JP2006204977A - Method and apparatus for treating biologically treated water-containing water - Google Patents

Method and apparatus for treating biologically treated water-containing water Download PDF

Info

Publication number
JP2006204977A
JP2006204977A JP2005017087A JP2005017087A JP2006204977A JP 2006204977 A JP2006204977 A JP 2006204977A JP 2005017087 A JP2005017087 A JP 2005017087A JP 2005017087 A JP2005017087 A JP 2005017087A JP 2006204977 A JP2006204977 A JP 2006204977A
Authority
JP
Japan
Prior art keywords
water
treated
membrane
treatment
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005017087A
Other languages
Japanese (ja)
Other versions
JP4655643B2 (en
Inventor
Nozomi Ikuno
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005017087A priority Critical patent/JP4655643B2/en
Priority to TW095102707A priority patent/TWI387562B/en
Priority to CN2006100015943A priority patent/CN1810675B/en
Priority to KR1020060007083A priority patent/KR101279695B1/en
Publication of JP2006204977A publication Critical patent/JP2006204977A/en
Application granted granted Critical
Publication of JP4655643B2 publication Critical patent/JP4655643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably treat biologically treated water-containing water over a long period when purifying it by RO membrane separation treatment by preventing lowering of a permeating flow bundle through an RO membrane, and to dispense with addition of an expensive slime control agent to RO membrane feed water. <P>SOLUTION: In this treatment method of biologically treated water-containing water, water to be treated containing biologically treated water is brought into contact with chelate resin to remove metal ions, then pH is adjusted to 9.5 or more to be subjected to reverse osmosis membrane separation treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生物処理水含有水の処理方法及び処理装置に係り、詳しくは、廃水の生物処理水を含有する水を逆浸透(RO)膜により膜分離処理するに際して、RO膜の透過流束の低下を防止して、長期に亘り、安定な処理を行うことができる生物処理含有水の処理方法と処理装置に関する。   The present invention relates to a method and an apparatus for treating biologically treated water-containing water, and more specifically, the permeation flux of RO membranes when water containing biologically treated water of wastewater is subjected to membrane separation treatment by a reverse osmosis (RO) membrane. It is related with the processing method and processing apparatus of the biological treatment containing water which can prevent the fall of this and can perform a stable process over a long period of time.

近年、環境基準、水質基準は厳しくなる傾向にあり、放流水についても高度に浄化することが望まれている。一方で、水不足解消の目的から各種の排水を回収して再利用するためにも、高度な水処理が望まれている。   In recent years, environmental standards and water quality standards tend to be stricter, and it is desired that effluent water be highly purified. On the other hand, in order to recover and reuse various wastewaters for the purpose of eliminating water shortage, advanced water treatment is desired.

このような状況において、RO膜分離処理は、水中のイオン類、有機物、微粒子などの不純物を効果的に除去することが可能であることから、近年、多くの分野で使用されるようになってきた。例えば、半導体製造プロセスから排出されるアセトン、イソプロピルアルコールなどを含む高濃度TOC或いは低濃度TOC排水を回収して再利用する場合、これをまず生物処理してTOC成分を除去し、生物処理水をRO膜分離処理して浄化する方法が広く採用されている(例えば特許文献1)。   Under such circumstances, RO membrane separation treatment has been used in many fields in recent years because it can effectively remove impurities such as ions, organic substances, and fine particles in water. It was. For example, when high-concentration TOC or low-concentration TOC wastewater containing acetone, isopropyl alcohol, etc. discharged from a semiconductor manufacturing process is recovered and reused, this is first biologically treated to remove TOC components, A method of purifying by RO membrane separation treatment is widely adopted (for example, Patent Document 1).

従来、RO膜分離処理に用いられるRO膜としては、一般に、全芳香族架橋ポリアミド複合膜(PA膜)や酢酸セルロース酸(CA膜)などが提供されている。また、RO膜分離処理においては、透過流束(Flux)の低下を防止して安定した処理を行うために、RO膜分離装置に供給する被処理水(RO膜分離処理の給水)について基準が設けられており、JIS K 3802に規定されるファウリングインデックス(FI)が4以下であることが望まれている。ファウリングインデックスは、その値が小さいほど、RO膜への負荷が少なく、透過流束の低下が起こり難い。   Conventionally, as the RO membrane used for the RO membrane separation treatment, generally aromatic cross-linked polyamide composite membrane (PA membrane), cellulose acetate (CA membrane) and the like are provided. In RO membrane separation processing, in order to prevent permeation flux (Flux) from decreasing and perform stable treatment, there is a standard for water to be treated (water supply for RO membrane separation processing) supplied to the RO membrane separation device. The fouling index (FI) defined in JIS K 3802 is desired to be 4 or less. The smaller the value of the fouling index, the less the load on the RO membrane and the lower the permeation flux is less likely to occur.

従来のRO膜のうち、PA膜は被処理水中に含まれる界面活性剤や糖脂質、蛋白質などの微量のファウリング性物質の吸着により、膜が汚れ、急激に透過流束が低下するために、安定したRO膜分離処理を継続し得ないという欠点がある。CA膜はPA膜に比べて耐汚染性は良好であるが、脱塩率が低く、また操作圧が高いという問題がある。   Among conventional RO membranes, PA membranes are contaminated with trace amounts of fouling substances such as surfactants, glycolipids, and proteins contained in the water to be treated, and the permeation flux rapidly decreases. There is a drawback that stable RO membrane separation treatment cannot be continued. The CA membrane has better contamination resistance than the PA membrane, but has a problem that the desalination rate is low and the operation pressure is high.

近年、膜表面の荷電性をなくし、かつ親水性を向上させることにより膜を汚れにくくしたRO膜として耐汚染膜が開発されたが、このような耐汚染膜であっても、生物処理水のような高分子多糖類(糖脂質)、蛋白質などの比較的粘着性の高い成分を含む水を処理する場合には、その耐汚染効果は低く、やはり経時により透過流束が低下するという問題がある。   In recent years, anti-contamination membranes have been developed as RO membranes that have made membranes less soilable by eliminating the chargeability of the membrane surface and improving hydrophilicity. Even with such anti-contamination membranes, When treating water containing relatively high viscosity components such as high molecular polysaccharides (glycolipids) and proteins, the contamination resistance is low, and the permeation flux decreases over time. is there.

従来、屎尿系汚水については、膜の目詰まりが少なく、透過液量をそれ程低下させることなく処理水質を向上させることができ、膜の運転寿命を格段に延長させ得る汚水の処理装置として、屎尿系汚水を脱水する手段、脱水手段からの分離水を生物学的硝化脱窒する手段、硝化脱窒手段からの生物処理液を凝集処理する手段、凝集処理手段からの凝集処理液を固液分離することなくそのまま膜分離する手段からなる屎尿系汚水の処理装置が提案されている(特許文献2)。また、微量の有機物を含有する水をオリゴトロフィックバクテリアによる生物処理と膜分離処理とで処理するにあたり、膜の透過流束の低下を防止して長期に亘り安定かつ効率的な処理を行う方法として、生物反応槽の溶存酸素濃度を2mg/L以上に維持する方法が提案されている(特許文献3)。   Conventionally, as for urine wastewater, as a wastewater treatment device that can improve the quality of treated water with less clogging of the membrane, without significantly reducing the amount of permeate, and significantly extending the operating life of the membrane, A means for dewatering system wastewater, a means for biologically nitrifying and denitrifying the separated water from the dewatering means, a means for coagulating the biological treatment liquid from the nitrifying and denitrifying means, and a solid-liquid separation of the aggregating treatment liquid from the aggregating means An apparatus for treating sewage sewage comprising means for performing membrane separation without any treatment has been proposed (Patent Document 2). In addition, when water containing a small amount of organic substances is treated by biological treatment with oligotrophic bacteria and membrane separation treatment, a method of performing stable and efficient treatment for a long period of time by preventing a decrease in the permeation flux of the membrane. A method for maintaining the dissolved oxygen concentration in the biological reaction tank at 2 mg / L or more has been proposed (Patent Document 3).

生物処理含有水のRO膜分離処理における膜の目詰まりを防止するためには、蛋白質や高分子多糖類などの比較的粘着性の高いファウリング性物質を予め濾過して除去することが考えられるが、これらのファウリング性物質は非常に小さいものであるため、重力濾過器、圧力濾過器などの濾過器では捕捉されることがなく、濾過による前処理を行っても、RO膜分離装置に流入し、膜の目詰まりの原因となる。孔径0.45μm以下の精密濾過膜装置で膜濾過した場合には、得られる膜濾過水のファウリングインデックスは4以下となり、RO膜への給水条件は満たすものとなるが、この場合でもRO膜の透過流束の低下を抑制することはできないことが近年明らかになってきた。   In order to prevent clogging of the membrane in the RO membrane separation treatment of the biological treatment-containing water, it is conceivable to remove by filtration in advance a relatively high-fouling substance such as a protein or a polymer polysaccharide. However, since these fouling substances are very small, they are not captured by a filter such as a gravity filter or a pressure filter. Inflow and cause clogging of the membrane. When membrane filtration is performed with a microfiltration membrane device having a pore size of 0.45 μm or less, the fouling index of the membrane filtration water obtained is 4 or less, and the water supply conditions to the RO membrane are satisfied. In recent years, it has become clear that the decrease in permeation flux cannot be suppressed.

ところで、一般にRO膜分離処理においては、RO膜分離装置での微生物の増殖に起因する膜汚染及び膜汚染による透過流束の低下を防止するために、RO膜給水にスライムコントロール剤を添加することが行われているが、スライムコントロール剤は高価であることから、このようなスライムコントロール剤を添加することなくRO膜分離装置内での微生物の増殖を防止することが望まれる。
特開2002−336886号公報 特公平7−55318号公報 特開2000−288578号公報
By the way, in general, in RO membrane separation treatment, a slime control agent is added to the RO membrane water supply in order to prevent membrane contamination caused by the growth of microorganisms in the RO membrane separation device and decrease in permeation flux due to membrane contamination. However, since the slime control agent is expensive, it is desired to prevent the growth of microorganisms in the RO membrane separation apparatus without adding such a slime control agent.
JP 2002-336886 A Japanese Patent Publication No. 7-55318 JP 2000-288578 A

本発明は、生物処理水を含有する水をRO膜により膜分離処理するに際して、RO膜の透過流束の低下を防止して、長期に亘り安定した処理を行うことができ、しかも、RO膜給水へのスライムコントロール剤の添加を不要とすることができる生物処理水含有水の処理方法及び処理装置を提供することを目的とする。   In the present invention, when water containing biologically treated water is subjected to membrane separation treatment using an RO membrane, the permeation flux of the RO membrane can be prevented from being lowered, and stable treatment can be performed over a long period of time. It aims at providing the processing method and processing apparatus of the biological treatment water containing water which can make the addition of the slime control agent to feed water unnecessary.

本発明(請求項1)の生物処理水含有水の処理方法は、生物処理水を含有する被処理水を、キレート樹脂と接触させて金属イオンを除去した後、pHを9.5以上に調整して逆浸透膜分離処理することを特徴とする。   In the method for treating biologically treated water-containing water of the present invention (Claim 1), the treated water containing biologically treated water is contacted with a chelate resin to remove metal ions, and then the pH is adjusted to 9.5 or higher. And reverse osmosis membrane separation treatment.

請求項2の生物処理水含有水の処理方法は、請求項1において、前記被処理水をキレート樹脂と接触させるに先立ち、該被処理水をカチオン交換樹脂と接触させることを特徴とする。   The method for treating water containing biologically treated water according to claim 2 is characterized in that, in claim 1, prior to bringing the water to be treated into contact with the chelate resin, the water to be treated is brought into contact with the cation exchange resin.

請求項3の生物処理水含有水の処理方法は、請求項1において、前記被処理水をキレート樹脂と接触させるに先立ち、該被処理水に炭酸化合物を添加して硬度成分を除去することを特徴とする。   The method for treating biologically treated water-containing water according to claim 3 is that in claim 1, prior to bringing the treated water into contact with the chelate resin, a carbonate compound is added to the treated water to remove the hardness component. Features.

本発明(請求項4)の生物処理水含有水の処理装置は、生物処理水を含有する被処理水をキレート樹脂と接触させて金属イオンを除去する金属イオン除去手段と、該金属イオン除去手段の処理水をpH9.5以上に調整するpH調整手段と、該pH調整手段の処理水が導入される逆浸透膜分離装置とを備えてなることを特徴とする。   The apparatus for treating biological water containing biological treatment water according to the present invention (Claim 4) includes metal ion removing means for removing metal ions by bringing water to be treated containing biological treated water into contact with a chelate resin, and the metal ion removing means. PH adjusting means for adjusting the treated water to pH 9.5 or higher, and a reverse osmosis membrane separation apparatus into which the treated water of the pH adjusting means is introduced.

請求項5の生物処理水含有水の処理装置は、請求項4において、前記金属イオン除去手段に導入される被処理水をカチオン交換樹脂と接触させる手段を備えることを特徴とする。   According to a fifth aspect of the present invention, there is provided the biological treatment water-containing water treatment apparatus according to the fourth aspect, further comprising means for bringing the water to be treated introduced into the metal ion removing means into contact with a cation exchange resin.

請求項6の生物処理水含有水の処理装置は、請求項1において、前記金属イオン除去手段に導入される被処理水に炭酸化合物を添加して硬度成分を除去する手段を備えることを特徴とする。   The biological treatment water-containing water treatment apparatus according to claim 6 is characterized in that in claim 1, the treatment apparatus includes means for removing a hardness component by adding a carbonate compound to the water to be treated introduced into the metal ion removal means. To do.

本発明の生物処理水含有水の処理方法及び処理装置によれば、生物処理水含有水をRO膜分離処理して浄化するに際して、RO膜の透過流束の低下を防止して、長期に亘り安定した処理を行って高水質の処理水を効率的に得ることができる。また、RO膜給水への高価なスライムコントロール剤の添加も不要となる。   According to the biological treatment water-containing water treatment method and treatment apparatus of the present invention, when the biological treatment water-containing water is purified by RO membrane separation treatment, a decrease in the permeation flux of the RO membrane can be prevented for a long period of time. High quality water can be efficiently obtained by performing stable treatment. Further, it is not necessary to add an expensive slime control agent to the RO membrane water supply.

即ち、前述の如く、RO膜分離装置のRO膜分離処理に先立ち、濾過処理を行うことにより、ファウリングインデックス4以下のRO給水条件を満たす水を得ることができるが、この場合でも、透過流束の経時低下の問題があった。本発明者らは、この問題の原因について鋭意検討した結果、廃水の生物処理水含有水中に含まれる多価金属イオンが、廃水の生物処理水含有水をRO給水とした時のRO膜閉塞主要因物質である蛋白質や高分子多糖類などの比較的粘着性の高いファウリング性物質に対して、バインダー的要因となり、汚染物質の膜面付着を助長させることが原因となっていることを見出した。   That is, as described above, by performing the filtration process prior to the RO membrane separation process of the RO membrane separation apparatus, water satisfying the RO water supply condition of the fouling index 4 or less can be obtained. There was a problem of time-lapse deterioration of the bundle. As a result of intensive studies on the cause of this problem, the inventors of the present invention have found that the polyvalent metal ions contained in the wastewater containing biologically treated water contain the RO membrane when the wastewater containing biologically treated water is used as the RO water supply. It has been found that it is a binder factor for fouling substances such as proteins and polymer polysaccharides that are causative substances, and causes the adhesion of contaminants to the film surface. It was.

本発明においては、RO膜分離処理に先立ち、キレート樹脂により多価金属イオンを吸着除去することにより、このような汚染物質の膜面付着の助長を抑制し、これにより、膜の目詰まりによる透過流束の低下を防止することができる。   In the present invention, prior to the RO membrane separation treatment, the polyvalent metal ions are adsorbed and removed by the chelate resin to suppress the adhesion of such contaminants to the membrane surface, thereby allowing permeation due to membrane clogging. A decrease in flux can be prevented.

即ち、キレート樹脂は、多価金属イオンを選択的に吸着して除去することができるものであり、被処理水中に1価カチオンが存在していても、多価金属イオンを効率的に除去することができるので、生物処理水含有水中の、RO膜閉塞主要因物質である蛋白質や高分子多糖類などの比較的粘着性の高いファウリング性物質に対してバインダー的要因となる多価金属イオンを低レベルまで除去することができる。   That is, the chelate resin is capable of selectively adsorbing and removing polyvalent metal ions, and efficiently removes polyvalent metal ions even if monovalent cations are present in the water to be treated. Polyvalent metal ions that can act as binders for relatively sticky fouling substances such as proteins and polymer polysaccharides that are the main causative substances of RO membrane occlusion in biologically treated water-containing water Can be removed to a low level.

特に、カチオン交換樹脂や炭酸化合物添加による前処理で硬度成分の大半を除去することにより、キレート樹脂は残留する硬度成分(Ca2+イオン、Mg2+イオン等)の除去と他の多価金属イオンの除去を行えば良く、負荷が軽減されるとともに低レベルまで金属イオンの除去することが可能となる。 In particular, by removing most of the hardness component in the pretreatment by adding a cation exchange resin or a carbonate compound, the chelate resin removes the remaining hardness components (Ca 2+ ions, Mg 2+ ions, etc.) and other polyvalent metal ions. It is sufficient to remove the metal ions, and the load is reduced and the metal ions can be removed to a low level.

また、本発明では、このようにして金属イオンを除去した水をpH9.5以上に調整してRO膜給水とするため、次のような効果が奏される。
(1) 微生物はアルカリ性域では生息することができない。そのため、RO膜給水のpHを9.5以上に調整することにより、栄養源はあるが微生物が生息できない環境を作り出すことが可能となり、従来のような高価なスライムコントロール剤の添加は不要となる。
(2) RO膜閉塞主要因物質である蛋白質や高分子多糖類などの比較的粘着性の高いファウリング性物質は、pH9.5以上において膜面に付着しにくくなることが知られており、従って、RO膜給水をpH9.5以上のアルカリ性とすることにより、RO膜分離装置における膜面閉塞をより一層効果的に抑制することが可能となる。
Further, in the present invention, the water from which metal ions have been removed in this way is adjusted to pH 9.5 or higher to provide RO membrane water supply, so the following effects are exhibited.
(1) Microorganisms cannot live in alkaline areas. Therefore, by adjusting the pH of the RO membrane water supply to 9.5 or higher, it is possible to create an environment where there are nutrients but microorganisms cannot live, and the addition of an expensive slime control agent as in the past is unnecessary. .
(2) It is known that fouling substances with relatively high tack, such as proteins and high molecular weight polysaccharides that are the main cause of RO membrane occlusion, are less likely to adhere to the membrane surface at pH 9.5 or higher. Therefore, by making the RO membrane water supply alkaline with a pH of 9.5 or higher, it is possible to more effectively suppress the membrane surface blockage in the RO membrane separation apparatus.

なお、このような高アルカリ性領域では、RO膜給水中に微量の多価金属イオンが存在しても、例えばカルシウムイオンであれば炭酸カルシウム或いはリン酸カルシウムなどのカルシウム系スケールがRO膜面で析出することとなるが、本発明では、原水中の多価金属イオンを予めキレート樹脂で極低濃度にまで除去することができるため、このような高アルカリ性領域でのスケールの析出を抑制することが可能となる。   In such a highly alkaline region, even if a small amount of polyvalent metal ions are present in the RO membrane water supply, for example, calcium ions, calcium-based scales such as calcium carbonate or calcium phosphate are deposited on the RO membrane surface. However, in the present invention, since the polyvalent metal ions in the raw water can be removed to a very low concentration with a chelate resin in advance, it is possible to suppress the precipitation of scale in such a highly alkaline region. Become.

請求項2,5によれば、キレート樹脂による金属イオンの除去に先立ちカチオン交換樹脂で処理することにより、キレート樹脂の負荷を軽減して、キレート樹脂による多価金属イオン吸着効率を高めると共に、再生頻度を低減して長期亘り安定な処理を行うことができる。   According to claims 2 and 5, by treating with a cation exchange resin prior to the removal of metal ions by the chelate resin, the load on the chelate resin is reduced, and the polyvalent metal ion adsorption efficiency by the chelate resin is increased and regenerated. The frequency can be reduced and stable processing can be performed for a long time.

即ち、生物処理水中を直接キレート樹脂で処理すると、キレート樹脂は早期に吸着能が飽和するため、頻繁に再生を行うことが必要となる。従って、キレート樹脂による処理に先立ち、カチオン交換樹脂で処理して、硬度成分の殆どを予め除去しておくことにより、キレート樹脂による多価金属イオン吸着効率を高め、また、その再生頻度を低減することができる。   That is, when biologically treated water is directly treated with a chelate resin, the chelate resin saturates the adsorption capacity at an early stage, and therefore it is necessary to frequently regenerate it. Therefore, prior to treatment with the chelate resin, treatment with a cation exchange resin to remove most of the hardness components in advance increases the multivalent metal ion adsorption efficiency by the chelate resin and reduces its regeneration frequency. be able to.

請求項3,6によれば、キレート樹脂による処理に先立ち、炭酸化合物を添加して予め硬度成分の殆どを除去し、その後残留する金属イオンをキレート樹脂で除去するようにすることにより、負荷を軽減して、キレート樹脂による多価金属イオン吸着効率を高めると共に、キレート樹脂の再生頻度を低減することができる。   According to claims 3 and 6, prior to the treatment with the chelate resin, the carbonic acid compound is added to remove most of the hardness components in advance, and then the remaining metal ions are removed with the chelate resin, thereby reducing the load. This can be reduced to increase the polyvalent metal ion adsorption efficiency by the chelate resin, and to reduce the regeneration frequency of the chelate resin.

以下に本発明の生物処理水含有水の処理方法及び処理装置の実施の形態を詳細に説明する。   Hereinafter, embodiments of the method and apparatus for treating biologically treated water-containing water according to the present invention will be described in detail.

本発明を適用する生物処理水含有水としては、半導体や液晶などの電子機器製造業、自動車や家電などの機械製造業、鉄鋼、セメント、樹脂やフィルムなどの工業材料製造業、清涼飲料、酒、乳製品などの食品加工業等からの廃水を、標準活性汚泥法、嫌気好気性法、循環式硝化脱窒法、オキシデーションディッチ、回分式活性汚泥法などの浮遊生物方式、微生物固定方式、散水濾床方式、回転円板法、接触酸化法、生物濾過法、生物脱臭法などの固定床式などの好気性処理法や、嫌気性消化法などの嫌気性処理により処理して得られる生物処理水や、これらの生物処理水を含有する排水などを挙げることができる。   Biologically treated water-containing water to which the present invention is applied includes the manufacturing of electronic devices such as semiconductors and liquid crystals, the manufacturing of machinery such as automobiles and home appliances, the manufacture of industrial materials such as steel, cement, resins and films, soft drinks, and sake Wastewater from food processing industries such as dairy products, standard activated sludge method, anaerobic aerobic method, circulating nitrification denitrification method, oxidation ditch, batch activated sludge method, microorganism fixing method, watering Biological treatment obtained by anaerobic treatment such as fixed bed method such as filter bed method, rotating disk method, contact oxidation method, biological filtration method, biological deodorization method and anaerobic treatment such as anaerobic digestion method Examples thereof include water and wastewater containing these biologically treated water.

本発明は、特に、半導体製造プロセスから排出される有機体炭素(TOC)含有水の生物処理水や、この生物処理水が流入する総合排水(生活排水を含む)などの生物処理水含有水に好適に適用することができる。   The present invention is particularly applicable to biologically treated water-containing water such as organic carbon (TOC) -containing water discharged from semiconductor manufacturing processes and general wastewater (including domestic wastewater) into which this biologically treated water flows. It can be suitably applied.

本発明を適用する生物処理水含有水の水質に特に制限はないが、TOC濃度が0.5〜20mg/Lであることが好ましい。また、生物処理水含有水の多価金属イオン濃度は、10〜1000mg/L、特に20mg/L以上500mg/L以下で、とりわけ100mg/L以上であることが好ましい。   Although there is no restriction | limiting in particular in the quality of the biological treatment water containing water to which this invention is applied, It is preferable that a TOC density | concentration is 0.5-20 mg / L. The polyvalent metal ion concentration of the biologically treated water-containing water is 10 to 1000 mg / L, particularly 20 mg / L or more and 500 mg / L or less, and particularly preferably 100 mg / L or more.

なお、ここで多価金属イオン濃度としてはカルシウムイオン、マグネシウムイオン、アルミニウムイオン(溶解性アルミニウム)、鉄イオン(溶存鉄)の総和として代表することができる。   Here, the polyvalent metal ion concentration can be represented by the sum of calcium ions, magnesium ions, aluminum ions (soluble aluminum), and iron ions (dissolved iron).

本発明を適用する生物処理水含有水は、多価金属イオンを多量に含み、RO膜の有機物汚染を顕著に助長する、例えば、塩化カルシウム、PAC、塩化鉄等の無機凝集剤を添加して凝集処理を行った無機廃水等を含有することが好ましい。本発明で処理する生物処理水含有水は、特にカルシウムイオン濃度が50mg/L以上、とりわけ100〜500mg/Lであることが好ましく、このようなカルシウムイオン含有生物処理水含有水に対して、本発明を有効に適用することができる。   Biologically treated water-containing water to which the present invention is applied contains a large amount of polyvalent metal ions and significantly promotes organic matter contamination of the RO membrane. For example, an inorganic flocculant such as calcium chloride, PAC, iron chloride is added. It is preferable to contain the inorganic waste water etc. which performed the aggregation process. The biologically treated water-containing water to be treated in the present invention preferably has a calcium ion concentration of 50 mg / L or more, particularly 100 to 500 mg / L. The invention can be applied effectively.

本発明においては、このような生物処理水含有水のRO膜分離処理に先立ち、キレート樹脂と接触させて、金属イオン、特に多価金属イオンを除去する。   In the present invention, prior to such RO membrane separation treatment of biologically treated water-containing water, metal ions, particularly polyvalent metal ions, are removed by contacting with a chelate resin.

ここで用いるキレート樹脂としては、金属除去用キレート樹脂であれば、任意の樹脂が使用でき、例えば、架橋スチレン基体にイミノジ酢酸基を結合させたキレート樹脂が好適に使用できる。   As the chelate resin used here, any resin can be used as long as it is a metal-removing chelate resin. For example, a chelate resin in which an iminodiacetic acid group is bound to a crosslinked styrene substrate can be suitably used.

キレート樹脂と被処理水との接触方法には特に制限はなく、キレート樹脂を充填したキレート樹脂塔に被処理水を通水しても良く、また、後述の図1に示すように、塔内にカチオン交換樹脂とキレート樹脂層とを形成させたイオン交換塔に通水しても良い。この場合、キレート樹脂塔又はイオン交換塔への通水方式は、下向流、上向流のいずれでも良く、また、固定床、流動床など塔型式についても特に制限はない。通水SVは5〜50hr−1が好ましく、特に10〜30hr−1が好ましい。 The method for contacting the chelate resin and the water to be treated is not particularly limited, and the water to be treated may be passed through a chelate resin tower filled with the chelate resin, and as shown in FIG. Water may be passed through an ion exchange tower in which a cation exchange resin and a chelate resin layer are formed. In this case, the water flow system to the chelate resin tower or the ion exchange tower may be either a downward flow or an upward flow, and there is no particular limitation on the tower type such as a fixed bed or a fluidized bed. Passing water SV is preferably 5~50hr -1, especially 10~30Hr -1 are preferred.

生物処理水含有水中の金属イオンをキレート樹脂で吸着除去した水は、次いでNaOH等のアルカリを添加してpH9.5以上、好ましくはpH10〜11に調整した後RO膜分離装置に通水してRO膜分離処理する。ここで、RO膜給水中のpHが9.5未満では、前述の(1),(2)の効果を有効に得ることができない。調整pHは過度に高くても、多量のアルカリを要し、また、RO膜分離処理後のpH調整に多量の酸を要することとなるから、上記範囲とする。   Water from which metal ions in biologically treated water-containing water are adsorbed and removed with a chelate resin is then adjusted to pH 9.5 or higher, preferably pH 10-11 by adding an alkali such as NaOH, and then passed through an RO membrane separator. RO membrane separation treatment. Here, when the pH in the RO membrane water supply is less than 9.5, the effects (1) and (2) described above cannot be obtained effectively. Even if the adjusted pH is excessively high, a large amount of alkali is required, and a large amount of acid is required for pH adjustment after the RO membrane separation treatment.

RO膜分離処理に用いるRO膜としては、ポリエーテルアミド複合膜、ポリビニルアルコール複合膜、芳香族ポリアミド膜などの耐アルカリ性に優れるものであれば良く、特に制限はないが、本発明は、特に、界面活性剤や糖脂質、蛋白質などの微量のファウリング性物質の吸着により膜が汚染され易い、全芳香族架橋ポリアミド複合膜に対して有効である。   The RO membrane used for the RO membrane separation treatment is not particularly limited as long as it is excellent in alkali resistance such as polyetheramide composite membrane, polyvinyl alcohol composite membrane, aromatic polyamide membrane, etc. This is effective for a wholly aromatic cross-linked polyamide composite membrane in which the membrane is easily contaminated by adsorption of a trace amount of fouling substances such as surfactants, glycolipids, and proteins.

RO膜分離処理は、1機のRO膜分離装置を用いる1段処理に限らず、RO膜分離装置を2段以上の多段に直列配置し、多段RO膜分離処理による高度処理を行うことも可能である。   RO membrane separation processing is not limited to one-stage processing using one RO membrane separation device, and RO membrane separation devices can be arranged in series in two or more stages to perform advanced processing by multi-stage RO membrane separation processing. It is.

本発明においては、このようなRO膜分離処理に先立ち、キレート樹脂を用いて金属イオンの除去を行うことにより、RO膜分離装置の給水の全多価金属イオン濃度が10μg/L以下となるようにすることが好ましい。多価金属イオン濃度がこの範囲より高いとRO膜にスケールを引き起こす可能性がある。   In the present invention, prior to such RO membrane separation treatment, metal ions are removed using a chelate resin so that the total polyvalent metal ion concentration of the feed water of the RO membrane separation device is 10 μg / L or less. It is preferable to make it. If the polyvalent metal ion concentration is higher than this range, the RO membrane may be scaled.

また、RO膜分離装置の水回収率を高くすると多価金属イオンと有機性のファウリング性物質とが濃縮されて、両者の結合と膜への付着が起こり易くなることから、RO膜分離装置は水回収率80重量%以下、例えば60〜80重量%で運転することが好ましい。   Further, when the water recovery rate of the RO membrane separation device is increased, the polyvalent metal ions and the organic fouling substance are concentrated, and the binding and adhesion of the both to the membrane easily occur. Is preferably operated at a water recovery rate of 80% by weight or less, for example 60-80% by weight.

本発明においては、キレート樹脂による金属イオンの除去に先立ち、カチオン交換樹脂により金属イオンを除去しても良い。このカチオン交換樹脂としては、Na型強カチオン交換樹脂又は弱カチオン交換樹脂が好適に用いられる。   In the present invention, metal ions may be removed with a cation exchange resin prior to removal of metal ions with a chelate resin. As this cation exchange resin, Na-type strong cation exchange resin or weak cation exchange resin is preferably used.

Na型強カチオン交換樹脂で処理した後キレート剤で処理することによる利点は次の通りである。   The advantages of treating with a chelating agent after treating with Na type strong cation exchange resin are as follows.

即ち、H型強カチオン交換樹脂ではその処理水は酸性となるため、後段でRO膜給水のpHを9.5以上に調整するためのアルカリ注入量が多くなる。また、生物処理水含有水中には、多くの場合、多量のナトリウムイオンが含まれているため、H型強カチオン交換樹脂を用いると、ナトリウムイオンのために、スケール生成要因物質であるカルシウムまたはマグネシウムといった硬度成分の吸着量は低減し、再生工程を頻繁に実施しなければならない。これに対して、Na型強カチオン交換樹脂を用いた場合、処理水pHは中性となり、また、ナトリウムイオンによる硬度成分吸着量の低減の問題もない。   That is, in the H-type strong cation exchange resin, the treated water becomes acidic, so that the amount of alkali injection for adjusting the pH of the RO membrane water supply to 9.5 or higher in the subsequent stage increases. In addition, since the biologically treated water-containing water often contains a large amount of sodium ions, when H-type strong cation exchange resin is used, calcium or magnesium, which is a scale-generating factor, is used for sodium ions. Thus, the amount of adsorption of the hardness component must be reduced, and the regeneration process must be performed frequently. On the other hand, when the Na-type strong cation exchange resin is used, the pH of the treated water becomes neutral, and there is no problem of reducing the amount of hardness component adsorbed by sodium ions.

しかし、カチオン交換樹脂により処理を行っても、常時数百μg/L〜数mg/L程度の硬度成分がリークしてしまう。そこで、Na型強カチオン交換樹脂で処理した後、多価金属イオンの硬度除去のために多価金属イオンに対する選択的吸着性能に優れたキレート樹脂に通水することにより、生物処理水含有水から多価金属イオンを限りなく低いレベルにまで低減することが可能となる。   However, even if the treatment is performed with a cation exchange resin, a hardness component of about several hundred μg / L to several mg / L always leaks. Therefore, after treatment with Na-type strong cation exchange resin, water is passed through a chelate resin excellent in selective adsorption performance for polyvalent metal ions to remove the hardness of polyvalent metal ions. It becomes possible to reduce polyvalent metal ions to an infinitely low level.

H型強カチオン交換樹脂で処理した後、キレート樹脂で処理することも可能ではあるが、キレート樹脂は酸性側では硬度成分の吸着能力が低下するため、Na型強カチオンを用いる場合に比べ再生頻度は多くなる。   Although it is possible to treat with a chelate resin after treating with an H-type strong cation exchange resin, the chelate resin has a lower adsorption capacity for hardness components on the acidic side. Will be more.

また、弱カチオン交換樹脂で処理した後、キレート樹脂で処理することによる利点は次の通りである。   Moreover, the advantage by processing with a chelate resin after processing with a weak cation exchange resin is as follows.

弱カチオン交換樹脂はNa型強カチオン樹脂と同様、その処理水pHは中性となるが、処理水中にリークする硬度成分の濃度はRO膜分離装置でのスケールを抑制するには十分なレベルではない。そこで弱カチオン交換樹脂で処理した後、多価金属イオンとの選択性の強いキレート樹脂で処理することにより、生物処理水含有水から硬度成分を限りなく低いレベルにまで低減することが可能となる。   The weak cation exchange resin, like the Na-type strong cation resin, has a neutral pH of the treated water, but the concentration of the hardness component leaking into the treated water is not sufficient to suppress the scale in the RO membrane separator. Absent. Therefore, after treating with a weak cation exchange resin, it is possible to reduce the hardness component from the biologically treated water-containing water to an infinitely low level by treating with a chelate resin having strong selectivity with polyvalent metal ions. .

なお、これら樹脂への通水方法はNa型強カチオン又は弱カチオン樹脂が充填された充填塔に通水した後、キレート樹脂が充填された充填塔に通水する方法、又は充填塔内に集水板を設け、同じ充填塔内に2種類の樹脂を充填して通水する方法が挙げられる。このような充填塔への通水SVは5〜50hr−1が好ましく、10〜30hr−1が更に好ましい。また、通水方法は下向流、上向流、固定床、流動床など特に限定はしない。 The water passing through these resins is a method of passing water through a packed tower packed with Na-type strong cation or weak cation resin and then passing through the packed tower packed with a chelate resin, or collecting in the packed tower. There is a method in which a water plate is provided, and two kinds of resins are filled in the same packed tower to pass water. Such water passing SV to the packed column is preferably 5~50hr -1, 10~30hr -1 is more preferable. The water flow method is not particularly limited, such as downward flow, upward flow, fixed bed, fluidized bed.

また、この場合の樹脂の再生方法は、次の通りである。   The resin regeneration method in this case is as follows.

Na型強カチオン交換樹脂に通水した後、キレート樹脂に通水する方法においては、NaCl水溶液を用いてキレート樹脂、Na型強カチオン交換樹脂の順に順次再生或いは個別に再生する方式;キレート樹脂、Na型強カチオン交換樹脂の順に酸を用い順次H型に再生させた後、NaCl又はNaOHを用いNa型に変換させる方式;或いは、キレート樹脂のみを酸を用いて再生させた後、キレート樹脂、Na型強カチオン交換樹脂の順にNaCl又はNaOHを用いてNa型に変換させる方式などが挙げられる。   In the method of passing water through the Na-type strong cation exchange resin and then passing through the chelate resin, a method of sequentially regenerating the chelate resin and the Na-type strong cation exchange resin sequentially or using an aqueous NaCl solution; A method in which acid is used in order of Na type strong cation exchange resin and then regenerated to H type, and then converted to Na type using NaCl or NaOH; or after regenerating only chelate resin with acid, chelate resin, A method of converting to Na type using NaCl or NaOH in the order of Na type strong cation exchange resin may be mentioned.

また、弱カチオン交換樹脂に通水した後、キレート樹脂に通水する方法においては、酸を用いてキレート樹脂、弱カチオン交換樹脂の順に順次H型に再生させた後、NaCl又はNaOHを用いキレート樹脂のみをNa型に変換させる方式;或いは、弱カチオン交換樹脂は酸で、キレート樹脂はNaCl,NaOHで各々個別に再生させる方法などが挙げられる。   In the method of passing water through a weak cation exchange resin and then passing through a chelate resin, the acid is used to sequentially regenerate the chelate resin and the weak cation exchange resin in the order of H type, and then the chelate is used using NaCl or NaOH. A method in which only the resin is converted to Na type; or a method in which the weak cation exchange resin is acid and the chelate resin is individually regenerated with NaCl or NaOH.

再生方法としては、並流再生又は向流再生が挙げられるが、再生効率が高いことから向流再生を採用することが好ましい。   Examples of the regeneration method include cocurrent regeneration or countercurrent regeneration, but it is preferable to employ countercurrent regeneration because of its high regeneration efficiency.

また、本発明においては、キレート樹脂による金属イオンの除去に先立ち、生物処理水含有水に炭酸化合物を添加して、硬度成分の除去を行っても良い。即ち、生物処理水含有水に炭酸化合物を添加して、カルシウム等の硬度成分を炭酸塩として析出させ、これを分離しても良い。   In the present invention, prior to the removal of metal ions by the chelate resin, the hardness component may be removed by adding a carbonic acid compound to the biologically treated water-containing water. That is, a carbonate compound may be added to biologically treated water-containing water to precipitate a hardness component such as calcium as a carbonate, which may be separated.

この場合には、生物処理水含有水に炭酸ナトリウム、炭酸水素ナトリウムなどの炭酸塩を添加するか、炭酸ガスを吹き込みことにより、炭酸カルシウム等の炭酸金属塩を析出させる。析出した炭酸金属塩は、例えば砂濾過、精密濾過、限外濾過、ナノ濾過等の濾過装置で除去する。この濾過装置は2以上を組み合わせて行っても良い。このような炭酸塩析出と濾過除去により、生物処理水含有水中のTOC成分をも除去することができる。なお、炭酸化合物の添加量は、除去対象となる金属イオンの当量〜3倍当量が適当であるが、多価金属イオンのキレート剤や分散剤が混入している場合は、使用量を増やす必要がある。この炭酸金属塩の濾過後は、更に必要に応じて、pH調整(pH5〜6.5)及び/又は曝気等により残留炭酸成分の除去を行っても良い。   In this case, carbonates such as calcium carbonate are precipitated by adding carbonates such as sodium carbonate and sodium hydrogen carbonate to the biologically treated water-containing water or blowing carbon dioxide. The precipitated metal carbonate is removed by a filtration device such as sand filtration, microfiltration, ultrafiltration, or nanofiltration. You may perform this filtration apparatus combining 2 or more. By such carbonate precipitation and filtration removal, the TOC component in the biologically treated water-containing water can also be removed. The addition amount of the carbonic acid compound is suitably equivalent to 3 to 3 equivalents of the metal ion to be removed. However, if a chelating agent or dispersant for the polyvalent metal ion is mixed, it is necessary to increase the amount used. There is. After the filtration of the metal carbonate, the residual carbonate component may be removed by adjusting the pH (pH 5 to 6.5) and / or aeration, if necessary.

このようにして、生物処理水含有水中の金属イオンを炭酸塩として析出させ、析出物を除去しても、通常、処理水の多価金属イオン濃度は数mg/L〜数十mg/L程度と高いため、RO膜分離装置におけるスケール生成を完全に抑制するためには、その後のキレート樹脂による処理が必要となる。   Thus, even if the metal ions in the biologically treated water-containing water are precipitated as carbonates and the precipitates are removed, the concentration of polyvalent metal ions in the treated water is usually about several mg / L to several tens mg / L. Therefore, in order to completely suppress scale generation in the RO membrane separation device, subsequent treatment with a chelate resin is required.

本発明方法においては、これらの金属イオン除去手段の前段で圧力濾過、重力濾過、精密濾過、限外濾過、加圧浮上、沈殿などの処理を施して、原水中に含まれる懸濁物質を除去する前処理を行っても良く、これにより、キレート樹脂充填塔での差圧上昇を抑制することができる。また、活性炭塔を設置して有機物を吸着除去し、キレート樹脂充填塔、RO膜分離装置に流入する水のTOC濃度を低下させるようにしても良い。   In the method of the present invention, pressure filtration, gravity filtration, microfiltration, ultrafiltration, pressurized flotation, precipitation, etc. are performed before these metal ion removal means to remove suspended substances contained in the raw water. A pretreatment may be performed, and thereby an increase in the differential pressure in the chelate resin packed tower can be suppressed. Further, an activated carbon tower may be installed to adsorb and remove organic substances to reduce the TOC concentration of water flowing into the chelate resin packed tower and the RO membrane separation device.

図1に、本発明の生物処理水含有水の処理装置の実施の形態の一例を示す。図1において、生物処理水含有水はイオン交換塔1に送られ、イオン交換塔1において、カチオン交換樹脂1A、キレート樹脂1Bで順次処理されて生物処理水含有水に含まれる金属イオンが除去される。イオン交換塔1の処理水はタンク2を経て、NaOH等のアルカリが添加され、pH9.5以上に調整された後、ポンプPによりRO膜分離装置3に導入されてRO膜分離処理される。RO膜分離装置3の透過水は最終処理水として取り出され、濃縮水は蒸発濃縮処理されたり、水質に応じて活性炭処理などを施した後、河川や下水に放流される。   In FIG. 1, an example of embodiment of the processing apparatus of the biologically treated water containing water of this invention is shown. In FIG. 1, the biologically treated water-containing water is sent to the ion exchange tower 1, and in the ion exchange tower 1, it is sequentially treated with the cation exchange resin 1A and the chelate resin 1B to remove the metal ions contained in the biologically treated water-containing water. The The treated water of the ion exchange tower 1 is added with an alkali such as NaOH through the tank 2 and adjusted to pH 9.5 or higher, and then introduced into the RO membrane separation device 3 by the pump P and subjected to RO membrane separation treatment. The permeated water of the RO membrane separation device 3 is taken out as final treated water, and the concentrated water is subjected to evaporative concentration treatment or subjected to activated carbon treatment according to the water quality and then discharged into rivers and sewage.

図1は本発明の実施の形態の一例を示すものであり、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。即ち、前述の如く、イオン交換塔の前段に濾過装置や活性炭塔等の前処理手段を設けても良く、また、RO膜分離装置は2段以上の多段に設けても良い。更に、カチオン交換樹脂とキレート樹脂とを充填したイオン交換塔の代りにキレート樹脂塔を設け、このキレート樹脂塔の前段に硬度成分除去手段として、生物処理水含有水に炭酸塩又は炭酸ガスを添加して金属の炭酸塩を析出させる攪拌槽と、攪拌槽から流出する水を濾過する濾過装置とを設けても良い。   FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as the gist thereof is not exceeded. That is, as described above, pretreatment means such as a filtration apparatus and an activated carbon tower may be provided in the front stage of the ion exchange tower, and the RO membrane separation apparatus may be provided in two or more stages. Furthermore, a chelate resin tower is provided instead of an ion exchange tower filled with a cation exchange resin and a chelate resin, and carbonate or carbon dioxide gas is added to biologically treated water-containing water as means for removing hardness components in the previous stage of the chelate resin tower. Then, a stirring tank for depositing metal carbonate and a filtration device for filtering water flowing out of the stirring tank may be provided.

以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
生物処理水含有水として、半導体工場から排出される有機系現像排水を生物濾過装置で処理した処理水とフッ酸含有排水の凝集処理水が合流した総合排水を用い、図1に示す装置で処理を行った。この総合排水のTOC濃度は5mg/L、全硬度は300mg/L as CaCO、Na濃度は200mg/L、多価金属イオン濃度は320mg/Lであった。この総合排水をNa型強カチオン交換樹脂(三菱化学(株)製「SKIB」)層及びイミノジ酢酸系キレート樹脂(三菱化学(株)製「CR11」)層に通水SV30h−1で順次通水した。
Example 1
As the biologically treated water-containing water, treated with the equipment shown in Fig. 1 using the combined wastewater treated with the organic filtration wastewater from the semiconductor factory and treated with the biological filter and the flocculated water containing hydrofluoric acid. Went. The total wastewater had a TOC concentration of 5 mg / L, a total hardness of 300 mg / L as CaCO 3 , a Na + concentration of 200 mg / L, and a polyvalent metal ion concentration of 320 mg / L. This general waste water is passed through the Na-type strong cation exchange resin (“SKIB” manufactured by Mitsubishi Chemical Corporation) layer and the iminodiacetic acid-based chelate resin (“CR11” manufactured by Mitsubishi Chemical Corporation) layer sequentially with water SV30h- 1. did.

得られた処理水の水質は表1に示す通りであった。この処理水にNaOHを添加し、pHを10.5に調整した後、RO膜分離装置(日東電工(株)製「ES−20」)を用いて、操作圧力0.75MPa、水回収率80%の条件でRO膜分離処理した。   The quality of the treated water obtained was as shown in Table 1. After adding NaOH to this treated water and adjusting the pH to 10.5, using RO membrane separator (“ES-20” manufactured by Nitto Denko Corporation), operating pressure 0.75 MPa, water recovery rate 80 RO membrane separation treatment was performed under the condition of%.

このときのRO膜分離装置の透過流束(Flux)の経時変化を調べ、結果を図2に示した。なお、RO膜の透過水及び濃縮水の水質は表1に示す通りであった。   The time-dependent change of the permeation flux (Flux) of the RO membrane separation device at this time was examined, and the result is shown in FIG. The quality of the permeated water and concentrated water of the RO membrane was as shown in Table 1.

Figure 2006204977
Figure 2006204977

比較例1
RO膜給水の調整pHを7とし、スライムコントロール剤(栗田工業(株)製「EC−503」)を3mg/L添加したこと以外は実施例1と同条件でRO膜分離処理し、このときのRO膜分離装置の透過流束の経時変化を調べ、結果を図2に示した。
Comparative Example 1
The RO membrane water supply was adjusted to 7 and the RO membrane was separated under the same conditions as in Example 1 except that 3 mg / L of a slime control agent ("EC-503" manufactured by Kurita Kogyo Co., Ltd.) was added. The change over time in the permeation flux of the RO membrane separation apparatus was examined, and the results are shown in FIG.

比較例2
キレート樹脂による処理を行わなかったこと以外は実施例1と同条件でRO膜分離処理し、このときのRO膜分離装置の透過流束の経時変化を調べ、結果を図2に示した。
Comparative Example 2
The RO membrane separation treatment was performed under the same conditions as in Example 1 except that the treatment with the chelate resin was not performed. The change with time in the permeation flux of the RO membrane separation device at this time was examined, and the results are shown in FIG.

比較例3
上記総合排水にスライムコントロール剤(栗田工業(株)製「EC−503」)3mg/Lとヘキサメタリン酸系スケール分散剤(栗田工業(株)製「ミズクリーンL401」)10mg/Lを添加し、pH7に調整した水をRO膜給水として実施例1と同条件でRO膜分離処理した。このときのRO膜分離装置の透過流束の経時変化を調べ、結果を図2に示した。
Comparative Example 3
3 mg / L of slime control agent ("EC-503" manufactured by Kurita Kogyo Co., Ltd.) and 10 mg / L of hexametaphosphate scale dispersant ("Mizclean L401" manufactured by Kurita Kogyo Co., Ltd.) RO membrane separation treatment was performed under the same conditions as in Example 1 using water adjusted to pH 7 as RO membrane water supply. The change with time in the permeation flux of the RO membrane separation device at this time was examined, and the results are shown in FIG.

図2より明らかなように、金属イオンを除去した後高pH条件でRO膜分離処理した実施例1においては、比較例1〜3に比べ透過流束の低下は緩やかであり、通水開始60時間後において、比較例1〜3に対して0.2〜0.4m/m・d程度の透過流束の差が見られた。 As is clear from FIG. 2, in Example 1 in which the RO membrane separation treatment was performed under high pH conditions after removing the metal ions, the permeation flux decreased more slowly than in Comparative Examples 1 to 3, and the flow of water started 60 After a time, a difference in permeation flux of about 0.2 to 0.4 m 3 / m 2 · d was observed with respect to Comparative Examples 1 to 3 .

なお、通水後のRO膜表面には、比較例1ではゲル状の有機物と炭酸カルシウムスケールが付着しており、比較例2では炭酸カルシウムスケールが付着しており、また、比較例3ではゲル状の有機物が付着していたが、実施例1ではRO膜表面に付着物は殆ど観測されなかった。   In addition, in the comparative example 1, the gel-like organic substance and the calcium carbonate scale are attached to the RO membrane surface after the water flow, the calcium carbonate scale is attached in the comparative example 2, and the gel in the comparative example 3 In the example 1, almost no deposits were observed on the RO membrane surface.

本発明の生物処理水含有水の処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing apparatus of the biological treatment water containing water of this invention. 実施例1及び比較例1〜3におけるRO膜分離装置の透過流束の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the permeation | transmission flux of the RO membrane separation apparatus in Example 1 and Comparative Examples 1-3.

符号の説明Explanation of symbols

1 イオン交換塔
1A カチオン交換樹脂
1B キレート樹脂
2 タンク
3 RO膜分離装置
1 Ion Exchange Tower 1A Cation Exchange Resin 1B Chelate Resin 2 Tank 3 RO Membrane Separator

Claims (6)

生物処理水を含有する被処理水を、キレート樹脂と接触させて金属イオンを除去した後、pHを9.5以上に調整して逆浸透膜分離処理することを特徴とする生物処理水含有水の処理方法。   Water to be treated containing biologically treated water is contacted with a chelating resin to remove metal ions, and then subjected to reverse osmosis membrane separation treatment by adjusting the pH to 9.5 or higher. Processing method. 請求項1において、前記被処理水をキレート樹脂と接触させるに先立ち、該被処理水をカチオン交換樹脂と接触させることを特徴とする生物処理水含有水の処理方法。   The method for treating biological treatment water-containing water according to claim 1, wherein the water to be treated is brought into contact with a cation exchange resin before the water to be treated is brought into contact with the chelate resin. 請求項1において、前記被処理水をキレート樹脂と接触させるに先立ち、該被処理水に炭酸化合物を添加して硬度成分を除去することを特徴とする生物処理水含有水の処理方法。   The method for treating biological treatment water-containing water according to claim 1, wherein, prior to bringing the water to be treated into contact with the chelate resin, a carbonate compound is added to the water to be treated to remove a hardness component. 生物処理水を含有する被処理水をキレート樹脂と接触させて金属イオンを除去する金属イオン除去手段と、該金属イオン除去手段の処理水をpH9.5以上に調整するpH調整手段と、該pH調整手段の処理水が導入される逆浸透膜分離装置とを備えてなることを特徴とする生物処理水含有水の処理装置。   Metal ion removing means for removing metal ions by contacting treated water containing biologically treated water with a chelate resin, pH adjusting means for adjusting treated water of the metal ion removing means to pH 9.5 or higher, and the pH A treatment apparatus for water containing biologically treated water, comprising: a reverse osmosis membrane separation apparatus into which treated water of adjusting means is introduced. 請求項4において、前記金属イオン除去手段に導入される被処理水をカチオン交換樹脂と接触させる手段を備えることを特徴とする生物処理水含有水の処理装置。   The apparatus for treating biologically treated water-containing water according to claim 4, further comprising means for bringing water to be treated introduced into the metal ion removing means into contact with a cation exchange resin. 請求項1において、前記金属イオン除去手段に導入される被処理水に炭酸化合物を添加して硬度成分を除去する手段を備えることを特徴とする生物処理水含有水の処理装置。   The treatment apparatus for water containing biologically treated water according to claim 1, further comprising means for removing a hardness component by adding a carbonate compound to the water to be treated introduced into the metal ion removing means.
JP2005017087A 2005-01-25 2005-01-25 Biologically treated water-containing water treatment method and treatment apparatus Expired - Fee Related JP4655643B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005017087A JP4655643B2 (en) 2005-01-25 2005-01-25 Biologically treated water-containing water treatment method and treatment apparatus
TW095102707A TWI387562B (en) 2005-01-25 2006-01-24 Process and treatment device for water containing biological treatment water
CN2006100015943A CN1810675B (en) 2005-01-25 2006-01-24 Water treating method and water treating apparatus comprising biologically treated water
KR1020060007083A KR101279695B1 (en) 2005-01-25 2006-01-24 A process and an apparatus for treating waters containing a biologically treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017087A JP4655643B2 (en) 2005-01-25 2005-01-25 Biologically treated water-containing water treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2006204977A true JP2006204977A (en) 2006-08-10
JP4655643B2 JP4655643B2 (en) 2011-03-23

Family

ID=36843825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017087A Expired - Fee Related JP4655643B2 (en) 2005-01-25 2005-01-25 Biologically treated water-containing water treatment method and treatment apparatus

Country Status (4)

Country Link
JP (1) JP4655643B2 (en)
KR (1) KR101279695B1 (en)
CN (1) CN1810675B (en)
TW (1) TWI387562B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037557A1 (en) * 2013-09-11 2015-03-19 三菱レイヨン株式会社 Apparatus and method for treating organic-containing wastewater
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103768947B (en) * 2007-08-07 2016-03-23 栗田工业株式会社 Membrane separating method
WO2009028315A1 (en) * 2007-08-29 2009-03-05 Kurita Water Industries Ltd. Method and apparatus for treating water containing organic matter
CN103143263B (en) * 2011-12-07 2015-07-22 中国石油化工股份有限公司 Cleaning agent composition and cleaning method for reverse osmosis membrane
CN110228907A (en) * 2019-06-19 2019-09-13 苏州汪永亨丝绸科技文化有限公司 A kind of dedicated sewage-treating agent of Silk Procossing and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499084A (en) * 1978-01-23 1979-08-04 Electric Power Dev Co Ltd Pretreating method for waste liquid treatment by reverse osmosis process
JPH09122689A (en) * 1995-11-07 1997-05-13 Kurita Water Ind Ltd Apparatus for feeding and treating water for boiler
JP2002192152A (en) * 2000-12-25 2002-07-10 Nomura Micro Sci Co Ltd Method and apparatus for water treatment
JP2003236584A (en) * 2002-02-18 2003-08-26 Ataka Construction & Engineering Co Ltd Sewage treatment apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704307A1 (en) * 1987-02-12 1988-08-25 Dow Chemical Gmbh COMPLEX-FORMING RESIN OF THE GELTYPS AND ITS USE TO REDUCE THE CONCENTRATION OF MULTI-VALUE EARTH ALKALI AND / OR HEAVY METAL IONS IN SOLUTIONS
JP2902511B2 (en) * 1991-12-24 1999-06-07 三菱電機株式会社 Ultrapure water production apparatus, production method, and production apparatus control method
JP4204712B2 (en) * 1999-08-18 2009-01-07 野村マイクロ・サイエンス株式会社 Cation detection device, cation detection method, water treatment device, and ultrapure water production device
JP2003071252A (en) * 2001-09-06 2003-03-11 Nitto Denko Corp Multi-stage type reverse osmosis treating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499084A (en) * 1978-01-23 1979-08-04 Electric Power Dev Co Ltd Pretreating method for waste liquid treatment by reverse osmosis process
JPH09122689A (en) * 1995-11-07 1997-05-13 Kurita Water Ind Ltd Apparatus for feeding and treating water for boiler
JP2002192152A (en) * 2000-12-25 2002-07-10 Nomura Micro Sci Co Ltd Method and apparatus for water treatment
JP2003236584A (en) * 2002-02-18 2003-08-26 Ataka Construction & Engineering Co Ltd Sewage treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037557A1 (en) * 2013-09-11 2015-03-19 三菱レイヨン株式会社 Apparatus and method for treating organic-containing wastewater
JPWO2015037557A1 (en) * 2013-09-11 2017-03-02 三菱レイヨン株式会社 Organic wastewater treatment apparatus and treatment method
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater

Also Published As

Publication number Publication date
CN1810675B (en) 2012-05-30
TWI387562B (en) 2013-03-01
JP4655643B2 (en) 2011-03-23
KR20060086293A (en) 2006-07-31
TW200626506A (en) 2006-08-01
KR101279695B1 (en) 2013-06-27
CN1810675A (en) 2006-08-02

Similar Documents

Publication Publication Date Title
Katsou et al. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system
CN103288309B (en) Coal gasification wastewater zero-emission treatment method, and application thereof
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
JP4655643B2 (en) Biologically treated water-containing water treatment method and treatment apparatus
Mikhak et al. Refinery and petrochemical wastewater treatment
JP3698093B2 (en) Water treatment method and water treatment apparatus
CN107857438B (en) Zero-emission process for wastewater treatment of chemical enterprises and parks
CN105073652A (en) Fresh water production process
Burman et al. A review on membrane fouling in membrane bioreactors: Control and mitigation
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP4958384B2 (en) Biological treatment water treatment method for organic carbon-containing water discharged from semiconductor manufacturing process
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2014198290A (en) Treatment apparatus and treatment method of organic effluent
JP2006181445A (en) Waste water treatment apparatus
JP4552482B2 (en) Organic wastewater treatment method
Kucera Reverse osmosis: Fundamental causes of membrane deposition and approaches to mitigation
JP2009189943A (en) Water treatment method and apparatus
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
CN212174737U (en) Integrated treatment system for zero discharge of domestic garbage sewage
JPH03270800A (en) Treatment of organic sewage
CN105859035A (en) Reclaimed water reuse and treatment process
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus
WO2014087991A1 (en) Method and device for treating organic wastewater
WO2011155282A1 (en) Fresh water-generating device and fresh water-generating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees