JP2020018992A - Method and apparatus for treating silica/hardness component-containing water - Google Patents
Method and apparatus for treating silica/hardness component-containing water Download PDFInfo
- Publication number
- JP2020018992A JP2020018992A JP2018146902A JP2018146902A JP2020018992A JP 2020018992 A JP2020018992 A JP 2020018992A JP 2018146902 A JP2018146902 A JP 2018146902A JP 2018146902 A JP2018146902 A JP 2018146902A JP 2020018992 A JP2020018992 A JP 2020018992A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treatment
- silica
- reverse osmosis
- osmosis membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明は、シリカと硬度成分とを含むシリカ/硬度成分含有水の処理方法および処理装置に関する。 The present invention relates to a method and apparatus for treating silica / hardness component-containing water containing silica and a hardness component.
近年では、工場等から排出される排水量をできる限り減らすことが行われており、逆浸透膜等を用いて排水を濃縮し、透過水を回収して排水を減容化する方法が取られている。水回収率はできる限り高める傾向にあり、中には、逆浸透膜の濃縮水をさらに逆浸透膜で処理したり、蒸発濃縮等の方法によって濃縮したりする方法が行われ、ほぼ全量を水回収し、不純物を固形化して排出するZLD(Zero Liquid Discharge)まで行われている工場等も増えている。 In recent years, the amount of wastewater discharged from factories and the like has been reduced as much as possible, and a method has been adopted in which wastewater is concentrated using a reverse osmosis membrane and the like, and permeated water is collected to reduce the volume of the wastewater. I have. The water recovery rate tends to be as high as possible.In some cases, the concentrated water of the reverse osmosis membrane is further treated with a reverse osmosis membrane or concentrated by a method such as evaporation and concentration. The number of factories and the like that carry out the process up to the ZLD (Zero Liquid Discharge) for collecting, solidifying and discharging impurities is increasing.
このように、逆浸透膜装置や蒸発濃縮装置での濃縮倍率を高くすると、その分、排水中のシリカや硬度成分等によるスケーリングのリスクが高くなる。スケールが発生すると、逆浸透膜が閉塞して透過水量が減少したり、蒸発濃縮の伝熱面がスケールで覆われて伝熱効率が低下したりする。 As described above, when the concentration ratio in the reverse osmosis membrane device or the evaporative concentration device is increased, the risk of scaling due to silica, hardness components, and the like in the wastewater increases. When the scale is generated, the reverse osmosis membrane is blocked and the amount of permeated water is reduced, or the heat transfer surface for evaporative concentration is covered with the scale, and the heat transfer efficiency is reduced.
そこで、逆浸透膜処理の前に排水中のシリカや硬度成分をできるだけ低減することが望ましい。シリカと硬度成分とを含む排水を処理する方法として、特許文献1にあるように、軟化処理を行った後にアルカリ条件下で逆浸透膜に通水し、シリカの溶解度を高めて処理する方法がある。
Therefore, it is desirable to reduce silica and hardness components in the wastewater as much as possible before the reverse osmosis membrane treatment. As a method of treating wastewater containing silica and a hardness component, as disclosed in
この軟化処理を行った後にアルカリ条件下で逆浸透膜に通水する方法では、シリカが濃縮された濃縮水が排出されるが、この濃縮水の処理方法については検討されていない。また、軟化処理で用いたイオン交換樹脂等の軟化樹脂の再生排液の処理方法についても検討されていない。この濃縮水や再生排液は、通常はそのまま産廃処理されるか、蒸発濃縮装置に導入して固形化して廃棄処分される。図2に従来のシリカ/硬度成分含有水の処理装置の概略構成を示すが、例えば、被処理水槽100からのシリカ/硬度成分含有水を軟化処理装置102においてイオン交換樹脂等の軟化樹脂を用いて軟化処理した後、軟化処理水にアルカリを添加し、逆浸透膜処理装置104において逆浸透膜処理し、その濃縮水を蒸発濃縮装置106において濃縮して固形化して廃棄処分する。また、再生剤槽108からの再生剤により、イオン交換樹脂を再生処理することにより再生排液が発生する。しかし、この方法では、その蒸発エネルギーや、産廃処理のコストが大きいという課題がある。
In the method of passing water through a reverse osmosis membrane under alkaline conditions after performing the softening treatment, concentrated water in which silica is concentrated is discharged, but a method of treating the concentrated water has not been studied. Further, there is no study on a method for treating a regenerated drainage of a softening resin such as an ion exchange resin used in the softening treatment. This concentrated water or regenerated effluent is usually subjected to industrial waste treatment as it is, or is introduced into an evaporative concentration device to be solidified and disposed of. FIG. 2 shows a schematic configuration of a conventional silica / hardness component-containing water treatment apparatus. For example, silica / hardness component-containing water from a water tank to be treated 100 is softened using a softening resin such as an ion exchange resin in a
本発明の目的は、シリカ/硬度成分含有水の軟化処理および逆浸透膜処理において、発生する再生排液や濃縮水の量を低減し、処理コストを低減することができる、シリカ/硬度成分含有水の処理方法および処理装置を提供することにある。 An object of the present invention is to reduce the amount of regenerated wastewater or concentrated water generated in the softening treatment of silica / hardness component-containing water and the reverse osmosis membrane treatment, and to reduce the treatment cost. An object of the present invention is to provide a method and a device for treating water.
本発明は、シリカと硬度成分を含む被処理水を軟化樹脂によって軟化処理する軟化処理工程と;再生剤を用いて前記軟化樹脂を再生処理する再生工程と;前記軟化処理により得られた軟化処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理工程と;得られた前記濃縮水と、前記再生処理で得られた再生排液とを反応槽内で混合した後、固液分離処理を行う固液分離処理工程と;を含む、シリカ/硬度成分含有水の処理方法である。 The present invention provides a softening treatment step of softening treated water containing silica and a hardness component with a softening resin; a regeneration treatment step of regenerating the softening resin using a regenerating agent; and a softening treatment obtained by the softening treatment. A reverse osmosis membrane treatment step of passing water through a reverse osmosis membrane at a pH of 10 or more to obtain concentrated water and permeated water; and a reaction tank comprising the obtained concentrated water and the regenerated effluent obtained by the regeneration treatment. And a solid-liquid separation treatment step of performing a solid-liquid separation treatment after mixing in the silica gel.
前記シリカ/硬度成分含有水の処理方法において、前記固液分離処理工程の後段に、酸を添加してpHを5以下に調整するか、またはアルカリを添加してpH10以上に調整した後、第2逆浸透膜に通水して第2濃縮水と第2透過水とを得る第2逆浸透膜処理工程をさらに含むことが好ましい。 In the silica / hardness component-containing water treatment method, after the solid-liquid separation treatment step, an acid is added to adjust the pH to 5 or less, or an alkali is added to adjust the pH to 10 or more. (2) It is preferable that the method further includes a second reverse osmosis membrane treatment step of passing water through the reverse osmosis membrane to obtain a second concentrated water and a second permeate.
前記シリカ/硬度成分含有水の処理方法において、前記第2濃縮水の少なくとも一部を前記反応槽に返送する返送工程をさらに含むことが好ましい。 The method for treating water containing silica / hardness component preferably further includes a returning step of returning at least a part of the second concentrated water to the reaction tank.
前記シリカ/硬度成分含有水の処理方法において、前記固液分離処理が、強アニオン性高分子凝集剤を用いる凝集沈殿処理であることが好ましい。 In the method for treating silica / hardness component-containing water, the solid-liquid separation treatment is preferably a coagulation precipitation treatment using a strong anionic polymer coagulant.
また、本発明は、シリカと硬度成分を含む被処理水を軟化樹脂によって軟化処理する軟化処理手段と;再生剤を用いて前記軟化樹脂を再生処理する再生手段と;前記軟化処理により得られた軟化処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理手段と;得られた前記濃縮水と、前記再生処理で得られた再生排液とを反応槽内で混合した後、固液分離処理を行う固液分離処理手段と;を備える、シリカ/硬度成分含有水の処理装置である。 Further, the present invention is obtained by the softening treatment means for softening treatment water containing silica and a hardness component with a softening resin; a regeneration means for regenerating the softening resin using a regenerating agent; and the softening treatment. Reverse osmosis membrane treatment means for passing the softened water through a reverse osmosis membrane at a pH of 10 or more to obtain concentrated water and permeated water; and the obtained concentrated water and the regenerated effluent obtained by the regeneration treatment. And a solid-liquid separation means for performing a solid-liquid separation treatment after mixing in the reaction tank.
前記シリカ/硬度成分含有水の処理装置において、前記固液分離処理手段の後段に、酸を添加してpHを5以下に調整するか、またはアルカリを添加してpH10以上に調整した後、第2逆浸透膜に通水して第2濃縮水と第2透過水とを得る第2逆浸透膜処理手段をさらに備えることが好ましい。 In the silica / hardness component-containing water treatment apparatus, after the solid-liquid separation treatment means, an acid is added to adjust the pH to 5 or less, or an alkali is added to adjust the pH to 10 or more. (2) It is preferable to further include a second reverse osmosis membrane treatment means for passing the water through the reverse osmosis membrane to obtain the second concentrated water and the second permeate.
前記シリカ/硬度成分含有水の処理装置において、前記第2濃縮水の少なくとも一部を前記反応槽に返送する返送手段をさらに備えることが好ましい。 It is preferable that the apparatus for treating silica / hardness component-containing water further includes a return means for returning at least a part of the second concentrated water to the reaction tank.
前記シリカ/硬度成分含有水の処理装置において、前記固液分離処理が、強アニオン性高分子凝集剤を用いる凝集沈殿処理であることが好ましい。 In the treatment device for water containing silica / hardness component, the solid-liquid separation treatment is preferably a coagulation precipitation treatment using a strong anionic polymer coagulant.
本発明により、シリカ/硬度成分含有水の軟化処理および逆浸透膜処理において、発生する再生排液や濃縮水の量を低減し、処理コストを低減することができる。 According to the present invention, in the softening treatment and the reverse osmosis membrane treatment of the silica / hardness component-containing water, the amounts of regenerated wastewater and concentrated water generated can be reduced, and the treatment cost can be reduced.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 An embodiment of the present invention will be described below. The present embodiment is an example for implementing the present invention, and the present invention is not limited to the present embodiment.
本発明の実施形態に係るシリカ/硬度成分含有水の処理装置の一例の概略を図1に示し、その構成について説明する。 FIG. 1 shows an outline of an example of a silica / hardness component-containing water treatment apparatus according to an embodiment of the present invention, and its configuration will be described.
シリカ/硬度成分含有水の処理装置1は、シリカと硬度成分を含む被処理水を軟化樹脂によって軟化処理する軟化処理手段として軟化処理装置12と;再生剤を用いて軟化樹脂を再生処理する再生手段として再生剤槽26と;軟化処理により得られた軟化処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理手段として逆浸透膜処理装置14と;得られた濃縮水と、再生処理で得られた再生排液とを反応槽16内で混合した後、固液分離処理を行う固液分離処理手段として沈殿槽20と;を備える。シリカ/硬度成分含有水の処理装置1は、被処理水を貯留する被処理水槽10と、凝集槽18と、除濁装置22と、第2逆浸透膜処理手段として第2逆浸透膜処理装置24と、を備えてもよい。
The
図1のシリカ/硬度成分含有水の処理装置1において、被処理水槽10の出口と軟化処理装置12の被処理水入口とは、ポンプ30を介して配管34により接続されている。軟化処理装置12の軟化処理水出口と逆浸透膜処理装置14の入口とは、配管36により接続されている。逆浸透膜処理装置14の透過水出口には、透過水配管40が接続され、濃縮水出口と反応槽16の濃縮水入口とは濃縮水配管38により接続されている。反応槽16の出口と凝集槽18の入口とは、配管42により接続され、凝集槽18の出口と沈殿槽20の入口とは、配管44により接続されている。沈殿槽20の下部の汚泥出口には、ポンプ32を介して配管62が接続され、上澄水出口と除濁装置22の入口とは、配管46により接続されている。除濁装置22の出口と第2逆浸透膜処理装置24の入口とは、配管48により接続されている。第2逆浸透膜処理装置24の第2透過水出口には、第2透過水配管50が接続され、第2濃縮水出口と反応槽16の第2濃縮水入口とは返送配管52により接続されている。返送配管52には、返送配管52から分岐して配管54が接続されている。配管36には、アルカリ添加手段としてアルカリ添加配管64が接続されている。反応槽16には、マグネシウム化合物添加手段としてマグネシウム化合物添加配管66と、炭酸塩添加手段として炭酸塩添加配管68とが接続されている。凝集槽18には、凝集剤添加手段として凝集剤添加配管70が接続されている。配管46には、酸またはアルカリ添加手段として酸/アルカリ添加配管72が接続されている。再生剤槽26の出口と軟化処理装置12の再生剤入口とは、配管56により接続され、軟化処理装置12の再生排液出口と再生排液槽28の入口とは、配管58により接続され、再生排液槽28の出口と反応槽16の再生排液入口とは再生排液添加配管60により接続されている。反応槽16、凝集槽18および再生剤槽26には、モータ等の回転駆動手段および撹拌羽根等を有する撹拌手段である撹拌装置74,76,78がそれぞれ設置されている。
In the
本実施形態に係るシリカ/硬度成分含有水の処理方法および処理装置1の動作について説明する。
The operation of the method for treating silica / hardness component-containing water and the
被処理水であるシリカ/硬度成分含有水は、必要に応じて被処理水槽10に貯留された後、ポンプ30により配管34を通して軟化処理装置12へ送液される。軟化処理装置12において、シリカ/硬度成分含有水は、軟化樹脂によって軟化処理される(軟化処理工程)。軟化処理された軟化処理水は、配管36を通して逆浸透膜処理装置14へ送液される。ここで、配管36において、アルカリがアルカリ添加配管64を通して添加され、pH10以上に調整される(アルカリ添加工程)。アルカリが添加された軟化処理水は、逆浸透膜処理装置14においてpH10以上で逆浸透膜に通水されて濃縮水と透過水とが得られる(逆浸透膜処理工程)。逆浸透膜処理で得られた透過水(シリカ含有量は、例えば、1mg/L未満)は、透過水配管40を通して排出され、濃縮水は、濃縮水配管38を通して反応槽16へ送液される。
The silica / hardness component-containing water as the water to be treated is stored in the water tank to be treated 10 as necessary, and then sent to the softening
一方、軟化処理装置12において、所定の時間、軟化処理が行われた後、再生剤を用いて軟化樹脂が再生処理される(再生工程)。例えば、再生剤槽26から酸またはアルカリ等の再生剤が、配管56を通して軟化処理装置12へ通液され、配管58を通して排出され、再生排液槽28に貯留される。
On the other hand, in the
反応槽16において、撹拌装置74により撹拌されながら再生排液槽28から再生排液添加配管60を通して再生排液が濃縮水に添加され(再生排液添加工程)、濃縮水と再生排液とが反応槽16内で混合される。反応槽16において、アルカリ性で高濃度に濃縮されたシリカと、再生排液中のマグネシウムとがアルカリ条件下で反応し、シリカが不溶化される(不溶化工程)。再生排液中のマグネシウムの量が不足する場合は、マグネシウム化合物添加配管66を通してマグネシウム化合物が添加されてもよい(マグネシウム化合物添加工程)。
In the
不溶化工程で得られた反応液は、配管42を通して凝集槽18へ送液される。凝集槽18において、撹拌装置76により撹拌されながら、反応液に凝集剤添加配管70を通して凝集剤が添加され、凝集処理が行われる。凝集剤が添加された凝集水は、配管44を通して沈殿槽20へ送液され、沈殿槽20において固液分離が行われる(固液分離工程)。固液分離処理により得られた上澄水は、配管46を通して除濁装置22へ送液される。ここで、配管46において、酸またはアルカリが酸/アルカリ添加配管72を通して添加され、例えばpH5以下またはpH10以上に調整される(酸/アルカリ添加工程)。固液分離処理により得られた汚泥は、ポンプ32により配管62を通して排出される。除濁装置22において、除濁処理が行われた(除濁処理工程)後、配管48を通して第2逆浸透膜処理装置24へ送液される。第2逆浸透膜処理装置24においてpH5以下またはpH10以上で第2逆浸透膜に通水されて第2濃縮水と第2透過水とが得られる(第2逆浸透膜処理工程)。第2逆浸透膜処理で得られた第2透過水は、第2透過水配管50を通して処理水(シリカ含有量は、例えば、1mg/L未満)として排出され、第2濃縮水は、少なくとも一部が返送配管52を通して反応槽16へ返送され、一部は返送配管52、配管54を通して排出されてもよい。
The reaction solution obtained in the insolubilization step is sent to the
この方法によれば、反応槽16において、アルカリ性で高濃度に濃縮されたシリカと、再生排液中のマグネシウムとをアルカリ条件下で反応させることができ、シリカが不溶化される。シリカとマグネシウムとの共沈反応によって、固液分離でシリカを低減させることができる。逆浸透膜処理の濃縮水に別途マグネシウム化合物を用意して添加してシリカを不溶化し、固液分離を行う場合に比べて、マグネシウム化合物の添加量を低減することができる。
According to this method, in the
本実施形態に係るシリカ/硬度成分含有水の処理方法および処理装置1では、シリカと硬度成分とを含む被処理水を軟化処理した後、アルカリを添加してpH10以上に調整し、逆浸透膜処理装置14において逆浸透膜に通水し、濃縮水と透過水を得る方法において、シリカが濃縮された濃縮水と、再生処理で得られた再生排液とを反応槽16内で混合した後、固液分離処理を行ってシリカを固形物の汚泥として系外に排出する。これにより、発生する再生排液やシリカの濃縮水の量が低減し、処理コストを低減することができる。シリカが濃縮された濃縮水に再生処理で得られた再生排液を添加してシリカを析出させた後、固液分離処理を行わない場合に比べて、発生するシリカの濃縮水の量を例えば1/10〜1/20程度まで低減することができる。
In the method for treating silica / hardness component-containing water and the
また、再生排液中のカルシウム濃度が高い場合は、反応槽16において炭酸塩を添加することによって、CaCO3としてカルシウム成分を固液分離により除去してもよい。例えば、反応槽16において、炭酸塩添加配管68を通して炭酸塩が添加される(炭酸塩添加工程)。被処理水に直接炭酸塩を添加する場合に比べて、逆浸透膜の濃縮水がアルカリ性であるので、炭酸塩の添加量を削減することができる。
When the calcium concentration in the regenerated effluent is high, the calcium component may be removed as CaCO 3 by solid-liquid separation by adding carbonate in the
処理対象となるシリカ/硬度成分含有水は、例えば、地下水、工業用水、工場排水等である。シリカ/硬度成分含有水中のシリカの量は、例えば、10〜400mg/Lである。シリカ/硬度成分含有水中のカルシウム硬度成分の量は、例えば、50〜5000mg−CaCO3/Lであり、マグネシウム硬度成分の量は、例えば、10〜1000mg−CaCO3/Lである。 The silica / hardness component-containing water to be treated is, for example, groundwater, industrial water, industrial wastewater, and the like. The amount of silica in the silica / hardness component-containing water is, for example, 10 to 400 mg / L. The amount of calcium hardness component of the silica / hardness components containing water, for example, a 50~5000mg-CaCO 3 / L, the amount of magnesium hardness components are, for example, 10~1000mg-CaCO 3 / L.
軟化処理で用いられる軟化樹脂としては、強酸性または弱酸性の陽イオン交換樹脂、キレート樹脂等が挙げられる。強酸性陽イオン交換樹脂としては、例えば、オルガノ株式会社製Amberex100Na等が挙げられる。弱酸性陽イオン交換樹脂としては、例えば、オルガノ株式会社製IRC−76等が挙げられる。キレート樹脂としては、例えば、オルガノ株式会社製IRC−747UPS等が挙げられる。これらのうち、高塩濃度排水に対する交換容量等の点から、弱酸性陽イオン交換樹脂が好ましい。 Examples of the softening resin used in the softening treatment include a strongly acidic or weakly acidic cation exchange resin and a chelate resin. Examples of the strongly acidic cation exchange resin include Amberex 100Na manufactured by Organo Corporation. Examples of the weakly acidic cation exchange resin include IRC-76 manufactured by Organo Corporation. Examples of the chelating resin include IRC-747 UPS manufactured by Organo Corporation. Among these, a weakly acidic cation exchange resin is preferred from the viewpoint of the exchange capacity for high salt concentration wastewater and the like.
強酸性の陽イオン交換樹脂の場合は、再生剤としては、通常、塩化ナトリウム水溶液が用いられる。弱酸性の陽イオン交換樹脂、キレート樹脂の場合は、再生剤としては、塩酸等の酸が用いられ、酸で再生した後、水酸化ナトリウム水溶液等のアルカリを通水してNa型として使用するため、酸とアルカリそれぞれの再生排液が排出される。この酸とアルカリの再生排液を、反応槽16におけるシリカの不溶化のpH調整に用いることで、薬品使用量を低減することができる。
In the case of a strongly acidic cation exchange resin, an aqueous sodium chloride solution is usually used as a regenerant. In the case of a weakly acidic cation exchange resin or chelate resin, an acid such as hydrochloric acid is used as a regenerating agent. After regenerating with an acid, an alkali such as an aqueous sodium hydroxide solution is passed through to use as a Na type. Therefore, the regenerated effluents of the acid and the alkali are discharged. By using the regenerated effluent of the acid and alkali for pH adjustment of silica insolubilization in the
2種以上の再生剤が用いられる場合は、再生剤槽26および再生排液槽28は2つ以上設けてもよい。
When two or more types of regenerating agents are used, two or more
逆浸透膜処理工程における軟化処理水のpHは、10以上であればよく、膜の耐久性等の点からpH10〜11であることが好ましい。軟化処理水は、逆浸透膜処理工程においてpH10以上で逆浸透膜に通水されればよく、軟化処理水のpHが10以上である場合には、アルカリ添加工程は行わなくてもよい。
The pH of the softening treatment water in the reverse osmosis membrane treatment step may be 10 or more, and is preferably
アルカリ添加工程で用いられるアルカリとしては、例えば、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH)2)等が挙げられる。これらのうち、薬品コスト等の点から水酸化ナトリウムが好ましい。 Examples of the alkali used in the alkali addition step include sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), and the like. Of these, sodium hydroxide is preferred from the viewpoint of chemical cost and the like.
アルカリ添加工程におけるアルカリの添加は、図1のように配管36において行われてもよいし、被処理水槽10において行われてもよいし、被処理水槽10と軟化処理装置12との間、または軟化処理装置12と逆浸透膜処理装置14との間にアルカリ添加槽を設け、アルカリ添加槽において行われてもよい。
The addition of alkali in the alkali addition step may be performed in the
アルカリ添加工程における温度は、特に制限はないが、例えば、15℃〜30℃の範囲である。 The temperature in the alkali addition step is not particularly limited, but is, for example, in a range of 15 ° C to 30 ° C.
pH10以上のアルカリ性で逆浸透膜処理装置14において濃縮されてシリカを高濃度に含む濃縮水(シリカ含有量は、例えば、200〜2000mg/L)にpH10以上で再生排液を添加すると、再生排液に含まれるマグネシウム化合物によりシリカが不溶化して析出する。再生排液中のマグネシウムの量が不足する場合は、別途マグネシウム化合物が添加されてもよい。
When the regenerated effluent is added at
不溶化工程で別途添加してもよいマグネシウム化合物としては、例えば、水酸化マグネシウム(Mg(OH)2)、塩化マグネシウム(MgCl2)、酸化マグネシウム(MgO)等のマグネシウムの無機塩等が挙げられる。これらのうち、薬品コスト等の点から水酸化マグネシウムが好ましい。マグネシウム化合物として水酸化マグネシウムまたは酸化マグネシウム等の水等に溶解しにくいものを用いる場合は、溶解槽を別途設けてマグネシウム化合物を水等に溶解させてから、反応槽16に添加してもよい。
Examples of the magnesium compound that may be separately added in the insolubilization step include, for example, inorganic salts of magnesium such as magnesium hydroxide (Mg (OH) 2 ), magnesium chloride (MgCl 2 ), and magnesium oxide (MgO). Of these, magnesium hydroxide is preferred from the viewpoint of chemical cost and the like. When a magnesium compound that is hardly soluble in water, such as magnesium hydroxide or magnesium oxide, is used, a separate dissolving tank may be provided to dissolve the magnesium compound in water or the like, and then added to the
不溶化工程におけるマグネシウム化合物の添加量は、軟化処理水中のシリカの量(1モル)に対して、マグネシウムが0.5モル〜5.0モルの範囲となる量であることが好ましく、1.0モル〜2.5モルの範囲となる量であることがより好ましい。不溶化工程におけるマグネシウム化合物の添加量が軟化処理水中のシリカの量(1モル)に対して0.5モル未満となる量であると、不溶化反応が十分に進行しない場合があり、5.0モルを超える量となる量であると、薬品コスト等の点で不利になる場合がある。 The addition amount of the magnesium compound in the insolubilization step is preferably an amount in which magnesium is in the range of 0.5 mol to 5.0 mol with respect to the amount of silica (1 mol) in the softening treatment water, and More preferably, the amount is in the range of from about 2.5 moles to about 2.5 moles. If the addition amount of the magnesium compound in the insolubilization step is less than 0.5 mol with respect to the amount of silica (1 mol) in the softening treatment water, the insolubilization reaction may not proceed sufficiently, and may be 5.0 mol. If the amount exceeds the above, there may be a disadvantage in terms of chemical cost and the like.
不溶化工程においてpH調整を行ってもよく、反応槽16内のpHを10以上に調整し、10〜12の範囲に調整することがより好ましく、10〜11の範囲に調整することがさらに好ましい。反応槽16内のpHが10未満であると、マグネシウムの不溶化が不十分でシリカの除去性が低下し、12を超えると、シリカの溶解度が高くなってシリカの除去性が低下する場合がある。
The pH may be adjusted in the insolubilization step, and the pH in the
pH調整で用いられるpH調整剤としては、例えば、塩酸、硫酸等の酸、または、水酸化ナトリウム等のアルカリ剤が挙げられる。 Examples of the pH adjuster used in the pH adjustment include acids such as hydrochloric acid and sulfuric acid, and alkali agents such as sodium hydroxide.
不溶化工程における温度は、特に制限はないが、例えば、15℃〜30℃の範囲である。 The temperature in the insolubilization step is not particularly limited, but is, for example, in the range of 15 ° C to 30 ° C.
このシリカが析出した固形物を凝集沈殿等の方法によって固液分離処理することによって、シリカを固形物として除去することができる。 By subjecting the solid matter on which the silica is precipitated to solid-liquid separation treatment by a method such as coagulation sedimentation, the silica can be removed as a solid matter.
固液分離工程における固液分離方法としては、凝集沈殿処理、膜ろ過等の方法が用いられるが、膜の閉塞等のリスクがない等の点から凝集沈殿処理が好ましい。 As the solid-liquid separation method in the solid-liquid separation step, methods such as coagulation sedimentation treatment and membrane filtration are used, but coagulation sedimentation treatment is preferred from the viewpoint that there is no risk of membrane blockage and the like.
凝集沈殿処理は、例えば沈殿槽で自然沈降により固液分離を行う沈殿工程を含み、沈殿工程の前段で凝集剤を添加して凝集処理を行う凝集工程を含んでもよい。シリカを含む汚泥は凝集沈降性が悪いため、凝集沈殿処理において、必要に応じて、無機凝集剤や高分子凝集剤等の凝集剤を用いて凝集処理を行うことが好ましい。凝集工程は、無機凝集剤を用いて凝集を行う無機凝集工程と、高分子凝集剤を用いて凝集を行う高分子凝集工程とを含んでもよい。 The coagulation precipitation treatment includes, for example, a precipitation step of performing solid-liquid separation by spontaneous sedimentation in a precipitation tank, and may include a coagulation step of adding a coagulant and performing a coagulation treatment in a stage preceding the precipitation step. Since the sludge containing silica has poor coagulation and sedimentation properties, it is preferable to perform coagulation treatment using a coagulant such as an inorganic coagulant or a polymer coagulant as necessary in the coagulation settling treatment. The aggregation step may include an inorganic aggregation step of performing aggregation using an inorganic aggregation agent, and a polymer aggregation step of performing aggregation using a polymer aggregation agent.
凝集工程(無機凝集工程)で用いられる無機凝集剤としては、例えば、塩化第二鉄、ポリ硫酸第二鉄等の鉄系無機凝集剤、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)等のアルミニウム系無機凝集剤等が挙げられる。 Examples of the inorganic coagulant used in the coagulation step (inorganic coagulation step) include iron-based inorganic coagulants such as ferric chloride and ferric polysulfate, and aluminum-based inorganic coagulants such as aluminum sulfate and polyaluminum chloride (PAC). Flocculants and the like.
凝集工程(無機凝集工程)における無機凝集剤の添加量は、20〜200mg/Lの範囲であることが好ましく、50〜100mg/Lの範囲であることがより好ましい。凝集工程(無機凝集工程)における無機凝集剤の添加量が20mg/L未満であると、凝集反応が十分に進行しない場合があり、過剰に添加すると、薬品コスト等の点で不利になる場合がある。 The amount of the inorganic coagulant added in the coagulation step (inorganic coagulation step) is preferably in the range of 20 to 200 mg / L, and more preferably in the range of 50 to 100 mg / L. If the amount of the inorganic coagulant added in the coagulation step (inorganic coagulation step) is less than 20 mg / L, the coagulation reaction may not proceed sufficiently, and if added excessively, it may be disadvantageous in terms of chemical cost and the like. is there.
凝集工程(無機凝集工程)における反応温度は、特に制限はないが、例えば、15℃〜30℃の範囲である。 The reaction temperature in the aggregation step (inorganic aggregation step) is not particularly limited, but is, for example, in a range of 15 ° C to 30 ° C.
凝集工程(高分子凝集工程)で用いられる高分子凝集剤としては、例えば、ポリアクリルアミド系、2−アクリロイルアミノ−2−メチルプロパンスルホン酸(AMPS)系等の強アニオン性高分子凝集剤、弱アニオン性高分子凝集剤、ノニオン性高分子凝集剤、メタクリレート系、アクリレート系等のカチオン性高分子凝集剤等が挙げられる。これらのうち、シリカの凝集性が良好である等の点から、強アニオン性高分子凝集剤が好ましく、強アニオン性高分子凝集剤とカチオン性高分子凝集剤とを併用してもよい。 As the polymer flocculant used in the flocculation step (polymer flocculation step), for example, a strong anionic polymer flocculant such as polyacrylamide-based, 2-acryloylamino-2-methylpropanesulfonic acid (AMPS) -based, Examples include anionic polymer coagulants, nonionic polymer coagulants, cationic polymer coagulants such as methacrylates and acrylates. Among these, a strong anionic polymer flocculant is preferable from the viewpoint of good cohesiveness of silica, and a strong anionic polymer flocculant and a cationic polymer flocculant may be used in combination.
凝集工程(高分子凝集工程)における高分子凝集剤の添加量は、0.5〜5mg/Lの範囲であることが好ましく、1〜2mg/Lの範囲であることがより好ましい。凝集工程(高分子凝集工程)における高分子凝集剤の添加量が0.5mg/L未満であると、凝集反応が十分に進行しない場合があり、過剰に添加すると、薬品コスト等の点で不利になる場合がある。 The amount of the polymer coagulant added in the aggregation step (polymer aggregation step) is preferably in the range of 0.5 to 5 mg / L, more preferably in the range of 1 to 2 mg / L. If the amount of the polymer coagulant added in the coagulation step (polymer coagulation step) is less than 0.5 mg / L, the coagulation reaction may not proceed sufficiently, and if added excessively, it is disadvantageous in terms of chemical cost and the like. May be.
凝集工程(高分子凝集工程)における反応温度は、特に制限はないが、例えば、15℃〜30℃の範囲である。 The reaction temperature in the aggregation step (polymer aggregation step) is not particularly limited, but is, for example, in the range of 15 ° C to 30 ° C.
固液分離処理の固液分離水、例えば凝集沈殿処理で得られる上澄水は、そのまま放流することが可能な場合は放流してもよいが、必要に応じて除濁装置22により除濁処理を行った後、第2逆浸透膜処理装置24による逆浸透膜処理(第2逆浸透膜処理)でさらに濃縮して、高度に処理された透過水(第2透過水)を得るとともに、減容化されることが好ましい。第2逆浸透膜処理を行わない場合に比べて、発生するシリカの濃縮水の量を例えば1/2〜1/10程度までさらに低減することができる。固液分離処理の固液分離水をさらに水回収することによって、システムとしての水回収率を高めることができる。
The solid-liquid separation water of the solid-liquid separation treatment, for example, the supernatant water obtained by the coagulation sedimentation treatment, may be discharged if it can be discharged as it is. After performing, the water is further concentrated by reverse osmosis membrane treatment (second reverse osmosis membrane treatment) by the second reverse osmosis
第2逆浸透膜処理を行う場合、凝集沈殿処理で得られる上澄水等の固液分離水はシリカが飽和しているため(シリカ含有量は、例えば、120mg/L)、そのまま濃縮するとシリカが析出して膜が閉塞する可能性がある。これを抑制するために、第2逆浸透膜処理の前段で酸を添加してpH5以下に調整することによって(酸/アルカリ添加工程)、シリカの析出速度を低下させ、シリカの析出を抑制して第2逆浸透膜処理で濃縮することができる。または、第2逆浸透膜処理の前段でアルカリを添加してpH10以上に調整することによって(酸/アルカリ添加工程)、シリカの溶解度を再度高め、シリカの析出を抑制して第2逆浸透膜処理で濃縮することができる。このとき、固液分離処理の固液分離水に酸を添加してpHを下げることで、残留しているカルシウムによる析出を抑制することができ、システムとして高い水回収率を達成することができる。 When performing the second reverse osmosis membrane treatment, the solid-liquid separation water such as the supernatant water obtained by the coagulation sedimentation treatment is saturated with silica (silica content is, for example, 120 mg / L). Deposition can result in blockage of the film. In order to suppress this, an acid is added before the second reverse osmosis membrane treatment to adjust the pH to 5 or less (acid / alkali addition step), thereby reducing the deposition rate of silica and suppressing the deposition of silica. In the second reverse osmosis membrane treatment. Alternatively, by adding an alkali before the second reverse osmosis membrane treatment and adjusting the pH to 10 or more (acid / alkali addition step), the solubility of silica is increased again, and the precipitation of silica is suppressed to prevent the second reverse osmosis membrane. It can be concentrated by processing. At this time, by adding an acid to the solid-liquid separation water in the solid-liquid separation treatment to lower the pH, precipitation due to the remaining calcium can be suppressed, and a high water recovery rate can be achieved as a system. .
酸/アルカリ添加工程で用いられる酸およびアルカリは、上述したものが挙げられる。 The acids and alkalis used in the acid / alkali addition step include those described above.
酸/アルカリ添加工程における酸またはアルカリの添加は、図1のように配管46において行われてもよいし、沈殿槽20と除濁装置22との間に酸/アルカリ添加槽を設け、酸/アルカリ添加槽において行われてもよい。
The addition of the acid or alkali in the acid / alkali addition step may be performed in the
酸/アルカリ添加工程における温度は、特に制限はないが、例えば、15℃〜30℃の範囲である。 The temperature in the acid / alkali addition step is not particularly limited, but is, for example, in the range of 15 ° C to 30 ° C.
除濁装置22としては、例えば、限外ろ過膜(UF膜)を備える膜ろ過装置、砂ろ過装置、安全フィルタ等が挙げられる。
Examples of the
第2逆浸透膜処理で用いられる第2逆浸透膜としては、シリカ阻止率が高い膜が好ましく、シリカ阻止率が99.0%以上の膜が好ましく、高圧型の逆浸透膜にすると、99.5%程度のシリカ阻止率が得られ、より好ましい。 As the second reverse osmosis membrane used in the second reverse osmosis membrane treatment, a membrane having a high silica rejection is preferable, and a membrane having a silica rejection of 99.0% or more is preferable. A silica rejection of about 0.5% is obtained, which is more preferable.
さらに、第2逆浸透膜処理の第2濃縮水(シリカ含有量は、例えば、100〜300mg/L)の一部または全部を第2逆浸透膜処理の前段の工程、例えば、反応槽16に返送することにより、第2逆浸透膜処理で発生する第2濃縮水の量をさらに低減することができる。例えば、第2逆浸透膜処理で発生する第2濃縮水を第2逆浸透膜処理の後段の蒸発濃縮装置で蒸発濃縮処理を行う場合、蒸発濃縮装置に流入するシリカの負荷を低減し、蒸発濃縮を小型化または不要とすることができる。第2逆浸透膜処理の第2濃縮水を前段に返送しない場合に比べて、発生するシリカの濃縮水の量を例えば1/2〜1/10程度までさらに低減することができる。
Further, part or all of the second concentrated water (silica content is, for example, 100 to 300 mg / L) of the second reverse osmosis membrane treatment is transferred to a step before the second reverse osmosis membrane treatment, for example, the
また、固液分離処理の固液分離水を、再度軟化処理した後に、アルカリを添加してシリカの溶解度を高め、第2逆浸透膜処理装置24において第2逆浸透膜に通水してもよい。
Further, after the solid-liquid separation water of the solid-liquid separation treatment is softened again, alkali is added to increase the solubility of silica, and water is passed through the second reverse osmosis membrane in the second reverse osmosis
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
<実施例1>
図3に示すフローの実験設備にて、以下の方法で通水試験を行った。
<Example 1>
A water flow test was performed by the following method using the experimental equipment having the flow shown in FIG.
なお、水中のシリカ(SiO2)の量は、吸光光度計(日立製作所製、U−2900)を用いて、JIS K 0101 モリブデン青吸光光度法で測定した。また、水中のCa、Mgの量は、イオンクロマトグラフィ装置(メトローム製、761Compact)を用いて測定した。 The amount of silica (SiO 2 ) in water was measured by a JIS K0101 molybdenum blue absorption spectrophotometer using an absorptiometer (U-2900, manufactured by Hitachi, Ltd.). The amounts of Ca and Mg in the water were measured using an ion chromatography device (manufactured by Metrohm, 761Compact).
[工程(1)]
被処理水槽10において被処理水にアルカリとして水酸化ナトリウム水溶液を添加して被処理水のpHを10.7〜11.0に調整し、カラムに充填した軟化樹脂(弱酸性陽イオン交換樹脂(オルガノ株式会社製IRC−76))に通水した。通水後のイオン交換樹脂に、再生剤として再生剤槽26a,26bにそれぞれ貯留した塩酸および水酸化ナトリウム水溶液をそれぞれ通水して再生処理を行った。再生処理は、塩酸通水、純水洗浄、水酸化ナトリウム水溶液通水の順で行った。再生排液は、再生排液槽28a,28bにそれぞれ貯留した。
[Step (1)]
In the treated
(工程(1)の実験条件・結果)
・被処理水:工場放流水(シリカ含有)SiO2=50mg/L、Ca=20mg/L、Mg=10mg/L
・イオン交換樹脂量:500mL
・カラム径:21.5mmφ
・流量:83mL/min、約100時間通水(合計500L)
・通水後の軟化処理水の硬度:Ca<0.1mg/L、Mg<0.1mg/L
・塩酸:3.7重量%、流量16.7mL/min、150min通水(合計約2.5L)
・純水洗浄:流量50mL/min、400min通水(合計約20L)(酸再生排液に混合)
・水酸化ナトリウム水溶液:4.0重量%、流量16.7mL/min、120min通水(合計約3.0L)
(Experiment conditions and results of step (1))
・ Water to be treated: Factory discharge water (containing silica) SiO 2 = 50 mg / L, Ca = 20 mg / L, Mg = 10 mg / L
・ Ion exchange resin amount: 500mL
・ Column diameter: 21.5mmφ
・ Flow rate: 83 mL / min, water flow for about 100 hours (500 L in total)
・ Hardness of softened water after passing water: Ca <0.1 mg / L, Mg <0.1 mg / L
・ Hydrochloric acid: 3.7% by weight, flow rate 16.7 mL / min, water passing for 150 min (total about 2.5 L)
・ Pure water washing:
-Sodium hydroxide aqueous solution: 4.0 wt%, flow rate 16.7 mL / min, water passing for 120 min (total of about 3.0 L)
[工程(2)]
通水した軟化処理水を軟化処理水槽80に受け、逆浸透膜処理装置14において、4inch−逆浸透膜エレメント(日東電工製LFC−3)に通水し、透過水と濃縮水を得た。図3には示していないが、濃縮水の一部を系内で循環させ、シリカの濃縮を行った。
[Step (2)]
The softened water passed through was received in the softened
(工程(2)の実験条件・結果)
・被処理水流量:155L/h
・透過水流量:140L/h
・濃縮水流量:720L/h(うち705L/hを軟化処理水槽80に循環、15L/hを後段へ送水)
・逆浸透膜入口流量:860L/h(循環水込み)
・濃縮水pH:10.8
・濃縮水シリカ濃度:493mg/L
・得られた濃縮水量:約48L
(Experiment conditions and results of step (2))
・ Treatment water flow rate: 155 L / h
-Permeate flow rate: 140 L / h
・ Concentrated water flow rate: 720 L / h (of which 705 L / h is circulated to the softening
-Reverse osmosis membrane inlet flow rate: 860 L / h (including circulating water)
・ Concentrated water pH: 10.8
-Concentrated water silica concentration: 493 mg / L
・ Amount of concentrated water obtained: about 48L
[工程(3)]
逆浸透膜の濃縮水を濃縮水槽82に貯留し、凝集沈殿装置に通水した。このとき、イオン交換樹脂の再生排液(酸再生排液(純水洗浄排液を含む)+アルカリ再生排液)を逆浸透膜の濃縮水とともに反応槽16に添加した。
[Step (3)]
The concentrated water of the reverse osmosis membrane was stored in the
(工程(3)の実験条件・結果)
・凝集沈殿装置(反応槽16)の入口流量:100L/h
・イオン交換樹脂の再生排液添加(酸再生排液と純水洗浄排液とを混合したものを11.3L/h、アルカリ再生排液を1.4L/hでそれぞれ反応槽16に添加)
・炭酸塩として炭酸ナトリウム500mg/Lを反応槽16に添加
・アルカリ再生排液を反応槽16に添加することによって、反応槽16のpHを11に調整
・強アニオン性(ポリアクリルアミド系)高分子凝集剤オルフロックOA−3H(オルガノ株式会社製):2mg/L添加
・沈殿後の上澄水:シリカ=50mg/L、Ca=15mg/L、Mg=7mg/L
(Experiment conditions and results of step (3))
-Inlet flow rate of the coagulation sedimentation device (reaction tank 16): 100 L / h
Addition of regenerated effluent of ion exchange resin (11.3 L / h of a mixture of acid regenerated effluent and pure water washing effluent and 1.4 L / h of alkali regenerated effluent are added to reaction tank 16)
-Add 500 mg / L of sodium carbonate as a carbonate to the reaction tank 16-Adjust the pH of the
[工程(4)]
沈殿槽20による沈殿後の上澄水を上澄水槽84に貯留し、除濁装置(安全フィルタ)に通水して除濁した後、第2逆浸透膜処理装置24において、4inch−逆浸透膜エレメント(日東電工製LFC−3)に通水し、第2透過水と第2濃縮水を得た。
[Step (4)]
The supernatant water after precipitation by the
(工程(4)の実験条件・結果)
・第2逆浸透膜処理の原水流量:186L/h
・第2逆浸透膜処理の第2透過水流量:140L/h
・第2逆浸透膜処理の第2濃縮水流量:720L/h(うち674L/hを上澄水槽84に循環、46L/hを後段へ送水)
・第2逆浸透膜入口流量:860L/h(循環水込み)
・第2濃縮シリカ濃度水:200mg/L
・得られた第2濃縮水量:約12L
(Experiment conditions and results of step (4))
-Raw water flow rate of the second reverse osmosis membrane treatment: 186 L / h
-The second permeate flow rate of the second reverse osmosis membrane treatment: 140 L / h
-The second concentrated water flow rate of the second reverse osmosis membrane treatment: 720 L / h (including 674 L / h circulating in the
・ Second reverse osmosis membrane inlet flow rate: 860 L / h (including circulating water)
-Second concentrated silica concentration water: 200 mg / L
-The amount of the obtained second concentrated water: about 12 L
実施例1では、軟化処理装置12のイオン交換樹脂の酸再生排液を反応槽16に添加することで、酸再生排液を処理するとともに、酸再生排液中のMgを利用して濃縮水中のシリカを493→50mg/Lに低減することができた。また、アルカリ再生排液を反応槽16に添加することで反応槽16のpHを11に調整したが、アルカリ再生排液を添加することによって、新たにアルカリ(水酸化ナトリウム)を添加することなく、pHを約11に調整することができた。そのため、下記の比較例1に比べて、pH11に調整するためのアルカリ添加量も削減することができた。
In the first embodiment, the acid regeneration effluent of the ion exchange resin in the
また、実施例1では、工程(3)の凝集沈殿処理にてシリカを除去したことにより、さらに第2逆浸透膜にて濃縮することが可能となって、濃縮水の排液量を削減することができた。 Further, in Example 1, the silica was removed by the coagulation and sedimentation treatment in the step (3), so that the silica can be further concentrated by the second reverse osmosis membrane, and the amount of discharged concentrated water can be reduced. I was able to.
これにより、比較例1に比べ、システムから排出される濃縮水量が約48Lから約12Lと、約1/4になった。また、廃棄する再生排液は発生しなかった。 As a result, compared to Comparative Example 1, the amount of concentrated water discharged from the system was reduced from about 48 L to about 12 L, that is, about 1/4. In addition, no recycled wastewater was discarded.
<比較例1>
比較例1では、工程(1)、(2)は実施例1と同じ方法で処理を行い、工程(3)において軟化処理装置12のイオン交換樹脂の再生排液を反応槽16に添加せずに処理を行った。沈殿後の上澄水のシリカ濃度は、493mg/Lのままであった。なお、比較例1では、工程(4)は行うことができなかった。
<Comparative Example 1>
In Comparative Example 1, the processes (1) and (2) are performed in the same manner as in Example 1, and the regenerated effluent of the ion exchange resin in the
再生排液の代わりに、塩化マグネシウム溶液を、Mg=100mg/Lとなるように反応槽16に添加した場合は、実施例1と同程度のシリカ=50mg/Lの上澄水が得られた。得られた濃縮水量は、約48Lであり、再生排液量は、約25Lであった。このとき、pHを11に調整するために添加した水酸化ナトリウムの総量は、395mmolであった。
When a magnesium chloride solution was added to the
このように、実施例の方法および装置により、シリカ/硬度成分含有水の軟化処理および逆浸透膜処理において、発生する再生排液や濃縮水の量を低減し、処理コストを低減することができた。 As described above, according to the method and apparatus of the embodiment, in the softening treatment and the reverse osmosis treatment of the silica / hardness component-containing water, it is possible to reduce the amount of regenerated effluent and concentrated water generated, thereby reducing the treatment cost. Was.
1 シリカ/硬度成分含有水の処理装置、10,100 被処理水槽、12,102 軟化処理装置、14,104 逆浸透膜処理装置、16 反応槽、18 凝集槽、20 沈殿槽、22 除濁装置、24 第2逆浸透膜処理装置、26,26a,26b,108 再生剤槽、28,28a,28b 再生排液槽、30,32 ポンプ、34,36,42,44,46,48,54,56,58,62 配管、38 濃縮水配管、40 透過水配管、50 第2透過水配管、52 返送配管、60 再生排液添加配管、64 アルカリ添加配管、66 マグネシウム化合物添加配管、68 炭酸塩添加配管、70 凝集剤添加配管、72 酸/アルカリ添加配管、74,76,78 撹拌装置、80 軟化処理水槽、82 濃縮水槽、84 上澄水槽、106 蒸発濃縮装置。 1 silica / hardness component-containing water treatment device, 10,100 water treatment tank, 12,102 softening treatment device, 14,104 reverse osmosis membrane treatment device, 16 reaction tank, 18 coagulation tank, 20 sedimentation tank, 22 clarifier , 24 second reverse osmosis membrane treatment device, 26, 26a, 26b, 108 regenerating agent tank, 28, 28a, 28b regenerating drain tank, 30, 32 pump, 34, 36, 42, 44, 46, 48, 54, 56, 58, 62 piping, 38 concentrated water piping, 40 permeated water piping, 50 second permeated water piping, 52 return piping, 60 regeneration drainage addition piping, 64 alkali addition piping, 66 magnesium compound addition piping, 68 carbonate addition Piping, 70 coagulant addition pipe, 72 acid / alkali addition pipe, 74, 76, 78 stirrer, 80 softening water tank, 82 concentrated water tank, 84 supernatant water tank, 106 Evaporation concentrator.
Claims (8)
再生剤を用いて前記軟化樹脂を再生処理する再生工程と、
前記軟化処理により得られた軟化処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理工程と、
得られた前記濃縮水と、前記再生処理で得られた再生排液とを反応槽内で混合した後、固液分離処理を行う固液分離処理工程と、
を含むことを特徴とするシリカ/硬度成分含有水の処理方法。 A softening treatment step of softening treatment water containing silica and a hardness component with a softening resin,
A regeneration step of regenerating the softening resin using a regenerating agent,
A reverse osmosis membrane treatment step of passing the softened water obtained by the softening treatment through a reverse osmosis membrane at a pH of 10 or more to obtain concentrated water and permeated water;
After mixing the obtained concentrated water and the regenerated effluent obtained in the regenerating process in a reaction tank, a solid-liquid separating process of performing a solid-liquid separating process,
A method for treating water containing silica / hardness components, comprising:
前記固液分離処理工程の後段に、酸を添加してpHを5以下に調整するか、またはアルカリを添加してpH10以上に調整した後、第2逆浸透膜に通水して第2濃縮水と第2透過水とを得る第2逆浸透膜処理工程をさらに含むことを特徴とするシリカ/硬度成分含有水の処理方法。 The method for treating silica / hardness component-containing water according to claim 1,
After the solid-liquid separation process, an acid is added to adjust the pH to 5 or less, or an alkali is added to adjust the pH to 10 or more, and then water is passed through the second reverse osmosis membrane to perform second concentration. A method for treating water containing silica / hardness components, further comprising a second reverse osmosis membrane treatment step for obtaining water and second permeated water.
前記第2濃縮水の少なくとも一部を前記反応槽に返送する返送工程をさらに含むことを特徴とするシリカ/硬度成分含有水の処理方法。 The method for treating silica / hardness component-containing water according to claim 2,
A method for treating water containing silica / hardness components, further comprising a returning step of returning at least a part of the second concentrated water to the reaction tank.
前記固液分離処理が、強アニオン性高分子凝集剤を用いる凝集沈殿処理であることを特徴とするシリカ/硬度成分含有水の処理方法。 A method for treating silica / hardness component-containing water according to any one of claims 1 to 3,
The method for treating water containing silica / hardness components, wherein the solid-liquid separation treatment is a coagulation precipitation treatment using a strong anionic polymer coagulant.
再生剤を用いて前記軟化樹脂を再生処理する再生手段と、
前記軟化処理により得られた軟化処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理手段と、
得られた前記濃縮水と、前記再生処理で得られた再生排液とを反応槽内で混合した後、固液分離処理を行う固液分離処理手段と、
を備えることを特徴とするシリカ/硬度成分含有水の処理装置。 Softening treatment means for softening the water to be treated containing silica and a hardness component with a softening resin,
A regenerating means for regenerating the softening resin using a regenerating agent,
Reverse osmosis membrane treatment means for passing the softened water obtained by the softening treatment through a reverse osmosis membrane at pH 10 or higher to obtain concentrated water and permeated water,
After mixing the obtained concentrated water and the regenerated effluent obtained in the regenerating process in a reaction tank, a solid-liquid separating means for performing a solid-liquid separating process,
An apparatus for treating water containing silica / hardness components, comprising:
前記固液分離処理手段の後段に、酸を添加してpHを5以下に調整するか、またはアルカリを添加してpH10以上に調整した後、第2逆浸透膜に通水して第2濃縮水と第2透過水とを得る第2逆浸透膜処理手段をさらに備えることを特徴とするシリカ/硬度成分含有水の処理装置。 The silica / hardness component-containing water treatment apparatus according to claim 5,
After the solid-liquid separation treatment means, an acid is added to adjust the pH to 5 or less, or an alkali is added to adjust the pH to 10 or more, and then water is passed through the second reverse osmosis membrane to perform second concentration. An apparatus for treating water containing silica / hardness components, further comprising a second reverse osmosis membrane treatment means for obtaining water and second permeated water.
前記第2濃縮水の少なくとも一部を前記反応槽に返送する返送手段をさらに備えることを特徴とするシリカ/硬度成分含有水の処理装置。 The silica / hardness component-containing water treatment apparatus according to claim 6,
An apparatus for treating water containing silica / hardness components, further comprising return means for returning at least a part of the second concentrated water to the reaction tank.
前記固液分離処理が、強アニオン性高分子凝集剤を用いる凝集沈殿処理であることを特徴とするシリカ/硬度成分含有水の処理装置。 An apparatus for treating silica / hardness component-containing water according to any one of claims 5 to 7,
An apparatus for treating water containing silica / hardness components, wherein the solid-liquid separation treatment is a coagulation precipitation treatment using a strong anionic polymer coagulant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018146902A JP7137393B2 (en) | 2018-08-03 | 2018-08-03 | Method and apparatus for treating water containing silica/hardness components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018146902A JP7137393B2 (en) | 2018-08-03 | 2018-08-03 | Method and apparatus for treating water containing silica/hardness components |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020018992A true JP2020018992A (en) | 2020-02-06 |
JP7137393B2 JP7137393B2 (en) | 2022-09-14 |
Family
ID=69587800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018146902A Active JP7137393B2 (en) | 2018-08-03 | 2018-08-03 | Method and apparatus for treating water containing silica/hardness components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7137393B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114702158A (en) * | 2022-04-01 | 2022-07-05 | 新疆天业汇合新材料有限公司 | Integrated desiliconization and hardness removal device and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10244259A (en) * | 1997-03-04 | 1998-09-14 | Kurita Water Ind Ltd | Water treatment method |
JPH11221579A (en) * | 1998-02-05 | 1999-08-17 | Kurita Water Ind Ltd | Treatment of fluorine-containing water |
JP2003300069A (en) * | 2002-04-09 | 2003-10-21 | Toray Ind Inc | Fresh water generating method and fresh water generator |
JP2006181445A (en) * | 2004-12-27 | 2006-07-13 | Kurita Water Ind Ltd | Waste water treatment apparatus |
WO2015002309A1 (en) * | 2013-07-05 | 2015-01-08 | 三菱重工業株式会社 | Water treatment system, water treatment method, cooling facility and power generating facility |
-
2018
- 2018-08-03 JP JP2018146902A patent/JP7137393B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10244259A (en) * | 1997-03-04 | 1998-09-14 | Kurita Water Ind Ltd | Water treatment method |
JPH11221579A (en) * | 1998-02-05 | 1999-08-17 | Kurita Water Ind Ltd | Treatment of fluorine-containing water |
JP2003300069A (en) * | 2002-04-09 | 2003-10-21 | Toray Ind Inc | Fresh water generating method and fresh water generator |
JP2006181445A (en) * | 2004-12-27 | 2006-07-13 | Kurita Water Ind Ltd | Waste water treatment apparatus |
WO2015002309A1 (en) * | 2013-07-05 | 2015-01-08 | 三菱重工業株式会社 | Water treatment system, water treatment method, cooling facility and power generating facility |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114702158A (en) * | 2022-04-01 | 2022-07-05 | 新疆天业汇合新材料有限公司 | Integrated desiliconization and hardness removal device and method |
Also Published As
Publication number | Publication date |
---|---|
JP7137393B2 (en) | 2022-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5378366A (en) | Hot lime precipitation of arsenic from wastewater or groundwater | |
JP4880656B2 (en) | Water treatment apparatus and water treatment method | |
JP7020821B2 (en) | Treatment equipment and treatment method for water containing hardness components | |
MX2011001303A (en) | Reverse osmosis enhanced recovery hybrid process. | |
WO2003008336A2 (en) | Reverse osmosis pretreatment using low pressure filtration | |
CN105347574A (en) | Fluoride removal method of graphite purification waste water and processing system | |
JP2004141799A (en) | Silica-containing waste water treatment method | |
CN105399260A (en) | A reusing treatment method for regenerated waste water of power plant condensate fine treatment | |
JP4168520B2 (en) | Method for treating CMP drainage | |
JP2012196614A (en) | Method and system for wastewater treatment | |
JP2007209886A (en) | Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent | |
CN116874100A (en) | Treatment method of saline water | |
JP7137393B2 (en) | Method and apparatus for treating water containing silica/hardness components | |
JP6912192B2 (en) | Silica-containing water treatment equipment and treatment method | |
JP7212490B2 (en) | Water treatment device and water treatment method | |
JP4543481B2 (en) | Method for treating water containing boron and fluorine | |
JP7084704B2 (en) | Silica-containing water treatment equipment and treatment method | |
JP7149129B2 (en) | Silica-containing water treatment method and treatment apparatus | |
JP2005125153A (en) | Method and apparatus for treating fluorine-containing waste water | |
JP4543478B2 (en) | Method for treating boron-containing water | |
JP7108392B2 (en) | Silica-containing water treatment apparatus and treatment method | |
JP2006263553A (en) | Method for treating anionic organic material-containing waste water | |
JP7228492B2 (en) | Water treatment device and water treatment method | |
CN111051253A (en) | Apparatus and method for treating silica-containing water | |
JP4347096B2 (en) | Fluorine removal apparatus and method for removing fluorine in waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220301 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220426 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7137393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |