JP2002192152A - Method and apparatus for water treatment - Google Patents

Method and apparatus for water treatment

Info

Publication number
JP2002192152A
JP2002192152A JP2000393572A JP2000393572A JP2002192152A JP 2002192152 A JP2002192152 A JP 2002192152A JP 2000393572 A JP2000393572 A JP 2000393572A JP 2000393572 A JP2000393572 A JP 2000393572A JP 2002192152 A JP2002192152 A JP 2002192152A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
membrane device
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000393572A
Other languages
Japanese (ja)
Inventor
Tsugi Abe
嗣 阿部
Shuichi Chino
秀一 知野
Motonori Yanagi
基典 柳
Takayuki Jizaimaru
隆行 自在丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2000393572A priority Critical patent/JP2002192152A/en
Publication of JP2002192152A publication Critical patent/JP2002192152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method which has reverse osmosis membrane devices arranged in two stages or three stages which can obtain high water quality suitable for an apparatus for producing high purity water to be used in a semiconductor production plant, a medicine production plant, a power plant, etc. SOLUTION: A softening device 2, a degassing device through which softened treatment water is passed, an alkali addition device 4 for adjusting the pH of degassed treatment water at 9.0 or above, the first reverse osmosis membrane device 5 through which the treatment water the pH of which is adjusted at 9.0 or above is passed, the second reverse osmosis membrane device 7 through which the treatment water the pH of which is adjusted is passed, the concentrated water of the first reverse osmosis membrane device 5 is passed through the third reverse osmosis membrane device 8, and filtrate from the membrane device is returned to the pre-stage of the first reverse osmosis membrane device 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水処理方法および
水処理装置に係、さらに詳しくは、高純度の水質が要求
される半導体製造工場、医薬品製造工場、発電所などで
用いられる高い水質の純水の製造に適した水処理方法お
よび水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method and a water treatment apparatus, and more particularly, to a water treatment method and a water treatment apparatus which require high-purity water quality. The present invention relates to a water treatment method and a water treatment device suitable for producing pure water.

【0002】[0002]

【従来の技術】従来から、逆浸透膜装置の供給水にアル
カリを添加して高いpHとすることにより逆浸透膜装置
によるシリカやホウ素の除去率を向上させる方法が知ら
れている。
2. Description of the Related Art Conventionally, there has been known a method of improving the removal rate of silica and boron by a reverse osmosis membrane device by adding an alkali to the water supplied to the reverse osmosis membrane device to increase the pH.

【0003】しかしながら、この方法では、逆浸透膜装
置の供給水のpHを高めるために添加した薬剤が逆浸透
膜で十分に除去されず透過水に漏出してくるという問題
がある。また、逆浸透膜装置の供給水中に使用済超純水
(回収水)や他工程の生物処理水を混合して用いること
が一般に行われているが、このような回収水や生物処理
水にはアンモニアが含まれており、このアンモニアはア
ルカリ性条件下の逆浸透膜装置では十分に除去されない
ため透過水に漏出してきてしまうという問題がある。
However, in this method, there is a problem that the chemical added to increase the pH of the water supplied to the reverse osmosis membrane device is not sufficiently removed by the reverse osmosis membrane and leaks into the permeated water. In addition, it is common practice to use used ultrapure water (recovered water) or biologically treated water from another process in the feedwater of the reverse osmosis membrane apparatus. Contains ammonia, and there is a problem that ammonia is leaked into permeated water because it is not sufficiently removed by a reverse osmosis membrane device under alkaline conditions.

【0004】このように、従来の逆浸透膜装置の供給水
にアルカリを添加する方法では、シリカやホウ素の除去
率を高くできても添加した薬剤やアンモニアが処理水中
に漏出してくるため高い水質の処理水を得ることは困難
であった。
As described above, in the method of adding alkali to the feed water of the conventional reverse osmosis membrane apparatus, even if the removal rate of silica or boron can be increased, the added chemical or ammonia leaks into the treated water. It was difficult to obtain treated water of the same quality.

【0005】[0005]

【発明が解決しようとする課題】上述したように、逆浸
透膜装置の供給水にアルカリを添加して高いpHとして
シリカやホウ素の除去率を向上させる方法では、供給水
のpHを高めるために添加した薬剤が逆浸透膜で十分に
除去されず透過水に漏出してくるという問題やアンモニ
アがアルカリ性条件下の逆浸透膜装置で十分に除去され
ずに透過水に漏出してくるという問題があり、その改善
が望まれていた。
As described above, in the method of adding alkali to the feed water of the reverse osmosis membrane apparatus to increase the pH of silica and boron by increasing the pH, the pH of the feed water is increased. The problem that the added drug is not sufficiently removed by the reverse osmosis membrane and leaks into the permeated water, and that the ammonia leaks into the permeated water without being sufficiently removed by the reverse osmosis membrane device under alkaline conditions. There is a need for improvement.

【0006】本発明は、かかる従来の問題に対処してな
されたもので、逆浸透膜装置を用いた純水の製造におい
て、シリカやホウ素を高い除去率で除去するとともに、
回収水や生物処理水に由来するアンモニアも除去して半
導体製造工場、医薬品製造工場、発電所などで用いられ
る高純度の純水を製造する水処理方法および水処理装置
を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems. In the production of pure water using a reverse osmosis membrane device, silica and boron are removed at a high removal rate.
An object of the present invention is to provide a water treatment method and a water treatment apparatus for removing high-purity pure water used in semiconductor manufacturing plants, pharmaceutical manufacturing plants, power plants, and the like by removing ammonia derived from recovered water and biologically treated water. I do.

【0007】[0007]

【課題を解決するための手段】本発明の水処理方法は、
被処理水を軟化装置、第1の逆浸透膜装置および第2の
逆浸透膜装置に順に通水して純化する水処理方法におい
て、前記第1の逆浸透膜装置の供給水にアルカリを添加
してpH9.0以上にするアルカリ添加工程と、前記第
2の逆浸透膜装置の供給水に酸を添加する酸添加工程と
を有することを特徴とする(請求項1)。
The water treatment method of the present invention comprises:
In a water treatment method for purifying water to be treated by sequentially passing water through a softening device, a first reverse osmosis membrane device, and a second reverse osmosis membrane device, an alkali is added to water supplied to the first reverse osmosis membrane device. And an acid addition step of adding an acid to the feed water of the second reverse osmosis membrane device (claim 1).

【0008】この発明によれば、軟化工程において、ス
ケールの原因となる供給水中の硬度成分が除去され、ア
ルカリ添加工程においてシリカやホウ素の溶解性を高め
て第1の逆浸透膜処理工程で除去され易くし、酸添加工
程において処理水中に微量溶解するアンモニアを逆浸透
膜で除去されやすいアンモニウムイオンの形態に移行さ
せ、第2の逆浸透膜装置において、このアンモニウムイ
オンを除去して、シリカやホウ素、さらにはアンモニア
も除去された純度の高い純水を得る。
According to the present invention, in the softening step, the hardness component in the feed water that causes scale is removed, and in the alkali addition step, the solubility of silica and boron is increased and removed in the first reverse osmosis membrane treatment step. In the acid addition step, ammonia dissolved in a trace amount in the treated water is transferred to a form of ammonium ions which can be easily removed by the reverse osmosis membrane. High-purity pure water from which boron and also ammonia have been removed is obtained.

【0009】また、本発明の水処理方法は、被処理水
を、軟化装置、第1の逆浸透膜装置および第2の逆浸透
膜装置に順に通水して純化するとともに、前記第1の逆
浸透膜装置の濃縮水を第3の逆浸透膜装置に通水してそ
の透過水を前記第1の逆浸透膜装置の供給水として還流
させる水処理方法において、前記第3の逆浸透膜装置の
供給水にアルカリを添加してpH9.0以上にするアル
カリ添加工程と、前記第2の逆浸透膜装置の供給水に酸
を添加する酸添加工程とを有することを特徴とする(請
求項2)。
Further, in the water treatment method of the present invention, the water to be treated is passed through a softening device, a first reverse osmosis membrane device and a second reverse osmosis membrane device in that order to purify the water, and In the water treatment method, the concentrated water of the reverse osmosis membrane device is passed through a third reverse osmosis membrane device, and the permeated water is refluxed as the supply water of the first reverse osmosis membrane device. It is characterized by comprising an alkali addition step of adding an alkali to the supply water of the apparatus to adjust the pH to 9.0 or higher, and an acid addition step of adding an acid to the supply water of the second reverse osmosis membrane apparatus. Item 2).

【0010】さらに、本発明においては、上記各請求項
記載の発明において、軟化工程の次段に脱ガス工程を設
けることにより、スケール形成の他方の成分である炭酸
ガス(CO2 )を除去して、スケール発生のより少ない
純水を得ることができる(請求項3)。なお、酸添加工
程において添加される酸は、2価以上の多価の酸である
ことが望ましい(請求項4)。
Further, in the present invention, in the invention described in each of the above-mentioned claims, by providing a degassing step next to the softening step, carbon dioxide gas (CO 2 ) which is the other component of scale formation is removed. Thus, pure water with less scale generation can be obtained (claim 3). The acid added in the acid adding step is preferably a divalent or higher polyvalent acid (claim 4).

【0011】酸添加工程における酸の添加量は、酸を添
加された処理水のpHが9.0以下、好ましくは7程度
に調整され、しかる後、第2の逆浸透膜透過水の導電率
が十分低くなる量であることが望ましい(請求項5)。
In the acid addition step, the amount of the acid added is adjusted so that the pH of the treated water to which the acid has been added is 9.0 or less, preferably about 7, and then the conductivity of the water permeated through the second reverse osmosis membrane. Is desirably an amount that sufficiently reduces (claim 5).

【0012】これに加えて、第2の逆浸透膜装置から放
出される濃縮水を前記第1の逆浸透膜装置の供給水に返
送することが、被処理水の有効利用の点からより好まし
い(請求項6)。
In addition, it is more preferable to return the concentrated water discharged from the second reverse osmosis membrane device to the supply water of the first reverse osmosis membrane device from the viewpoint of effective use of the water to be treated. (Claim 6).

【0013】[0013]

【発明の実施の形態】以下に、図面を参照しながら本発
明の実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の水処理方法の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the water treatment method of the present invention.

【0015】本実施の形態において、原水としては、市
水、井水、工業用水や使用済超純水(回収水)や他工程
の生物処理水、イオン交換処理水あるいはこれらの混合
水を用いることができる。一般に、使用済超純水(回収
水)、他工程の生物処理水、イオン交換処理水等には、
樹脂その他の有機物の分解に由来する微量のアンモニア
が含まれている。
In the present embodiment, as raw water, city water, well water, industrial water, used ultrapure water (recovered water), biologically treated water in another process, ion exchange treated water, or a mixed water thereof is used. be able to. In general, used ultrapure water (recovered water), biologically treated water from other processes, ion exchange treated water, etc.
Contains trace amounts of ammonia from the decomposition of resins and other organic matter.

【0016】これらの原水は、凝集沈殿、膜濾過、活性
炭処理などを用いた前処理装置1に通水され後、強酸性
カチオン交換樹脂塔、弱酸性カチオン交換樹脂塔、硬度
成分が除去可能なキレート樹脂塔などの軟化装置2に通
水される。なお、前処理装置としては、活性炭塔が好ま
しい。
These raw waters are passed through a pretreatment device 1 using coagulation sedimentation, membrane filtration, activated carbon treatment, etc., after which a strongly acidic cation exchange resin tower, a weakly acidic cation exchange resin tower, and a hardness component can be removed. Water is passed through a softening device 2 such as a chelate resin tower. In addition, as a pretreatment apparatus, an activated carbon tower is preferable.

【0017】軟化装置2では、原水中のカルシウム、マ
グネシウムなどが主として除去されるが、副次的に他の
陽イオンも除去される。軟化装置2は目的に応じて再生
剤の種類を変えてNa型もしくはH型等とする。
The softening device 2 mainly removes calcium, magnesium and the like in raw water, but also removes other cations as a by-product. The softening device 2 is changed to a Na type or an H type by changing the type of the regenerant according to the purpose.

【0018】軟化装置2で処理された軟化処理水は、脱
炭酸塔、真空脱気装置、膜脱気装置などの脱ガス装置3
に通水される。軟化処理水のpHが6以上の場合には、
HCl、H2 SO4 などの酸が添加され、軟化処理水
は、pH6以下、好ましくは5以下、特に3〜5程度と
され、炭酸イオンや重炭酸イオンとして溶解していた炭
酸ガスはCO2 とされる。
The softened water treated in the softening device 2 is supplied to a degassing device 3 such as a decarbonation tower, a vacuum degassing device or a membrane degassing device.
Is passed through. When the pH of the softened water is 6 or more,
Acids such as HCl and H 2 SO 4 are added, and the softened water is adjusted to pH 6 or less, preferably 5 or less, particularly about 3 to 5. Carbon dioxide dissolved as carbonate ions or bicarbonate ions is CO 2 It is said.

【0019】脱ガス装置3では、原水中の炭酸ガスがC
2 として気相に移行して除去される。ただし、原水中
の無機炭酸濃度が5ppm以下、例えば半導体工場の製
造工程から排出される排水などを処理する場合には、脱
ガス装置3を特に設置しなくてもよい。
In the degassing device 3, the carbon dioxide gas in the raw water is C
O 2 is transferred to the gas phase and removed. However, when the concentration of inorganic carbonic acid in the raw water is 5 ppm or less, for example, when treating wastewater discharged from the manufacturing process of a semiconductor factory, the degassing device 3 does not need to be particularly installed.

【0020】脱ガス装置3で脱ガスされた処理水には、
アルカリ添加装置4からNaOH、KOHなどのアルカ
リが添加されアルカリ性水とされる。なお、アルカリの
添加量は、第1の逆浸透膜装置で処理される水のpHが
9.0以上、好ましくは、9.5以上となるような量と
する。
The treated water degassed by the degassing device 3 includes:
An alkali such as NaOH or KOH is added from the alkali addition device 4 to make alkaline water. The alkali is added in such an amount that the pH of the water treated in the first reverse osmosis membrane device becomes 9.0 or more, preferably 9.5 or more.

【0021】第1の逆浸透膜装置5には、pHが9.0
以上に調整された処理水が通水されて、添加したアルカ
リにより調整された高pH条件下において、主にシリカ
やホウ素などが除去される。また、高pH条件下では、
原水中に含まれる有機物や微生物に対する耐汚染性も向
上するので、かかるアルカリによる調整は、市水、井
水、工業用水などの原水を処理するには有効な手段であ
る。
The first reverse osmosis membrane device 5 has a pH of 9.0.
The treated water adjusted as described above is passed through, and silica and boron are mainly removed under the high pH condition adjusted by the added alkali. Also, under high pH conditions,
Adjustment with alkali is an effective means for treating raw water such as city water, well water, industrial water, etc., since the contamination resistance to organic substances and microorganisms contained in the raw water is also improved.

【0022】第1の逆浸透膜装置5の透過水には、次い
で酸添加装置6からH2 SO4 などの2価以上の多価の
酸が添加されてpH9.0以下、好ましくは、6〜8、
特に6.5〜7.5程度に調整され、しかる後、第2の
逆浸透膜装置7に通水される。この第2の逆浸透膜装置
7の被処理水でのpH調整は、処理水の導電率が十分低
くなるように設定すればよく、第2の逆浸透膜装置7の
透過水の導電率を測定して、この数値に基づいて最適p
H設定値をフィードバック制御し調整するようにするこ
とが好ましい。
The permeated water of the first reverse osmosis membrane device 5 is then added with a divalent or higher polyvalent acid such as H 2 SO 4 from an acid addition device 6 to obtain a pH of 9.0 or less, preferably 6 or less. ~ 8,
In particular, the water is adjusted to about 6.5 to 7.5, and then water is passed through the second reverse osmosis membrane device 7. The pH of the second reverse osmosis membrane device 7 in the water to be treated may be adjusted so that the conductivity of the treated water is sufficiently low. Measure and determine the optimal p
It is preferable to adjust the H set value by feedback control.

【0023】本発明では、このような2段逆浸透膜装置
の処理において、第1の逆浸透膜装置5の濃縮水を第3
の逆浸透膜装置8で処理し、得られた透過水を第1の逆
浸透膜装置の前段に返送することにより被処理水の有効
利用を図ることができる。この場合、アルカリの添加
は、第1の逆浸透膜装置5の供給水に対して行わずに第
3の逆浸透膜装置8の供給水に対してアルカリ添加が行
われる。この場合もpHは9.0以上となるよう調整す
る。また、必要に応じて、第1の逆浸透膜装置5の供給
水と第3の逆浸透膜装置8の供給水の両方にアルカリ添
加を行うようにしてもよい。なお、第3の逆浸透膜装置
8の濃縮水は、系外に排出される。
In the present invention, in the treatment of such a two-stage reverse osmosis membrane device, the concentrated water of the first reverse osmosis membrane device 5 is supplied to the third reverse osmosis membrane device.
And the resulting permeated water is returned to the stage preceding the first reverse osmosis membrane device, whereby the water to be treated can be effectively used. In this case, the alkali is not added to the supply water of the first reverse osmosis membrane device 5 but to the supply water of the third reverse osmosis membrane device 8. Also in this case, the pH is adjusted to be 9.0 or more. Further, if necessary, alkali may be added to both the supply water of the first reverse osmosis membrane device 5 and the supply water of the third reverse osmosis membrane device 8. The concentrated water in the third reverse osmosis membrane device 8 is discharged out of the system.

【0024】本発明において、第1、第2、第3の逆浸
透膜装置5,7,8の逆浸透膜として、東レ株式会社製
「SU−700」、「SUL−G」、日東電工株式会社
製「NTR759」、「ES20」、Filmtec社
製「BW−30」などの逆浸透膜を用いることができ
る。ただし、第2の逆浸透膜装置5の逆浸透膜として、
東レ株式会社製「SU−900」、日東電工株式会社製
「ES20C」などの正荷電膜を用いることも可能であ
る。
In the present invention, as the reverse osmosis membrane of the first, second, and third reverse osmosis membrane devices 5, 7, and 8, "SU-700" and "SUL-G" manufactured by Toray Industries, Inc., Nitto Denko Corporation Reverse osmosis membranes such as “NTR759” and “ES20” manufactured by Company and “BW-30” manufactured by Filmtec can be used. However, as the reverse osmosis membrane of the second reverse osmosis membrane device 5,
It is also possible to use a positively charged film such as “SU-900” manufactured by Toray Industries, Inc., “ES20C” manufactured by Nitto Denko Corporation.

【0025】本発明の方法によれば、処理水(第2の逆
浸透膜装置7の透過水)として、電気導電率1.0μS
/cm以下の高水質の処理水を得ることができる。
According to the method of the present invention, the treated water (the permeated water of the second reverse osmosis membrane device 7) has an electric conductivity of 1.0 μS
/ Cm or less of high quality treated water can be obtained.

【0026】第1の逆浸透膜装置5の濃縮水を第3の逆
浸透膜装置8で処理して得られる透過水および第2の逆
浸透膜装置7の濃縮水を第1の逆浸透膜装置5の前段に
返送することにより、水回収率を大幅に高めることがで
きる。
The concentrated water of the first reverse osmosis membrane device 5 is treated with the third reverse osmosis membrane device 8 to obtain the permeated water and the concentrated water of the second reverse osmosis membrane device 7 and the first reverse osmosis membrane device By returning the water to the preceding stage of the device 5, the water recovery rate can be greatly increased.

【0027】第3の逆浸透膜装置8は、第1の逆浸透膜
装置5との種類が異なり、特に濃縮水の1モジュ−ルあ
たりの流速を最適化する為、仮に第1のモジュ−ルが直
径8インチとすると、それより小型の4インチ等とする
ことができる。
The third reverse osmosis membrane device 8 is different in type from the first reverse osmosis membrane device 5, and in particular, in order to optimize the flow rate per module of the concentrated water, the first reverse osmosis membrane device 8 is tentatively used. Assuming that the diameter of the nozzle is 8 inches, it can be made smaller, such as 4 inches.

【0028】第3の逆浸透膜装置8は、第1の逆浸透膜
装置5の濃縮水を脱塩する為、供給水の塩濃度が高くな
り、透過水水質を悪化させる要因ともなる。そこで、第
3の逆浸透膜装置8には第1の逆浸透膜装置5よりも脱
塩率の高いモジュ−ル、例えば第1の逆浸透膜装置5に
は東レ株式会社製「SU−700」、第3の逆浸透膜装
置8には東レ株式会社製「SU−700R」とすること
ができる。
The third reverse osmosis membrane device 8 desalinates the concentrated water of the first reverse osmosis membrane device 5, so that the salt concentration of the supplied water increases, which is a factor of deteriorating the quality of permeated water. Therefore, the third reverse osmosis membrane device 8 includes a module having a higher desalination rate than the first reverse osmosis membrane device 5, for example, the first reverse osmosis membrane device 5 includes "SU-700" manufactured by Toray Industries, Inc. The third reverse osmosis membrane device 8 may be “SU-700R” manufactured by Toray Industries, Inc.

【0029】[0029]

【実施例】以下に実施例を挙げて本発明をさらに詳細に
説明する。
The present invention will be described in more detail with reference to the following examples.

【0030】実施例1 図1に示す工程により、原水として井水と半導体工場の
回収水の混合水を用いて水処理を行った。まず、活性炭
塔からなる前処理装置1に通水後、弱酸性カチオン交換
樹脂[バイエル社、Lewatit CNP80]を充
填したイオン交換塔からなる軟化装置2に通水して軟化
処理を行った。そして、脱ガス装置(脱炭酸塔)3に通
水して脱気処理した後、アルカリ添加装置4からNaO
Hを添加してpH10.5とし、第1の逆浸透膜装置5
に通水した。
Example 1 Water treatment was carried out by the process shown in FIG. 1 by using a mixture of well water and recovered water from a semiconductor factory as raw water. First, after passing water through a pretreatment device 1 consisting of an activated carbon tower, water was passed through a softening device 2 consisting of an ion exchange tower filled with a weakly acidic cation exchange resin [Bayer, Lewatit CNP80] to perform a softening treatment. Then, after passing water through a degassing device (decarbonation tower) 3 to perform degassing treatment, NaO
H was added to pH 10.5, and the first reverse osmosis membrane device 5
Water.

【0031】第1の逆浸透膜装置(逆浸透膜:東レ株式
会社製「SU−700」)5の透過水に酸添加装置6か
らH2 SO4 を添加して、pH6.5とし、第2の逆浸
透膜装置(逆浸透膜:東レ株式会社製「SUL−G」)
7に通水した。
H 2 SO 4 is added to the permeated water of the first reverse osmosis membrane device (reverse osmosis membrane: “SU-700” manufactured by Toray Industries, Inc.) 5 from the acid addition device 6 to adjust the pH to 6.5. 2 Reverse osmosis membrane device (reverse osmosis membrane: "SUL-G" manufactured by Toray Industries, Inc.)
7 was passed.

【0032】第1の逆浸透膜装置5の濃縮水は、第3の
逆浸透膜装置(逆浸透膜:東レ株式会社製「SU−70
0」)8で処理し、濃縮水は、系外に排出した。第3の
逆浸透膜装置8の透過水と第2の逆浸透膜装置7の濃縮
水を第1の逆浸透膜装置5の前段に返送した。
The concentrated water of the first reverse osmosis membrane device 5 is supplied to a third reverse osmosis membrane device (reverse osmosis membrane: “SU-70” manufactured by Toray Industries, Inc.).
0 "), and the concentrated water was discharged out of the system. The permeated water of the third reverse osmosis membrane device 8 and the concentrated water of the second reverse osmosis membrane device 7 were returned to the preceding stage of the first reverse osmosis membrane device 5.

【0033】各逆浸透膜装置5,7,8の給水、透過水
および濃縮水量は次の通りである。 第1の逆浸透膜装置5: 給水量 =750リットル/h 透過水量=500リットル/h 濃縮水量=250リットル/h 第2の逆浸透膜装置7: 給水量 =500リットル/h 透過水量=450リットル/h 濃縮水量= 50リットル/h 第3の逆浸透膜装置8: 給水量 =250リットル/h 透過水量=190リットル/h 濃縮水量= 60リットル/h 比較例1 実施例1において、第1の逆浸透膜装置5の透過水にH
2 SO4 を添加しなかったこと以外は実施例1と同様に
して処理を行った。
The water supply, permeated water and concentrated water amounts of the reverse osmosis membrane devices 5, 7, and 8 are as follows. First reverse osmosis membrane device 5: Water supply amount = 750 liter / h Permeate amount = 500 liter / h Concentrated water amount = 250 liter / h Second reverse osmosis membrane device 7: Water supply amount = 500 liter / h Permeate amount = 450 1 liter / h Concentrated water amount = 50 liter / h Third reverse osmosis membrane device 8: Water supply amount = 250 liter / h Permeated water amount = 190 liter / h Concentrated water amount = 60 liter / h Comparative Example 1 First Example H in the reverse osmosis membrane device 5
The treatment was performed in the same manner as in Example 1 except that 2 SO 4 was not added.

【0034】実施例1および比較例1の結果を、第1表
に示す。
Table 1 shows the results of Example 1 and Comparative Example 1.

【0035】[0035]

【表1】 表1より明らかなように、第1の逆浸透膜装置の透過水
に酸を添加した処理水は、添加をしなかった処理水より
も高水質であり、第1、第2の逆浸透膜装置の濃縮水を
再利用した上でも、電気導電率0.3μS/cmという
処理水を得ることができた。また、ナトリウムの処理水
(第2の逆浸透膜装置透過水)への漏出量を低減するこ
とができた。
[Table 1] As is clear from Table 1, the treated water obtained by adding an acid to the permeated water of the first reverse osmosis membrane device has higher water quality than the treated water not added, and the first and second reverse osmosis membranes are used. Even after reusing the concentrated water of the apparatus, it was possible to obtain treated water having an electric conductivity of 0.3 μS / cm. Also, the amount of sodium leaked into the treated water (the permeated water of the second reverse osmosis membrane device) could be reduced.

【0036】また、濃縮水を再利用することで、水回収
率92.0%とすることができ、濃縮水を再利用しない
場合の水回収率60.0%に比べて、水回収率を大幅に
高めることができた。
Further, by reusing the concentrated water, a water recovery rate of 92.0% can be achieved, and the water recovery rate is 60.0% when the concentrated water is not reused. Could be greatly increased.

【0037】実施例2 図1に示す工程のうち、第2の逆浸透膜装置7の濃縮水
は排水とし、原水として井水に半導体工場の回収水の混
合水を用いて水処理を行った。その他は実施例1と同じ
とした。
Example 2 In the process shown in FIG. 1, the concentrated water of the second reverse osmosis membrane device 7 was used as wastewater, and water treatment was performed using well water mixed with recovered water from a semiconductor factory as raw water. . Others were the same as Example 1.

【0038】比較例2 実施例2において、第1の逆浸透膜装置5の透過水にH
2 SO4 を添加しなかったこと以外は実施例1と同様に
して水処理を行った。
Comparative Example 2 In Example 2, the permeated water of the first reverse osmosis membrane device 5 was H
Water treatment was carried out in the same manner as in Example 1 except that 2 SO 4 was not added.

【0039】実施例2および比較例2の結果を、第2表
に示す。特に半導体工場の回収水に顕著に含まれている
アンモニアに着目して結果を示す。
The results of Example 2 and Comparative Example 2 are shown in Table 2. In particular, the results are shown focusing on ammonia which is remarkably contained in the recovered water of the semiconductor factory.

【0040】[0040]

【表2】 表2より明らかなように、第1の逆浸透膜装置の透過水
に酸を添加した処理水は、添加をしなかった処理水より
も高水質であり、アンモニアの処理水(第2の逆浸透膜
装置透過水)への漏出量を低減することができた。
[Table 2] As is clear from Table 2, the treated water obtained by adding an acid to the permeated water of the first reverse osmosis membrane device has higher water quality than the treated water not added, and the treated water of ammonia (the second reverse osmosis water) is used. The amount of leakage into the permeable membrane device (permeated water) could be reduced.

【0041】実施例3 アンモニアが含まれておらず、処理水の導電率が高くて
もよい場合について、図1に示す工程の内、第2の逆浸
透膜装置を除いて、他は実施例1と同じ条件で水処理を
行ったところ、高脱塩率と高回収率で処理水を得ること
ができた。
Example 3 In the case where ammonia is not contained and the conductivity of the treated water may be high, other than the second reverse osmosis membrane apparatus in the steps shown in FIG. When water treatment was performed under the same conditions as in 1, the treated water could be obtained with a high desalination rate and a high recovery rate.

【0042】実施例4 図1に示す工程の内、アルカリ添加の位置を第3の逆浸
透膜装置8の供給水としてpH9.0以上のアルカリ性
条件下で第3の逆浸透膜装置8を運転し、原水として半
導体工場の回収水を用いて水処理を行った。このとき、
実施例1で使用した第2の逆浸透膜装置7の逆浸透膜を
東レ株式会社製「SUL−G」から日東電工株式会社製
「ES20C」に代え、その他は実施例1と同じ条件と
した。
Example 4 In the process shown in FIG. 1, the third reverse osmosis membrane device 8 was operated under alkaline conditions of pH 9.0 or more, with the alkali addition position being the supply water for the third reverse osmosis membrane device 8. Then, water treatment was performed using recovered water from a semiconductor factory as raw water. At this time,
The reverse osmosis membrane of the second reverse osmosis membrane device 7 used in Example 1 was changed from “SUL-G” manufactured by Toray Industries, Inc. to “ES20C” manufactured by Nitto Denko Corporation, and the other conditions were the same as in Example 1. .

【0043】実施例5 実施例4において、第1の逆浸透膜装置5の透過水にN
aOHを添加したこと以外は実施例4と同様にして、添
加位置の違いによるナトリウム漏出量を比較した。
Example 5 In Example 4, N was added to the permeated water of the first reverse osmosis membrane device 5.
Except that aOH was added, the amount of sodium leakage due to the difference in the addition position was compared in the same manner as in Example 4.

【0044】実施例4および実施例5の結果を、表3に
示す。特にpH調整用のNaOHのNa量に着目した結
果を示す。
Table 3 shows the results of Examples 4 and 5. In particular, the results focusing on the Na amount of NaOH for pH adjustment are shown.

【0045】[0045]

【表3】 表3から明らかなように、第2の逆浸透膜装置7として
機能膜に正電荷を多く持つ逆浸透膜装置を使用するとと
もに、アルカリ添加の位置を第3の逆浸透膜装置8の供
給水とした実施例4と、実施例1におけるアルカリ添加
の位置を第1の逆浸透膜装置5の供給水とした実施例5
とを比較した場合、実施例4の方がNaの処理水(第2
の逆浸透膜装置5の透過水)への漏出量を低減すること
がわかる。
[Table 3] As is apparent from Table 3, a reverse osmosis membrane device having a large number of positive charges in the functional membrane was used as the second reverse osmosis membrane device 7, and the position of the alkali addition was changed to the supply water of the third reverse osmosis membrane device 8. Example 4 in which water was supplied to the first reverse osmosis membrane device 5 in the position where the alkali was added in Example 1
When compared with Example 4, the treated water of Example 4 was more treated with Na (second
It can be seen that the amount of leakage from the reverse osmosis membrane device 5 to the permeated water) is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水処理方法の実施の形態を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of a water treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1……前処理塔 2……軟化装置 3……脱ガス装置 4……アルカリ添加装置 5……第1の逆浸透膜装置 6……酸添加装置 7……第2の逆浸透膜装置 8……第3の逆浸透膜装置 DESCRIPTION OF SYMBOLS 1 ... Pretreatment tower 2 ... Softening apparatus 3 ... Degassing apparatus 4 ... Alkali addition apparatus 5 ... 1st reverse osmosis membrane apparatus 6 ... Acid addition apparatus 7 ... 2nd reverse osmosis membrane apparatus 8 .... 3rd reverse osmosis membrane device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/42 C02F 1/42 B A (72)発明者 柳 基典 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 (72)発明者 自在丸 隆行 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 Fターム(参考) 4D006 GA03 KA02 KA03 KA52 KA53 KA54 KA55 KA63 KA64 KB11 KB12 KB13 KD11 KD17 KE15Q KE15R PA01 PB06 PB07 PC02 PC31 PC42 4D025 AA02 AA04 AA07 AB34 BA09 BA17 DA01 DA03 DA05 DA10 4D037 AA03 AB11 BA23 BB07 CA03 CA14 CA15 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) C02F 1/42 C02F 1/42 BA (72) Inventor Motonori Yanagi 2-9-1 Okada, Atsugi-shi, Kanagawa No. 8 Nomura Micro Science Co., Ltd. (72) Inventor Takayuki Jimaru 2-9-8 Okada, Atsugi-shi, Kanagawa F-term Nomura Micro Science Co., Ltd. 4D006 GA03 KA02 KA03 KA52 KA53 KA54 KA55 KA63 KA64 KB11 KB12 KB13 KD11 KD17 KE15Q KE15R PA01 PB06 PB07 PC02 PC31 PC42 4D025 AA02 AA04 AA07 AB34 BA09 BA17 DA01 DA03 DA05 DA10 4D037 AA03 AB11 BA23 BB07 CA03 CA14 CA15

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被処理水を軟化装置、第1の逆浸透膜装
置および第2の逆浸透膜装置に順に通水して純化する水
処理方法において、 前記第1の逆浸透膜装置の供給水にアルカリを添加して
pH9.0以上にするアルカリ添加工程と、 前記第2の逆浸透膜装置の供給水に酸を添加する酸添加
工程とを有することを特徴とする水処理方法。
1. A water treatment method for purifying water to be treated by passing it through a softening device, a first reverse osmosis membrane device, and a second reverse osmosis membrane device in order, wherein the supply of the first reverse osmosis membrane device is performed. A water treatment method comprising: an alkali addition step of adding an alkali to water to adjust the pH to 9.0 or higher; and an acid addition step of adding an acid to water supplied to the second reverse osmosis membrane device.
【請求項2】 被処理水を、軟化装置、第1の逆浸透膜
装置および第2の逆浸透膜装置に順に通水して純化する
とともに、前記第1の逆浸透膜装置の濃縮水を第3の逆
浸透膜装置に通水してその透過水を前記第1の逆浸透膜
装置の供給水として還流させる水処理方法において、 前記第3の逆浸透膜装置の供給水にアルカリを添加して
pH9.0以上にするアルカリ添加工程と、 前記第2の逆浸透膜装置の供給水に酸を添加する酸添加
工程とを有することを特徴とする水処理方法。
2. The water to be treated is sequentially passed through a softening device, a first reverse osmosis membrane device and a second reverse osmosis membrane device to be purified, and the concentrated water of the first reverse osmosis membrane device is removed. In a water treatment method wherein water is passed through a third reverse osmosis membrane device and the permeated water is refluxed as supply water for the first reverse osmosis membrane device, wherein an alkali is added to the supply water of the third reverse osmosis membrane device A water treatment method, comprising: an alkali addition step of adjusting the pH to 9.0 or higher; and an acid addition step of adding an acid to water supplied to the second reverse osmosis membrane device.
【請求項3】 軟化装置の処理水を脱ガス装置に通水し
て脱ガスする脱ガス工程を有することを特徴とする請求
項1又は2記載の水処理方法。
3. The water treatment method according to claim 1, further comprising a degassing step of passing treated water from the softening device through a degassing device to degas.
【請求項4】 前記第2の逆浸透膜装置の供給水に添加
される酸が、2価以上の多価の酸であることを特徴とす
る請求項1乃至3のいずれか1項記載の水処理方法。
4. The method according to claim 1, wherein the acid added to the feed water of the second reverse osmosis membrane device is a divalent or higher polyvalent acid. Water treatment method.
【請求項5】 前記酸を添加された第2の逆浸透膜装置
の供給水のpHが9.0より低いことを特徴とする請求
項1乃至4のいずれか1項に記載の水処理方法。
5. The water treatment method according to claim 1, wherein the pH of the supply water of the second reverse osmosis membrane device to which the acid is added is lower than 9.0. .
【請求項6】 前記第2の逆浸透膜装置から放出される
濃縮水を前記第1の逆浸透膜装置の供給水に返送するこ
とを特徴とする請求項1乃至5のいずれか1項記載の水
処理方法。
6. The apparatus according to claim 1, wherein the concentrated water discharged from the second reverse osmosis membrane device is returned to the supply water of the first reverse osmosis membrane device. Water treatment method.
【請求項7】 被処理水の純化の流路に沿って軟化装
置、第1の逆浸透膜装置および第2の逆浸透膜装置を配
置してなる水処理装置において、 前記第1の逆浸透膜装置の供給水にアルカリを添加する
アルカリ添加装置と、 前記第2の逆浸透膜装置の供給水に酸を添加する酸添加
装置とを設けたことを特徴とする水処理装置。
7. A water treatment apparatus comprising a softening device, a first reverse osmosis membrane device, and a second reverse osmosis membrane device arranged along a flow path for purifying water to be treated, wherein the first reverse osmosis is provided. A water treatment apparatus comprising: an alkali addition device for adding an alkali to water supplied to a membrane device; and an acid addition device for adding an acid to water supplied to the second reverse osmosis membrane device.
【請求項8】 被処理水の純化の流路に沿って軟化装
置、第1の逆浸透膜装置および第2の逆浸透膜装置を配
置するとともに、前記第1の逆浸透膜装置の濃縮水を通
水してその透過水を前記第1の逆浸透膜装置の供給水と
して還流させる第3の逆浸透膜装置を配置してなる水処
理装置において、 前記第3の逆浸透膜装置の供給水にアルカリを添加する
アルカリ添加装置と、 前記第2の逆浸透膜装置の供給水に酸を添加する酸添加
装置とを設けたことを特徴とする水処理装置。
8. A softening device, a first reverse osmosis membrane device, and a second reverse osmosis membrane device are arranged along a flow path for purifying the water to be treated, and the concentrated water of the first reverse osmosis membrane device is provided. In a water treatment apparatus provided with a third reverse osmosis membrane device for passing water therethrough and refluxing the permeated water as supply water for the first reverse osmosis membrane device, the supply of the third reverse osmosis membrane device A water treatment apparatus comprising: an alkali addition device for adding an alkali to water; and an acid addition device for adding an acid to water supplied to the second reverse osmosis membrane device.
【請求項9】 前記軟化装置と前記第1の逆浸透膜装置
の間に、脱ガス装置を設けたこと特徴とする請求項7又
は8記載の水処理装置。
9. The water treatment apparatus according to claim 7, wherein a degassing device is provided between the softening device and the first reverse osmosis membrane device.
【請求項10】 第2の逆浸透膜装置の濃縮水を前記第
1の逆浸透膜装置の供給水路に還流させたことを特徴と
する請求項7乃至9のいずれか1項記載の水処理装置。
10. The water treatment according to claim 7, wherein the concentrated water of the second reverse osmosis membrane device is returned to the supply channel of the first reverse osmosis membrane device. apparatus.
JP2000393572A 2000-12-25 2000-12-25 Method and apparatus for water treatment Pending JP2002192152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393572A JP2002192152A (en) 2000-12-25 2000-12-25 Method and apparatus for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393572A JP2002192152A (en) 2000-12-25 2000-12-25 Method and apparatus for water treatment

Publications (1)

Publication Number Publication Date
JP2002192152A true JP2002192152A (en) 2002-07-10

Family

ID=18859341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393572A Pending JP2002192152A (en) 2000-12-25 2000-12-25 Method and apparatus for water treatment

Country Status (1)

Country Link
JP (1) JP2002192152A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130367A (en) * 2004-11-02 2006-05-25 Japan Organo Co Ltd Apparatus and method for recovering water from organic matter-containing water
JP2006204977A (en) * 2005-01-25 2006-08-10 Kurita Water Ind Ltd Method and apparatus for treating biologically treated water-containing water
JP2007117808A (en) * 2005-10-25 2007-05-17 Kurita Water Ind Ltd Method and apparatus for treating carbonic acid and ammonia-containing drain
KR100872340B1 (en) 2007-07-05 2008-12-08 주식회사 피코그램 Purification water apparatus of having sub reverse osmosis filter
JP2009112894A (en) * 2007-11-02 2009-05-28 Nomura Micro Sci Co Ltd Leak monitoring device
JP2010023006A (en) * 2008-07-24 2010-02-04 Nomura Micro Sci Co Ltd Pure water production method
JP2011189298A (en) * 2010-03-16 2011-09-29 Miura Co Ltd Pure water production system
JP2014104410A (en) * 2012-11-27 2014-06-09 Japan Organo Co Ltd Processing unit of ammonia inclusion discharge water and processing method of ammonia inclusion discharge water
CN104174308A (en) * 2014-09-04 2014-12-03 北京碧水源膜科技有限公司 Preparation method and application of hybridization reverse osmosis membrane
CN104492274A (en) * 2014-11-21 2015-04-08 北京碧水源膜科技有限公司 Preparation method of reverse osmosis membrane
CN104843846A (en) * 2014-12-03 2015-08-19 重庆摩尔水处理设备有限公司 Device for adjusting pH value of influent water in second-stage reverse osmosis
CN105000635A (en) * 2015-08-18 2015-10-28 深圳市华虹清源环保科技有限公司 Iron phosphate wastewater zero discharging treatment device and method
JP2017051954A (en) * 2016-12-16 2017-03-16 オルガノ株式会社 Ammonia-containing wastewater treatment apparatus and ammonia-containing wastewater treatment method
JP2017074574A (en) * 2015-10-16 2017-04-20 水ing株式会社 Water treatment method and water treatment device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128921A (en) * 1997-10-31 1999-05-18 Kurita Water Ind Ltd Apparatus for producing pure water
JPH11169852A (en) * 1997-12-16 1999-06-29 Kurita Water Ind Ltd Pure water producing device
JP2000061465A (en) * 1998-08-21 2000-02-29 Kurita Water Ind Ltd Production of demineralized water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128921A (en) * 1997-10-31 1999-05-18 Kurita Water Ind Ltd Apparatus for producing pure water
JPH11169852A (en) * 1997-12-16 1999-06-29 Kurita Water Ind Ltd Pure water producing device
JP2000061465A (en) * 1998-08-21 2000-02-29 Kurita Water Ind Ltd Production of demineralized water

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130367A (en) * 2004-11-02 2006-05-25 Japan Organo Co Ltd Apparatus and method for recovering water from organic matter-containing water
JP4655643B2 (en) * 2005-01-25 2011-03-23 栗田工業株式会社 Biologically treated water-containing water treatment method and treatment apparatus
JP2006204977A (en) * 2005-01-25 2006-08-10 Kurita Water Ind Ltd Method and apparatus for treating biologically treated water-containing water
KR101279695B1 (en) * 2005-01-25 2013-06-27 쿠리타 고교 가부시키가이샤 A process and an apparatus for treating waters containing a biologically treated water
JP2007117808A (en) * 2005-10-25 2007-05-17 Kurita Water Ind Ltd Method and apparatus for treating carbonic acid and ammonia-containing drain
KR100872340B1 (en) 2007-07-05 2008-12-08 주식회사 피코그램 Purification water apparatus of having sub reverse osmosis filter
JP2009112894A (en) * 2007-11-02 2009-05-28 Nomura Micro Sci Co Ltd Leak monitoring device
JP2010023006A (en) * 2008-07-24 2010-02-04 Nomura Micro Sci Co Ltd Pure water production method
JP2011189298A (en) * 2010-03-16 2011-09-29 Miura Co Ltd Pure water production system
JP2014104410A (en) * 2012-11-27 2014-06-09 Japan Organo Co Ltd Processing unit of ammonia inclusion discharge water and processing method of ammonia inclusion discharge water
TWI613153B (en) * 2012-11-27 2018-02-01 Organo Corp Treatment device for ammonia-containing wastewater and treatment method for ammonia-containing wastewater
CN104174308A (en) * 2014-09-04 2014-12-03 北京碧水源膜科技有限公司 Preparation method and application of hybridization reverse osmosis membrane
CN104174308B (en) * 2014-09-04 2015-12-30 北京碧水源膜科技有限公司 A kind of preparation method of hydridization reverse osmosis membrane and the application of described hydridization reverse osmosis membrane
CN104492274A (en) * 2014-11-21 2015-04-08 北京碧水源膜科技有限公司 Preparation method of reverse osmosis membrane
CN104492274B (en) * 2014-11-21 2016-08-31 北京碧水源膜科技有限公司 A kind of preparation method of reverse osmosis membrane
CN104843846A (en) * 2014-12-03 2015-08-19 重庆摩尔水处理设备有限公司 Device for adjusting pH value of influent water in second-stage reverse osmosis
CN105000635A (en) * 2015-08-18 2015-10-28 深圳市华虹清源环保科技有限公司 Iron phosphate wastewater zero discharging treatment device and method
JP2017074574A (en) * 2015-10-16 2017-04-20 水ing株式会社 Water treatment method and water treatment device
JP2017051954A (en) * 2016-12-16 2017-03-16 オルガノ株式会社 Ammonia-containing wastewater treatment apparatus and ammonia-containing wastewater treatment method

Similar Documents

Publication Publication Date Title
US6267891B1 (en) High purity water production using ion exchange
CN103539288B (en) Industrial wastewater recovery method and wastewater recovery system
CN1176032C (en) Producing process and technology for electronic grade water by intergrated film process
US20120255904A1 (en) Method of Recovering Oil or Gas and Treating the Resulting Produced Water
WO2014089796A1 (en) Method for treating high concentration wastewater such as ro brine
JP2002192152A (en) Method and apparatus for water treatment
JP3575271B2 (en) Pure water production method
CN203728664U (en) Wastewater recovery system
CN103193351A (en) Sewage regeneration and zero discharge method
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2014223619A (en) Removal of sodium sulfate from biologically treated waste water
JP2007021457A (en) Wastewater treatment method and wastewater treatment apparatus
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
JP3413883B2 (en) Pure water production equipment
JP2000051665A (en) Desalination method
JP3656458B2 (en) Pure water production method
JP2001149950A (en) Water treating method and water treating device
JP2000070933A (en) Production of pure water
JP2003053390A (en) Clear water production system
JP2004167423A (en) Apparatus and method for pure water production
CN105293803A (en) Treatment method of high-concentration waste water
JP3376639B2 (en) Pure water recovery method from semiconductor cleaning wastewater
Singh Brine recovery at industrial RO plants: Conceptual process design studies
JP2002355683A (en) Ultrapure water making method and apparatus
JPH09294977A (en) Water purifying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412