JP2004249221A - Desalinizing method of seawater or the like using alkali ionized water generator and apparatus therefor - Google Patents

Desalinizing method of seawater or the like using alkali ionized water generator and apparatus therefor Download PDF

Info

Publication number
JP2004249221A
JP2004249221A JP2003042508A JP2003042508A JP2004249221A JP 2004249221 A JP2004249221 A JP 2004249221A JP 2003042508 A JP2003042508 A JP 2003042508A JP 2003042508 A JP2003042508 A JP 2003042508A JP 2004249221 A JP2004249221 A JP 2004249221A
Authority
JP
Japan
Prior art keywords
water
seawater
cathode
salt
alkaline ionized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003042508A
Other languages
Japanese (ja)
Other versions
JP4101081B2 (en
Inventor
Shinichi Nakamura
信一 中村
Kunihiko Fukuzuka
邦彦 福塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Inc
Original Assignee
Omega Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Inc filed Critical Omega Inc
Priority to JP2003042508A priority Critical patent/JP4101081B2/en
Publication of JP2004249221A publication Critical patent/JP2004249221A/en
Application granted granted Critical
Publication of JP4101081B2 publication Critical patent/JP4101081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a simply-structured, compact and lightweight apparatus for desalinizing seawater or water containing electrolytes such as sodium chloride, which is easily maintained at a low cost. <P>SOLUTION: Water containing the electrolytes such as sodium chloride, for example seawater, is supplied to an alkali ionized water generator 6 having a diaphragm 5 and the alkali ionized water produced by electrolysis is again or repeatedly supplied to the alkali ionized water generator 6 to perform electrolysis. Thereby condensed alkali ionized water is discharged from an alkali ionized water exit 11 at a cathode side and desalinized water or fresh water is discharged from a fresh water or desalinized water exit 14 at an anode side. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気分解により食塩等電解質を含有する海水、湖沼水、井水を淡水とするか脱塩して、工業用水、食品用水、生活用水、又は飲料水とする方法とその装置に関する。
【0002】
【従来の技術】従来食塩等電解質を含有する海水等の脱塩又は淡水化には逆浸透法、電気浸透法、多段フラッシュ法などがある。高圧のポンプ、多くのスチーム、電力を必要とし、しかも大規模な設備となるので多額の建設費と運転費用がかかる。又災害等の緊急時にすばやく設置対応する事が出来ないと言う問題がある。
【0003】
逆浸透法の中空糸膜の孔径は0.1μm以下の微細なものであり、微生物が繁殖して孔を閉塞しないように、塩素系薬剤又は過酸化水素が使われる。このため中空糸膜が劣化して短期間に交換すると言う問題がある。電気浸透法にはイオン交換膜が使われ、その膜の孔径は10オングストローム程度なので、膜が閉塞し易く、短期間で性能が低下してしまう。何れも高価なものであり運転費用が高く、維持管理には非常に手数がかかると言う問題もある。
【0004】
【発明が解決しようとする課題】
これらの課題を解決するために、この発明では構造が簡単で小形軽量の装置で維持管理がしやすく、費用も多くかからない海水若しくは食塩等電解質含有水の脱塩、淡水化方法とその装置を提供する事を目的としている。
【0005】
【課題を解決するための手段】
前記課題を解決するため、この発明では次のような手段を講じている。
【0006】
(a)請求項1記載の本発明では、隔膜5のあるアルカリイオン水生成電解装置6に海水等の食塩等電解質含有水を供給すると、電解によりアルカリイオン水が生成する。このアルカリイオン水を再びアルカリイオン水生成装置6に供給して電解することにより、陰極側のアルカリイオン水出口11から濃縮されたアルカリイオン水が排出され、陽極側の淡水又は脱塩水出口(14)よりより脱塩水或いは淡水が排出される。更に塩濃度を下げる為には、複数回繰り返して同じ操作を繰り返すと良い。 繰り返す回数により希望する塩濃度の脱塩水を製造する事が出来る。
【0007】
アルカリイオン水を再びアルカリイオン水生成装置6に供給して電解した時、残留塩素濃度の高い酸性水が出てくることがある。この酸性水はもう一度アルカリイオン水生成装置6に供給して電解すると、陰極側のアルカリイオン水出口11から脱塩水或いは淡水を取り出す事が出来る。陽極側の酸性イオン水出口10より濃縮された酸性イオン水が排出されてくる。食塩水の電解によるイオン水の生成については化学式1に示す。発生する水素並びに酸素ガスは陽極室7、陰極室8上部のガス抜き手段40により自動的に排出されるようにしている。
【0008】
【化1】

Figure 2004249221
【0009】
(b)請求項2記載の本発明では、処理しようとする海水等の食塩等電解質含有水が低いpHである場合にはイオンではない次亜塩素酸が生成する。生成したアルカリイオン水又はアルカリ水溶液を加えてpHを8以上のアルカリ性に調整してから電解することによりに次亜塩素酸の生成を抑制する事が出来る。また次亜塩素酸の生成を抑制するには塩素イオン濃度が高い始めの段階では電流値を低くするか、極間距離を広くする、流速を上げるなどの方法で対応する事も出来る。
【0010】
(c)請求項3記載の本発明では、陰極3に析出してくる海水等の食塩等電解質含有水に含まれるカルシュウム、マグネシュウム等の陰極析出物は酸性水に溶解するので、酸性水貯留槽19の酸性水で逆洗して除去洗浄する事が出来る。
【0011】
(d)請求項4記載の本発明では、カルシュウム、マグネシュウム等の陰極析出物を溶解した逆洗抽出水を脱塩水に適量添加することによりミネラル成分を豊富に含む飲料・食品用用水とする事が出来る。特に深層海水の脱塩後の脱塩水に深層海水に特有のミネラル成分を多く含む陰極析出物を溶解した逆洗抽出水を再利用することが出来る。このとき各段の脱塩程度が違うので用途に応じて塩濃度を変えることも出来る。また陰極析出物溶解水の添加量を変えれば容易にミネラル成分濃度を加減できる。
【0012】
(e)請求項5記載の本発明では、アルカリイオン水生成装置6を構成する電解装置1には陽極2と陰極3の間に隔膜5があり、被処理水導入口9から食塩等電解質含有水または海水が陽極室7又は陰極室8に導入される。どちら一方の導入口9から入れても、両方同時に入れても良い。電気分解作用によりNaイオン等の陽イオンは陰極3においてアルカリイオン水となってアルカリイオン水出口11から、又塩素イオン等の陰イオンは陽極2において酸性水となって酸性水出口10から排出される。
【0013】
生成したアルカリイオン水はアルカリイオン水通路13を経て二段目の被処理水導入口9から陰極室8に導入され、再度電解され、陰極3側では濃縮されたアルカリイオン水となり、アルカリイオン水出口11から濃縮されたアルカリイオン水が排出され。アルカリイオンが除かれ脱塩された残りの水は隔膜5を通過して、陽極2側、陽極室7の淡水又は脱塩水出口14より脱塩水或いは淡水が排出される。
【0014】
(f)請求項6記載の本発明では、アルカリイオン水生成装置6を1段、2段の構成では、原水の塩濃度が高い場合、淡水化が不充分であるので、さらにアルカリイオン水生成装置6を複数台数組み合わせ構成している。
【0015】
(g)請求項7記載の本発明では、電解で生成した一部の次亜塩素酸はイオンでないために脱塩水或いは淡水中に残存することがある。これは活性炭処理手段35により分解除去することが出来る。
【0016】
(h)請求項8記載の本発明では、陰極3に析出してくる陰極析出物を除去洗浄するために、酸性水貯留槽19に貯留された酸性水を逆洗用ポンプ15により流れの方向を逆転して、アルカリイオン水出口(逆洗水導入口)11より陰極室8に導入し、陰極において生成するカルシュウム、またはマグネシュウム等の水酸化物等の陰極析出物を洗浄・除去して逆洗抽出水を逆洗水排出口より排出する様に構成する。酸性水を引き戻す場合は電解を行わなくても良い。陰極析出物はカルシュウム、またはマグネシュウム等はミネラル成分を多く含むので逆洗抽出水即ち陰極析出・高濃度ミネラル溶解水は高濃度ミネラル水槽20に貯留しておき、そのまま、或は脱塩水に適宜添加するなどして食品、飲料水等に有効に利用することが出来る。
【0017】
【発明の実施の形態】
発明の実施の形態を実施例にもとづき図面を参照して説明する。
図1は1段目アルカリイオン水生成装置6に海水等の食塩等電解質含有水を供給し、電解により生成したアルカリイオン水を2段目のアルカリイオン水生成装置6に供給・電解し脱塩水或いは淡水を製造する装置の模式図である。
【0018】
アルカリイオン水生成装置6を構成する電解装置1には陽極2と陰極3の間に隔膜5があり、被処理水導入口9から食塩等電解質含有水または海水が陽極室7又は陰極室8に導入される。どちら一方の導入口9から入れても、両方同時に入れても良い。電気分解作用によりNaイオン等の陽イオンは陰極3においてアルカリイオン水となってアルカリイオン水出口11から、又塩素イオン等の陰イオンは陽極2において酸性水となって酸性水出口10から排出される。
【0019】
生成したアルカリイオン水はアルカリイオン水通路13を経て2段目のアルカリイオン水生成装置6の被処理水導入口9から陰極室8に導入され、再度電解され、陰極3側では濃縮されたアルカリイオン水となり、アルカリイオン水出口11から濃縮されたアルカリイオン水が排出され、アルカリイオンが除かれ脱塩された残りの水は隔膜5を通過して、陽極2側・陽極室7の淡水又は脱塩水出口14より脱塩水或いは淡水となって排出される。
【0020】
(実施例1) 本例はアルカリイオン水生成装置で淡水化出来るかどうか確かめる為の予備テストであり、図2はこのテストに用いたアルカリイオン水生成装置6の模式図である。上記アルカリイオン水として苛性ソーダ水溶液を被処理水導入口9から導入して電解を行った。苛性ソーダ水溶液の濃度を変えると、電気伝導度はそれに比例して変化するので、電気伝導度を測定する事により簡単に脱塩効果を確認する事が出来た。
【0021】
電解装置1の陰極3にはチタン、陽極2にはチタンに白金メッキしたものを用いた。両極は平板状で、中央に陽極2、これを挟んで電解槽の左右に相対して2枚の陰極3を配置する。電極面積は10x5cm(0.5dm2)、極間距離は10mmになるようにした。陽極2は両面を使うのであわせて1dm2、陰極3は2枚で1dm2である。左右の両極の中央を隔膜5で仕切り、陽極室7、陰極室8を設けた。陰極室8から排出されるのは更に電解・濃縮されたアルカリイオン水である。
【0022】
本例は次に行なう実施例2の予備実験として電解処理流量と電気伝導度(苛性ソーダ水溶液の濃度を調整)をいろいろ変えて電解処理を行った。この結果を表1に示す。平均流量0.71、0.49、0.29リットル/minで電気伝導度の平均低減率は逐次上昇して27.6、28.9、34.6%であった。
【0023】
【表1】
Figure 2004249221
【0024】
(実施例2)実施例1の表1によれば、脱塩水出口14における出口流量を平均して0.71L/min、0.49L/min、0.29L/minと下げて行くと、電気伝導度の低減率は27.6、28.9、34.6%と逐次上昇する事が判った。
電極は白金メッキチタンこれをもとに本例では図1に示す様にアルカリイオン水生成装置を2段に連結して電解処理を行なった。電解処理水としては海水の食塩濃度のモデルとして食塩2.5%水溶液、電気伝導度30000μsを用いた。アルカリイオン水生成装置はGES社試作機であり、電極は白金メッキチタン、電極面積、15x10cmで1.5dm2、電流値6・12・24Amp、脱塩水出口流量は1L/minとした。
【0025】
脱塩水の電気伝導度が水道水並みの300μs/cm以下とするには24Ampでは図1に示す2段連結のアルカリイオン水生成装置で二回合計4回処理する事により達成できたが、12Ampでは6回で520μs/cm、6Ampでは8回繰り返しても脱塩水の電気伝導度は1780μs/cmであった。
この結果を表2に示す。
【0026】
【表2】
Figure 2004249221
【0027】
(実施例3)図1に示すアルカリイオン水生成装置6は通常平板状の陽極2と陰極3を平行に対極して配置している。本実施例では図3に示す様に円筒形のフェライト陽極に対し円筒形のチタン陰極を外側に同心になる様に配置した。この両極の間を隔膜5で仕切るようにした。実施例2と同じように二段連結のアルカリイオン水生成装置6で2回、合計4回の電解処理により電気伝導度30800μs/cmの海水から電気伝導度265μs/cmの脱塩水が得られた。
【0028】
【発明の効果】
本発明は、以上説明したように構成されていて、以下に記載されるような効果を有する。
【0029】
(a)請求項1記載の本発明では、隔膜5のあるアルカリイオン水生成装置6に海水等の食塩等電解質含有水を供給すると、電解によりアルカリイオン水が生成する。このアルカリイオン水を再びアルカリイオン水生成装置6に供給して電解することにより、陰極側のアルカリイオン水出口11から濃縮されたアルカリイオン水が排出され、陽極側の淡水又は脱塩水出口(14)よりより脱塩水或いは淡水が排出され。非常に簡易、安価な装置で簡単に海水を淡水化することが出来た。
【0030】
小形のバッテリーか太陽電池があれば海の上又は海岸で緊急時に飲料水を即座に用意する事が出来る。アフリカなどで水に困っている人々の為に役立てる事も出来る。またこの方法では洗浄力の高いアルカリイオン水や酸化・殺菌洗浄力のある酸性水も出きるので災害地での飲料水と防疫用の消毒殺菌水も同時に用意することが出来る。
【0031】
(b)請求項2記載の本発明では、処理しようとする海水等の食塩等電解質含有水が低いpHである場合にはイオンではない次亜塩素酸が生成する。生成したアルカリイオン水又はアルカリ水溶液を加えてpHを8以上のアルカリ性に調整してから電解することによりに次亜塩素酸の生成を抑制する事が出来た。
【0032】
(c)請求項3記載の本発明では、陰極3に析出してくる海水等の食塩等電解質含有水に含まれるカルシュウム、マグネシュウム等の陰極析出物は酸性水に溶解するので、同時に生成する酸性水で逆洗して簡単に除去洗浄する事が出来る。
【0033】
(d)請求項3記載の本発明では、カルシュウム、マグネシュウム等の陰極析出物を溶解した逆洗抽出水を脱塩水に適量添加することによりミネラル成分を豊富に含む飲料・食品用用水とする事が出来る。特に深層海水の脱塩後の脱塩水に深層海水に特有のミネラル成分を多く含む陰極析出物を溶解した逆洗抽出水を再利用することが出来る。
【0034】
(e)請求項4記載の本発明は、家庭でも広く使用されているアルカリイオン水整水器と基本的には同じものであり安全安価、小形軽量で簡単に持ち運びが出来る。
【0035】
(f)請求項5記載の本発明では、アルカリイオン水生成装置6を複数台数組み合わせ構成することによりどのような塩濃度にも対応する事が出来る。小形安価であるので予備機を常に用意しておく事も出来る。
【0036】
(g)請求項6記載の本発明では、電解で生成した次亜塩素酸は活性炭処理手段35により簡単に分解除去することが出来る。
【0037】
(h)請求項7の発明によれば、硬度が高く、カルシュウム、またはマグネシュウム等が多い用、排水の電解で生成するカルシュウム、またはマグネシュウムの水酸化物等の陰極生成物も、陽極で生成する酸化力が高く、強い酸性の電解水を陰極表面並びに隔膜に接触させることにより、簡単に溶解除去する事が出来る。またそれだけでなく、陰極析出物はカルシュウム、またはマグネシュウム等はミネラル成分を多く含むので逆洗抽出水即ち陰極析出・高濃度ミネラル溶解水は高濃度ミネラル水槽20に貯留しておき、そのまま、或は脱塩水に適宜添加するなどして食品、飲料水等に有効に利用することが出来る。
【図面の簡単な説明】
【図1】アルカリイオン水生成装置6を2段連ねた淡水又は脱塩水生成装置の模式図である。
【図2】アルカリイオン水生成装置6の模式図である。
【図3】筒型のフェライト電極を陽極とする円筒形のアルカリイオン水生成装置6の側断面と平面の模式図である。
【符号の説明】
1 電解装置
2 陽極
3 陰極
4 電解通路(極間反応部)
5 隔膜
6 アルカリイオン水生成装置
7 陽極室
8 陰極室
9 海水等(被処理水)導入口
10 酸性水出口
11 アルカリイオン水出口(逆洗水導入口)
12 酸性水通路
13 アルカリイオン水通路
14 淡水又は脱塩水出口
15 逆洗用ポンプ
16 逆洗水排出口
17 ドレン排出口
18 制御・電源装置
19 酸性水貯留槽
20 高濃度ミネラル水槽(逆洗抽出水槽)
21 アルカリイオン水導入口
31 循環ライン
32 フィルター
33 逆洗ライン
34 電解質水溶液容器
35 活性炭処理手段
36 陽極端子本体
37 低融点金属又は水銀充填部
38 陽極端子
39 陰極端子
40 ガス抜き手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for producing industrial water, food water, domestic water, or drinking water by converting electrolyzed sea water, lake water, well water, or well water containing an electrolyte such as salt into fresh water or desalinated water.
[0002]
2. Description of the Related Art Conventionally, for desalination or desalination of seawater or the like containing an electrolyte such as salt, there are a reverse osmosis method, an electroosmosis method, a multistage flash method and the like. It requires high pressure pumps, lots of steam, power, and large equipment, which results in large construction and operation costs. In addition, there is a problem that it is not possible to quickly install and respond to an emergency such as a disaster.
[0003]
The pore diameter of the hollow fiber membrane of the reverse osmosis method is as fine as 0.1 μm or less, and a chlorine-based drug or hydrogen peroxide is used so that microorganisms do not propagate and block the pores. For this reason, there is a problem that the hollow fiber membrane deteriorates and is replaced in a short time. An ion exchange membrane is used in the electroosmosis method, and the pore size of the membrane is about 10 angstroms. Therefore, the membrane is easily clogged, and the performance is reduced in a short period of time. Each of them is expensive, has a high operating cost, and has a problem that maintenance is very troublesome.
[0004]
[Problems to be solved by the invention]
In order to solve these problems, the present invention provides a desalination and desalination method of seawater or water containing an electrolyte such as salt and the like, which does not require much cost, with a simple structure, a small and lightweight device, and a device therefor. The purpose is to do.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention takes the following measures.
[0006]
(A) According to the first aspect of the present invention, when the water containing an electrolyte such as salt such as seawater is supplied to the alkaline ionized water generating electrolysis apparatus 6 having the diaphragm 5, the alkaline ionized water is generated by electrolysis. The alkaline ionized water is again supplied to the alkaline ionized water generator 6 and electrolyzed, whereby the concentrated alkaline ionized water is discharged from the alkaline ionized water outlet 11 on the cathode side, and the fresh water or demineralized water outlet (14) on the anode side is discharged. ), More desalinated water or fresh water is discharged. In order to further reduce the salt concentration, the same operation may be repeated a plurality of times. Depending on the number of repetitions, desalinated water having a desired salt concentration can be produced.
[0007]
When alkaline ionized water is again supplied to the alkaline ionized water generator 6 for electrolysis, acidic water having a high residual chlorine concentration may come out. When this acidic water is again supplied to the alkaline ionized water generator 6 and electrolyzed, demineralized water or fresh water can be taken out from the alkaline ionized water outlet 11 on the cathode side. The concentrated acidic ion water is discharged from the acidic ion water outlet 10 on the anode side. Formula 1 shows the generation of ionic water by electrolysis of saline. The generated hydrogen and oxygen gases are automatically discharged by the gas releasing means 40 above the anode chamber 7 and the cathode chamber 8.
[0008]
Embedded image
Figure 2004249221
[0009]
(B) According to the second aspect of the present invention, when water containing an electrolyte such as salt such as seawater to be treated has a low pH, hypochlorous acid which is not an ion is generated. The generation of hypochlorous acid can be suppressed by adding the generated alkaline ionized water or an aqueous alkali solution to adjust the pH to an alkalinity of 8 or more and then performing electrolysis. Further, in order to suppress the generation of hypochlorous acid, it is also possible to cope with the method by decreasing the current value at the beginning of the high chloride ion concentration, increasing the distance between the electrodes, or increasing the flow rate.
[0010]
(C) According to the third aspect of the present invention, the cathode deposits such as calcium and magnesium contained in the electrolyte-containing water such as salt and the like, which are deposited on the cathode 3, are dissolved in the acidic water. It can be removed and washed by backwashing with 19 acidic water.
[0011]
(D) In the present invention according to claim 4, water for drinking and food rich in mineral components is obtained by adding an appropriate amount of backwashing extraction water in which cathode deposits such as calcium and magnesium are dissolved to demineralized water. Can be done. In particular, the backwashing extraction water in which the cathodic deposit containing a large amount of mineral components specific to deep seawater is dissolved in the desalinated water after desalination of deep seawater can be reused. At this time, since the degree of desalination in each stage is different, the salt concentration can be changed according to the use. Also, the mineral component concentration can be easily adjusted by changing the amount of the cathode precipitate dissolving water.
[0012]
(E) In the present invention, the electrolysis apparatus 1 constituting the alkaline ionized water generation apparatus 6 has the diaphragm 5 between the anode 2 and the cathode 3, and contains the electrolyte such as salt from the water introduction port 9 to be treated. Water or seawater is introduced into the anode compartment 7 or the cathode compartment 8. Either one of the inlets 9 or both may be simultaneously inserted. By the electrolysis, cations such as Na ions become alkali ion water at the cathode 3 and are discharged from the alkali ion water outlet 11, and anions such as chloride ions are discharged as acid water at the anode 2 and discharged from the acid water outlet 10. You.
[0013]
The generated alkaline ionized water is introduced into the cathode chamber 8 from the second-stage treated water inlet 9 through the alkaline ionized water passage 13 and electrolyzed again. On the cathode 3 side, concentrated alkali ionized water is formed. The concentrated alkaline ionized water is discharged from the outlet 11. The remaining water from which the alkali ions have been removed and desalinated passes through the diaphragm 5, and the desalinated water or fresh water is discharged from the fresh water or desalinated water outlet 14 of the anode 2 and the anode chamber 7.
[0014]
(F) In the present invention according to the sixth aspect, when the alkali ion water generation device 6 has a single-stage and two-stage configuration, desalination is insufficient when the salt concentration of the raw water is high. A plurality of devices 6 are combined and configured.
[0015]
(G) In the present invention, since some hypochlorous acid generated by electrolysis is not an ion, it may remain in deionized water or fresh water. This can be decomposed and removed by the activated carbon treatment means 35.
[0016]
(H) In the present invention according to claim 8, in order to remove and wash the cathode deposits deposited on the cathode 3, the acidic water stored in the acidic water storage tank 19 is flowed by the backwashing pump 15 in the flow direction. And introduced into the cathode chamber 8 from the alkali ion water outlet (backwash water inlet) 11 to wash and remove cathode deposits such as calcium or hydroxide such as magnesium generated at the cathode. The washing water is discharged from the backwash water outlet. When the acidic water is drawn back, electrolysis may not be performed. Cathode deposits such as calcium and magnesium contain a large amount of mineral components. Therefore, backwashing extraction water, ie, cathodic deposition / high-concentration mineral-dissolved water is stored in a high-concentration mineral water tank 20 and added to the demineralized water as it is. For example, it can be effectively used for food, drinking water, and the like.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described based on examples with reference to the drawings.
FIG. 1 shows a first-stage alkaline ionized water generator 6 supplied with water containing an electrolyte such as salt water such as seawater, and an alkaline ionized water generated by electrolysis is supplied to a second-stage alkaline ionized water generator 6 for electrolysis and desalinated water. Alternatively, it is a schematic diagram of an apparatus for producing fresh water.
[0018]
The electrolytic apparatus 1 constituting the alkaline ionized water generator 6 has a diaphragm 5 between the anode 2 and the cathode 3, and water or seawater containing an electrolyte such as salt is supplied to the anode chamber 7 or the cathode chamber 8 from the treated water inlet 9. be introduced. Either one of the inlets 9 or both may be simultaneously inserted. By the electrolysis, cations such as Na ions become alkali ion water at the cathode 3 and are discharged from the alkali ion water outlet 11, and anions such as chloride ions are discharged as acid water at the anode 2 and discharged from the acid water outlet 10. You.
[0019]
The generated alkaline ionized water is introduced into the cathode chamber 8 from the treated water inlet 9 of the second-stage alkaline ionized water generator 6 through the alkaline ionized water passage 13 and electrolyzed again. On the cathode 3 side, the concentrated alkali ionized water is concentrated. The concentrated alkali ion water is discharged from the alkali ion water outlet 11, and the remaining water from which the alkali ions have been removed and desalinated passes through the diaphragm 5, and is supplied to the anode 2 side / anode chamber 7 in fresh water or Demineralized water or fresh water is discharged from the demineralized water outlet 14.
[0020]
(Example 1) This example is a preliminary test for confirming whether desalination can be performed by an alkaline ionized water generator, and FIG. 2 is a schematic diagram of an alkaline ionized water generator 6 used in this test. An aqueous solution of caustic soda was introduced as the alkaline ionized water from the water to be treated inlet 9 to perform electrolysis. When the concentration of the aqueous solution of caustic soda was changed, the electric conductivity changed in proportion to it, so that the desalting effect could be easily confirmed by measuring the electric conductivity.
[0021]
Titanium was used for the cathode 3 of the electrolysis apparatus 1 and platinum-plated titanium was used for the anode 2. Both electrodes are plate-shaped, and an anode 2 is disposed at the center, and two cathodes 3 are disposed opposite to the left and right sides of the electrolytic cell with the anode 2 interposed therebetween. The electrode area was 10 × 5 cm (0.5 dm 2), and the distance between the electrodes was 10 mm. The anode 2 is 1 dm2 in total because both sides are used, and the cathode 3 is 1 dm2 for two sheets. The center of both the left and right poles was partitioned by a diaphragm 5, and an anode chamber 7 and a cathode chamber 8 were provided. What is discharged from the cathode chamber 8 is the further electrolytically concentrated alkali ion water.
[0022]
In this example, as a preliminary experiment of Example 2 to be performed next, electrolytic treatment was performed by changing the electrolytic treatment flow rate and electric conductivity (adjusting the concentration of the aqueous sodium hydroxide solution) in various ways. Table 1 shows the results. At the average flow rates of 0.71, 0.49, and 0.29 liter / min, the average reduction rate of the electric conductivity was gradually increased to 27.6, 28.9, and 34.6%.
[0023]
[Table 1]
Figure 2004249221
[0024]
(Embodiment 2) According to Table 1 of Embodiment 1, when the outlet flow rate at the desalinated water outlet 14 is reduced to 0.71 L / min, 0.49 L / min, and 0.29 L / min on average, the electricity is reduced. It was found that the reduction rate of the conductivity increased sequentially to 27.6, 28.9, and 34.6%.
The electrode was platinum-plated titanium. In this example, the electrolytic treatment was performed by connecting an alkaline ionized water generator in two stages as shown in FIG. As the electrolytically treated water, a 2.5% aqueous solution of sodium chloride and an electrical conductivity of 30,000 μs were used as a model of the salt concentration of seawater. The alkaline ionized water generator was a prototype of GES Co., Ltd. The electrodes were platinum-plated titanium, the electrode area was 1.5 × 10 cm at 15 × 10 cm, the current value was 6, 12, 24 Amp, and the desalted water outlet flow rate was 1 L / min.
[0025]
In order to make the electric conductivity of the desalinated water 300 μs / cm or less, which is equivalent to that of tap water, 24 Amps can be achieved by performing the treatment twice in total with the two-stage connected alkaline ionized water generator shown in FIG. The electric conductivity of the demineralized water was 1780 μs / cm even after repeating 620 μs / cm for 6 times and 8 times for 6 Amp.
Table 2 shows the results.
[0026]
[Table 2]
Figure 2004249221
[0027]
(Embodiment 3) In the alkaline ionized water generator 6 shown in FIG. 1, a plate-shaped anode 2 and a cathode 3 are usually arranged in parallel and opposed to each other. In this embodiment, as shown in FIG. 3, a cylindrical titanium cathode is disposed so as to be concentric with the cylindrical ferrite anode. The two electrodes were separated by a diaphragm 5. In the same manner as in Example 2, demineralized water having an electric conductivity of 265 μs / cm was obtained from seawater having an electric conductivity of 30800 μs / cm by performing the electrolytic treatment twice in a two-stage connected alkaline ionized water generator 6 twice in total. .
[0028]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0029]
(A) According to the first aspect of the present invention, when the water containing an electrolyte such as salt such as seawater is supplied to the alkali ion water generator 6 having the diaphragm 5, alkali ion water is generated by electrolysis. The alkaline ionized water is again supplied to the alkaline ionized water generator 6 and electrolyzed, whereby the concentrated alkaline ionized water is discharged from the alkaline ionized water outlet 11 on the cathode side, and the fresh water or demineralized water outlet (14) on the anode side is discharged. ), More desalinated water or fresh water is discharged. It was possible to desalinate seawater easily with a very simple and inexpensive device.
[0030]
With a small battery or solar cells, drinking water can be prepared immediately in case of emergency on the sea or on the shore. It can also be useful for people in need of water in Africa. Further, in this method, alkaline ion water having high detergency and acidic water having oxidizing and sterilizing detergency can be obtained, so that drinking water in a disaster area and disinfecting sterilizing water for epidemic prevention can be simultaneously prepared.
[0031]
(B) According to the second aspect of the present invention, when water containing an electrolyte such as salt such as seawater to be treated has a low pH, hypochlorous acid which is not an ion is generated. The generation of hypochlorous acid was able to be suppressed by adjusting the pH to an alkalinity of 8 or more by adding the generated alkaline ionized water or the aqueous alkali solution, and then performing electrolysis.
[0032]
(C) According to the third aspect of the present invention, the cathode deposits such as calcium and magnesium contained in the electrolyte-containing water such as salt and the like, which are deposited on the cathode 3, are dissolved in the acidic water. It can be easily removed and washed by backwashing with water.
[0033]
(D) According to the third aspect of the present invention, an appropriate amount of backwashing extraction water in which cathodic deposits such as calcium and magnesium are dissolved is added to demineralized water to obtain water for drinking and food rich in minerals. Can be done. In particular, the backwashing extraction water in which the cathodic deposit containing a large amount of mineral components specific to deep seawater is dissolved in the desalinated water after desalination of deep seawater can be reused.
[0034]
(E) The present invention described in claim 4 is basically the same as an alkaline ionized water conditioner widely used in homes, and is safe, inexpensive, small and lightweight, and can be easily carried.
[0035]
(F) In the present invention described in claim 5, it is possible to cope with any salt concentration by combining and configuring a plurality of the alkaline ionized water generators 6. Since it is small and inexpensive, a spare machine can always be prepared.
[0036]
(G) According to the present invention, hypochlorous acid generated by electrolysis can be easily decomposed and removed by the activated carbon treatment means 35.
[0037]
(H) According to the seventh aspect of the present invention, a cathode product such as calcium or magnesium hydroxide produced by electrolysis of wastewater having high hardness and a large amount of calcium or magnesium is produced at the anode. It can be easily dissolved and removed by contacting highly oxidized and strongly acidic electrolytic water with the cathode surface and the diaphragm. In addition, the cathode precipitate contains calcium or magnesium, and the like contains a large amount of mineral components. It can be effectively used for food, drinking water, etc. by adding it to desalted water as appropriate.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a fresh water or desalinated water generator in which two stages of alkaline ionized water generators are connected.
FIG. 2 is a schematic diagram of an alkaline ionized water generator 6.
FIG. 3 is a schematic side view and a plan view of a cylindrical alkaline ionized water generator 6 having a cylindrical ferrite electrode as an anode.
[Explanation of symbols]
1 Electrolyzer 2 Anode 3 Cathode 4 Electrolysis passage (interelectrode reaction section)
5 Diaphragm 6 Alkaline ion water generator 7 Anode room 8 Cathode room 9 Seawater etc. (water to be treated) inlet 10 Acid water outlet 11 Alkaline ion water outlet (backwash water inlet)
12 Acid water passage 13 Alkaline ion water passage 14 Fresh water or demineralized water outlet 15 Backwash pump 16 Backwash water outlet 17 Drain outlet 18 Control / power supply 19 Acid water storage tank 20 High concentration mineral water tank (backwash extraction water tank )
21 Alkaline ionized water inlet 31 Circulation line 32 Filter 33 Backwash line 34 Electrolyte aqueous solution container 35 Activated carbon treatment means 36 Anode terminal body 37 Low melting point metal or mercury filling part 38 Anode terminal 39 Cathode terminal 40 Gas release means

Claims (8)

隔膜(5)のあるアルカリイオン水生成装置(6)に海水等の食塩等電解質含有水を供給し、電解により生成したアルカリイオン水を再び、或いは複数回繰り返してアルカリイオン水生成装置(6)に供給し、電解する事により陰極側のアルカリイオン水出口(11)から濃縮されたアルカリイオン水が排出され、陽極側の淡水又は脱塩水出口(14)より脱塩水或いは淡水が排出されることを特徴とする海水若しくは食塩等電解質含有水の脱塩・淡水化方法。An alkaline ionized water generator (6) is supplied with water containing an electrolyte such as salt such as seawater to an alkaline ionized water generator (6) having a diaphragm (5), and the alkali ionized water generated by electrolysis is repeated again or a plurality of times. The concentrated alkaline ionized water is discharged from the alkaline ionized water outlet (11) on the cathode side by electrolysis and the deionized water or freshwater is discharged from the freshwater or deionized water outlet (14) on the anode side. Desalination and desalination of water containing electrolytes such as seawater or salt. 処理しようとする海水等の食塩等電解質含有水に電解により生成したアルカリイオン水又はアルカリ水溶液を加えてpHを8以上のアルカリ性に調整してから電解することを特徴とする請求項1記載の海水若しくは食塩等電解質含有水の脱塩・淡水化方法。2. The seawater according to claim 1, wherein the pH is adjusted to an alkalinity of 8 or more by adding alkaline ionized water or an aqueous alkali solution generated by electrolysis to water containing an electrolyte such as salt such as seawater to be treated, and then electrolyzing. Or a method for desalinating and desalinating water containing electrolyte such as salt. 陰極(3)に析出してくる海水等の食塩等電解質含有水に含まれるカルシュウム、マグネシュウム等の陰極析出物を酸性水貯留槽(19)の酸性水で逆洗して除去洗浄することを特徴とする請求項1〜2の何れかに記載の海水若しくは食塩等電解質含有水の脱塩・淡水化方法。Cathode deposits such as calcium and magnesium contained in water containing salt and other electrolytes such as seawater deposited on the cathode (3) are backwashed and removed and washed with acidic water in an acidic water storage tank (19). The method for desalting and desalinating water containing an electrolyte such as seawater or salt according to any one of claims 1 to 2. カルシュウム、マグネシュウム等の陰極析出物を溶解した逆洗水をそのまま、又は脱塩水に適量添加することによりミネラル成分を豊富に含む飲料・食品用用水とすることを特徴とする請求項1〜3の何れかに記載の海水若しくは食塩等電解質含有水の脱塩・淡水化方法。Calcium, magnesium or the like backwash water dissolved cathode deposits as it is, or beverages and food water rich in mineral components by adding an appropriate amount to demineralized water, characterized in that it is characterized by the fact that The desalination / desalination method according to any one of the claims, wherein the water contains electrolytes such as seawater or salt. 電解装置(1)の陽極(2)と陰極(3)の間に隔膜(5)があり、被処理水導入口(9)から食塩等電解質含有水または海水が陽極室(7)又は陰極室(8)に導入され、電気分解作用を受け、Naイオン等の陽イオンは陰極(3)においてアルカリイオン水となってアルカリイオン水出口(11)から、又塩素イオン等の陰イオンは陽極(2)において酸性水となって酸性水出口(10)から排出される様に構成されたアルカリイオン水生成装置(6)であり、生成したアルカリイオン水はアルカリイオン水通路(13)を経て二段目のアルカリイオン水生成装置(6)のアルカリイオン水導入口(21)から陰極室(8)に導入され、再度電解され、陰極(3)側で濃縮されたアルカリイオン水となり、アルカリイオン水出口(11)から濃縮されたアルカリイオン水が排出され、アルカリイオンが除かれた残りの水は隔膜(5)を通過して、陽極(2)側・陽極室(7)の淡水又は脱塩水出口(14)より脱塩水或いは淡水が排出されることを特徴とする海水若しくは食塩等電解質含有水の脱塩・淡水化装置。There is a diaphragm (5) between the anode (2) and the cathode (3) of the electrolysis apparatus (1), and water or seawater containing an electrolyte such as salt is supplied from the treated water inlet (9) to the anode chamber (7) or the cathode chamber. Introduced into (8) and subjected to electrolysis, cations such as Na ions become alkali ion water at the cathode (3) and from the alkali ion water outlet (11), and anions such as chloride ions become anode ( 2) An alkaline ionized water generator (6) configured to be converted into acidic water in 2) and discharged from an acidic water outlet (10), and the generated alkaline ionized water is passed through an alkaline ionized water passage (13). The alkaline ionized water is introduced into the cathode chamber (8) from the alkaline ionized water introduction port (21) of the alkali ionized water generator (6) in the second stage, is electrolyzed again, and becomes alkaline ionized water concentrated on the cathode (3) side. Water outlet (11) The concentrated alkaline ionized water is discharged from the tank, and the remaining water from which the alkaline ions have been removed passes through the diaphragm (5), and the fresh water or the demineralized water outlet (14) of the anode (2) side / anode chamber (7). An apparatus for desalinating and desalinating water containing an electrolyte such as seawater or salt, wherein more desalinated water or freshwater is discharged. 原水の塩濃度に応じてアルカリイオン水生成装置(6)を3段以上複数台組み合わせ構成することを特徴とする請求項5記載の海水若しくは食塩等電解質含有水の脱塩・淡水化装置。6. The desalination / desalination apparatus for seawater or water containing an electrolyte such as salt, according to claim 5, wherein a plurality of alkali ion water generators (6) are combined in a plurality of stages according to the salt concentration of the raw water. 脱塩水或いは淡水中に残存する次亜塩素酸を活性炭処理手段(35)により分解除去することを特徴とする請求項5〜6の何れかに記載の海水若しくは食塩等電解質含有水の脱塩・淡水化装置。7. Desalination of water containing electrolytes such as seawater or salt according to any one of claims 5 to 6, wherein hypochlorous acid remaining in demineralized water or fresh water is decomposed and removed by activated carbon treatment means (35). Desalination equipment. 陰極(3)に析出してくる陰極析出物を除去洗浄するために、酸性水貯留槽(19)に貯留された酸性水を逆洗用ポンプ(15)によりアルカリイオン水出口(逆洗水導入口)(11)より陰極室(8)に導入し、陰極析出物を除去洗浄し、その洗浄水を逆洗水排出口(16)より排出する様に構成することを特徴とする請求項請求項5〜7の何れかに記載の海水若しくは食塩等電解質含有水の脱塩・淡水化装置。In order to remove and wash the cathode deposits deposited on the cathode (3), the acidic water stored in the acidic water storage tank (19) is subjected to an alkali ion water outlet (backwash water introduction) by the backwash pump (15). The cleaning apparatus according to claim 1, wherein said cleaning liquid is introduced into said cathode chamber (8) through said port (11) to remove and wash said cathode deposits, and said washing water is discharged from said backwashing water discharge port (16). Item 10. A desalination / desalination apparatus for water containing an electrolyte such as seawater or salt according to any one of Items 5 to 7.
JP2003042508A 2003-02-20 2003-02-20 Desalination and desalination method for seawater and the like using an alkaline ionized water generator and its apparatus Expired - Lifetime JP4101081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042508A JP4101081B2 (en) 2003-02-20 2003-02-20 Desalination and desalination method for seawater and the like using an alkaline ionized water generator and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042508A JP4101081B2 (en) 2003-02-20 2003-02-20 Desalination and desalination method for seawater and the like using an alkaline ionized water generator and its apparatus

Publications (2)

Publication Number Publication Date
JP2004249221A true JP2004249221A (en) 2004-09-09
JP4101081B2 JP4101081B2 (en) 2008-06-11

Family

ID=33025770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042508A Expired - Lifetime JP4101081B2 (en) 2003-02-20 2003-02-20 Desalination and desalination method for seawater and the like using an alkaline ionized water generator and its apparatus

Country Status (1)

Country Link
JP (1) JP4101081B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289177A (en) * 2005-04-06 2006-10-26 Masayoshi Iwahara Electrode device for electrodialysis
JP2014024013A (en) * 2012-07-27 2014-02-06 Omega:Kk Desalination method of sea water or the like
KR101732188B1 (en) * 2010-09-28 2017-05-25 한국전력공사 Apparatus for treating water using capacitive deionization and carbon electrode
WO2020017689A1 (en) * 2018-07-19 2020-01-23 (주) 테크로스 Method for processing flue gas desulfurization wastewater by using divided cell-type electrolysis apparatus
JP7166691B1 (en) 2021-05-13 2022-11-08 ウェンジョウ ユニバーシティ water treatment equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289177A (en) * 2005-04-06 2006-10-26 Masayoshi Iwahara Electrode device for electrodialysis
JP4522304B2 (en) * 2005-04-06 2010-08-11 正宜 岩原 Electrodialysis electrode device
KR101732188B1 (en) * 2010-09-28 2017-05-25 한국전력공사 Apparatus for treating water using capacitive deionization and carbon electrode
JP2014024013A (en) * 2012-07-27 2014-02-06 Omega:Kk Desalination method of sea water or the like
WO2020017689A1 (en) * 2018-07-19 2020-01-23 (주) 테크로스 Method for processing flue gas desulfurization wastewater by using divided cell-type electrolysis apparatus
JP7166691B1 (en) 2021-05-13 2022-11-08 ウェンジョウ ユニバーシティ water treatment equipment
JP2022176160A (en) * 2021-05-13 2022-11-25 ウェンジョウ ユニバーシティ Water treatment apparatus

Also Published As

Publication number Publication date
JP4101081B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
JP4751994B1 (en) Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell
GB2515324A (en) Electrolytic advance oxidation processes to treat wastewater, brackish and saline water without hydrogen evolution
JP4929430B2 (en) Electrolyzed water production apparatus and electrolyzed water production method
KR20200115747A (en) A fresh water system capable of producing hydrogen gas
KR20210010937A (en) A fresh water system capable of producing hydrogen gas
KR101152090B1 (en) Electrolytic ion water generator having scale prevention function
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
JP4394941B2 (en) Electrolytic ozonizer
JP4101081B2 (en) Desalination and desalination method for seawater and the like using an alkaline ionized water generator and its apparatus
JP3952127B2 (en) Electrodeionization treatment method
JP6171047B1 (en) Electrolyzed water production apparatus and operation method thereof
CN101450824B (en) Water electrolysis and activation
JP2005329331A (en) Water treatment method and water treatment apparatus
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP5019422B2 (en) Domestic water supply method and apparatus
JP7232158B2 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
CN111908718A (en) Advanced treatment method of garbage penetrating fluid
US11794147B2 (en) Wastewater treatment method and wastewater treatment apparatus
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JPH0780457A (en) Method and apparatus for making electrolytic water
KR101108142B1 (en) Clean water system for functional water
CN213388221U (en) Advanced treatment device for garbage penetrating fluid
KR102543734B1 (en) Desalting apparatus for resource recovery from seawater concentrate
JP3479318B2 (en) Method and apparatus for producing electrolyzed water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4101081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term