragm 72 by convection when oxygen and chlorine gas generated on the surface of the anode 75 rise. , Finally, everything is in a mixed state.

【0053】ここで、給液路88の電解質供給口89近
傍には陽極室73の水の逆流を阻止する方向に逆止弁A
90が設けられ、導入路87の電解質タンク81と供給
手段86の間に、電解質タンク81の食塩水が供給手段
86に逆流するのを防止する逆止弁B91が設けられて
いる。また電解質供給口89は電解質タンク81の液面
92よりも上方位置に設けることにより、電解質タンク
81内の飽和食塩水が落差により電解槽71に流出する
のを防ぐことも可能となる。さらに陽極水出口管77と
陰極水出口管78を電解槽71上部に設けることで、常
に電解槽71に水が貯留されており、電解質タンク8
1、給水口85、供給手段86、導入路87、逆止弁A
90、逆止弁B91等が水の蒸発により食塩の再結晶化
による固着が防止できる。
Here, the check valve A is provided in the vicinity of the electrolyte supply port 89 of the liquid supply passage 88 in a direction to prevent the reverse flow of water in the anode chamber 73.
90 is provided, and a check valve B91 is provided between the electrolyte tank 81 in the introduction path 87 and the supply means 86 to prevent the saline solution in the electrolyte tank 81 from flowing back to the supply means 86. Further, by providing the electrolyte supply port 89 at a position higher than the liquid level 92 of the electrolyte tank 81, it is possible to prevent the saturated saline solution in the electrolyte tank 81 from flowing out to the electrolytic cell 71 due to a drop. Further, by providing the anode water outlet pipe 77 and the cathode water outlet pipe 78 above the electrolytic bath 71, water is always stored in the electrolytic bath 71, and the electrolyte tank 8
1, water inlet 85, supply means 86, introduction path 87, check valve A
90, the check valve B91, etc. can prevent the salt from re-crystallizing and sticking due to water evaporation.

【0054】なお、電解質タンク81は本体50の外側
から内部を目視確認できるように少なくとも一部を透明
または半透明としている。ここでは電解質タンク81を
透明の樹脂で成型し、電解質タンク81の側壁を本体5
0外側に臨ませる構成としている。これにより、電解質
タンク81内の食塩84の量が外部から確認できるた
め、食塩補給など使い勝手がよくなる。また着脱自在の
キャップ82を本体50外側に突出させ手軽に食塩84
を供給できるようにしている。
At least a part of the electrolyte tank 81 is transparent or translucent so that the inside of the main body 50 can be visually confirmed. Here, the electrolyte tank 81 is molded with a transparent resin, and the side wall of the electrolyte tank 81 is attached to the main body 5
It is configured to face 0 outside. As a result, the amount of the salt 84 in the electrolyte tank 81 can be confirmed from the outside, which improves usability such as salt replenishment. In addition, the removable cap 82 is projected to the outside of the main body 50 so that salt 84 can be easily added.
To be able to supply.

【0055】93は電極の逆電手段(図示せず)及び直
流電源94を有する電解制御手段であり、制御手段60
と制御情報をやり取りしている。
Reference numeral 93 is an electrolysis control means having an electrode reverse power supply means (not shown) and a DC power supply 94.
To exchange control information.

【0056】また電解制御手段93は、電解槽71に水
を供給し、所定電解質濃度になるようにパルスポンプ8
6で飽和食塩水を陽極室73に供給した後、所定電流を
陽極75と陰極76との間に流すように所定時間通電す
ることによって、陰極室74で生成される電解水をpH
11.5〜12.5のアルカリ水にすべく、前記所定時
間通電後に自動的にその通電を停止する構成である。
Further, the electrolysis control means 93 supplies water to the electrolyzer 71 to bring the pulse pump 8 to a predetermined electrolyte concentration.
After the saturated saline solution is supplied to the anode chamber 73 in step 6, the electrolyzed water generated in the cathode chamber 74 is adjusted to pH by applying a predetermined current for a predetermined time so as to flow between the anode 75 and the cathode 76.
In order to use alkaline water of 11.5 to 12.5, the energization is automatically stopped after the energization for the predetermined time.

【0057】さらに電解制御手段93は、直流電源94
の電圧を検知する電圧検知回路(図示せず)を有し、陽
極室73に添加された食塩の量をこの電圧値から求める
電解質検知手段(図示せず)を有している。陽極室73
に食塩が添加されると陽極75と陰極76の間の導電率
が添加量に比例して上昇する。したがって、電極間に定
電流を流すと電位差として導電率が求まり、食塩の添加
量を推定することができる。
Further, the electrolysis control means 93 includes a DC power source 94.
It has a voltage detection circuit (not shown) for detecting the voltage of (1) and an electrolyte detection means (not shown) for obtaining the amount of salt added to the anode chamber 73 from this voltage value. Anode chamber 73
When sodium chloride is added to the anode, the conductivity between the anode 75 and the cathode 76 increases in proportion to the amount added. Therefore, when a constant current is passed between the electrodes, the conductivity is obtained as a potential difference, and the amount of salt added can be estimated.

【0058】上記構成において次に動作、作用について
説明する。
Next, the operation and action of the above structure will be described.

【0059】最初にパルスポンプ86、導入路87、給
液路88、電解槽71内に水が満たされた状態にするた
め、給水ホース61が水道管に接続された状態で、試運
転スイッチ(図示せず)を動かすと、試運転動作が開始
され、切替弁55が給水開閉弁54と電解槽71を連通
した状態で給水開閉弁54が所定時間開成し、陽極室7
3及び陰極室74内に水道水が供給される。その際、電
解槽71内の水位は陽極水出口管77及び、陰極水出口
管78を電解槽71の上端に接続しているため、電解槽
71内は確実に満水となる。その後パルスポンプ86が
所定回数(N1)動作し、所定量の水が電解質タンク8
1に供給される。
First, in order to make the pulse pump 86, the introduction passage 87, the liquid supply passage 88, and the electrolytic cell 71 filled with water, the water supply hose 61 is connected to the water pipe, and the trial run switch (see FIG. (Not shown), the trial operation is started, and the feed water opening / closing valve 54 is opened for a predetermined time while the switching valve 55 communicates with the feed water opening / closing valve 54 and the electrolytic cell 71.
3 and the cathode chamber 74 are supplied with tap water. At that time, since the water level in the electrolytic cell 71 connects the anode water outlet tube 77 and the cathode water outlet tube 78 to the upper end of the electrolytic cell 71, the electrolytic cell 71 is surely filled with water. After that, the pulse pump 86 operates a predetermined number of times (N1), and a predetermined amount of water is supplied to the electrolyte tank 8
1 is supplied.

【0060】この状態でキャップ82をはずし、電解質
タンク81内に食塩84を溶解量以上補充することで、
食塩84の一部が自然に溶解し飽和食塩水が作成され
る。またこの食塩84を補充する際に、食塩84投入す
ることで一時的に液面が上昇し、電解質タンク81内の
水が外部に溢れ出ないように空気室95を設けている。
In this state, by removing the cap 82 and replenishing the electrolyte tank 81 with the salt 84 in a dissolved amount or more,
A part of the salt 84 is naturally dissolved to form a saturated saline solution. Further, an air chamber 95 is provided so that when the salt 84 is replenished, the liquid level is temporarily raised by pouring the salt 84 and the water in the electrolyte tank 81 does not overflow to the outside.

【0061】飽和食塩水が生成された後、パルスポンプ
86が所定回数(N2)動作し、陽極室73内に飽和食
塩水を供給し、電解制御手段93が動作して、通電量の
確認などを行うとともに、陽極室73内に供給する飽和
食塩水が安定するようにセットされる。その後、チェッ
クの際に電解槽71内で生成した電解水等を、給水ホー
ス80を介して供給される水道水で洗浄槽51に押し出
すように排出し、さらに洗浄槽51内に所定量の水道水
が供給され、水位検知手段56や、循環ポンプ58、排
水ポンプ63等の各機能部品の動作チェックを行い、最
終的には洗浄槽51内を濯ぎ、排水して試運転動作が終
了する。
After the saturated saline solution is generated, the pulse pump 86 operates a predetermined number of times (N2) to supply the saturated saline solution into the anode chamber 73, and the electrolysis control means 93 operates to confirm the energization amount. And the saturated saline solution supplied into the anode chamber 73 is set to be stable. After that, the electrolyzed water or the like generated in the electrolysis tank 71 at the time of checking is discharged so as to be pushed out to the cleaning tank 51 with tap water supplied through the water supply hose 80, and further, a predetermined amount of water is supplied into the cleaning tank 51. Water is supplied, the operation of each functional component such as the water level detecting means 56, the circulation pump 58, and the drainage pump 63 is checked. Finally, the inside of the cleaning tank 51 is rinsed and drained, and the test operation is completed.

【0062】次に電解水を用いた洗浄・漂白動作につい
て図3を用いて説明する。本体蓋53を開けて洗浄槽5
1内の収納かご52に食器等をセットした後、本体蓋5
3を閉じて本体前面の操作部65にある電源スイッチ
(図示せず)を押し、続いて運転コース選択ボタン(図
示せず)で「漂白洗浄モード」を選択すると、数秒後に
水道水(湯)のみでの洗浄動作を行なう動作が開始する
(図3のS1)。
Next, the cleaning / bleaching operation using electrolyzed water will be described with reference to FIG. The main body lid 53 is opened and the cleaning tank 5
After setting tableware etc. in the storage basket 52 inside 1, the main body lid 5
When 3 is closed and the power switch (not shown) on the operation unit 65 on the front of the main unit is pressed, and then the "bleach cleaning mode" is selected with the operation course selection button (not shown), tap water (hot water) is added after a few seconds. The operation of performing the cleaning operation by only the start (S1 in FIG. 3).

【0063】すなわち、切替弁55が水道管と洗浄槽5
1を連通した状態で給水開閉弁54が開き、洗浄槽51
内に水が供給される。その後、洗浄槽51内の水位が所
定量に達すると水位検知手段56により、給水完了の信
号が制御手段60に送られ、給水開閉弁54を閉止させ
る。その後、洗浄ポンプ59が所定時間t2だけ動作す
る。また加熱用ヒーター57にも通電され、洗浄水が約
60℃まで加熱される。洗浄水の水の温度は洗浄槽51
の底部に取り付けたサーミスタ66により検知してお
り、所定水温(約60℃)になった状態から、さらに所
定時間t3だけ洗浄ポンプ59が運転される(S2)。
That is, the switching valve 55 includes the water pipe and the cleaning tank 5.
1, the water supply on-off valve 54 opens and the cleaning tank 51
Water is supplied inside. After that, when the water level in the cleaning tank 51 reaches a predetermined amount, the water level detection means 56 sends a signal of water supply completion to the control means 60 to close the water supply opening / closing valve 54. After that, the cleaning pump 59 operates for a predetermined time t2. The heating heater 57 is also energized to heat the wash water to about 60 ° C. The temperature of the washing water is the washing tank 51.
The temperature is detected by the thermistor 66 attached to the bottom of the cleaning pump 59, and the cleaning pump 59 is operated for a predetermined time t3 from the state where the predetermined water temperature (about 60 ° C.) is reached (S2).

【0064】この動作により、食器等に付着した汚れの
大部分が洗浄されることになる。その後、排水ポンプ6
3が動作し、排水ホース62から食器などに付着してい
た大部分の汚れを含む洗浄水が機器外部に排水される。
By this operation, most of the dirt adhering to the dishes and the like is washed. After that, drainage pump 6
3 operates, and the wash water containing most of the dirt attached to the dishes and the like is drained from the drain hose 62 to the outside of the device.

【0065】また上記した洗浄動作と同時に電解水の生
成動作が行われる。つまり給水開閉弁54の動作開始と
同時にパルスポンプ86が所定回数(N3)動作し、給
水口85から導入路87及び逆止弁B91を介して陽極
室73内の水を吸引しながら電解質タンク81内の飽和
食塩水を電解質床83、給液路88及び逆止弁A90を
介して電解質供給口89から陽極室73に供給する。こ
れにより陽極室73内は所定食塩濃度となる。
At the same time as the above-mentioned cleaning operation, an operation of generating electrolytic water is performed. That is, the pulse pump 86 operates a predetermined number of times (N3) simultaneously with the start of the operation of the water supply on-off valve 54, and while sucking the water in the anode chamber 73 from the water supply port 85 through the introduction path 87 and the check valve B91, the electrolyte tank 81 The saturated saline solution is supplied from the electrolyte supply port 89 to the anode chamber 73 through the electrolyte bed 83, the liquid supply passage 88 and the check valve A90. As a result, the inside of the anode chamber 73 has a predetermined salt concentration.

【0066】次いで電解制御手段93が動作して陽極7
5と陰極76間に電圧が印加されて電気分解が始まる。
この時直流電源94は定電流を供給し一定の電解水を生
成できるようにしている。また逆電手段(図示せず)は
定期的に電極表面に付着するスケールなどを洗浄するた
め、通常の反転させて極性を切りかえるように設定され
ている。
Next, the electrolysis control means 93 operates to operate the anode 7
A voltage is applied between 5 and the cathode 76 to start electrolysis.
At this time, the DC power supply 94 supplies a constant current to generate a constant amount of electrolyzed water. In addition, the reverse charging means (not shown) is set so as to normally invert and switch the polarity in order to regularly clean the scale and the like adhering to the electrode surface.

【0067】ここで電気分解開始直後の電極間の電圧に
より電解質検知手段(図示せず)が食塩の供給量を検知
して、所定量より少ないと判定された場合は、パルスポ
ンプ87を再度所定時間駆動し、電解質検知手段が食塩
の供給量が所定値に達するまでこれを繰り返す。しか
し、複数回(例えば5回)繰り返しても所定値に達しな
ければ、操作部65に設けた食塩補給ランプ(図示せ
ず)を点灯させて電解を中断する。これは電解質タンク
81の食塩84が空になっていたり、パルスポンプ86
の故障が想定される場合に発生する。
Here, the electrolyte detection means (not shown) detects the supply amount of salt by the voltage between the electrodes immediately after the start of electrolysis, and when it is determined that the supply amount is less than the predetermined amount, the pulse pump 87 is again set to the predetermined amount. It is driven for a period of time, and this is repeated until the electrolyte detection means reaches a predetermined amount of salt supply. However, if the predetermined value is not reached even after repeating a plurality of times (for example, 5 times), the salt supply lamp (not shown) provided in the operation unit 65 is turned on to interrupt the electrolysis. This is because the salt 84 in the electrolyte tank 81 is empty or the pulse pump 86
This occurs when the failure of the product is expected.

【0068】そして正常に電気分解が開始された場合
は、この極性で所定時間t1だけ電気分解される。電解
時の陽極室73では化式1に示した反応が生じて酸性水
が生成される。
When the electrolysis is started normally, the electrolysis is performed with this polarity for a predetermined time t1. In the anode chamber 73 during electrolysis, the reaction shown in Chemical formula 1 occurs and acidic water is generated.

【0069】このとき陽極75と陰極76の対向面では
通電にともなって、電解ガスが発生する。陽極75表面
では酸素と塩素ガスは発生し、このガスの上昇による対
流作用により陽極75と隔膜76の間に循環流が形成さ
れる。そして、この循環流の誘引作用により、陽極室7
3底部の電解質滞留部の高濃度食塩水が原水と混合しな
がら陽極75と隔膜72の間に流れ込む。したがって、
電解開始からしばらくの間に陽極室73全体の食塩濃度
より濃い食塩水が陽極75と隔膜72の間に流れ、電解
の効率を高めるように作用する。 (化式1) 2Cl−→Cl2↑+2e− Cl2+H2O→HCl+HClO 2H2O→O2↑+4H++4e− 一方、陰極室74では化式2に示した反応が生じて水酸
基OH−を中和するためNa+が隔膜72を通過して移
動し、アルカリ水が生成される。 (化式2) 2H2O+2e−→H2↑+2OH− Na++e−→Na 2Na+2H2O→2NaOH+H2↑ ここで、陽極室73の陽極75と隔膜72の間に高濃度
の食塩溶液が供給されるので短時間にpH11.5〜1
2.5の還元力の強いアルカリ水が得られる。すなわ
ち、陽極75と陰極76間に電圧が印可されると被電解
水に含まれるイオンは電気吸引力により陽/陰極75、
76と逆極性のイオンが隔膜72を通過して移動するこ
ととなる。したがって陽極室73に導入された食塩に含
まれるNaイオンは隔膜72を経て陰極室74へと即座
に移動する。この結果、短時間にpH値の高いアルカリ
水が得られる。実験によれば約500ccの水を1.5
アンペアで10分間電解することで、pH12でナトリ
ウムイオン濃度500ppmのアルカリ水が得られた。
このナトリウムイオン濃度の高いアルカリ水は油脂の鹸
化や乳化作用および蛋白質に対する加水分解作用を有
し、食器に付着した汚れを落とす洗浄水として利用でき
る。
At this time, electrolytic gas is generated on the opposing surfaces of the anode 75 and the cathode 76 with the energization. Oxygen and chlorine gas are generated on the surface of the anode 75, and a convection action due to the rise of these gases forms a circulating flow between the anode 75 and the diaphragm 76. Then, due to the attraction of this circulating flow, the anode chamber 7
The high-concentration saline solution in the electrolyte retention portion at the bottom of the third portion flows between the anode 75 and the diaphragm 72 while mixing with the raw water. Therefore,
For a while after the start of electrolysis, a saline solution having a concentration higher than the salt concentration of the entire anode chamber 73 flows between the anode 75 and the diaphragm 72, and acts to enhance the efficiency of electrolysis. (Formula 1) 2Cl− → Cl2 ↑ + 2e− Cl2 + H2O → HCl + HClO 2H2O → O2 ↑ + 4H ++ 4e− On the other hand, in the cathode chamber 74, the reaction shown in Formula 2 occurs to neutralize the hydroxyl group OH− and Na + forms the diaphragm 72. It moves through and produces alkaline water. (Formula 2) 2H2O + 2e− → H2 ↑ + 2OH− Na +++ e− → Na 2Na + 2H2O → 2NaOH + H2 ↑ Here, since a high-concentration salt solution is supplied between the anode 75 of the anode chamber 73 and the diaphragm 72, pH 11. 5-1
Alkaline water with a strong reducing power of 2.5 is obtained. That is, when a voltage is applied between the anode 75 and the cathode 76, the ions contained in the electrolyzed water are positive / negative by the electric attraction force,
Ions having the opposite polarity to 76 move through the diaphragm 72. Therefore, Na ions contained in the salt introduced into the anode chamber 73 immediately move to the cathode chamber 74 through the diaphragm 72. As a result, alkaline water having a high pH value can be obtained in a short time. According to the experiment, about 500 cc of water is 1.5
By electrolyzing with amperes for 10 minutes, alkaline water having a sodium ion concentration of 500 ppm at pH 12 was obtained.
The alkaline water having a high sodium ion concentration has a saponification and emulsifying action on fats and oils and a hydrolyzing action on proteins, and can be used as washing water for removing stains adhering to dishes.

【0070】また陽極室73のみに食塩溶液が供給され
ることで陰極室74には塩素イオンCl−濃度の低いア
ルカリ水が生成される。Cl−は洗浄力を阻害する因子
となるため、陽極室73のみに食塩溶液が供給すること
で洗浄力の高いアルカリ水を生成できる(S3)。
By supplying the salt solution only to the anode chamber 73, alkaline water having a low chlorine ion Cl-concentration is generated in the cathode chamber 74. Since Cl − becomes a factor that hinders the detergency, it is possible to generate alkaline water having a high detergency by supplying the saline solution only to the anode chamber 73 (S3).

【0071】次に、湯(約60)のみでの洗浄動作及び
電解水の生成動作が両方とも終了すれば、直ちにアルカ
リ性の電解水用いた洗浄運転が行われる。直ちに電解水
による洗浄運転が行われることで、隔膜72を介しての
酸性水とアルカリ水の浸透混入が防止でき、pH値の劣
化が防止できる。
Next, when both the washing operation using only hot water (about 60) and the producing operation of electrolyzed water are completed, the washing operation using alkaline electrolyzed water is immediately performed. Immediately performing the washing operation with the electrolyzed water can prevent permeation of acidic water and alkaline water through the diaphragm 72, and prevent deterioration of the pH value.

【0072】まず切替え弁55が洗浄槽51側と給水開
閉弁54とを連通、切替弁79が陰極室74と切替弁5
5とを連通するように切替えられた後、給水開閉弁54
が開かれ、水道水が給水ホース61を介して、陰極室7
4に流れ込む。もともと陰極室74には電解生成したア
ルカリ水が満たされており、水道水が流れ込むことで、
貯留されていたアルカリ水が陰極水出口管78から洗浄
槽51内に溢れ出る。その後、洗浄槽51内の水位が所
定量に達すると水位検知手段56により、給水完了の信
号が制御手段60に送られ、給水開閉弁54を閉止させ
る。このようになれば、所定pH値に調整された電解水
が洗浄槽51内に供給されたことになる。
First, the switching valve 55 connects the cleaning tank 51 side with the water supply on-off valve 54, and the switching valve 79 has the cathode chamber 74 and the switching valve 5.
5, the water supply opening / closing valve 54
Is opened, and tap water is supplied through the water supply hose 61 to the cathode chamber 7
Pour into 4. Originally, the cathode chamber 74 was filled with electrolytically generated alkaline water, and when tap water flowed in,
The stored alkaline water overflows from the cathode water outlet pipe 78 into the cleaning tank 51. After that, when the water level in the cleaning tank 51 reaches a predetermined amount, the water level detection means 56 sends a signal of water supply completion to the control means 60 to close the water supply opening / closing valve 54. In this case, the electrolyzed water adjusted to the predetermined pH value is supplied into the cleaning tank 51.

【0073】また、電解水は希釈されながら供給される
ことでpHが低下するが、生成電解水量と洗浄必要水量
は固定であり、pHが低下する分だけ、電解水生成時の
pH値を予め高く生成しておくことでpH11.5から
12.5を維持するようにしている。
Although the pH of the electrolyzed water is lowered by being supplied while being diluted, the amount of electrolyzed water produced and the amount of water required for washing are fixed. By making it high, the pH is maintained at 11.5 to 12.5.

【0074】アルカリ水が供給され所定水位になれば、
加熱用ヒーター57に通電し、約60℃まで水温を上昇
させながら循環ポンプ58を所定時間t4動作させる。
そして、洗浄ノズル59からアルカリ水を噴射すること
により、先ほどの洗浄で洗浄できずに残っていた食器等
を洗浄する(S4)。この際、油脂は鹸化され溶解し、
蛋白質などは食器などから剥離される。アルカリ水によ
る洗浄が終了すれば、酸性水を洗浄槽51内に供給し、
洗浄に用いたアルカリ水と混合し、この混合水を用いて
食器を除菌漂白する動作に移る(S5)。
When alkaline water is supplied to reach a predetermined water level,
The heater 57 for heating is energized, and the circulating pump 58 is operated for a predetermined time t4 while raising the water temperature to about 60 ° C.
Then, the alkaline water is sprayed from the cleaning nozzle 59 to clean the dishes and the like that could not be cleaned in the previous cleaning (S4). At this time, the fats and oils are saponified and dissolved,
Protein and the like are peeled off from tableware and the like. After cleaning with alkaline water, supply acidic water into the cleaning tank 51,
It is mixed with the alkaline water used for cleaning, and the operation is performed to sterilize and bleach the tableware using this mixed water (S5).

【0075】まず切替え弁55が電解槽71側と給水開
閉弁54とを連通、切替弁79が陽極室73と切替弁5
5とを連通するように切替えられた後、給水開閉弁54
が所定時間t5開かれ、水道水が給水ホース61を介し
て、陰極室74に流れ込む。もともと陽極室74には電
解生成した酸性水が満たされており、水道水が所定量流
れ込むことで、貯留されていた次亜塩素酸イオン及び次
亜塩素酸を含む有効塩素濃度が約数千ppmの酸性水が
陽極水出口管77から洗浄槽51内に所定量溢れ出る。
このようになれば、アルカリ水と酸性水が混合中和さ
れ、pHが8から9で且つ次亜塩素酸イオン及び次亜塩
素酸を含む有効塩素濃度が数百ppmの混合水が生成さ
れる。この状態で循環ポンプ58を所定時間t6動作さ
せることで、食器や洗浄槽51内が次亜塩素酸及び次亜
塩素酸イオンの有する酸化作用により、除菌漂白される
ようになる(S6)。尚、本実施例では酸性水の生成量
を可能な限り少なくし、混合による水温低下を押さえる
ことで、基本的には加熱用ヒーター57には通電しない
ように制御しているが、混合時に動物性油脂が再凝固す
るような温度(約50℃以下)になるのであれば、加熱
用ヒーター47に通電して、アルカリ水を所定温度まで
加熱することも可能である。
First, the switching valve 55 connects the electrolyzer 71 side and the feed water opening / closing valve 54, and the switching valve 79 connects the anode chamber 73 and the switching valve 5.
5, the water supply opening / closing valve 54
Is opened for a predetermined time t5, and tap water flows into the cathode chamber 74 via the water supply hose 61. Originally, the anode chamber 74 was filled with electrolytically generated acidic water, and when a predetermined amount of tap water flowed in, the effective chlorine concentration containing the stored hypochlorite ion and hypochlorous acid was about several thousand ppm. A certain amount of the acidic water overflows from the anode water outlet pipe 77 into the cleaning tank 51.
In this case, alkaline water and acidic water are mixed and neutralized, and mixed water having a pH of 8 to 9 and having an effective chlorine concentration of several hundred ppm containing hypochlorite ion and hypochlorous acid is generated. . By operating the circulation pump 58 for t6 in this state for a predetermined time, the dishes and the inside of the washing tank 51 are sterilized and bleached by the oxidizing action of hypochlorous acid and hypochlorite ion (S6). In this embodiment, the production amount of acidic water is reduced as much as possible and the decrease in water temperature due to mixing is suppressed to basically prevent the heater 57 for heating from being energized. If the temperature (about 50 ° C. or lower) at which the organic fat and oil is re-solidified is reached, it is possible to energize the heating heater 47 to heat the alkaline water to a predetermined temperature.

【0076】混合水による洗浄動作が終了すれば、排水
ポンプ63が動作し、排水ホース62から洗浄に使用し
た混合水が機器外部に排水され、濯ぎ動作が行われる。
When the washing operation with the mixed water is completed, the drainage pump 63 operates, the mixed water used for washing is drained from the drain hose 62 to the outside of the equipment, and the rinsing operation is performed.

【0077】切替え弁54が電解槽71側と給水開閉弁
54が連通するように切替えられた状態、切替え弁79
が陽極室73側と給水開閉弁54が連通するように切替
えられた状態で、給水開閉弁54が開かれ、陽極室73
に流れ込み、洗浄槽51にあふれ出る。このようになる
ことで陽極室73に残っていた希釈された酸性水が水で
洗い流される。その後、所定時間が経過すれば、一度給
水開閉弁54を閉止し、切替え弁79が陰極室74側と
給水開閉弁54が連通するように切替えられる。再度給
水開閉弁54が開けられると、水道水が陰極室74に流
れ込み、洗浄槽51にあふれ出る。このようになること
で、陰極室74に残っていた希釈されたアルカリ水が洗
い流されるようになる。これとともに洗浄槽51内の水
位は上昇し、所定水位に達した時点で水位検知手段56
により、給水完了の信号が制御手段60に送られ、給水
開閉弁54を閉止する。そして、洗浄ポンプ58が所定
時間t8動作し、洗浄ノズル59から水を噴射すること
により、食器及び洗浄槽51内をすすぐ(S7)。
The switching valve 54 is in a state in which the switching valve 54 is switched so that the electrolytic cell 71 side and the feed water opening / closing valve 54 communicate with each other.
Is switched so that the anode chamber 73 side and the feed water opening / closing valve 54 communicate with each other, the feed water opening / closing valve 54 is opened, and the anode chamber 73
Into the cleaning tank 51 and overflow into the cleaning tank 51. By doing so, the diluted acidic water remaining in the anode chamber 73 is washed away with water. After that, when a predetermined time elapses, the water supply on-off valve 54 is once closed, and the switching valve 79 is switched so that the cathode chamber 74 side and the water supply on-off valve 54 communicate with each other. When the water supply on-off valve 54 is opened again, tap water flows into the cathode chamber 74 and overflows into the cleaning tank 51. By doing so, the diluted alkaline water remaining in the cathode chamber 74 is washed away. Along with this, the water level in the cleaning tank 51 rises, and when it reaches a predetermined water level, the water level detection means 56
Thereby, a signal of completion of water supply is sent to the control means 60, and the water supply on-off valve 54 is closed. Then, the washing pump 58 operates for a predetermined time t8, and water is jetted from the washing nozzle 59 to rinse the dishes and the washing tank 51 (S7).

【0078】その後、排水ポンプ63が動作し、排水ホ
ース62からすすぎに使用した水が機器外部に排水され
る(S8)。このすすぎ動作は少なくとも1回以上行わ
れる。
After that, the drainage pump 63 operates, and the water used for rinsing is drained from the drainage hose 62 to the outside of the equipment (S8). This rinsing operation is performed at least once.

【0079】次にすすぎ動作が終了すると、加熱すすぎ
動作に移る。切替え弁55が洗浄槽51側と給水開閉弁
54が連通するように切替えられた状態で、給水開閉弁
54が開かれ、水道水が給水ホース61を介して、洗浄
槽51内に流れ込む。その後、洗浄槽51内の水位が所
定量に達すると水位検知手段56により、給水完了の信
号が制御手段60に送られ、給水開閉弁54を閉止させ
る。そして、加熱用ヒータ57がONされると共に、洗
浄ポンプ58が動作し、洗浄ノズル59からすすぎ水を
噴射することにより、食器等をすすぐ(S9)。すすぎ
水の温度は洗浄槽51の底部に取り付けたサーミスタ6
6により検知しており、約70℃程度になるように制御
している。水温が約70℃になった状態から、所定時間
t9だけ洗浄ポンプ58が運転される。その後、排水ポ
ンプ63が動作し、排水ホース62から加熱すすぎに使
用した水が機器外部に排水される(S10)。この加熱
すすぎ動作は1回だけ行われる。
Next, when the rinsing operation is completed, the heating rinsing operation is started. With the switching valve 55 switched so that the cleaning tank 51 side and the water supply opening / closing valve 54 communicate with each other, the water supply opening / closing valve 54 is opened and tap water flows into the cleaning tank 51 via the water supply hose 61. After that, when the water level in the cleaning tank 51 reaches a predetermined amount, the water level detection means 56 sends a signal of water supply completion to the control means 60 to close the water supply opening / closing valve 54. Then, the heater 57 for heating is turned on, the washing pump 58 is operated, and rinsing water is sprayed from the washing nozzle 59 to rinse dishes and the like (S9). The temperature of the rinse water is the thermistor 6 attached to the bottom of the cleaning tank 51.
6, and the temperature is controlled to about 70 ° C. The washing pump 58 is operated for a predetermined time t9 after the water temperature reaches about 70 ° C. After that, the drainage pump 63 operates, and the water used for the heat rinsing is drained from the drainage hose 62 to the outside of the device (S10). This heating and rinsing operation is performed only once.

【0080】すすぎ運転では、加熱用ヒータ57は基本
的にOFF状態であったが加熱すすぎ運転時では、すす
ぎ水を加熱してすすぎ効果を高めると共に、後の乾燥運
転での乾燥時間を短縮するために加熱用ヒータ57をO
N状態としている。
In the rinsing operation, the heater 57 for heating was basically in the OFF state, but in the heating rinsing operation, the rinsing water is heated to enhance the rinsing effect and shorten the drying time in the subsequent drying operation. In order to turn on the heater 57 for heating
It is in the N state.

【0081】次に加熱すすぎ運転が終了すると乾燥運転
に移る。最初に、送風機64がONされると共に、加熱
用ヒータ57が断続的にONされるようになる。この動
作は所定時間t10だけ継続され、自動的に停止する
(S11)。
Next, when the heating and rinsing operation is completed, the drying operation is started. First, the blower 64 is turned on, and the heating heater 57 is turned on intermittently. This operation is continued for a predetermined time t10 and automatically stops (S11).

【0082】以上のシーケンスを動作することで、食器
の洗浄及び漂白・乾燥工程が全て終了する(S12)。
By operating the above sequence, all the steps of washing and bleaching / drying the dishes are completed (S12).

【0083】次に電解水を用いた洗浄動作について図4
を用いて説明する。本体蓋53を開けて洗浄槽51内の
収納かご52に食器等をセットした後、本体蓋53を閉
じて本体前面の操作部65にある電源スイッチを押し、
続いて運転コース選択ボタンで「標準洗浄モード」を選
択すると、数秒後に水道水(湯)のみでの洗浄動作を行
なう動作が開始する(図4のS1)。その後、アルカリ
電解水による洗浄動作が行われた後(S3、S4)、洗
浄に使用したアルカリ電解水が洗浄槽51内に残存した
状態で、電解酸性水が水道水により押し出だされ、洗浄
槽51内で混合される(S5)。その後、循環ポンプ5
8が動作せずに、排水ポンプ63が動作し、洗浄槽51
内の混合水が外部に廃棄される(S6)。このようにす
ることで、pHが中性になる上、有効塩素濃度も希釈さ
れる。よってpHが低く腐食性の高い電解酸性水を外部
に直接発生させることなく環境にも人体にもやさしくす
ることができる。その後の、濯ぎ動作、加熱濯ぎ動作、
乾燥動作については「漂白洗浄モード」と同様であり省
略する(S7〜S12)。
Next, the cleaning operation using electrolyzed water is shown in FIG.
Will be explained. After opening the main body lid 53 and setting dishes and the like in the storage basket 52 in the cleaning tank 51, the main body lid 53 is closed and the power switch on the operation unit 65 on the front surface of the main body is pressed,
Subsequently, when the "standard cleaning mode" is selected with the operation course selection button, the operation of performing the cleaning operation using only tap water (hot water) starts after a few seconds (S1 in FIG. 4). After that, after a cleaning operation with alkaline electrolyzed water (S3, S4), in a state where the alkaline electrolyzed water used for cleaning remains in the cleaning tank 51, the electrolyzed acidic water is pushed out by tap water and cleaned. They are mixed in the tank 51 (S5). Then the circulation pump 5
8 does not operate, the drainage pump 63 operates, and the cleaning tank 51
The mixed water inside is discarded to the outside (S6). By doing so, the pH becomes neutral and the effective chlorine concentration is also diluted. Therefore, it is possible to be gentle to the environment and the human body without directly generating electrolytic acidic water having a low pH and a high corrosiveness to the outside. After that, rinsing operation, heating rinsing operation,
The drying operation is the same as in the "bleach cleaning mode" and is omitted (S7 to S12).

【0084】また図5に、本実施例の電解水生成装置で
生成した電解水の洗浄力評価試験を行った結果を示す。
なおこの試験における電解水は食塩供給量、電解時間、
電解電流を変更してpHを変化させた。この洗浄力評価
試験によると電解水のpHが11.5以上の場合におい
て洗浄力ありと実感できる結果で、pH11.2では不
満足な結果となった。ちなみにこの洗浄力評価試験方法
は、市販の食器にサラダ油を含む標準汚れを付着したテ
ストピースに、食器洗浄機を用いて電解水を所定時間散
水洗浄した後、使用前の食器と洗浄後の食器との差を色
差計で所定ポイント測定して、定量評価する方法で洗浄
率として定量化するようにしたものである。洗浄率は1
00%で使用前の食器の状態まで洗浄できたことを示
し、0%ではまったく汚れが落ちなかったことを示す。
今回記載した試験は常温(約25℃)の条件で行った。
Further, FIG. 5 shows the results of the detergency evaluation test of the electrolyzed water produced by the electrolyzed water producing apparatus of this embodiment.
The electrolyzed water used in this test is a salt supply amount, electrolysis time,
The electrolysis current was changed to change the pH. According to this detergency evaluation test, when the pH of the electrolyzed water was 11.5 or higher, it was possible to feel that there was detergency, and pH 11.2 was an unsatisfactory result. By the way, this detergency evaluation test method uses a dishwasher to sprinkle electrolyzed water for a predetermined time on a test piece of commercially available tableware with standard stains containing salad oil. The difference between and is measured at a predetermined point with a color difference meter and quantitatively evaluated as a cleaning rate. Cleaning rate is 1
A value of 00% indicates that the dishes could be washed up to the state before use, and a value of 0% indicates that the stain was not removed at all.
The test described this time was performed at room temperature (about 25 ° C.).

【0085】また、表1に本実施例の電解水生成装置で
生成した電解水の各安全性項目の確認試験を公的試験機
関にて行った結果を示す。
Further, Table 1 shows the results of conducting a confirmation test of each safety item of the electrolyzed water produced by the electrolyzed water producing apparatus of this embodiment at a public testing institution.

【0086】[0086]

【表1】 [Table 1]

【0087】この安全性評価試験は、ウサギ・マウスを
使った試験で、○印は変化が認められなかったことを示
し、△印は軽微な刺激が認められたことを示す。なお、
−印の欄は試験を実施していない。この安全性評価試験
結果によると、pH12.5の電解水は試験による変化
が認められなかった。眼粘膜刺激性試験に関しては、p
H12.8の電解水をウサギの眼に点眼し、角膜・虹彩
および結膜の変化を確認するという試験方法で軽微な変
化ありという判定結果の報告を受けた。
In this safety evaluation test, in the test using rabbits and mice, the mark ◯ indicates that no change was observed, and the mark Δ indicates that slight irritation was observed. In addition,
Columns marked with − have not been tested. According to the results of this safety evaluation test, the electrolyzed water having a pH of 12.5 showed no change due to the test. For ocular mucosa irritation test, p
H12.8 electrolyzed water was applied to the eyes of rabbits, and the test method of confirming changes in the cornea, iris, and conjunctiva received a report of the judgment result that there was a slight change.

【0088】上記の洗浄力評価試験および安全性評価試
験の結果から、pH11.5〜12.5のアルカリ性の
電解水については、洗浄力が優れ安全であるという結果
を確認できたが、pH11.5未満の電解水は洗浄力に
優れているとは言い難く、pH12.5を越えるの電解
水は安全であるとは言い難い。
From the results of the above-described detergency evaluation test and safety evaluation test, it was confirmed that alkaline electrolyzed water having a pH of 11.5-12.5 has excellent detergency and is safe. It is hard to say that electrolyzed water of less than 5 is excellent in detergency, and electrolyzed water of more than pH 12.5 is not safe.

【0089】次に上記と同様に食塩供給量と電解時間を
変更して生成した電解水のナトリウムイオン濃度の違い
による陰極水の洗浄性能を求めた。本実施例では陽極室
73に食塩84を入れて電解するので、陰極室74のナ
トリウムイオン濃度は食塩供給量、電解時間、電解電流
に比例して増加する。このナトリウムイオン濃度と洗浄
率の関係は図6に示すように、ナトリウムイオン濃度が
300ppm近傍にピークがあり、ナトリウムイオン濃
度が150ppm以下または700ppm以上では洗浄
率が低下して洗浄力に優れているとは言い難くなる。ナ
トリウムイオンは油脂成分を加水分解してグリセリンや
脂肪酸など水に溶解しやすい成分に変えたり、脂肪酸と
反応して脂肪酸石けんを生成するなど洗浄力を高める反
応をする。したがってナトリウムイオンが低下すると洗
浄力が低下してしまう。この洗浄率にピークができるの
は電気分解により陽極室73から陰極室74にナトリウ
ムイオンが移動する際に水も一緒に移動し洗浄阻害要因
の塩素イオンも一部移動するためと考えられる。このこ
とからナトリウムイオン濃度が150ppmから700
ppmの電解水は洗浄力に優れていることが確認でき
た。また、ナトリウムイオン濃度が高すぎると家具や床
などの素材を傷める可能性がある点からも好ましくな
い。なお、ここでは陰極水のpH値は11.5から1
2.5に調整しており、ナトリウムイオン濃度が150
ppmから700ppmの範囲内でもpH値が11.5
を切る電解水では洗浄力が低いことを実験的に確認して
いる。
Then, similarly to the above, the cleaning performance of the cathode water was determined by changing the sodium salt supply amount and the electrolysis time and the difference in the sodium ion concentration of the electrolyzed water produced. In this embodiment, since salt 84 is placed in the anode chamber 73 for electrolysis, the sodium ion concentration in the cathode chamber 74 increases in proportion to the salt supply amount, electrolysis time, and electrolysis current. As shown in FIG. 6, the relationship between the sodium ion concentration and the cleaning rate has a peak near the sodium ion concentration of 300 ppm, and when the sodium ion concentration is 150 ppm or less or 700 ppm or more, the cleaning rate decreases and the cleaning power is excellent. Is hard to say. Sodium ions hydrolyze fats and oils components into glycerin, fatty acids and other components that are easily dissolved in water, and react with fatty acids to form fatty acid soaps and react to enhance detergency. Therefore, if the sodium ions decrease, the detergency decreases. It is considered that the peak of the cleaning rate is caused when sodium ions move from the anode chamber 73 to the cathode chamber 74 due to electrolysis, together with water, and a part of chlorine ions, which is a cleaning inhibiting factor, also moves. From this, the sodium ion concentration is 150 ppm to 700
It was confirmed that ppm electrolyzed water was excellent in detergency. Further, if the sodium ion concentration is too high, the material such as furniture or floor may be damaged, which is not preferable. The pH value of the cathode water is 11.5 to 1 here.
Adjusted to 2.5, sodium ion concentration is 150
pH value of 11.5 even in the range of ppm to 700 ppm
It has been experimentally confirmed that the detergency of electrolyzed water that cuts off is low.

【0090】なお、本実施例では電解質として食塩を用
いたが、これを塩化カリウムに代えても同様の効果が得
られる。すなわちナトリウムイオンの代わりにカリウム
イオンが同様の洗浄作用をする。
Although salt is used as the electrolyte in this embodiment, the same effect can be obtained by replacing it with potassium chloride. That is, potassium ions instead of sodium ions have the same cleaning action.

【0091】次に、食塩供給量と電解時間を変更して生
成した電解水の塩素イオン濃度との違いによる陰極水の
洗浄性能について説明する。電気分解によって陽極室7
3から陰極室74へ塩素イオンも移動することは記した
が、陰極室74にも食塩を供給する場合も含めて塩素イ
オン濃度と洗浄率の関係の実験結果を図7に示す。ここ
での陰極水のpH値は12.0から12.2である。図
のように陰極水の塩素イオン濃度が2000ppmを超
えると洗浄率が低下して洗浄力に優れているとは言い難
くなる。ただし、水道水などの一般に使用される原水に
は数ppmの塩素イオンが最初から含まれている。また
陽極室73だけに食塩を添加してpH11.5以上の陰
極水を得ようとしても多少の塩素イオン陰極水に混入す
るため、50ppmレベルの塩素イオンは避けられな
い。しかも塩素イオン濃度をあえて50ppm以下にし
ようとすると、原水の導電率が低下し消費電力うが上が
ったり、原水にイオン交換水を使用したり、また電解水
を脱塩素処理するなど不具合が発生する。そして当発明
者の実験でもpH値が11.5以上であれば塩素イオン
を50ppm以下にしても洗浄力に優位差がないことが
分かった。したがってpH値が11.5から12.5で
かつ塩素イオン濃度が50ppmから2000ppmの
電解水は洗浄力に優れていることが確認できた。この塩
素イオンの洗浄への阻害メカニズムは解明していない
が、ナトリウムイオンの加水分解作用や鹸化作用を阻害
するのではないかと考えられる。したがって電解質であ
る食塩は陽極室73にだけ添加し、陰極室74への添加
量は極力少ない方がよいことが分かった。
Next, the cleaning performance of the cathode water due to the difference between the salt supply amount and the chlorine ion concentration of the electrolyzed water produced by changing the electrolysis time will be described. Anode chamber 7 by electrolysis
Although it has been described that chlorine ions also move from No. 3 to the cathode chamber 74, FIG. 7 shows the experimental results of the relationship between the chlorine ion concentration and the cleaning rate, including the case where salt is also supplied to the cathode chamber 74. The pH value of the cathode water here is 12.0 to 12.2. As shown in the figure, when the chloride ion concentration of the cathode water exceeds 2000 ppm, the cleaning rate decreases and it is difficult to say that the cleaning power is excellent. However, generally used raw water such as tap water contains several ppm of chlorine ions from the beginning. Further, even if salt is added only to the anode chamber 73 to obtain cathode water having a pH of 11.5 or higher, chlorine ions of 50 ppm level are unavoidable because some chloride ions are mixed with the cathode water. Moreover, if the chlorine ion concentration is intentionally made to be 50 ppm or less, the electrical conductivity of the raw water is lowered, the power consumption is increased, ion-exchanged water is used as the raw water, and the electrolytic water is dechlorinated. The experiments conducted by the present inventor have also revealed that if the pH value is 11.5 or more, there is no significant difference in detergency even if chlorine ion is 50 ppm or less. Therefore, it was confirmed that electrolyzed water having a pH value of 11.5 to 12.5 and a chloride ion concentration of 50 ppm to 2000 ppm had excellent detergency. Although the mechanism of inhibition of chloride ion washing has not been clarified, it is considered that it may inhibit the hydrolysis action or saponification action of sodium ion. Therefore, it was found that salt, which is an electrolyte, should be added only to the anode chamber 73 and the addition amount to the cathode chamber 74 should be as small as possible.

【0092】なお、本実施例の陽極室73だけに食塩8
4を添加して電解した場合の、陰極水の塩素イオン濃度
は500ppm以下となっており、より高い洗浄性能が
得られた。
It should be noted that only the anode chamber 73 of this embodiment has 8
When 4 was added and electrolysis was performed, the chloride ion concentration of the cathode water was 500 ppm or less, and higher cleaning performance was obtained.

【0093】上記結果からpH11.5〜12.5でか
つ塩素イオン濃度が2000ppm以下の陰極水は、各
要因が複合的に作用してより洗浄力が優れているといえ
る。また、pH11.5〜12.5でかつナトリウムイ
オン濃度が150〜700ppmで、イオン比が0.5
以上の陰極水の洗浄力も同様に優れているといえる。
From the above results, it can be said that the cathode water having a pH of 11.5-12.5 and a chloride ion concentration of 2000 ppm or less is more excellent in detergency due to a combination of factors. The pH is 11.5-12.5, the sodium ion concentration is 150-700 ppm, and the ion ratio is 0.5.
It can be said that the above detergency of the cathode water is also excellent.

【0094】また、イオン透過性の隔膜72は陽極室7
3から陰極室74にナトリウムイオンやカリウムイオン
などの陽イオンを透過し、塩素イオンなどの陰イオンの
透過を抑制する陽イオン交換膜が洗浄力に優れた電解水
を生成するのに優れている。
Further, the ion-permeable diaphragm 72 is provided in the anode chamber 7
A cation exchange membrane that permeates cations such as sodium ions and potassium ions from 3 to the cathode chamber 74 and suppresses permeation of anions such as chlorine ions is excellent in producing electrolyzed water having excellent detergency. .

【0095】また電解質を、ナトリウムまたはカリウム
を含有する電解質とすることより、ナトリウムイオンま
たはカリウムイオンの移動によって陽極75と陰極76
の間のイオン濃度を高くするように作用し、陽極75,
陰極76間に電流が流れやすくなり、短時間に効率的に
pH値の高いアルカリ水が得られる。このpH値の高い
アルカリ水は洗浄力が高く、手など皮膚についても安全
な洗浄水として利用できる。特に電解質を食塩84とす
ることにより、一般の人が入手しやすく家庭でもオフィ
スでも使用しやすくできる。
Since the electrolyte is an electrolyte containing sodium or potassium, the anode 75 and the cathode 76 can be moved by the movement of sodium or potassium ions.
Between the anode 75 and the anode 75,
A current easily flows between the cathodes 76, and alkaline water having a high pH value can be efficiently obtained in a short time. The alkaline water having a high pH value has a high detergency and can be used as safe washing water for skin such as hands. In particular, when the electrolyte is salt 84, it can be easily obtained by the general public and easily used at home or in the office.

【0096】[0096]

【発明の効果】以上のように、請求項1〜13の電解水
生成装置を備えた食器洗浄機によれば、、pH及び塩素
イオン濃度を特定することで、界面活性剤等の環境負荷
物質と考えられる洗剤を用いることなく、洗浄力に優れ
た安全性の高い電解水を生成、且つ用いて洗浄性能を発
揮する食器洗浄機を提供することができる。
As described above, according to the dishwasher equipped with the electrolyzed water generator according to any one of claims 1 to 13, by specifying the pH and the chloride ion concentration, an environmental load substance such as a surfactant can be obtained. It is possible to provide a dishwasher that produces highly safe electrolyzed water with excellent detergency and uses it without using a detergent that is considered to be used, and that exhibits washing performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における食器洗浄機の構成図FIG. 1 is a configuration diagram of a dishwasher according to a first embodiment of the present invention.

【図2】同実施例1における電解水生成装置の構成図FIG. 2 is a configuration diagram of an electrolyzed water generator according to the first embodiment.

【図3】同実施例1における「洗浄漂白モード」動作時
のフローチャート
FIG. 3 is a flow chart of a “cleaning bleaching mode” operation in the first embodiment.

【図4】同実施例1における「洗浄モード」動作時のフ
ローチャート
FIG. 4 is a flow chart during a “cleaning mode” operation in the first embodiment.

【図5】本発明の実施例1における電解水のpHと洗浄
力の関係図
FIG. 5 is a diagram showing the relationship between pH of electrolyzed water and detergency in Example 1 of the present invention.

【図6】同実施例1における電解水のナトリウムイオン
濃度と洗浄力の関係図
FIG. 6 is a diagram showing the relationship between the sodium ion concentration and the detergency of electrolyzed water in Example 1.

【図7】同実施例1における電解水の塩素イオン濃度と
洗浄力の関係図
FIG. 7 is a diagram showing the relationship between the chlorine ion concentration and the detergency of electrolyzed water in Example 1.

【図8】従来の電解水生成装置の構成図FIG. 8 is a block diagram of a conventional electrolyzed water generator.

【図9】他の従来例を示す電解水生成装置の構成図FIG. 9 is a configuration diagram of an electrolyzed water generator showing another conventional example.

【図10】従来の電解装置を備えた食器洗浄機の構成図FIG. 10 is a block diagram of a dishwasher equipped with a conventional electrolyzer.

【符号の説明】[Explanation of symbols]

50 本体 51 洗浄槽 54 給水開閉弁 55 切替え弁 58 循環(洗浄)ポンプ 59 洗浄ノズル 60 制御手段 63 排水ポンプ 70 電解水生成手段 71 電解槽 72 隔膜 73 陽極室 74 陰極室 75 陽極 76 陰極 79 切替弁 81 電解質タンク 82 キャップ 86 パルスポンプ(供給手段) 93 電解制御手段 94 直流電源 50 body 51 washing tank 54 Water supply on-off valve 55 Switching valve 58 Circulation (cleaning) pump 59 Washing nozzle 60 control means 63 drainage pump 70 Electrolyzed water generating means 71 Electrolyzer 72 diaphragm 73 Anode chamber 74 Cathode chamber 75 Anode 76 cathode 79 Switching valve 81 Electrolyte tank 82 cap 86 pulse pump (supply means) 93 Electrolysis control means 94 DC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 國本 啓次郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岡 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3B082 BD01 BD02 CC02 4D061 DA03 DB07 DB08 EA02 EB01 EB05 EB13 EB19 EB37 EB39 ED13 GA04 GA21 GC06 GC12 GC15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Keijiro Kunimoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Koji Oka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 3B082 BD01 BD02 CC02                 4D061 DA03 DB07 DB08 EA02 EB01                       EB05 EB13 EB19 EB37 EB39                       ED13 GA04 GA21 GC06 GC12                       GC15

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極との間にイオン透過性の隔膜
が配置され、この隔膜によって陽極室と陰極室とが形成
された電解槽と、少なくとも前記陽極室に電解質を供給
する電解質供給手段と、前記陽極と前記陰極に電圧を印
加して被電解水を電解する制御手段とを有し、pHが1
1.5〜12.5でかつ塩素イオン濃度が50〜200
0ppmの電解水を電気分解により生成する電解水生成
装置を備えた食器洗浄機。
1. An electrolytic cell in which an ion-permeable diaphragm is arranged between an anode and a cathode, and an anode chamber and a cathode chamber are formed by this diaphragm, and an electrolyte supply means for supplying an electrolyte to at least the anode chamber. And a control means for electrolyzing the electrolyzed water by applying a voltage to the anode and the cathode, and the pH is 1
1.5 to 12.5 and chloride ion concentration of 50 to 200
A dishwasher equipped with an electrolyzed water generator that electrolyzes electrolyzed water of 0 ppm.
【請求項2】 陽極と陰極との間にイオン透過性の隔膜
が配置され、この隔膜によって陽極室と陰極室とが形成
された電解槽と、少なくとも前記陽極室に電解質を供給
する電解質供給手段と、前記陽極と前記陰極に電圧を印
加して被電解水を電解する制御手段とを有し、pHが1
1.5〜12.5でかつナトリウムイオン濃度が150
〜700ppmの電解水を電気分解により生成する電解
水生成装置を備えた食器洗浄機。
2. An electrolytic cell in which an ion-permeable diaphragm is arranged between an anode and a cathode, and an anode chamber and a cathode chamber are formed by this diaphragm, and an electrolyte supply means for supplying an electrolyte to at least the anode chamber. And a control means for electrolyzing the electrolyzed water by applying a voltage to the anode and the cathode, and the pH is 1
1.5 to 12.5 and a sodium ion concentration of 150
A dishwasher equipped with an electrolyzed water generation device that electrolyzes electrolyzed water of up to 700 ppm.
【請求項3】 陰極室で生成した電解水を用いて洗浄槽
内で洗浄後、陽極室で生成した電解水を洗浄槽内へ供給
し混合した後、排水するようにした請求項1または2項
記載の電解水生成装置を備えた食器洗浄機。
3. The electrolytic water generated in the cathode chamber is used for cleaning in the cleaning tank, and the electrolytic water generated in the anode chamber is supplied into the cleaning tank, mixed, and then drained. A dishwasher equipped with the electrolyzed water generator according to the above item.
【請求項4】 陰極室で生成した電解水を用いて洗浄槽
内で洗浄後、陽極室で生成した電解水を洗浄槽内で混合
しながら洗浄動作を行うようにした請求項1または2記
載の電解水生成装置を備えた食器洗浄機。
4. The cleaning operation according to claim 1, wherein after cleaning in the cleaning tank using the electrolytic water generated in the cathode chamber, the cleaning operation is performed while mixing the electrolytic water generated in the anode chamber in the cleaning tank. Dishwasher equipped with the electrolyzed water generator of.
【請求項5】 油脂や蛋白質などの通常の食器汚れを行
う「洗浄モード」と、通常の洗浄を行いながら漂白をも
行う「漂白洗浄モード」を備え、「洗浄モード」を選択
した際は請求項3記載の制御方法を、「漂白洗浄モー
ド」を選択した際は請求項4記載の制御方法を用いる電
解水生成装置を備えた食器洗浄機。
5. A "washing mode" for performing ordinary dishwashing of oils and fats and proteins, and a "bleaching washing mode" for performing bleaching while performing ordinary washing. A dishwasher equipped with the electrolyzed water producing apparatus using the control method according to claim 4, when the bleaching cleaning mode is selected as the control method according to claim 3.
【請求項6】 陽極室及び陰極室で生成した電解水を混
合して洗浄した後に洗浄槽内及び電解槽内を、水道水で
洗浄濯ぎするようにした電解水生成装置を備えた請求項
3〜5項のいずれか1項に記載の電解装置を備えた食器
洗浄機。
6. An electrolyzed water generation device, comprising: electrolyzed water produced in the anode chamber and cathode chamber, mixed and washed, and then the washing bath and electrolysis bath are washed and rinsed with tap water. A dishwasher equipped with the electrolysis device according to any one of items 5 to 5.
【請求項7】 洗剤を用いずに水道水を加温して洗浄す
る「洗浄運転」を行った後に、電解水を加温して洗浄す
る「電解洗浄運転」を行ない、その後、水道水を加温し
て洗浄する「濯ぎ運転」を行うようにした電解水生成装
置を備えた請求項1〜6項のいずれか1項に記載の食器
洗浄機。
7. A "cleaning operation" is performed in which tap water is heated and washed without using a detergent, and then an "electrolytic cleaning operation" is performed in which electrolytic water is warmed and washed, and then tap water is washed. The dishwasher according to any one of claims 1 to 6, further comprising an electrolyzed water generator configured to perform a "rinsing operation" of heating and washing.
【請求項8】 電解質供給手段は、陽極室で電解するの
に適した濃度より高濃度の電解質を収納する電解質タン
クと、前記高濃度の電解質を陽極室に供給する供給手段
より成る請求項1〜7のいずれか1項に記載の電解水生
成装置を備えた食器洗浄機。
8. The electrolyte supply means comprises an electrolyte tank for storing an electrolyte having a higher concentration than that suitable for electrolysis in the anode chamber, and a supply means for supplying the high concentration electrolyte to the anode chamber. A dishwasher equipped with the electrolyzed water generator according to any one of claims 1 to 7.
【請求項9】 隔膜は、陽イオン交換膜とした請求項1
〜8のいずれか1項に記載の電解水生成装置を備えた食
器洗浄機。
9. The diaphragm is a cation exchange membrane.
A dishwasher equipped with the electrolyzed water generator according to claim 8.
【請求項10】 電解槽内の電解質濃度を検出する電解
質検知手段を有し、前記電解質検知手段の検出値に応じ
て電解条件を制御する請求項8または9に記載の電解水
生成装置を備えた食器洗浄機。
10. The electrolyzed water generator according to claim 8 or 9, further comprising an electrolyte detection means for detecting an electrolyte concentration in the electrolytic cell, and controlling electrolysis conditions according to a detection value of the electrolyte detection means. Dishwasher.
【請求項11】 電解質検知手段の検出値が所定値に達
するまで電解質を供給する請求項10に記載の電解水生
成装置を備えた食器洗浄機。
11. A dishwasher equipped with an electrolyzed water generator according to claim 10, wherein the electrolyte is supplied until the detection value of the electrolyte detection means reaches a predetermined value.
【請求項12】 電解質検知手段の検出値が所定範囲内
の場合に電解可能とする請求項10または11に記載の
電解水生成装置を備えた食器洗浄機。
12. A dishwasher equipped with the electrolyzed water generator according to claim 10 or 11, wherein electrolysis is possible when a detection value of the electrolyte detection means is within a predetermined range.
【請求項13】 電解質検知は、陽極と陰極間の電位ま
たは電流によりを検出する請求項10〜12のいずれか
1項に記載の電解水生成装置を備えた食器洗浄機。
13. A dishwasher equipped with the electrolyzed water generator according to claim 10, wherein the electrolyte detection is performed by detecting a potential or a current between an anode and a cathode.
JP2001234533A 2001-08-02 2001-08-02 Dishwasher having electrolysed water generator Pending JP2003038409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234533A JP2003038409A (en) 2001-08-02 2001-08-02 Dishwasher having electrolysed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234533A JP2003038409A (en) 2001-08-02 2001-08-02 Dishwasher having electrolysed water generator

Publications (1)

Publication Number Publication Date
JP2003038409A true JP2003038409A (en) 2003-02-12

Family

ID=19066129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234533A Pending JP2003038409A (en) 2001-08-02 2001-08-02 Dishwasher having electrolysed water generator

Country Status (1)

Country Link
JP (1) JP2003038409A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050014513A (en) * 2003-07-31 2005-02-07 삼성전자주식회사 A detergent-free washer and a washing method by a detergent-free washer
JP2008272334A (en) * 2007-05-02 2008-11-13 Shimazaki Denki Kk Method for washing dishes and dish washer
JP2009153711A (en) * 2007-12-26 2009-07-16 Hoshizaki Electric Co Ltd Dish washer using electrolytically-generated alkaline water as washing water
JP2016140548A (en) * 2015-02-02 2016-08-08 パナソニックIpマネジメント株式会社 Air purification device
KR102137108B1 (en) * 2019-03-08 2020-07-23 주식회사 씨에스켐텍 Dish washer comprising electrolysis device
CN115340155A (en) * 2022-05-31 2022-11-15 宁波方太厨具有限公司 Control method of electrolyzed water generation device for integrated water tank
CN115340154A (en) * 2022-05-31 2022-11-15 宁波方太厨具有限公司 Control method of electrolyzed water generation device for integrated water tank
JP7450908B2 (en) 2019-10-23 2024-03-18 協同組合Aques Metal ion elution method, metal ion elution device, water treatment method, water treatment device, plant cultivation method, and plant cultivation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050014513A (en) * 2003-07-31 2005-02-07 삼성전자주식회사 A detergent-free washer and a washing method by a detergent-free washer
JP2008272334A (en) * 2007-05-02 2008-11-13 Shimazaki Denki Kk Method for washing dishes and dish washer
JP2009153711A (en) * 2007-12-26 2009-07-16 Hoshizaki Electric Co Ltd Dish washer using electrolytically-generated alkaline water as washing water
JP2016140548A (en) * 2015-02-02 2016-08-08 パナソニックIpマネジメント株式会社 Air purification device
KR102137108B1 (en) * 2019-03-08 2020-07-23 주식회사 씨에스켐텍 Dish washer comprising electrolysis device
JP7450908B2 (en) 2019-10-23 2024-03-18 協同組合Aques Metal ion elution method, metal ion elution device, water treatment method, water treatment device, plant cultivation method, and plant cultivation device
CN115340155A (en) * 2022-05-31 2022-11-15 宁波方太厨具有限公司 Control method of electrolyzed water generation device for integrated water tank
CN115340154A (en) * 2022-05-31 2022-11-15 宁波方太厨具有限公司 Control method of electrolyzed water generation device for integrated water tank

Similar Documents

Publication Publication Date Title
EP1101544B1 (en) Method for washing and sterilising beer supply pipe
KR101579044B1 (en) Apparatus for Generating Electrolyzed Water
US20170314179A1 (en) Washing machine, electrolyte for generating electrolyzed water, and electrolyzed water for rinse
TW200809009A (en) Electrolytic cells
JP2003038409A (en) Dishwasher having electrolysed water generator
KR20080101623A (en) Automatic rinsing apparatus for electrolysis tub
JP2003079560A (en) Dishwasher
JP2011036311A (en) Feeder of alkaline washing liquid
JPH08323307A (en) Appliance washing device
JP4543515B2 (en) Batch type electrolyzed water generator
JP5678000B2 (en) Washing water production method
JP4543516B2 (en) Batch type electrolyzed water generator
JPH11156312A (en) Washing apparatus
JP2006204562A (en) Washing machine
JP3356169B2 (en) Electrolyzed water generator
JP4467354B2 (en) Cleaning device and disinfecting device
JP2003265400A (en) Dish washer
JP2002038195A (en) Cleaning agent, method for producing the cleaning agent, apparatus for producing the cleaning agent and cleaning method using the cleaning agent
JP3806626B2 (en) Hypochlorous acid generator
JP2002300999A (en) Dishwasher
JP3804519B2 (en) Electrolyzed water generator
JPH0928769A (en) Disinfection washing method using electrodialysis and device therefor
JP2004154491A (en) Dishwasher
JP2001212060A (en) Dish washing unit
KR102214638B1 (en) Apparatus for generating electrolytic water and configuration method thereof