JP2006181445A - Waste water treatment apparatus - Google Patents

Waste water treatment apparatus Download PDF

Info

Publication number
JP2006181445A
JP2006181445A JP2004376521A JP2004376521A JP2006181445A JP 2006181445 A JP2006181445 A JP 2006181445A JP 2004376521 A JP2004376521 A JP 2004376521A JP 2004376521 A JP2004376521 A JP 2004376521A JP 2006181445 A JP2006181445 A JP 2006181445A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
denitrification
osmosis membrane
softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004376521A
Other languages
Japanese (ja)
Other versions
JP4834993B2 (en
Inventor
Toshihiro Kiyokawa
智弘 清川
Tomoaki Tanaka
倫明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004376521A priority Critical patent/JP4834993B2/en
Priority to TW94143032A priority patent/TWI449674B/en
Priority to KR20050123157A priority patent/KR101201058B1/en
Priority to CN201010623270XA priority patent/CN102107996A/en
Priority to CN201210254527.8A priority patent/CN102826708B/en
Priority to CN2005100034437A priority patent/CN1792869B/en
Publication of JP2006181445A publication Critical patent/JP2006181445A/en
Application granted granted Critical
Publication of JP4834993B2 publication Critical patent/JP4834993B2/en
Priority to KR1020120039045A priority patent/KR101299352B1/en
Priority to KR1020130015701A priority patent/KR101352247B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment apparatus in which scale is hardly stuck to the surface of a reverse osmosis membrane when waste water is separated into permeated water and concentrated water by using the reverse osmosis membrane even when waste water contains an inorganic ion. <P>SOLUTION: This waste water treatment apparatus is provided with; a supplying means 5 for supplying waste water containing an organic nitrogen compound and/or ammonia nitrogen and the inorganic ion; an aeration tank 32 in which the waste water from the supply means 5 is received and the organic nitrogen compound is biodegraded and nitrified by aeration; a solid-liquid separating means 33 for subjecting a liquid mixture in the aeration tank 32 to solid-liquid separation; a water softening means 2 for softening the water separated by the solid-liquid separating means 33; a reverse osmosis membrane-used separating means 3 for separating the liquid discharged from the water softening means 2 into permeated water and concentrated water by using the reverse osmosis membrane; and a denitrifying means 4 for denitrifying the concentrated water biologically to obtain denitrified water. According to this constitution, the problem that scale is stuck to the surface of the reverse osmosis membrane can be solved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機窒素化合物及び/又はアンモニア態窒素を含有する排水の処理装置に関し、更に詳しくは、有機窒素化合物及び/又はアンモニア態窒素に加えて無機イオンを含有した排水の処理を行う処理装置に関するものである。   The present invention relates to a treatment apparatus for wastewater containing organic nitrogen compounds and / or ammonia nitrogen, and more specifically, a treatment apparatus for treating wastewater containing inorganic ions in addition to organic nitrogen compounds and / or ammonia nitrogen. It is about.

電子産業分野における半導体製造工程や液晶製造工程では、モノエタノールアミン(MEA)やテトラメチルアンモニウムヒドロオキサイド(TMAH)などのアミンやアンモニウムが多く使用されるため、これらの有機窒素化合物及び/又はアンモニア態窒素が含まれた排水が排出されている。   In semiconductor manufacturing processes and liquid crystal manufacturing processes in the electronics industry, amines and ammonium such as monoethanolamine (MEA) and tetramethylammonium hydroxide (TMAH) are often used, so these organic nitrogen compounds and / or ammonia states are used. Wastewater containing nitrogen is discharged.

上記のMEAやTMAH等の有機窒素化合物は、活性汚泥と混合して曝気処理する好気性微生物処理により分解され、窒素分を硝酸や亜硝酸の形に酸化することができる。そして、このような硝酸等の窒素酸化物を含有した排水から硝酸性窒素や亜硝酸性窒素を除去するため、逆浸透膜を用いた分離手段によって透過水と濃縮水とに分離し、その後、分離された濃縮水を生物処理装置によって生物学的に脱窒処理する方法が従来より行われている(例えば、特許文献1参照)。
特開2000−70986号公報
The above organic nitrogen compounds such as MEA and TMAH are decomposed by aerobic microbial treatment that is mixed with activated sludge and aerated to oxidize the nitrogen content into nitric acid or nitrous acid. And in order to remove nitrate nitrogen and nitrite nitrogen from wastewater containing nitrogen oxides such as nitric acid, it is separated into permeated water and concentrated water by a separation means using a reverse osmosis membrane, A method of biologically denitrifying the separated concentrated water using a biological treatment apparatus has been conventionally performed (see, for example, Patent Document 1).
JP 2000-70986 A

しかしながら、上述した方法では、排水が有機窒素化合物に起因した硝酸性窒素、亜硝酸性窒素に加えてカルシウムイオン、アルミニウムイオン、鉄イオン等の2価や3価の無機イオンを含有している場合には、逆浸透膜によって透過水と濃縮水とに分離する(以下、「逆浸透膜によって透過水と濃縮水とに分離すること」を「膜分離」ということがある。)を際に、無機イオンのスケールが逆浸透膜の膜面に析出して沈着する。このため、逆浸透膜を透過する透過水量の現象が徐々に進み、膜分離が困難となる問題があった。   However, in the above-described method, the wastewater contains divalent or trivalent inorganic ions such as calcium ions, aluminum ions, iron ions, etc. in addition to nitrate nitrogen and nitrite nitrogen caused by organic nitrogen compounds. In some cases, the reverse osmosis membrane separates the permeated water and the concentrated water (hereinafter, “separating the permeated water and the concentrated water by the reverse osmosis membrane” may be referred to as “membrane separation”). Inorganic ion scales are deposited and deposited on the membrane surface of the reverse osmosis membrane. For this reason, there has been a problem that the phenomenon of the amount of permeated water permeating through the reverse osmosis membrane gradually proceeds and membrane separation becomes difficult.

本発明は、上記課題を解決するためになされたものであり、その目的は、排水が無機イオンを含有していても、逆浸透膜の膜面にスケールが付着することがない排水の処理装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to treat wastewater in which scale does not adhere to the membrane surface of the reverse osmosis membrane even if the wastewater contains inorganic ions. Is to provide.

上記課題を解決するための本発明の排水の処理装置は、硝酸性窒素又は亜硝酸性窒素を含み、かつ無機イオンを含む排水を軟化する軟化手段と、該軟化手段からの流出液を逆浸透膜により透過水と濃縮水とに分離する逆浸透膜分離手段と、前記濃縮水を生物学的に脱窒処理して脱窒処理水を得る脱窒手段と、を備えることを特徴とする(請求項1)。   The wastewater treatment apparatus of the present invention for solving the above-mentioned problems includes a softening means for softening wastewater containing nitrate nitrogen or nitrite nitrogen and containing inorganic ions, and reverse osmosis of the effluent from the softening means. A reverse osmosis membrane separating means for separating permeated water and concentrated water by a membrane; and a denitrifying means for biologically denitrifying the concentrated water to obtain denitrified treated water ( Claim 1).

軟化手段は、排水中の無機イオンをナトリウムイオン等にイオン交換して軟化する。このため、軟化手段からの流出液を逆浸透膜分離手段によって透過水と濃縮水とに分離する際に無機イオンのスケールが逆浸透膜の膜面に析出することがなく、スケールの付着を防止することができる。従って、逆浸透膜による透過水と濃縮水との分離(膜分離)を円滑に行うことができ、分離された濃縮水を脱窒手段に供給することにより生物学的に脱窒処理した後、放流することができる。   The softening means softens the ion by exchanging inorganic ions in the wastewater with sodium ions or the like. For this reason, when the effluent from the softening means is separated into permeated water and concentrated water by the reverse osmosis membrane separation means, the scale of inorganic ions does not precipitate on the membrane surface of the reverse osmosis membrane, preventing scale adhesion. can do. Accordingly, separation of the permeated water and concentrated water by the reverse osmosis membrane (membrane separation) can be performed smoothly, and after biological denitrification treatment by supplying the separated concentrated water to the denitrification means, Can be released.

上記課題を解決するための本発明の排水の処理装置は、有機窒素化合物及び/又はアンモニア態窒素と無機イオンとを含有する排水の供給手段と、該供給手段からの前記排水を受け入れ、曝気処理により有機窒素化合物を微生物分解すると共に硝化を行う曝気槽と、該曝気槽内の混合液を固液分離する固液分離手段と、該固液分離手段で分離された分離水を軟化する軟化手段と、該軟化手段からの流出液を逆浸透膜により透過水と濃縮水とに分離する逆浸透膜分離手段と、前記濃縮水を生物学的に脱窒処理して脱窒処理水を得る脱窒手段と、を備えることを特徴とする(請求項2)。   The wastewater treatment apparatus of the present invention for solving the above-mentioned problems is a wastewater supply means containing an organic nitrogen compound and / or ammonia nitrogen and inorganic ions, and accepts the wastewater from the supply means, and aeration treatment An aeration tank for microbial decomposition of organic nitrogen compounds and nitrification, solid-liquid separation means for solid-liquid separation of the liquid mixture in the aeration tank, and softening means for softening the separated water separated by the solid-liquid separation means And reverse osmosis membrane separation means for separating the effluent from the softening means into permeate and concentrated water using a reverse osmosis membrane; and denitrification treatment by biologically denitrifying the concentrated water to obtain denitrified water. Nitrogen means. (Claim 2).

曝気槽では、MEAやTMAH等の有機窒素化合物を微生物分解して硝酸性窒素や亜硝酸性窒素に分解し、固液分離手段では固液分離を行う。固液分離された分離水は、硝酸性窒素、亜硝酸性窒素に加えて無機イオンを含有しているが、その後の処理を行う軟化手段では、無機イオンをナトリウムイオン等にイオン交換して軟化するため、そこからの流出液を逆浸透膜によって透過水と濃縮水とに分離しても、無機イオンのスケールが膜面に析出することがなく、スケールの付着を防止することができる。従って、逆浸透膜による透過水と濃縮水との分離(膜分離)を円滑に行うことができ、分離された濃縮水を脱窒手段に供給することにより生物学的に脱窒処理し、この脱窒処理水を放流することができる。   In the aeration tank, organic nitrogen compounds such as MEA and TMAH are microbially decomposed into nitrate nitrogen and nitrite nitrogen, and the solid-liquid separation means performs solid-liquid separation. The water separated by solid-liquid separation contains inorganic ions in addition to nitrate nitrogen and nitrite nitrogen, but in the softening means that performs the subsequent treatment, the inorganic ions are softened by ion exchange with sodium ions, etc. Therefore, even if the effluent from there is separated into permeated water and concentrated water by a reverse osmosis membrane, the scale of inorganic ions does not precipitate on the membrane surface, and scale adhesion can be prevented. Therefore, separation of the permeated water and concentrated water by the reverse osmosis membrane (membrane separation) can be performed smoothly, and biological separation is performed by supplying the separated concentrated water to the denitrification means. Denitrification water can be discharged.

本発明の排水の処理装置において、前記脱窒処理水を前記曝気槽に送給する送給手段を有することが好ましい(請求項3)。この発明では、脱窒処理水を曝気槽でのpH調整剤を補助する手段として用いることができる。   In the wastewater treatment apparatus of the present invention, it is preferable to have a feeding means for feeding the denitrification treated water to the aeration tank. In this invention, denitrification water can be used as a means for assisting the pH adjuster in the aeration tank.

本発明の排水の処理装置においては、前記曝気槽は、微生物を担持する担体が充填されているものであることが好ましく(請求項4)、前記軟化手段から排出される、無機イオンを含む再生排水の一部又は全量を脱窒手段へ送給する再生排水送給手段をさらに有することが好ましく(請求項5)、また、前記脱窒手段は、脱窒細菌が汚泥粒を形成している脱窒槽であることが好ましい(請求項6)。   In the wastewater treatment apparatus of the present invention, the aeration tank is preferably filled with a carrier supporting microorganisms (Claim 4), and the regeneration includes inorganic ions discharged from the softening means. It is preferable to further have a regeneration drainage feeding means for feeding a part or all of the wastewater to the denitrification means (Claim 5), and in the denitrification means, the denitrification bacteria form sludge particles. A denitrification tank is preferred (claim 6).

以上説明したように、本発明の排水の処理装置によれば、軟化手段がカルシウムイオン、アルミニウムイオン、鉄イオン等の無機イオンをナトリウムイオン等にイオン交換して軟化するため、軟化手段からの流出液を逆浸透膜によって透過水と濃縮水とに分離しても、無機イオンのスケールが膜面に析出することがなく、スケールの付着を防止することができる。このため、逆浸透膜による透過水と濃縮水との分離(膜分離)を円滑に行うことができる。   As described above, according to the wastewater treatment apparatus of the present invention, since the softening means softens by exchanging inorganic ions such as calcium ions, aluminum ions, iron ions, etc. with sodium ions, etc., the outflow from the softening means. Even if the liquid is separated into permeated water and concentrated water by a reverse osmosis membrane, the scale of inorganic ions does not precipitate on the membrane surface, and scale adhesion can be prevented. For this reason, the separation (membrane separation) of the permeated water and the concentrated water by the reverse osmosis membrane can be performed smoothly.

以下、本発明の排水の処理装置について、図面を参照しつつ詳しく説明する。   Hereinafter, the waste water treatment apparatus of the present invention will be described in detail with reference to the drawings.

図1は、本発明における第1の排水の処理装置を示すブロック図である。図1に示す処理装置1は、軟化手段2と、逆浸透膜分離手段3と、脱窒手段としての脱窒槽4と、を備えることに特徴がある。   FIG. 1 is a block diagram showing a first wastewater treatment apparatus according to the present invention. The processing apparatus 1 shown in FIG. 1 is characterized by comprising a softening means 2, a reverse osmosis membrane separation means 3, and a denitrification tank 4 as a denitrification means.

軟化手段2には、供給手段5から排水が供給される。排水は、MEAやTMAH等の有機性窒素化合物に起因した硝酸性窒素や亜硝酸性窒素を含有すると共に、カルシウムイオン、アルミニウムイオン、鉄イオン等の2価及び/又は3価の無機イオンを含有している。軟化手段2は、排水中の無機イオンをイオン交換により軟化するものであり、その反応塔には、陽イオン交換樹脂が充填されている。従って、軟化手段2の上部から排水を導入して反応塔を通過させることにより、排水は、含有している無機イオンがナトリウムイオンにイオン交換された後、軟化手段2の下部から流出され、この流出液が逆浸透膜分離手段3に導入される。   Waste water is supplied from the supply means 5 to the softening means 2. The wastewater contains nitrate nitrogen and nitrite nitrogen derived from organic nitrogen compounds such as MEA and TMAH, and also contains divalent and / or trivalent inorganic ions such as calcium ion, aluminum ion, iron ion, etc. is doing. The softening means 2 softens inorganic ions in the waste water by ion exchange, and the reaction tower is filled with a cation exchange resin. Therefore, by introducing waste water from the upper part of the softening means 2 and passing through the reaction tower, the waste water is ion-exchanged into sodium ions and then discharged from the lower part of the softening means 2. The effluent is introduced into the reverse osmosis membrane separation means 3.

ここで、軟化手段2においては、無機イオンを逆浸透膜分離工程での濃縮倍率に応じて飽和濃度の1/10000〜1/1の濃度、より好ましくは1/10000〜9/10の濃度となるように除去されるものである。   Here, in the softening means 2, the concentration of inorganic ions is adjusted to 1/10000 to 1/1 of the saturated concentration, more preferably 1/10000 to 9/10, depending on the concentration ratio in the reverse osmosis membrane separation step. It is removed as follows.

逆浸透膜分離手段3では、イオン交換された排水を逆浸透膜により透過水6と濃縮水7とに分離する。そして、透過水6は回収水として再利用され、濃縮水7は脱窒槽4に導入される。濃縮水7はメタノール等の有機物と共に脱窒槽4に導入され、導入された濃縮水7は生物学的な脱窒処理が行われて脱窒処理水8となり、必要に応じて曝気され沈殿処理された後、放流される。   The reverse osmosis membrane separation means 3 separates the ion-exchanged waste water into permeated water 6 and concentrated water 7 using a reverse osmosis membrane. The permeated water 6 is reused as recovered water, and the concentrated water 7 is introduced into the denitrification tank 4. The concentrated water 7 is introduced into the denitrification tank 4 together with an organic substance such as methanol, and the introduced concentrated water 7 is subjected to biological denitrification treatment to become denitrification treated water 8, which is aerated and precipitated as necessary. And then released.

脱窒槽4における生物学的な脱窒処理としては、浮遊活性汚泥法あるいは上向流式汚泥床(USB)法を用いることができる。USB法は、脱窒細菌によって形成した汚泥粒を用いて脱窒処理を行う方法である。すなわち、担体や炭酸カルシウム等を核として直径1〜数mmのグラニュールを形成して脱窒処理を行うものであり、逆浸透膜分離手段3からの濃縮水7を脱窒槽4の下部から導入して濃縮水7をグラニュールと接触させることにより、濃縮水7中の硝酸性窒素や亜硝酸性窒素を分解し、この脱窒処理水8を脱窒槽4の上部から取り出すようになっている。このUSB法は、浮遊活性汚泥に比べて設置面積が小さく、高負荷化が可能であるという利点を有している。   As biological denitrification treatment in the denitrification tank 4, a floating activated sludge method or an upflow sludge bed (USB) method can be used. The USB method is a method for performing a denitrification process using sludge grains formed by denitrifying bacteria. That is, a denitrification process is performed by forming granules having a diameter of 1 to several millimeters using a carrier or calcium carbonate as a core, and concentrated water 7 from the reverse osmosis membrane separation means 3 is introduced from the lower part of the denitrification tank 4 Then, by bringing the concentrated water 7 into contact with the granules, the nitrate nitrogen and the nitrite nitrogen in the concentrated water 7 are decomposed, and the denitrified treated water 8 is taken out from the upper part of the denitrification tank 4. . This USB method has an advantage that the installation area is smaller than that of the floating activated sludge and the load can be increased.

以上の処理装置1によれば、排水が無機イオンを含有していても、軟化手段2を通過することによりイオン交換により無機イオンが除去される。このため、その後の逆浸透膜分離手段3での透過水と濃縮水との分離(膜分離)の際に、これらの無機イオンがスケールとなって逆浸透膜の膜面に析出して付着することがなくなる。従って、逆浸透膜による透過水と濃縮水との分離(膜分離)を円滑に行うことができるため、排水の処理を迅速且つ効率良く行うことができる。   According to the above processing apparatus 1, even if the waste water contains inorganic ions, the inorganic ions are removed by ion exchange by passing through the softening means 2. For this reason, in the subsequent separation of the permeated water and the concentrated water (membrane separation) in the reverse osmosis membrane separation means 3, these inorganic ions become scales and deposit on the membrane surface of the reverse osmosis membrane. Nothing will happen. Therefore, separation of the permeated water and the concentrated water by the reverse osmosis membrane (membrane separation) can be performed smoothly, so that the waste water can be treated quickly and efficiently.

図2は、本発明における第2の排水の処理装置11を示すブロック図である。図2に示す処理装置11は、図1の構造に加えて、再生排水供給手段9を備えている。再生排水供給手段9は、一端が軟化手段2の上部に接続され、他端が脱窒槽4に接続されている。また、再生排水供給手段9は、再生排水を貯留する再生排水貯留槽10を備えている。   FIG. 2 is a block diagram showing a second wastewater treatment apparatus 11 according to the present invention. The processing apparatus 11 shown in FIG. 2 includes a regenerated waste water supply means 9 in addition to the structure of FIG. The regeneration drainage supply means 9 has one end connected to the upper part of the softening means 2 and the other end connected to the denitrification tank 4. The reclaimed waste water supply means 9 includes a reclaimed waste water storage tank 10 that stores reclaimed waste water.

図2の処理装置11は、軟化手段2、逆浸透膜分離手段3及び脱窒槽4を備えることにより図1の処理装置1と同様に作用することができる。これに加えて、図2の処理装置11では、再生排水供給手段9を備えることにより、軟化手段2における反応塔の下部から塩化ナトリウム水溶液等の逆洗水12を導入し、反応塔内の陽イオン交換樹脂に捕捉されている無機イオンを陽イオン交換樹脂から分離することができる。分離した無機イオンを含む水は、再生排水となり、再生排水貯留槽10に貯留される。貯留した再生水は、その一部又は全部が逆浸透膜分離手段3からの濃縮水7と共に脱窒槽4に供給される。   2 includes the softening means 2, the reverse osmosis membrane separation means 3, and the denitrification tank 4, and thus can operate in the same manner as the processing apparatus 1 of FIG. In addition to this, the treatment apparatus 11 of FIG. 2 includes the regenerative waste water supply means 9 to introduce backwash water 12 such as a sodium chloride aqueous solution from the lower part of the reaction tower in the softening means 2. Inorganic ions trapped in the ion exchange resin can be separated from the cation exchange resin. The separated water containing inorganic ions becomes reclaimed wastewater and is stored in the reclaimed wastewater storage tank 10. A part or all of the stored reclaimed water is supplied to the denitrification tank 4 together with the concentrated water 7 from the reverse osmosis membrane separation means 3.

一般的に、脱窒槽4における生物学的脱窒処理では、少量の無機イオンが必要である。特に、USB法では、発生する窒素ガスの付着や内包によるグラニュールの浮上・流出が問題となるため、高い沈降性を有したグラニュールの形成が窒素処理負荷を維持するために重要となる。このためには、グラニュールや汚泥に無機イオンを取り込ませて比重を大きくすることが有効である。   In general, the biological denitrification treatment in the denitrification tank 4 requires a small amount of inorganic ions. In particular, in the USB method, adhesion of the generated nitrogen gas and floating / outflow of granules due to inclusion are problematic, so formation of granules with high sedimentation is important for maintaining the nitrogen treatment load. For this purpose, it is effective to increase the specific gravity by incorporating inorganic ions into granules or sludge.

一方、軟化手段2では、塩化ナトリウム水溶液を使用しているため、その再生排水には、カルシウムイオンやマグネシウムイオン、鉄イオン等の無機イオンが高濃度に含有されている。再生排水供給手段9は、このような無機イオンを高濃度に含有した再生排水を脱窒槽4に供給するため、脱窒槽4内のグラニュールや汚泥の比重を大きくすることができる。これにより、脱窒槽4での脱窒処理を高効率で行うことが可能となる。   On the other hand, since the softening means 2 uses a sodium chloride aqueous solution, the recycled wastewater contains inorganic ions such as calcium ions, magnesium ions, and iron ions at a high concentration. Since the regenerated waste water supply means 9 supplies regenerated waste water containing such inorganic ions at a high concentration to the denitrification tank 4, the specific gravity of the granules and sludge in the denitrification tank 4 can be increased. Thereby, the denitrification process in the denitrification tank 4 can be performed with high efficiency.

図3は、本発明における第3の排水の処理装置21を示すブロック図である。図3に示す処理装置21では、図1及び図2と同様に、軟化手段2、逆浸透膜分離手段3及び脱窒槽4を備えている。これに加えて、処理装置21は、カルシウム化合物(CaCl)等の無機イオンを脱窒槽4に供給することが可能な構造となっている。無機イオンは、逆浸透膜分離手段3からの濃縮水7に混入されることにより脱窒槽4に導入される。これにより、図2の処理装置11と同様に、脱窒槽4内のグラニュールや汚泥の比重を大きくすることができ、脱窒槽4での脱窒処理を高効率で行うことが可能となる。 FIG. 3 is a block diagram showing a third wastewater treatment apparatus 21 in the present invention. The processing apparatus 21 shown in FIG. 3 includes the softening means 2, the reverse osmosis membrane separation means 3, and the denitrification tank 4 as in FIGS. In addition to this, the processing apparatus 21 has a structure capable of supplying inorganic ions such as calcium compounds (CaCl 2 ) to the denitrification tank 4. Inorganic ions are introduced into the denitrification tank 4 by being mixed into the concentrated water 7 from the reverse osmosis membrane separation means 3. Thereby, like the processing apparatus 11 of FIG. 2, the specific gravity of the granule and sludge in the denitrification tank 4 can be increased, and the denitrification process in the denitrification tank 4 can be performed with high efficiency.

図4は、本発明における第4の排水の処理装置31を示すブロック図である。図4に示す処理装置31は、曝気槽32と、沈殿槽からなる固液分離手段33と、軟化手段2と、濾過器34と、逆浸透膜分離手段3と、脱窒槽4とを備えている。曝気槽32は、散気手段35から内部に空気が曝気される。供給手段5は、この曝気槽32に排水を供給する。排水は、MEA、TMAH等の有機窒素化合物及び/又はアンモニア態窒素と上述した無機イオンとを含有した状態で曝気槽32に導入される。   FIG. 4 is a block diagram showing a fourth wastewater treatment apparatus 31 in the present invention. The processing apparatus 31 shown in FIG. 4 includes an aeration tank 32, a solid-liquid separation means 33 comprising a precipitation tank, a softening means 2, a filter 34, a reverse osmosis membrane separation means 3, and a denitrification tank 4. Yes. In the aeration tank 32, air is aerated from the air diffuser 35. The supply means 5 supplies waste water to the aeration tank 32. The waste water is introduced into the aeration tank 32 in a state containing organic nitrogen compounds such as MEA and TMAH and / or ammonia nitrogen and the above-described inorganic ions.

曝気槽32では、散気手段35から曝気された空気により排水を曝気処理する。この曝気処理では、微生物により有機窒素化合物が酸化分解されると共に、窒素成分が硝化されて硝酸性窒素あるいは亜硝酸性窒素となる。固液分離手段33は、曝気槽32で曝気処理された処理液を固液分離する。固液分離手段33と曝気槽32との間には、汚泥返送ライン36が設けられており、固液分離手段33で分離された分離汚泥は、汚泥返送ライン36を介して曝気槽32に返送される。一方、分離された上澄み水は、軟化手段2に供給される。   In the aeration tank 32, the waste water is aerated by the air aerated from the aeration means 35. In this aeration treatment, the organic nitrogen compound is oxidized and decomposed by microorganisms, and the nitrogen component is nitrified to become nitrate nitrogen or nitrite nitrogen. The solid-liquid separation means 33 performs solid-liquid separation on the processing liquid that has been aerated in the aeration tank 32. A sludge return line 36 is provided between the solid-liquid separation means 33 and the aeration tank 32, and the separated sludge separated by the solid-liquid separation means 33 is returned to the aeration tank 32 via the sludge return line 36. Is done. On the other hand, the separated supernatant water is supplied to the softening means 2.

軟化手段2では、固液分離手段33からの上澄み水が上部から導入され、反応塔を通過する間にイオン交換される。これにより、上澄み水中に含有されている無機イオンがナトリウムイオンにイオン交換され、上澄み水が軟化する。   In the softening means 2, the supernatant water from the solid-liquid separation means 33 is introduced from above and ion exchanged while passing through the reaction tower. Thereby, the inorganic ion contained in the supernatant water is ion-exchanged with sodium ions, and the supernatant water is softened.

イオン交換された上澄み水は、濾過器34を通過することにより微細な固形分が除去される。濾過器34としては、砂濾過、精密濾過、限外濾過、その他の手段を用いることができる。   The ion-exchanged supernatant water passes through the filter 34 to remove fine solids. As the filter 34, sand filtration, microfiltration, ultrafiltration, and other means can be used.

濾過器34を通過した後は、逆浸透膜分離手段3に供給されて透過水6と濃縮水7とに分離される。透過水6は回収水として再利用され、濃縮水7はメタノール等の有機物が添加されて脱窒槽4に導入され、脱窒槽4内で生物学に脱窒処理される。脱窒処理された脱窒処理水8は、必要に応じて再曝気されて沈殿処理された後、放流される。   After passing through the filter 34, it is supplied to the reverse osmosis membrane separation means 3 and separated into the permeated water 6 and the concentrated water 7. The permeated water 6 is reused as recovered water, and the concentrated water 7 is introduced into the denitrification tank 4 with an organic substance such as methanol added thereto, and is biologically denitrified in the denitrification tank 4. The denitrified water 8 that has been denitrified is re-aerated as necessary and subjected to precipitation, and then discharged.

この処理装置31においては、脱窒槽4からの脱窒処理水の一部を曝気槽32に給送する給送手段37が設けられている。このように、給送手段37によって曝気槽32に給送される脱窒処理水8は、pH調整剤として作用し、供給手段5からの排水のpH調整を円滑に行うことができる。   In the processing apparatus 31, a feeding unit 37 that feeds a part of the denitrification water from the denitrification tank 4 to the aeration tank 32 is provided. Thus, the denitrification water 8 fed to the aeration tank 32 by the feeding means 37 acts as a pH adjuster, and the pH of the waste water from the supply means 5 can be adjusted smoothly.

この第4の処理装置31においては、排水が有機窒素化合物及び/又はアンモニア態窒素と無機イオンとを含有していても、曝気槽32によって有機窒素化合物が酸化分解及び硝化されて硝酸性窒素や亜硝酸性窒素となるため、脱窒槽4が脱窒を有効に行うことができる。また、固液分離手段33からの上澄み水をイオン交換する軟化手段2を設けているため、無機イオンを除去することができ、逆浸透膜分離手段3における逆浸透膜の膜面に無機イオンがスケールとなって付着することがなくなる。これにより、逆浸透膜による透過水6と濃縮水7との分離(膜分離)を効率良く行うことができる。   In the fourth treatment apparatus 31, even if the wastewater contains organic nitrogen compound and / or ammonia nitrogen and inorganic ions, the organic nitrogen compound is oxidized and decomposed and nitrified by the aeration tank 32, so that nitrate nitrogen or Since it becomes nitrite nitrogen, the denitrification tank 4 can effectively perform denitrification. In addition, since the softening means 2 for ion exchange of the supernatant water from the solid-liquid separation means 33 is provided, inorganic ions can be removed, and inorganic ions are present on the membrane surface of the reverse osmosis membrane in the reverse osmosis membrane separation means 3. It does not adhere as a scale. Thereby, separation (membrane separation) of permeated water 6 and concentrated water 7 by a reverse osmosis membrane can be performed efficiently.

なお、図示を省略するが、図2と同様に、軟化手段2の陽イオン交換樹脂に捕捉された無機イオンを分離して再生排水とし、この再生排水の一部又は全部を脱窒槽4に供給するようにしても良い。これにより、脱窒槽4内のグラニュールや汚泥の比重を大きくすることができ、脱窒槽4での脱窒処理を高効率で行うことができる。   Although not shown, as in FIG. 2, inorganic ions captured by the cation exchange resin of the softening means 2 are separated into reclaimed wastewater, and a part or all of this reclaimed wastewater is supplied to the denitrification tank 4. You may make it do. Thereby, the specific gravity of the granule and sludge in the denitrification tank 4 can be enlarged, and the denitrification process in the denitrification tank 4 can be performed with high efficiency.

図5は、本発明の排水の第5の処理装置41を示すブロック図である。図5に示す処理装置41では、図4の処理装置31に対し硝化菌を保持した担体42を用いるものであり、この担体42は曝気槽32に導入される。硝化菌を保持する担体42としては、発泡樹脂等の比表面積が大きいものが用いられる。このように硝化菌を保持した担体42を曝気槽32に適用することにより、曝気槽32における硝化をさらに効率良く行うことが可能となる。   FIG. 5 is a block diagram showing a fifth wastewater treatment apparatus 41 according to the present invention. In the processing apparatus 41 shown in FIG. 5, a carrier 42 holding nitrifying bacteria is used with respect to the processing apparatus 31 of FIG. 4, and this carrier 42 is introduced into the aeration tank 32. As the carrier 42 for holding nitrifying bacteria, a carrier having a large specific surface area such as foamed resin is used. By applying the carrier 42 holding nitrifying bacteria to the aeration tank 32 in this manner, nitrification in the aeration tank 32 can be performed more efficiently.

図5の処理装置41では、これに加えて凝集反応槽43及び凝集沈殿槽44を用いている。凝集反応槽43は、曝気槽32で担体42から剥離する汚泥や増殖した浮遊菌体等の固形物に凝集剤を加えて凝集させるものであり、凝集後のフロックは、凝集沈殿槽44に供給され、凝集沈殿槽44で固液分離される。このように、凝集反応槽43及び凝集沈殿槽44を用いることにより、固液分離を確実且つ迅速に行うことが可能となる。   In addition to this, the processing apparatus 41 of FIG. 5 uses a coagulation reaction tank 43 and a coagulation sedimentation tank 44. The agglomeration reaction tank 43 is an agglomeration agent added to the solid matter such as sludge and flocculent suspended cells separated from the carrier 42 in the aeration tank 32 to cause aggregation, and the floc after aggregation is supplied to the aggregation precipitation tank 44. Then, solid-liquid separation is performed in the coagulation sedimentation tank 44. Thus, by using the agglomeration reaction tank 43 and the agglomeration sedimentation tank 44, solid-liquid separation can be reliably and rapidly performed.

図6は、本発明の第6の排水の処理装置51を示すブロック図である。図6に示す処理装置51は、図4における処理装置31の曝気槽32に代えて浸漬膜式曝気槽52を用いるものである。浸漬膜式曝気槽52は、浸漬膜53を用いるものであり、この浸漬膜53が曝気槽52内の排水に浸漬された状態となっており、曝気槽52内で微生物分解及び硝化されることにより生成した処理水は、浸漬膜53によって濾過された後、軟化手段2に供給される。従って、この処理装置51では、図4の処理装置31における固液分離手段33が不要となり、設置面積を小さくすることができる。   FIG. 6 is a block diagram showing a sixth waste water treatment apparatus 51 of the present invention. The processing apparatus 51 shown in FIG. 6 uses an immersion membrane type aeration tank 52 instead of the aeration tank 32 of the processing apparatus 31 in FIG. The immersion membrane type aeration tank 52 uses an immersion membrane 53, and the immersion membrane 53 is immersed in the waste water in the aeration tank 52 and is decomposed and nitrified in the aeration tank 52. The treated water generated by is filtered by the immersion film 53 and then supplied to the softening means 2. Therefore, in this processing apparatus 51, the solid-liquid separation means 33 in the processing apparatus 31 of FIG. 4 becomes unnecessary, and the installation area can be reduced.

この場合、曝気槽52内は散気手段35によって曝気状態となっており、ここに浸漬膜53を配置することにより、下部からの曝気により膜表面の堆積物を除去することができる。従って、長期間にわたって浸漬膜53が安定して作用することができる。浸漬膜53としては、限外濾過膜、精密濾過膜等を使用することができ、その材質としては、ポリオレフィン、酢酸セルロース、セラミック等を選択することができる。このような浸漬膜53は、洗浄することにより繰り返し使用が可能であり、経済的なものとすることができる。   In this case, the inside of the aeration tank 52 is in an aerated state by the aeration means 35, and by placing the immersion film 53 here, deposits on the film surface can be removed by aeration from the lower part. Therefore, the immersion film 53 can act stably over a long period of time. As the immersion membrane 53, an ultrafiltration membrane, a microfiltration membrane or the like can be used, and as a material thereof, polyolefin, cellulose acetate, ceramic, or the like can be selected. Such an immersion film 53 can be used repeatedly by washing and can be economical.

実施例及び比較例により本発明を具体的に説明する。以下の実施例及び比較例では、Caイオン濃度45mg/L、NO−N濃度80mg/Lの排水を原水として、200L/dの流量で通水して窒素除去処理を実施した。なお、対象排水での運転は、各工程の装置を立ち上げてから、処理能力が定常状態となった時点で開始した。各処理工程の運転条件は以下の通りである。 The present invention will be specifically described with reference to Examples and Comparative Examples. In the following Examples and Comparative Examples, wastewater having a Ca ion concentration of 45 mg / L and a NO 3 —N concentration of 80 mg / L was used as raw water, and water was passed at a flow rate of 200 L / d to perform nitrogen removal treatment. In addition, the operation with the target wastewater was started when the processing capacity became a steady state after the apparatus of each process was started up. The operating conditions for each processing step are as follows.

(1)軟化処理工程:弱酸性陽イオン交換樹脂(バイエル社製、商品名「Lewatit CNP80」)、SV70hr―1
(2)膜分離工程:逆浸透膜(RO膜)(日東電工社製、商品名「NTR759 HR−S2」)
(3)脱窒工程:USB法(上向流汚泥床法:Upflow Sludge Balnket 法、脱窒槽容積3.5L、pH7.5、温度35℃、メタノール240mg/Lを添加
(1) Softening treatment process: Weakly acidic cation exchange resin (manufactured by Bayer, trade name “Lewatit CNP80”), SV70hr- 1
(2) Membrane separation step: reverse osmosis membrane (RO membrane) (manufactured by Nitto Denko Corporation, trade name “NTR759 HR-S2”)
(3) Denitrification step: USB method (upflow sludge bed method: Upflow Sludge Balnket method, denitrification tank volume 3.5 L, pH 7.5, temperature 35 ° C., methanol 240 mg / L added

(比較例)
図7に示すフローにより排水の処理を行った。すなわち、軟化処理工程を経ない原水を逆浸透膜で透過水6と濃縮水7とに分離し、分離した濃縮水7を脱窒槽4で脱窒処理した。運転を開始した後、逆浸透膜にスケールが徐々に付着し、表1に示すように、逆浸透膜で分離される透過水量(以下、フラックスという)が、運転開始時と比較して1日目には26%低下し、3日目には42%低下した。
(Comparative example)
Waste water was treated according to the flow shown in FIG. That is, the raw water not subjected to the softening treatment step was separated into the permeated water 6 and the concentrated water 7 by the reverse osmosis membrane, and the separated concentrated water 7 was denitrified in the denitrification tank 4. After the operation is started, the scale gradually adheres to the reverse osmosis membrane, and as shown in Table 1, the amount of permeated water separated by the reverse osmosis membrane (hereinafter referred to as flux) is 1 day compared with the time of the operation start. It decreased by 26% on the eyes and 42% on the third day.

Figure 2006181445
Figure 2006181445

(実施例1)
図1に示すフローにより排水の処理を行った。すなわち、排水を軟化手段2でイオン交換処理した後、逆浸透膜分離手段3に通液して透過水6と濃縮水7とに分離し、その後、その濃縮水7を脱窒槽4に導入して脱窒処理を行った。結果を表2に示す。
(Example 1)
Waste water was treated according to the flow shown in FIG. That is, the waste water is subjected to ion exchange treatment by the softening means 2 and then passed through the reverse osmosis membrane separation means 3 to be separated into permeated water 6 and concentrated water 7, and then the concentrated water 7 is introduced into the denitrification tank 4. The denitrification process was performed. The results are shown in Table 2.

表2に示すように、この実施例1では、運転開始から1日目のフラックス低下率は、運転開始時と比較して2.1%しか低下しておらず、15日目と30日目においても、それぞれ3.1%、4.3%しか低下しておらずに5%以下が維持され、逆浸透膜による透過水と濃縮水との分離を継続して行うことが確認できた。また、脱窒工程では、運転開始時から徐々に処理水中の硝酸性窒素濃度の増加が見られたが、運転開始から30日目の硝酸性窒素は86.5%であり、除去率として85%を維持できていた。なお、硝酸性窒素の除去率とは、脱窒工程に流入する流入水から硝酸性窒素(NO−N)を除去した割合を示すものである。 As shown in Table 2, in Example 1, the flux reduction rate on the first day from the start of the operation is only 2.1% lower than that at the start of the operation. Also, in each sample, it decreased only 3.1% and 4.3%, respectively, and was maintained at 5% or less, and it was confirmed that separation of permeated water and concentrated water by the reverse osmosis membrane was continued. In the denitrification process, the concentration of nitrate nitrogen in the treated water gradually increased from the start of operation, but nitrate nitrogen on the 30th day from the start of operation was 86.5%, and the removal rate was 85. % Could be maintained. Note that the removal rate of nitrate nitrogen, shows the percentage removal of nitrate nitrogen (NO 3 -N) from the inflow water flowing into the denitrification process.

Figure 2006181445
Figure 2006181445

(実施例2)
図2に示すフローにより排水の処理を行った。すなわち、排水を軟化手段2でイオン交換処理した後、逆浸透膜分離手段3に通液して透過水6と濃縮7水とに分離し、その後、その濃縮水7を脱窒槽4に導入して脱窒処理を行った。脱窒処理に際しては、再生排水給送手段9から再生排水を濃縮水7に混合して脱窒槽4に導入した。この再生剤には塩化ナトリウム(NaCl)を使用した。結果を表3に示す。
(Example 2)
Waste water was treated according to the flow shown in FIG. That is, the waste water is subjected to ion exchange treatment by the softening means 2 and then passed through the reverse osmosis membrane separation means 3 to be separated into permeated water 6 and concentrated 7 water, and then the concentrated water 7 is introduced into the denitrification tank 4. The denitrification process was performed. In the denitrification treatment, the regenerated wastewater from the regenerated wastewater feeding means 9 was mixed with the concentrated water 7 and introduced into the denitrification tank 4. Sodium chloride (NaCl) was used as the regenerant. The results are shown in Table 3.

表3に示すように、この実施例2では、運転開始から30日目でも、フラックスの低下率に顕著な増加がみられず5%以下が維持され、また、硝酸性窒素の除去率にも顕著な変動がみられず総じて約95%であった。したがって、逆浸透膜分離処理及び脱窒処理とも運転開始時と同じ処理能と処理水質を維持できていた。   As shown in Table 3, in Example 2, even after 30 days from the start of operation, no significant increase was observed in the rate of flux decrease, maintaining 5% or less, and the removal rate of nitrate nitrogen was also reduced. There was no noticeable variation and the total was about 95%. Therefore, both the reverse osmosis membrane separation treatment and the denitrification treatment were able to maintain the same treatment performance and treated water quality as at the start of operation.

Figure 2006181445
Figure 2006181445

(実施例3)
図3に示すフローにより排水の処理を行った。すなわち、排水を軟化手段2でイオン交換処理した後、逆浸透膜分離手段3に通液して透過水6と濃縮水7とに分離し、その後、その濃縮水7を脱窒槽4に導入すると共にカルシウム化合物を脱窒槽4に添加して脱窒処理を行った。カルシウム化合物としては、塩化カルシウムを使用した。結果を表4に示す。
(Example 3)
Waste water was treated according to the flow shown in FIG. That is, the waste water is subjected to ion exchange treatment by the softening means 2 and then passed through the reverse osmosis membrane separation means 3 to separate into permeated water 6 and concentrated water 7, and then the concentrated water 7 is introduced into the denitrification tank 4. At the same time, a calcium compound was added to the denitrification tank 4 for denitrification treatment. Calcium chloride was used as the calcium compound. The results are shown in Table 4.

表4に示すように、この実施例3では、運転開始から30日目でも、フラックスの低下率に顕著な増加がみられず5%以下が維持され、また、硝酸性窒素の除去率にも顕著な変動がみられず総じて約95%であった。したがって、逆浸透膜分離処理及び脱窒処理とも運転開始時と同じ処理能と処理水質を維持できていた。   As shown in Table 4, in Example 3, even after 30 days from the start of operation, the decrease rate of the flux was not significantly increased and maintained at 5% or less, and the removal rate of nitrate nitrogen was also reduced. There was no noticeable variation and the total was about 95%. Therefore, both the reverse osmosis membrane separation treatment and the denitrification treatment were able to maintain the same treatment performance and treated water quality as at the start of operation.

Figure 2006181445
Figure 2006181445

図8は、実施例1〜3でのグラニュールの沈降速度の推移を示したグラフである。カルシウムイオンが脱窒槽4へ導入する水に含まれなかった実施例1では、運転開始時には50m/hrであったグラニュールの沈降速度が、運転開始後30日目には40m/hrに低下していた。一方、カルシウムイオンを添加した実施例2及び実施例3では、運転開始後30日目でもグラニュールの沈降速度を50m/hrに維持できていた。   FIG. 8 is a graph showing transition of the sedimentation rate of granules in Examples 1 to 3. In Example 1 in which calcium ions were not included in the water introduced into the denitrification tank 4, the granule sedimentation rate, which was 50 m / hr at the start of operation, decreased to 40 m / hr on the 30th day after the start of operation. It was. On the other hand, in Example 2 and Example 3 to which calcium ions were added, the granule sedimentation rate could be maintained at 50 m / hr even 30 days after the start of operation.

以上の結果から、軟化処理工程を導入することによって逆浸透膜分離処理と脱窒処理を安定して実施できることがわかる。また、脱窒槽に無機イオンとしてカルシウムイオンを添加することで、脱窒処理をより高負荷で安定して行うことができた。   From the above results, it can be seen that the reverse osmosis membrane separation treatment and the denitrification treatment can be stably performed by introducing the softening treatment step. Moreover, by adding calcium ions as inorganic ions to the denitrification tank, the denitrification treatment could be performed stably with a higher load.

本発明の第1の排水の処理装置を示すブロック図である。It is a block diagram which shows the 1st waste water treatment apparatus of this invention. 本発明の第2の排水の処理装置を示すブロック図である。It is a block diagram which shows the 2nd waste water treatment apparatus of this invention. 本発明の第3の排水の処理装置を示すブロック図である。It is a block diagram which shows the processing apparatus of the 3rd waste_water | drain of this invention. 本発明の第4の排水の処理装置を示すブロック図である。It is a block diagram which shows the processing apparatus of the 4th waste_water | drain of this invention. 本発明の第5の排水の処理装置を示すブロック図である。It is a block diagram which shows the processing apparatus of the 5th waste_water | drain of this invention. 本発明の第6の排水の処理装置を示すブロック図である。It is a block diagram which shows the 6th waste water treatment apparatus of this invention. 比較例のブロック図である。It is a block diagram of a comparative example. 実施例1〜3のグラニュールの沈降速度を示す特性図である。It is a characteristic view which shows the sedimentation rate of the granule of Examples 1-3.

符号の説明Explanation of symbols

1、11、21、31、41、51 処理装置
2 軟化手段
3 逆浸透膜分離手段
4 脱窒槽
5 供給手段
6 透過水
7 濃縮水
8 脱窒処理水
9 再生排水給送手段
10再生排水貯留槽
12 逆洗水
32 曝気槽
33 固液分離手段
34 濾過器
35 散気手段
36 汚泥返送ライン
37 脱窒処理水の給送手段
42 担体
43 凝集反応槽
44 凝集沈殿槽
52 浸漬膜式曝気槽
53 浸漬膜
DESCRIPTION OF SYMBOLS 1, 11, 21, 31, 41, 51 Processing apparatus 2 Softening means 3 Reverse osmosis membrane separation means 4 Denitrification tank 5 Supply means 6 Permeated water 7 Concentrated water 8 Denitrification treated water 9 Reclaimed waste water feeding means 10 Regeneration waste water storage tank DESCRIPTION OF SYMBOLS 12 Backwash water 32 Aeration tank 33 Solid-liquid separation means 34 Filter 35 Diffusion means 36 Sludge return line 37 Feeding means of denitrification water 42 Carrier 43 Aggregation reaction tank 44 Aggregation precipitation tank 52 Immersion membrane type aeration tank 53 Immersion film

Claims (6)

硝酸性窒素又は亜硝酸性窒素を含み、かつ無機イオンを含む排水を軟化する軟化手段と、
該軟化手段からの流出液を逆浸透膜により透過水と濃縮水とに分離する逆浸透膜分離手段と、
前記濃縮水を生物学的に脱窒処理して脱窒処理水を得る脱窒手段と、
を備えることを特徴とする排水の処理装置。
Softening means for softening waste water containing nitrate nitrogen or nitrite nitrogen and containing inorganic ions;
Reverse osmosis membrane separation means for separating the effluent from the softening means into permeate and concentrated water by a reverse osmosis membrane;
Denitrification means for biologically denitrifying the concentrated water to obtain denitrified water;
A wastewater treatment apparatus comprising:
有機窒素化合物及び/又はアンモニア態窒素と無機イオンとを含有する排水の供給手段と、
該供給手段からの前記排水を受け入れ、曝気処理により有機窒素化合物を微生物分解すると共に硝化を行う曝気槽と、
該曝気槽内の混合液を固液分離する固液分離手段と、
該固液分離手段で分離された分離水を軟化する軟化手段と、
該軟化手段からの流出液を逆浸透膜により透過水と濃縮水とに分離する逆浸透膜分離手段と、
前記濃縮水を生物学的に脱窒処理して脱窒処理水を得る脱窒手段と、
を備えることを特徴とする排水の処理装置。
Means for supplying wastewater containing organic nitrogen compounds and / or ammonia nitrogen and inorganic ions;
An aeration tank that receives the waste water from the supply means, microbially decomposes organic nitrogen compounds by aeration treatment, and nitrifies;
Solid-liquid separation means for solid-liquid separation of the mixed liquid in the aeration tank;
A softening means for softening the separated water separated by the solid-liquid separation means;
Reverse osmosis membrane separation means for separating the effluent from the softening means into permeate and concentrated water by a reverse osmosis membrane;
Denitrification means for biologically denitrifying the concentrated water to obtain denitrified water;
A wastewater treatment apparatus comprising:
前記脱窒処理水を前記曝気槽に送給する送給手段を有することを特徴とする請求項2に記載の排水の処理装置。   The wastewater treatment apparatus according to claim 2, further comprising a feeding unit that feeds the denitrification water to the aeration tank. 前記曝気槽は、微生物を担持する担体が充填されているものであることを特徴とする請求項2又は3に記載の排水の処理装置。   The waste water treatment apparatus according to claim 2 or 3, wherein the aeration tank is filled with a carrier supporting microorganisms. 前記軟化手段から排出される、無機イオンを含む再生排水の一部又は全量を脱窒手段へ送給する再生排水送給手段を有することを特徴とする請求項1〜4のいずれか1項に記載の排水の処理装置。   5. The reclaimed wastewater feeding means for feeding a part or all of the reclaimed wastewater containing inorganic ions discharged from the softening means to the denitrification means. The waste water treatment apparatus as described. 前記脱窒手段は、脱窒細菌が汚泥粒を形成している脱窒槽であることを特徴とする請求項1〜5のいずれか1項に記載の排水の処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 5, wherein the denitrification means is a denitrification tank in which denitrifying bacteria form sludge particles.
JP2004376521A 2004-12-14 2004-12-27 Waste water treatment apparatus and treatment method Active JP4834993B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004376521A JP4834993B2 (en) 2004-12-27 2004-12-27 Waste water treatment apparatus and treatment method
TW94143032A TWI449674B (en) 2004-12-14 2005-12-06 Drainage treatment device and treatment method
CN201010623270XA CN102107996A (en) 2004-12-14 2005-12-14 Apparatus and method for treating waste water
CN201210254527.8A CN102826708B (en) 2004-12-14 2005-12-14 Apparatus for treating waste water and treating method
KR20050123157A KR101201058B1 (en) 2004-12-14 2005-12-14 Apparatus for treating waste water
CN2005100034437A CN1792869B (en) 2004-12-14 2005-12-14 Waste water treating device and method
KR1020120039045A KR101299352B1 (en) 2004-12-14 2012-04-16 Apparatus for treating waste water
KR1020130015701A KR101352247B1 (en) 2004-12-14 2013-02-14 Apparatus for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376521A JP4834993B2 (en) 2004-12-27 2004-12-27 Waste water treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2006181445A true JP2006181445A (en) 2006-07-13
JP4834993B2 JP4834993B2 (en) 2011-12-14

Family

ID=36734933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376521A Active JP4834993B2 (en) 2004-12-14 2004-12-27 Waste water treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP4834993B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080277A (en) * 2006-09-28 2008-04-10 Kurita Water Ind Ltd Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP2009154114A (en) * 2007-12-27 2009-07-16 Kurita Water Ind Ltd Method and apparatus for biological treatment of water containing organic matter
JP2009233607A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010119978A (en) * 2008-11-21 2010-06-03 Kotobuki Kakoki Kk Apparatus for treating wastewater
JP2010221112A (en) * 2009-03-23 2010-10-07 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
JP2014223619A (en) * 2013-04-26 2014-12-04 コーン プロダクツ ディベロップメント,インコーポレイティド Removal of sodium sulfate from biologically treated waste water
JP2020018992A (en) * 2018-08-03 2020-02-06 オルガノ株式会社 Method and apparatus for treating silica/hardness component-containing water
JP2020124668A (en) * 2019-02-04 2020-08-20 株式会社東芝 Water treatment system and water treatment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079518A (en) * 2019-06-14 2020-12-15 中国石油化工股份有限公司 Method for recycling circulating water and sewage
CN112125465A (en) * 2019-06-24 2020-12-25 中国石油化工股份有限公司 Treatment method of circulating water sewage

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239967A (en) * 1975-09-25 1977-03-28 Kobe Steel Ltd Excellent treating method for sewage
JPS534777A (en) * 1976-07-02 1978-01-17 Kurita Water Ind Ltd Desalting apparatus
JPS6256192A (en) * 1985-09-06 1987-03-11 Hitachi Ltd Thernal transfer material
JPH02164500A (en) * 1988-12-19 1990-06-25 Meidensha Corp Water purifying treatment apparatus
JPH03270800A (en) * 1990-03-20 1991-12-02 Ebara Infilco Co Ltd Treatment of organic sewage
JPH0839058A (en) * 1994-07-28 1996-02-13 Kurita Water Ind Ltd Treatment of semiconductor washing waste water
JPH10244280A (en) * 1997-03-03 1998-09-14 Japan Organo Co Ltd Removal device for organic substance in water
JP2000070986A (en) * 1998-08-28 2000-03-07 Shinko Pantec Co Ltd Removing method of nitrogen oxides such as nitric acid and its device
JP2001038390A (en) * 1999-07-29 2001-02-13 Kurita Water Ind Ltd Production of ultrapure water
JP2001070989A (en) * 1999-09-07 2001-03-21 Ebara Corp Method and apparatus for treating organic wastewater containing high concentration of salts
JP2002086190A (en) * 2000-09-12 2002-03-26 Japan Organo Co Ltd Waste water treating device
JP2002172399A (en) * 2000-12-06 2002-06-18 Kurita Water Ind Ltd Denitrification treatment method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239967A (en) * 1975-09-25 1977-03-28 Kobe Steel Ltd Excellent treating method for sewage
JPS534777A (en) * 1976-07-02 1978-01-17 Kurita Water Ind Ltd Desalting apparatus
JPS6256192A (en) * 1985-09-06 1987-03-11 Hitachi Ltd Thernal transfer material
JPH02164500A (en) * 1988-12-19 1990-06-25 Meidensha Corp Water purifying treatment apparatus
JPH03270800A (en) * 1990-03-20 1991-12-02 Ebara Infilco Co Ltd Treatment of organic sewage
JPH0839058A (en) * 1994-07-28 1996-02-13 Kurita Water Ind Ltd Treatment of semiconductor washing waste water
JPH10244280A (en) * 1997-03-03 1998-09-14 Japan Organo Co Ltd Removal device for organic substance in water
JP2000070986A (en) * 1998-08-28 2000-03-07 Shinko Pantec Co Ltd Removing method of nitrogen oxides such as nitric acid and its device
JP2001038390A (en) * 1999-07-29 2001-02-13 Kurita Water Ind Ltd Production of ultrapure water
JP2001070989A (en) * 1999-09-07 2001-03-21 Ebara Corp Method and apparatus for treating organic wastewater containing high concentration of salts
JP2002086190A (en) * 2000-09-12 2002-03-26 Japan Organo Co Ltd Waste water treating device
JP2002172399A (en) * 2000-12-06 2002-06-18 Kurita Water Ind Ltd Denitrification treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080277A (en) * 2006-09-28 2008-04-10 Kurita Water Ind Ltd Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP2009154114A (en) * 2007-12-27 2009-07-16 Kurita Water Ind Ltd Method and apparatus for biological treatment of water containing organic matter
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2009233607A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP2010119978A (en) * 2008-11-21 2010-06-03 Kotobuki Kakoki Kk Apparatus for treating wastewater
JP2010221112A (en) * 2009-03-23 2010-10-07 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
JP2014223619A (en) * 2013-04-26 2014-12-04 コーン プロダクツ ディベロップメント,インコーポレイティド Removal of sodium sulfate from biologically treated waste water
JP2020018992A (en) * 2018-08-03 2020-02-06 オルガノ株式会社 Method and apparatus for treating silica/hardness component-containing water
JP7137393B2 (en) 2018-08-03 2022-09-14 オルガノ株式会社 Method and apparatus for treating water containing silica/hardness components
JP2020124668A (en) * 2019-02-04 2020-08-20 株式会社東芝 Water treatment system and water treatment method
JP7106465B2 (en) 2019-02-04 2022-07-26 株式会社東芝 Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP4834993B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5315587B2 (en) Apparatus and method for treating wastewater containing organic matter
TWI494281B (en) Apparatus for treating organic waste water
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
KR101352247B1 (en) Apparatus for treating waste water
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
JP4834993B2 (en) Waste water treatment apparatus and treatment method
TWI388512B (en) Method for treating organic efflux water
JP4655643B2 (en) Biologically treated water-containing water treatment method and treatment apparatus
JP3767800B2 (en) Nitrogen-phosphorus-containing wastewater treatment method and apparatus
JP2001276851A (en) Drain treatment equipment
EP1807361B1 (en) Anoxic biological reduction system and method
KR101734112B1 (en) a system for advanced wastewater treatment using capacitive deionization process as a nitrate concentrating process and the advanced wastewater treatment method
KR20140103693A (en) Apparatus for treatment of wastewater capable of recovery of nitrogen and phosphate and method for treatment of wastewater
CN1792869B (en) Waste water treating device and method
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP4655570B2 (en) Wastewater treatment equipment containing organic nitrogen compounds
JP2009220020A (en) Wastewater treatment system and its operation method
JP2010089051A (en) Method and apparatus for treating water containing phosphoric acid, nitric acid and organic acid
TW201500298A (en) Method and device for treating organic wastewater
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JP4390959B2 (en) Wastewater treatment equipment
JP3387311B2 (en) Ultrapure water production equipment
KR101065940B1 (en) Treatment and reuse system for wastewater containing high concentrations of hydrofluoric acid, phosphoric acid and nitric acid
JPH091187A (en) Waste water treating device and its operating method
JP4604708B2 (en) (Sub-) Nitrate nitrogen and polyvalent inorganic ion-containing wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4834993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250