JPH11262771A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JPH11262771A
JPH11262771A JP10065525A JP6552598A JPH11262771A JP H11262771 A JPH11262771 A JP H11262771A JP 10065525 A JP10065525 A JP 10065525A JP 6552598 A JP6552598 A JP 6552598A JP H11262771 A JPH11262771 A JP H11262771A
Authority
JP
Japan
Prior art keywords
water
cedi
anion exchange
treated
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10065525A
Other languages
Japanese (ja)
Inventor
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP10065525A priority Critical patent/JPH11262771A/en
Publication of JPH11262771A publication Critical patent/JPH11262771A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control the amperage of a continuous electric generation type pure water apparatus and to obtain high quality without scale hindrance by a method in which the pH of raw water is adjusted at a specified value, the raw water, after being deaerated, is subjected to anion exchange and separated into filtrate and concentrated water by reverse osmosis membrane separation, and the filtrate is converted into pure water by the pure water apparatus. SOLUTION: City water is treated with a clarifying apparatus 1, after its pH being adjusted at 3-5 with HCl, is supplied to a deaerator 2 for deaeration. After the deaerated water being passed through an anion exchange resin column 3, the water, together with the concentrated water of a continuous electric regeneration type pure water apparatus (CEDI) 5 of a post-stage and electrode water, is mixed with HCl, with its pH adjusted at about 6.5-7, and passed through a reverse osmosis membrane separator (RO apparatus) 4 to obtain concentrated water and filtrate. Part of the filtrate is sent to the treated water chamber 5A of the CEDI 5 to be made into pure water. The residual filtrate is sent to a concentrated water chamber 5B to be supplied to an electrode as concentrated water. In this way, high quality treated water is obtained with a reduced power consumption.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原水を逆浸透膜分
離装置(RO装置)と連続電気再生式純水装置(CED
I)とで処理して純水を製造する方法に係り、特に、R
O装置とCEDIとを組み合わせて純水を製造するに当
り、水回収率を高めると共に、得られる純水の水質を向
上させる純水の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reverse osmosis membrane separation apparatus (RO apparatus) for raw water and a continuous electric regeneration type pure water apparatus (CED).
I) and the method for producing pure water.
The present invention relates to a method for producing pure water, which increases the water recovery rate and improves the quality of pure water obtained when producing pure water by combining an O apparatus and CEDI.

【0002】[0002]

【従来の技術】従来、半導体、レンズ、液晶等の洗浄用
水、医薬用水等に用いられる純水の製造には、図2に示
す如く、複数のアニオン交換膜21及びカチオン交換膜
22を交互に配列して濃縮水室23と処理水室24とを
交互に形成し、処理水室24にアニオン交換樹脂とカチ
オン交換樹脂とを混合して充填した連続電気再生式純水
装置(CEDI)が多用されている。CEDIは効果的
な脱イオン処理が可能であり、イオン交換樹脂のように
再生を必要とせず、完全な連続採水が可能で、極めて高
純度の水が得られるという優れた特長を有する。
2. Description of the Related Art Conventionally, in the production of pure water used for cleaning water for semiconductors, lenses, liquid crystals, etc., and medical water, a plurality of anion exchange membranes 21 and cation exchange membranes 22 are alternately arranged as shown in FIG. A continuous electric regeneration type pure water device (CEDI) in which concentrated water chambers 23 and treated water chambers 24 are alternately formed and mixed with an anion exchange resin and a cation exchange resin in the treated water chamber 24 and filled are used frequently. Have been. CEDI has an excellent feature that it can perform an effective deionization treatment, does not require regeneration like an ion-exchange resin, can completely continuously sample water, and can obtain water of extremely high purity.

【0003】CEDIでは、処理水室24に流入した供
給水(被処理水)中のイオンが親和力、濃度及び移動度
に基づいて陽極25と陰極26の電位の傾きの方向に樹
脂20中を移動し、更に、処理水室24と濃縮水室23
とを仕切るカチオン交換膜22又はアニオン交換膜21
を横切って移動し、すべての室において電荷の中和が保
たれるようになる。そして、イオン交換膜21、22の
半浸透特性及び電位の傾きの方向性により、供給水中の
イオンは処理水室24では減少し、隣りの濃縮水室23
では濃縮されることになる。このため、処理水室24か
ら純水(脱イオン水)が回収される。なお、27は陽極
室、28は陰極室である。
In CEDI, ions in feed water (water to be treated) flowing into a treated water chamber 24 move in the resin 20 in the direction of the gradient of the potential of the anode 25 and the cathode 26 based on affinity, concentration and mobility. And the treated water chamber 24 and the concentrated water chamber 23
Exchange membrane 22 or anion exchange membrane 21 that separates
And charge neutralization is maintained in all chambers. Then, due to the semi-osmotic characteristic of the ion exchange membranes 21 and 22 and the directionality of the gradient of the potential, the ions in the supply water are reduced in the treated water chamber 24 and the adjacent concentrated water chamber 23 is reduced.
Then it will be concentrated. Therefore, pure water (deionized water) is recovered from the treated water chamber 24. In addition, 27 is an anode room and 28 is a cathode room.

【0004】従来、このようなCEDIの前処理手段と
して、逆浸透膜分離装置(RO装置)を設けることがあ
る。RO装置を配設することにより、原水中の電解質、
TOC成分を効率的に除去することができ、CEDIに
おける負荷を低減し、高純度の処理水を得ることができ
るようになる。
Conventionally, a reverse osmosis membrane separation device (RO device) has been provided as a pretreatment means for such CEDI. By installing the RO device, the electrolyte in raw water,
The TOC component can be efficiently removed, the load on CEDI can be reduced, and high-purity treated water can be obtained.

【0005】このようにRO装置を設ける場合におい
て、CO2含有率がCEDI処理水の水質に大きく影響
することから、CO2を低減する目的で、次のような方
法が提案されている。
[0005] In the case thus providing a RO device, since the CO 2 content greatly affects the quality of CEDI process water, in order to reduce the CO 2, the following method has been proposed.

【0006】 CEDIの電流値を高くする。The current value of CEDI is increased.

【0007】 CEDIの給水のpHを8〜9と高く
する。
[0007] The pH of CEDI feed water is increased to 8-9.

【0008】 カチオン交換樹脂及び脱気装置で処理
してCa2+やCO2を低減した後RO装置に通水する。
[0008] After treatment with a cation exchange resin and a deaerator to reduce Ca 2+ and CO 2 , water is passed through an RO unit.

【0009】[0009]

【発明が解決しようとする課題】上記従来法のうち、C
EDIの電流値を高くする方法やCEDIの給水のpH
を高くする方法では、CO2(HCO3 -)と微量のCa
2+の共存でCaCO3スケールが発生するという問題が
ある。特に、CEDIの給水のpHを高くするとスケー
ルの発生を加速させる。このような現象はRO処理のみ
では解消することができない。また、電流値を高くする
方法では、電力コストが高騰する。その上、原水中のT
OCを除去し得ず、処理水質が劣る。
Among the above conventional methods, C
How to increase EDI current and pH of CEDI feedwater
In the method of increasing CO, CO 2 (HCO 3 ) and a trace amount of Ca
There is a problem that CaCO 3 scale is generated in the coexistence of 2+ . In particular, increasing the pH of the CEDI feedwater will accelerate the generation of scale. Such a phenomenon cannot be eliminated only by RO processing. Further, in the method of increasing the current value, the power cost rises. Besides, T in raw water
OC cannot be removed and the quality of treated water is poor.

【0010】また、Ca2+やCO2の除去のために、カ
チオン交換樹脂及び脱気装置で処理する方法では、比抵
抗の向上は達成できるが、TOCやシリカ(SiO2
の低減が不十分であり、十分に満足し得る水質が得られ
ない。
In the method of removing the Ca 2+ and CO 2 using a cation exchange resin and a deaerator, improvement of the specific resistance can be achieved, but TOC or silica (SiO 2 )
Is not sufficiently reduced, and a sufficiently satisfactory water quality cannot be obtained.

【0011】ところで、CEDIによる脱塩でシリカを
除去する場合、シリカ除去率を高くしようとすると必要
とする電流量が大幅に増加する。これはシリカを処理水
室から濃縮水室へ移動させるには、強い力で電気的に引
張る必要があるためであり、このため、シリカ除去率を
上げるには、電流量を増大させていくことになる。この
ように電流量を増大させると、水の分解も起こり、電流
が消費され、電力コストはより高騰する。
By the way, in the case of removing silica by desalting with CEDI, the amount of current required is greatly increased if the silica removal rate is to be increased. This is because it is necessary to electrically pull the silica with a strong force to move the silica from the treated water chamber to the concentrated water chamber. Therefore, in order to increase the silica removal rate, the amount of current must be increased. become. When the amount of current is increased in this way, water is also decomposed, the current is consumed, and the power cost is further increased.

【0012】また、CEDIによる脱塩では、原水中の
カチオンとアニオンとのバランスがくずれると、多い方
のイオンが処理水中に残留する恐れがあるが、原水中に
炭酸(CO2)があると、このバランスをくずす原因と
なり、炭酸の存在がCEDIの処理水の水質を左右する
ことになることから、CO2に起因する水質低下の問題
もある。
Also, in desalination by CEDI, if the balance between cations and anions in the raw water is lost, more ions may remain in the treated water, but if there is carbonic acid (CO 2 ) in the raw water. , cause collapsing this balance, the presence of carbonate since it will affect the quality of the treated water CEDI, there is also a problem of quality degradation due to CO 2.

【0013】本発明は上記従来の問題点を解決し、CE
DIの電流値を高くすることなく、また、スケール障害
を防止して高水質の処理水を得ることができる純水の製
造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides a CE.
An object of the present invention is to provide a method for producing pure water that can obtain treated water of high quality without increasing the current value of DI and preventing scale disturbance.

【0014】[0014]

【課題を解決するための手段】本発明の純水の製造方法
は、原水を、pH3〜5に調整して脱気処理する脱気工
程と、アニオン交換樹脂に接触させるアニオン交換工程
とによって処理し、その後逆浸透膜分離装置に通水して
透過水と濃縮水とを得、該透過水を連続電気再生式純水
装置に給水して純水を得ることを特徴とする。
The pure water production method of the present invention comprises a deaeration step in which raw water is adjusted to pH 3 to 5 to deaerate and an anion exchange step in which the raw water is brought into contact with an anion exchange resin. Thereafter, the water is passed through a reverse osmosis membrane separator to obtain permeated water and concentrated water, and the permeated water is supplied to a continuous electric regeneration type pure water apparatus to obtain pure water.

【0015】本発明においては、上記の脱気工程とアニ
オン交換工程とのいずれを先に行っても良い。この脱気
工程では、pH3〜5の酸性条件とされることにより水
中の(重)炭酸成分はCO2の状態となり、脱気処理で容
易に除去される。
In the present invention, any of the above degassing step and anion exchange step may be performed first. In this degassing step, the (bi) carbonic acid component in the water is brought into a CO 2 state by setting the pH to 3 to 5 under acidic conditions, and is easily removed by degassing.

【0016】また、アニオン工程では、流入水をアニオ
ン交換樹脂で処理することにより、pHは上昇しアルカ
リ性となる。アルカリ性条件下ではシリカはイオン化
し、残留CO2もイオン化して(重)炭酸イオンとなる。
このイオン化したシリカと(重)炭酸イオンはアニオン交
換樹脂により吸着除去される。また、水中のTOCの一
部もアルカリ性においてイオン化するので、アニオン交
換樹脂に吸着されて除去される。
In the anion step, the pH of the influent water becomes alkaline by treating the influent water with an anion exchange resin. Under alkaline conditions, the silica ionizes and the residual CO 2 also ionizes into (bi) carbonate ions.
The ionized silica and (bi) carbonate ions are adsorbed and removed by the anion exchange resin. Further, a part of the TOC in the water is ionized in the alkaline state, and thus is adsorbed and removed by the anion exchange resin.

【0017】上記の通り、脱気工程とアニオン交換工程
とによる原水の処理では、原水を脱気工程、アニオン交
換工程の順に処理してもよく、アニオン交換工程、脱気
工程の順に処理しても良い。このように2工程によって
原水を処理した処理水をRO装置に導入する。このRO
装置では、pH6〜9.5のほぼ中性の水(原水を処理
した水)が給水されるため、通常の高脱塩率のRO膜を
使用することができる。このRO装置の給水(原水を処
理した水)は、脱気及びアニオン交換処理で炭酸イオン
やシリカ等のスケール成分が除去されたものであるた
め、水回収率を高めてもスケール障害を引き起こすこと
がなく、高回収率にて高水質の透過水を得ることができ
る。
As described above, in the treatment of raw water by the degassing step and the anion exchange step, the raw water may be treated in the order of the degassing step and the anion exchange step, or the raw water may be treated in the order of the anion exchange step and the degassing step. Is also good. The treated water obtained by treating the raw water in the two steps as described above is introduced into the RO device. This RO
Since almost neutral water (water obtained by treating raw water) having a pH of 6 to 9.5 is supplied to the apparatus, an ordinary RO membrane having a high desalination rate can be used. The feed water (water obtained by treating raw water) of this RO device is one from which scale components such as carbonate ions and silica have been removed by degassing and anion exchange treatment. And high-quality permeated water can be obtained at a high recovery rate.

【0018】CEDIでは、その前段までの工程で、シ
リカ、炭酸イオン等のスケールの原因となる物質が除去
されているため、CEDIにおけるスケールの発生を防
止でき、CEDIを安定して長時間運転できる。
In the CEDI process, since the substances causing the scale, such as silica and carbonate ions, have been removed in the preceding steps, the generation of scale in the CEDI can be prevented, and the CEDI can be operated stably for a long time. .

【0019】また、前述の如く、CEDIでシリカを除
去しようとすると、電力コストが高騰するが、本発明で
は、CEDIの前段で予めシリカを除去しているため、
CEDIにおいて、特にシリカの除去に配慮する必要は
なく、電流値の増大を抑えることができる。
Further, as described above, when the silica is removed by the CEDI, the power cost rises. However, in the present invention, the silica is removed before the CEDI.
In CEDI, there is no need to particularly consider the removal of silica, and an increase in current value can be suppressed.

【0020】更に、CEDIの前段で、炭酸成分が脱気
及びアニオン交換樹脂による処理で十分に排除されてい
るため、CEDIへの炭酸成分の流入が極めて少ない。
このため、前述のCO2に起因するCEDI処理水の水
質低下の問題はなく、安定して良好な水質を得ることが
できる。
Further, in the preceding stage of CEDI, the carbonic acid component is sufficiently removed by degassing and treatment with an anion exchange resin, so that the inflow of the carbonic acid component into CEDI is extremely small.
Therefore, there is no problem of the deterioration of the water quality of the CEDI treated water caused by the above-mentioned CO 2 , and a good water quality can be obtained stably.

【0021】[0021]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0022】図1は本発明の実施の形態の一例を示す系
統図である。
FIG. 1 is a system diagram showing an example of the embodiment of the present invention.

【0023】本発明において、原水としては、工水、市
水、井水等、通常の純水製造用原水として使われる水が
使用でき、また、超純水を使用する半導体製造工程から
の排水を常法に従ってTOC1ppm以下に生物処理
し、必要に応じて更にRO処理、イオン交換処理したも
のを原水とすることもできる。なお、このようにプロセ
ス排水を生物処理した水を原水とする場合、この生物処
理水はアニオン交換樹脂塔3の入り口側に給水しても良
い。
In the present invention, as raw water, water used as ordinary raw water for producing pure water, such as industrial water, city water, and well water, can be used, and waste water from a semiconductor manufacturing process using ultrapure water can be used. Can be subjected to biological treatment to a TOC of 1 ppm or less according to a conventional method, and further subjected to RO treatment and ion exchange treatment as needed to obtain raw water. In the case where the biologically treated water is used as raw water, the biologically treated water may be supplied to the entrance side of the anion exchange resin tower 3.

【0024】原水はまず、原水中の濁質や、不溶化可能
な溶存物質を除去するために除濁装置1で処理するのが
好ましく、この場合、除濁装置1としては凝集沈澱、濾
過、除濁用膜分離(例えば、精密濾過(MF)膜や限外
濾過(UF)膜)などが使用できる。除濁装置1を設け
ることで後段の負荷を軽減し、処理水質を向上させるこ
とができる。
The raw water is preferably first treated with a turbidity removing device 1 in order to remove turbidity in the raw water and dissolved substances that can be insolubilized. A turbidity membrane separation (for example, microfiltration (MF) membrane or ultrafiltration (UF) membrane) can be used. By providing the turbidity removing device 1, the load at the subsequent stage can be reduced, and the quality of treated water can be improved.

【0025】除濁処理した原水は、脱気工程に導かれ
る。この脱気工程では、HCl、H2SO4等の鉱酸が添
加されpH3〜5に調整され、脱気装置2で脱気処理さ
れる。
The raw water subjected to the turbidity treatment is led to a deaeration step. In this deaeration step, a mineral acid such as HCl or H 2 SO 4 is added to adjust the pH to 3 to 5, and deaeration is performed by the deaerator 2.

【0026】脱気装置2では、給水のpHが5以下の酸
性であるため、水中の(重)炭酸成分はCO2の状態とな
っており、効率的に除去される。また、同時に水中の溶
存酸素を除去することもできる。この脱気装置2として
は、脱炭酸(空気接触法)装置、N2脱気装置、真空脱
気装置、膜脱気装置など通常の脱気装置を用いることが
できる。
In the deaerator 2, since the pH of the feed water is acidic at 5 or less, the (bi) carbonic acid component in the water is in a CO 2 state and is efficiently removed. In addition, dissolved oxygen in water can be removed at the same time. As the deaerator 2, an ordinary deaerator such as a decarboxylation (air contact method) device, a N 2 deaerator, a vacuum deaerator, and a film deaerator can be used.

【0027】脱気装置2からの脱気処理水は、次いでア
ニオン交換工程に導かれ、アニオン交換樹脂塔3に通水
される。アニオン交換樹脂塔3では、前述の如く、アル
カリ性条件となり、シリカがイオン化し、残留CO2
イオン化して(重)炭酸イオンとなるため、このイオン化
したシリカと(重)炭酸イオンはアニオン交換樹脂により
吸着除去される。また、水中のTOCの一部もアルカリ
性においてイオン化するので、アニオン交換樹脂に吸着
されて除去される。このアニオン交換樹脂塔3のアニオ
ン交換樹脂としては、弱塩基性アニオン交換樹脂であっ
ても、強塩基性アニオン交換樹脂であっても良く、具体
的には、バイエル社製「レバチットMP64」(弱塩基
性アニオン交換樹脂)や「レバチットMP500」(強
塩基性アニオン交換樹脂)等を用いることができる。
The degassed water from the degassing device 2 is then led to an anion exchange step and passed through an anion exchange resin tower 3. In the anion exchange resin tower 3, as described above, the alkaline condition is reached, the silica is ionized, and the residual CO 2 is also ionized to form (bi) carbonate ions. By adsorption. Further, a part of the TOC in the water is ionized in the alkaline state, and thus is adsorbed and removed by the anion exchange resin. The anion exchange resin of the anion exchange resin tower 3 may be a weakly basic anion exchange resin or a strongly basic anion exchange resin, and specifically, “Levatit MP64” (manufactured by Bayer AG) (Basic anion exchange resin), "LEVATIT MP500" (strongly basic anion exchange resin), and the like can be used.

【0028】アニオン交換樹脂塔3の流出水は、通常p
H9.5〜10.5のアルカリ性である。
The effluent of the anion exchange resin tower 3 is usually p
H 9.5 to 10.5 alkaline.

【0029】図1では原水を脱気工程、アニオン交換工
程の順に処理しているが、本発明では、原水をアニオン
交換工程、脱気工程の順に処理することもできる。アニ
オン交換工程で微量の酸素が溶解する場合があるが、脱
気工程をアニオン交換工程の後段に設けると、このよう
な酸素も除去できる。
In FIG. 1, the raw water is treated in the order of the degassing step and the anion exchange step. However, in the present invention, the raw water can be treated in the order of the anion exchange step and the degassing step. A trace amount of oxygen may be dissolved in the anion exchange step. However, if the degassing step is provided after the anion exchange step, such oxygen can also be removed.

【0030】アニオン交換工程または脱気工程からの流
出水は、pH調整後RO装置へ導かれる。図1の例で
は、アニオン交換樹脂塔3の流出水は、後段のCEDI
5の濃縮水と共に必要に応じて酸が添加されてpH6〜
9.5に調整された後、RO装置4に通水される。
The effluent from the anion exchange step or degassing step is led to a RO device after pH adjustment. In the example of FIG. 1, the effluent of the anion exchange resin tower 3 is the
An acid is added as necessary together with the concentrated water of pH 5 to adjust pH 6 to
After being adjusted to 9.5, water is passed through the RO device 4.

【0031】このRO装置4では、pH6〜9.5のほ
ぼ中性の水が給水されるため、NaCl除去率が98%
以上の通常の高脱塩率のRO膜、例えばポリアミド系又
は酢酸セルロース系等のRO膜を用いることができる。
具体的には、日東電工社製「NTR759HR」、[E
S−20]や東レ社製[SU−700]等を用いること
ができる。
In this RO device 4, since almost neutral water having a pH of 6 to 9.5 is supplied, the NaCl removal rate is 98%.
An ordinary RO membrane having a high desalination ratio as described above, for example, an RO membrane of polyamide type or cellulose acetate type can be used.
Specifically, “NTR759HR” manufactured by Nitto Denko Corporation, [E
S-20] or [SU-700] manufactured by Toray Industries, Inc. can be used.

【0032】このRO装置4では、前述の如く、その給
水は脱気装置2及びアニオン交換樹脂塔3の処理で炭酸
イオンやシリカ等のスケール成分が除去されたものであ
るため、水回収率を高めてもスケール障害を引き起こす
ことがなく、85〜95%程度の高回収率にて高水質の
透過水を得ることができる。
In the RO device 4, as described above, the water supply is obtained by removing scale components such as carbonate ions and silica by the treatment of the deaerator 2 and the anion exchange resin tower 3, so that the water recovery rate is reduced. Even if the concentration is increased, scale disturbance is not caused, and high-quality permeated water can be obtained at a high recovery rate of about 85 to 95%.

【0033】このRO装置4の透過水は後段のCEDI
5の処理水室5A及び濃縮水室5Bに供給され、濃縮水
は系外へ排出される。
The permeated water of the RO device 4 is supplied to a later stage CEDI.
The concentrated water is supplied to the treated water chamber 5A and the concentrated water chamber 5B, and the concentrated water is discharged out of the system.

【0034】CEDI5としては、図2に示す如く、ア
ニオン交換膜21とカチオン交換膜22により濃縮水室
23及び処理水室24と陽極室27及び陰極室28とが
隔成され、処理水室24に、或いは、処理水室24と濃
縮水室23とにカチオン交換樹脂とアニオン交換樹脂と
の混床が充填された、一般的な市販のCEDIを用いる
ことができる。
As shown in FIG. 2, in the CEDI 5, the concentrated water chamber 23 and the treated water chamber 24 are separated from the anode chamber 27 and the cathode chamber 28 by the anion exchange membrane 21 and the cation exchange membrane 22. Alternatively, a general commercially available CEDI in which a mixed bed of a cation exchange resin and an anion exchange resin is filled in the treated water chamber 24 and the concentrated water chamber 23 can be used.

【0035】CEDI5では、前述の原理で脱イオン処
理がなされ、処理水室5Aから純水が得られ、濃縮水室
5Bからは濃縮水が排出される。なお、CEDI5の電
極室(陽極室、陰極室)にはRO装置4の透過水が給水
される。
In the CEDI 5, deionization is performed according to the above-described principle, and pure water is obtained from the treated water chamber 5A, and concentrated water is discharged from the concentrated water chamber 5B. In addition, the permeated water of the RO device 4 is supplied to the electrode chambers (the anode chamber and the cathode chamber) of the CEDI 5.

【0036】処理水室5Aからの純水は系外へ排出さ
れ、使用場所へ送給される。
The pure water from the treated water chamber 5A is discharged out of the system and sent to the place of use.

【0037】一方、濃縮水室5Bからの濃縮水はRO装
置4の前段に返送され、RO装置4に給水される。ま
た、電極室からの流出水もRO装置4の前段に返送され
る。
On the other hand, the concentrated water from the concentrated water chamber 5B is returned to the preceding stage of the RO device 4 and supplied to the RO device 4. Further, the effluent from the electrode chamber is also returned to the preceding stage of the RO device 4.

【0038】本発明においては、CEDI5の前段まで
に、原水中のシリカ、炭酸イオン等のスケールの原因と
なる物質が高度に除去されており、CEDI5における
スケールの発生が防止され、CEDI5自体も85〜9
5%程度の高水回収率で、長期に亘り安定して運転する
ことができる。特に、炭酸は脱気による除去と、アニオ
ン交換樹脂塔3における吸着除去によって高度に除去さ
れるため、CEDI5への(重)炭酸イオンの流入が極
めて少なく、前述のCO2に起因するイオンバランスの
ずれからくるCEDI処理水の水質低下はなく、安定し
て良好な水質の処理水を得ることができる。
In the present invention, by the previous stage of CEDI5, scale-causing substances such as silica and carbonate ions in the raw water are highly removed, so that the generation of scale in CEDI5 is prevented, and CEDI5 itself is 85%. ~ 9
It can be operated stably for a long period of time with a high water recovery rate of about 5%. In particular, carbonic acid is highly removed by degassing and adsorption removal in the anion exchange resin tower 3, so that the inflow of (bi) carbonate ions into the CEDI 5 is extremely small, and the ion balance caused by the above-mentioned CO 2 is reduced. There is no decrease in the water quality of the CEDI treated water due to the displacement, and the treated water with good water quality can be obtained stably.

【0039】また、CEDI5の前段で予めシリカを除
去しているため、CEDI5において、特にシリカの除
去に配慮する必要はなく、電流値の増大を抑えることが
できる。
Further, since silica is previously removed before the CEDI 5, it is not necessary to pay particular attention to the removal of the silica in the CEDI 5, and an increase in the current value can be suppressed.

【0040】このCEDI5の処理水室5A及び濃縮水
室5Bの給水となるRO装置4の透過水は、前段の脱気
装置2及びアニオン交換樹脂塔3でスケール成分が高度
に除去されたものであるため、このCEDI5の濃縮水
を返送してRO装置4に給水しても、RO装置4でスケ
ール障害等を引き起こすことはなく、安定に処理を行う
ことができる。
The permeated water of the RO device 4 serving as the water supply to the treated water chamber 5A and the concentrated water chamber 5B of the CEDI 5 is obtained by removing the scale components to a high degree by the deaerator 2 and the anion exchange resin tower 3 at the preceding stage. Therefore, even if the concentrated water of the CEDI 5 is returned and supplied to the RO device 4, the RO device 4 does not cause a scale failure or the like, and can stably perform the processing.

【0041】図1に示される実施の形態では、系外へ排
出される水は、RO装置4の濃縮水のみであり、システ
ム全体としての水回収率を80%以上の高水回収率とす
ることができる上に、高水質の処理水を得ることができ
る。
In the embodiment shown in FIG. 1, the only water discharged to the outside of the system is the concentrated water of the RO device 4, and the water recovery rate of the entire system is set to a high water recovery rate of 80% or more. In addition, high quality treated water can be obtained.

【0042】[0042]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0043】実施例1 図1に示す方法により市水を処理して純水の製造を行っ
た。
Example 1 City water was treated by the method shown in FIG. 1 to produce pure water.

【0044】まず、市水500L/hrを除濁装置(外
圧型中空糸UF膜分離装置)1で処理した後、HClで
pH4に調整し、脱気装置2に供給した。脱気装置2と
しては、充填材(ネットリング)5Lを充填した空気向
流式(空気量10m3/hr)の脱炭酸塔を用い、LV
30m/hrで処理した。
First, 500 L / hr of city water was treated with a turbidity separator (external pressure type hollow fiber UF membrane separator) 1, adjusted to pH 4 with HCl, and supplied to a deaerator 2. As the deaerator 2, an air counterflow type (air volume: 10 m 3 / hr) decarbonation tower filled with 5 L of a filler (net ring) is used.
Treated at 30 m / hr.

【0045】脱気処理水は次いで、アニオン交換樹脂塔
(強塩基性アニオン交換樹脂「レバチットMP500」
50L充填)3にSV=10/hrで通水した後、後段
のCEDI5の濃縮水及び電極水と共に、HClを添加
してpH6.5〜7に調整し、RO装置4に通水した。
The degassed water is then passed through an anion exchange resin tower (strongly basic anion exchange resin “LEVATIT MP500”).
After passing through SV (10 L / hr) 3 with SV = 10 / hr, the pH was adjusted to 6.5 to 7 by adding HCl together with the concentrated water of CEDI 5 and the electrode water in the latter stage, and passed through the RO device 4.

【0046】このRO装置4としては、RO膜として日
東電工社製「NTR−759HR」(ポリアミド系合成
複合膜、NaCl除去率98%)1本(4インチ)を装
填したものを用い、給水量500L/hr、給水圧12
kg/cm2、水回収率40%で処理を行った。
As the RO device 4, an RO film loaded with one (4 inch) “NTR-759HR” (polyamide-based synthetic composite film, 98% NaCl removal rate) manufactured by Nitto Denko Corporation is used. 500L / hr, water supply pressure 12
The treatment was performed at kg / cm 2 and a water recovery rate of 40%.

【0047】このRO装置4の透過水230L/hrの
うち、150L/hrをCEDI(栗田工業(株)製
「ピュアエースPA120」)5の処理水室5Aに給水
し、60L/hrを濃縮水室5Bに給水し、20L/h
rを電極室に給水した。
Of the 230 L / hr of permeated water of the RO device 4, 150 L / hr was supplied to the treated water chamber 5 A of CEDI (“Pure Ace PA120” manufactured by Kurita Kogyo Co., Ltd.) 5, and 60 L / hr was concentrated water. Water is supplied to room 5B, and 20L / h
r was supplied to the electrode chamber.

【0048】得られた処理水(CEDI5からの純水)
の水質とCEDI5の電圧、電流値を調べ、結果を表1
に示した。
The obtained treated water (pure water from CEDI5)
The water quality of CEDI5 and the voltage and current value of CEDI5 were examined.
It was shown to.

【0049】比較例1 実施例1において、脱気装置とアニオン交換樹脂塔を省
略し、除濁した原水(pH6.5〜7)を直接RO装置
に通水したこと以外は同様にして処理を行った。即ち、
除濁した原水をRO装置に給水量500L/hr、給水
圧12kg/cm2で給水し、透過水230L/hrの
うち、150L/hrをCEDIの処理水室に給水し、
60L/hrを濃縮水室に、20L/hrを電極室に給
水した。
COMPARATIVE EXAMPLE 1 The procedure of Example 1 was repeated except that the degassing apparatus and the anion exchange resin tower were omitted, and the turbid raw water (pH 6.5 to 7) was passed directly to the RO apparatus. went. That is,
The clarified raw water is supplied to the RO device at a water supply amount of 500 L / hr and a water supply pressure of 12 kg / cm 2 , and 150 L / hr of the permeated water of 230 L / hr is supplied to the treated water chamber of CEDI.
60 L / hr was supplied to the concentrated water chamber, and 20 L / hr was supplied to the electrode chamber.

【0050】 得られた処理水の水質とCEDIの電圧、
電流値を調べ、結果を表1に示した。
[0050] The quality of the obtained treated water and the voltage of CEDI,
The current value was examined, and the results are shown in Table 1.

【0051】比較例2 実施例1において、アニオン交換樹脂塔を省略し、代り
に、脱気装置(脱炭酸塔)の前段にカチオン交換樹脂塔
(バイエル社製「レバチットSP112」50Lを充
填)を設け、カチオン交換樹脂塔及び脱炭酸塔を経た処
理水にアルカリを添加してpH6.5〜7に調整した後
RO装置及びCEDIに通水したこと以外は同様にして
処理を行った。
Comparative Example 2  In Example 1, the anion exchange resin tower was omitted, and
And a cation exchange resin tower before the deaerator (decarbonation tower).
(50 L of “Levatit SP112” manufactured by Bayer AG
) And treated through a cation exchange resin tower and a decarbonation tower.
After adjusting the pH to 6.5 to 7 by adding an alkali to the water,
Except that the water passed through the RO device and CEDI
Processing was performed.

【0052】得られた処理水の水質とCEDIの電圧、
電流値を調べ、結果を表1に示した。
The quality of the obtained treated water and the voltage of CEDI,
The current value was examined, and the results are shown in Table 1.

【0053】[0053]

【表1】 [Table 1]

【0054】表1より明らかなように、本発明によれ
ば、少ない電力消費量で高水質の処理水を得ることがで
きる。
As is clear from Table 1, according to the present invention, high-quality treated water can be obtained with a small amount of power consumption.

【0055】なお、上記実施例1では、RO装置を水回
収率46%で運転したが、このRO装置の水回収率を9
0%の高回収率で運転しても、何らスケール障害等の問
題はなく、実施例1とほぼ同等の処理水質を得ることが
できた。
In the first embodiment, the RO device was operated at a water recovery rate of 46%.
Even with operation at a high recovery rate of 0%, there was no problem such as scale disturbance, and the treated water quality almost equivalent to that of Example 1 could be obtained.

【0056】[0056]

【発明の効果】以上詳述した通り、本発明の純水の製造
方法によれば、RO装置とCEDIとを組み合わせて純
水を製造する方法において、CEDIの電流値を高くす
ることなく、また、スケール障害を防止して高水質の処
理水を得ることができる。
As described above in detail, according to the method for producing pure water of the present invention, in a method for producing pure water by combining an RO device and CEDI, the current value of CEDI is not increased, and Thus, high quality treated water can be obtained by preventing scale disturbance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す系統図であ
る。
FIG. 1 is a system diagram showing an example of an embodiment of the present invention.

【図2】CEDIの構造を示す概略的な構成図である。FIG. 2 is a schematic configuration diagram showing the structure of CEDI.

【符号の説明】[Explanation of symbols]

1 除濁装置 2 脱気装置 3 アニオン交換樹脂塔 4 RO装置 5 CEDI 5A 処理水室 5B 濃縮水室 20 イオン交換樹脂 21 アニオン交換膜 22 カチオン交換膜 23 濃縮水室 24 処理水室 25 陽極 26 陰極 27 陽極室 28 陰極室 REFERENCE SIGNS LIST 1 turbidity device 2 degassing device 3 anion exchange resin tower 4 RO device 5 CEDI 5A treated water chamber 5B concentrated water chamber 20 ion exchange resin 21 anion exchange membrane 22 cation exchange membrane 23 concentrated water chamber 24 treated water chamber 25 anode 26 cathode 27 Anode compartment 28 Cathode compartment

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/44 C02F 1/44 J 9/00 502 9/00 502Z 502J 502F 502L 503 503B 504 504B 504E ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/44 C02F 1/44 J 9/00 502 9/00 502Z 502J 502F 502L 503 503B 504 504B 504E

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水を、pH3〜5に調整して脱気処理
する脱気工程と、アニオン交換樹脂に接触させるアニオ
ン交換工程とによって処理し、 その後逆浸透膜分離装置に通水して透過水と濃縮水とを
得、 該透過水を連続電気再生式純水装置に給水して純水を得
ることを特徴とする純水の製造方法。
1. A process in which raw water is subjected to a degassing process of adjusting the pH to 3 to 5 and degassing, and an anion exchange process of bringing the raw water into contact with an anion exchange resin. A method for producing pure water, comprising obtaining water and concentrated water, and supplying the permeated water to a continuous electric regeneration type pure water apparatus to obtain pure water.
JP10065525A 1998-03-16 1998-03-16 Production of pure water Pending JPH11262771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10065525A JPH11262771A (en) 1998-03-16 1998-03-16 Production of pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10065525A JPH11262771A (en) 1998-03-16 1998-03-16 Production of pure water

Publications (1)

Publication Number Publication Date
JPH11262771A true JPH11262771A (en) 1999-09-28

Family

ID=13289531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10065525A Pending JPH11262771A (en) 1998-03-16 1998-03-16 Production of pure water

Country Status (1)

Country Link
JP (1) JPH11262771A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219161A (en) * 2000-02-08 2001-08-14 Nomura Micro Sci Co Ltd Water cleaning apparatus
JP2001259376A (en) * 2000-03-16 2001-09-25 Japan Organo Co Ltd Deionized water making apparatus
JP2002066259A (en) * 2000-08-29 2002-03-05 Kurita Water Ind Ltd Pure water production
WO2006050042A2 (en) * 2004-10-29 2006-05-11 Ge Mobile Water, Inc. Edi concentrate recycle loop with filtration module
CN101508473A (en) * 2009-04-08 2009-08-19 夏玉利 Purifier apparatus
WO2016187915A1 (en) * 2015-05-26 2016-12-01 清华大学 System for treating radioactive waste water to reach natural background radioactivity levels and application thereof
JP2020518437A (en) * 2017-05-08 2020-06-25 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Water treatment of sodium, high salinity or high sodium water for agricultural use

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219161A (en) * 2000-02-08 2001-08-14 Nomura Micro Sci Co Ltd Water cleaning apparatus
JP4499239B2 (en) * 2000-03-16 2010-07-07 オルガノ株式会社 Deionized water production equipment
JP2001259376A (en) * 2000-03-16 2001-09-25 Japan Organo Co Ltd Deionized water making apparatus
JP2002066259A (en) * 2000-08-29 2002-03-05 Kurita Water Ind Ltd Pure water production
JP4505965B2 (en) * 2000-08-29 2010-07-21 栗田工業株式会社 Pure water production method
AU2005302508B2 (en) * 2004-10-29 2010-08-05 Ge Mobile Water, Inc. EDI concentrate recycle loop with filtration module
JP2008518758A (en) * 2004-10-29 2008-06-05 ジーイー・モーバイル・ウォーター,インコーポレイテッド Concentration recycle loop with filtration module
WO2006050042A3 (en) * 2004-10-29 2006-06-15 Ge Mobile Water Inc Edi concentrate recycle loop with filtration module
WO2006050042A2 (en) * 2004-10-29 2006-05-11 Ge Mobile Water, Inc. Edi concentrate recycle loop with filtration module
CN101508473A (en) * 2009-04-08 2009-08-19 夏玉利 Purifier apparatus
WO2016187915A1 (en) * 2015-05-26 2016-12-01 清华大学 System for treating radioactive waste water to reach natural background radioactivity levels and application thereof
JP2020518437A (en) * 2017-05-08 2020-06-25 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Water treatment of sodium, high salinity or high sodium water for agricultural use
US11655166B2 (en) 2017-05-08 2023-05-23 Evoqua Water Technologies Llc Water treatment of sodic, high salinity, or high sodium waters for agricultural application

Similar Documents

Publication Publication Date Title
JP3575271B2 (en) Pure water production method
JP4867182B2 (en) Pure water production equipment
KR101563169B1 (en) Pure water production apparatus and pure water production method
TWI391332B (en) Pure water manufacturing device
JP2004033976A (en) Deionized water manufacturing method and apparatus therefor
JP2007307561A (en) High-purity water producing apparatus and method
JP3137831B2 (en) Membrane processing equipment
JP2000051665A (en) Desalination method
JP3656458B2 (en) Pure water production method
JPH11262771A (en) Production of pure water
JP4710176B2 (en) Ultrapure water production equipment
JP2000015257A (en) Apparatus and method for making high purity water
JP2001029752A (en) Manufacture of high-purity water and device therefor
TW202140384A (en) Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
JP2003266097A (en) Ultrapure water making apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2006255651A (en) Pure water producing system
JP2004167423A (en) Apparatus and method for pure water production
JP3593892B2 (en) Pure water production method and apparatus
JP2012183485A (en) Water treatment method and water treatment system
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
JPH11244854A (en) Production of pure water
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP4403622B2 (en) Electrodemineralization treatment method and electrodesalination treatment apparatus
JP6061446B2 (en) Water treatment method and water treatment system