JP2002066259A - Pure water production - Google Patents

Pure water production

Info

Publication number
JP2002066259A
JP2002066259A JP2000259279A JP2000259279A JP2002066259A JP 2002066259 A JP2002066259 A JP 2002066259A JP 2000259279 A JP2000259279 A JP 2000259279A JP 2000259279 A JP2000259279 A JP 2000259279A JP 2002066259 A JP2002066259 A JP 2002066259A
Authority
JP
Japan
Prior art keywords
water
membrane
electrodeionization
treated
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000259279A
Other languages
Japanese (ja)
Other versions
JP4505965B2 (en
Inventor
Osamu Kato
修 加藤
Tsuneo Kawakami
恒雄 河上
Kiminobu Osawa
公伸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000259279A priority Critical patent/JP4505965B2/en
Publication of JP2002066259A publication Critical patent/JP2002066259A/en
Application granted granted Critical
Publication of JP4505965B2 publication Critical patent/JP4505965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To sufficiently increase the electric current value necessary for desalination and stably obtain treated water with a high water quality at a high water recovery ratio with a low electric power consumption by reliably keeping the conductivity in an electric deionization apparatus, in a pure water production apparatus comprising an RO membrane apparatus and the electric deionization apparatus. SOLUTION: In a pure water production method comprising the step of passing filtrate passed through an RO membrane apparatus 2 through an electric deionization apparatus 3, object water to be treated having pH 3.0-5.5 is introduced into the RO membrane apparatus 2 to recover water at 90% or higher water recovery ratio and 5% or higher salt leakage ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体、液晶、製
薬、食品、電力等の分野の各種産業、民生用又は研究設
備で利用される脱イオン水を製造する純水の製造方法に
係り、特に逆浸透(RO)膜装置(以下「RO膜装置」
と称す。)と電気脱イオン装置とを備える純水製造装置
において、電気脱イオン装置の消費電力を低減した上で
高純度の脱イオン水を安定にかつ高い水回収率で製造す
ることができる純水の製造方法に関する。
The present invention relates to a method for producing pure water for producing deionized water used in various industries in the fields of semiconductors, liquid crystals, pharmaceuticals, foods, electric power, etc., for consumer use or in research facilities. In particular, reverse osmosis (RO) membrane devices (hereinafter “RO membrane devices”)
Called. ) And an electric deionization device, a pure water production device capable of producing high-purity deionized water stably with a high water recovery rate while reducing power consumption of the electrodeionization device. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】従来、半導体製造工場、液晶工場、食品
工業、電力工業等の各種産業、民生用ないし研究施設に
おいて使用される脱イオン水の製造には、図2に示す如
く電極(陽極11、陰極12)の間に複数のアニオン交
換膜13及びカチオン交換膜14を交互に配列して濃縮
室15と脱塩室16とを交互に形成し、脱塩室16にイ
オン交換樹脂、イオン交換繊維もしくはグラフト交換体
等からなるアニオン交換体とカチオン交換体とを混合も
しくは複層状に充填した電気脱イオン装置が多用されて
いる。なお、図2において17は陽極室、18は陰極室
である。
2. Description of the Related Art Conventionally, in the production of deionized water used in various industries such as a semiconductor manufacturing plant, a liquid crystal plant, a food industry, an electric power industry, and a consumer or research facility, as shown in FIG. , A plurality of anion exchange membranes 13 and a plurality of cation exchange membranes 14 are alternately arranged between the cathodes 12) to form a concentration chamber 15 and a desalination chamber 16 alternately. Electrodeionizers in which an anion exchanger composed of fibers or graft exchangers and a cation exchanger are mixed or filled in a multi-layered form are frequently used. In FIG. 2, reference numeral 17 denotes an anode chamber, and 18 denotes a cathode chamber.

【0003】電気脱イオン装置は、水解離によってH
イオンとOHイオンとを生成させ、脱塩室内に充填さ
れているイオン交換体を連続して再生することによっ
て、効率的な脱塩処理が可能であり、従来から脱塩処理
に広く用いられてきたイオン交換樹脂装置のような薬品
を用いた再生処理を必要とせず、完全な連続採水が可能
で、高純度の水が得られるという優れた効果を奏し、純
水製造装置などに組み込まれて広く使用されている。
[0003] The electrodeionization apparatus uses water to dissociate H +
Ions and OH - to produce the ions, by continuously reproducing ion exchanger filled in the desalting compartment, but may be efficient desalination process, widely used in desalination conventionally It does not require a regeneration treatment using chemicals like the ion exchange resin equipment that has been used, so it is possible to perform perfect continuous water sampling and has the excellent effect of obtaining high-purity water. Widely used.

【0004】図3は、このような電気脱イオン装置を組
み込んだ一般的な純水製造装置を示す系統図であり、市
水等の原水は、活性炭装置1及びRO膜装置2で処理さ
れた後、電気脱イオン装置3で処理される。ここで、R
O膜装置2は電気脱イオン装置の有機物、硬度成分、塩
類の負荷を軽減させるために設けられており、RO膜と
しては、通常、ポリアミド製のRO膜が用いられてい
る。
FIG. 3 is a system diagram showing a general pure water production apparatus incorporating such an electrodeionization apparatus. Raw water such as city water is treated by an activated carbon apparatus 1 and an RO membrane apparatus 2. After that, it is processed in the electrodeionization device 3. Where R
The O film device 2 is provided to reduce the load of organic substances, hardness components, and salts of the electrodeionization device. As the RO film, an RO film made of polyamide is usually used.

【0005】[0005]

【発明が解決しようとする課題】ところで、図4に示す
ように、電気脱イオン装置では、濃縮水の導電率が10
0μS/cm以下の水質になると急激に電気抵抗(電気
抵抗(Ω)=セル電圧(V/cell)/電流密度(A
/m))が上昇し、濃縮水導電率10〜20μS/c
mでは、全く電流が流れなくなってしまう。そして、こ
の結果、脱塩室内に通水された被処理水の水質が全く向
上しなくなる。
As shown in FIG. 4, in the electrodeionization apparatus, the conductivity of the concentrated water is 10%.
When the water quality reaches 0 μS / cm or less, the electric resistance (electric resistance (Ω) = cell voltage (V / cell) / current density (A)
/ M 2 )) increases and the conductivity of the concentrated water is 10 to 20 μS / c.
At m, no current flows at all. And as a result, the quality of the to-be-processed water passed into the desalination room does not improve at all.

【0006】このようなことから、図3に示す如く、電
気脱イオン装置の負荷を軽減するために電気脱イオン装
置の前段にRO膜装置を配置した純水製造装置にあって
は、電気脱イオン装置の給水の導電率が低くなりすぎる
ために、得られる処理水の水質が低下する場合があっ
た。
For this reason, as shown in FIG. 3, in a pure water production apparatus in which an RO membrane apparatus is arranged in front of the electrodeionization apparatus in order to reduce the load on the electrodeionization apparatus, the electric deionization apparatus is used. In some cases, the electrical conductivity of the water supplied to the ion device was too low, so that the quality of the resulting treated water was reduced.

【0007】この問題を解決するために、電気脱イオン
装置の水回収率を高めて、濃縮水、電極水の導電率を上
昇させる方法や、RO膜装置の水回収率を高めて電気脱
イオン装置の給水の導電率を上昇させる方法も考えられ
るが、高濃縮によるCaCO 、シリカ等の析出の問題
から水回収率の上昇度合いにも制限があり、上記課題の
解決には至らない。
To solve this problem, electrodeionization
Increase the water recovery rate of the device to increase the conductivity of concentrated water and electrode water.
Method and increase the water recovery rate of the RO membrane device, and
A method to increase the conductivity of the water supply to the ion device is also conceivable
But CaCO by high concentration 3Of precipitation of silica, silica, etc.
There is also a limit on the degree of increase in the water recovery rate.
No solution.

【0008】一方で、周知の通り、近年の地球環境保護
及び省資源化の点から、純水製造システムでの水回収率
の向上は常に望まれている。
On the other hand, as is well known, improvement of the water recovery rate in a pure water production system is always desired from the viewpoint of global environmental protection and resource saving in recent years.

【0009】本発明は上記従来の実情に鑑みてなされた
ものであって、RO膜装置と電気脱イオン装置とを備え
る純水製造装置を用いて純水を製造する際、電気脱イオ
ン装置における導電率を確保して脱塩に必要な電流値を
十分に高め、低電力量で高水質の処理水を高い水回収率
にて安定に得ることができる純水の製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and when producing pure water using a pure water producing apparatus having an RO membrane device and an electrodeionizing device, the present invention relates to an electric deionizing device. It is an object of the present invention to provide a method for producing pure water capable of sufficiently increasing the current value required for desalination by securing electrical conductivity, and stably obtaining high-quality treated water with a low power consumption and a high water recovery rate. Aim.

【0010】[0010]

【課題を解決するための手段】本発明の純水の製造方法
は、RO膜装置と電気脱イオン装置とを有し、該逆浸透
膜脱塩装置の透過水を該電気脱イオン装置に供給するよ
うにした純水の製造方法において、該RO膜装置にpH
3.0〜5.5の被処理水を導入し、該RO膜装置にお
いて、水回収率90%以上、塩類リーク率5%以上で処
理することを特徴とする。
The method for producing pure water according to the present invention has an RO membrane device and an electrodeionization device, and supplies permeated water from the reverse osmosis membrane desalination device to the electrodeionization device. In the method for producing pure water, the pH value of the RO
It is characterized in that 3.0 to 5.5 water to be treated is introduced, and the RO membrane apparatus is treated at a water recovery rate of 90% or more and a salt leak rate of 5% or more.

【0011】なお、RO膜装置の水回収率とは、RO膜
装置に流入する水に対する透過水として取り出す水の割
合である。ここで、RO膜装置に流入する水とはRO膜
装置で処理する被処理水とRO膜装置の濃縮水の循環水
との合計である。従って、水回収率90%で運転すると
きには、RO膜装置には、90部の被処理水と10部の
濃縮循環水が流入し、90部の透過水が取り出される。
[0011] The water recovery rate of the RO membrane device is a ratio of water taken out as permeated water to water flowing into the RO membrane device. Here, the water flowing into the RO membrane device is the sum of the water to be treated in the RO membrane device and the circulating water of the concentrated water of the RO membrane device. Therefore, when operating at a water recovery of 90%, 90 parts of the water to be treated and 10 parts of the concentrated circulating water flow into the RO membrane device, and 90 parts of the permeated water are taken out.

【0012】また、RO膜装置の塩類リーク率とは、被
処理水の塩類(1価の塩)濃度に対する透過水の塩類
(1価の塩)濃度の割合である。
The salt leak rate of the RO membrane device is the ratio of the salt (monovalent salt) concentration of the permeated water to the salt (monovalent salt) concentration of the water to be treated.

【0013】本発明では、RO膜装置の被処理水のpH
を3.0〜5.5とし、かつRO膜装置を水回収率90
%以上の高回収率で運転して、RO膜装置の透過水中に
NaClなどのイオンをリークさせることによって、R
O膜装置の透過水が導入される電気脱イオン装置に必要
なイオンを確保する。
In the present invention, the pH of the water to be treated in the RO membrane device is
Is set to 3.0 to 5.5, and the RO membrane device is set to a water recovery rate of 90.
% By operating at a high recovery rate of not less than 0.1% to leak ions such as NaCl into the permeated water of the RO membrane apparatus.
The ions necessary for the electrodeionization device into which the permeated water of the O membrane device is introduced are secured.

【0014】図4から明らかなように、電気脱イオン装
置における電流効率を確保するためには、電気脱イオン
装置の濃縮水、電極水の導電率は少なくとも50μS/
cm、好ましくは100μS/cm以上必要である。例
えば、電気脱イオン装置を水回収率90%で運転すると
した場合、電気脱イオン装置の給水、即ち、RO膜装置
の透過水の導電率は5μS/cm以上、好ましくは10
μS/cm以上であることが必要である。
As is apparent from FIG. 4, in order to ensure current efficiency in the electrodeionization apparatus, the conductivity of the concentrated water and electrode water of the electrodeionization apparatus is at least 50 μS /.
cm, preferably 100 μS / cm or more. For example, when the electrodeionization apparatus is operated at a water recovery rate of 90%, the water supply of the electrodeionization apparatus, that is, the conductivity of the permeated water of the RO membrane apparatus is 5 μS / cm or more, preferably 10 μS / cm or more.
It is necessary to be at least μS / cm.

【0015】一方、図5に示す如く、RO膜装置では、
水回収率90%以上で運転することにより、導入される
被処理水のイオンの5%以上がリークするようになる
(塩類リーク率5%以上)。ただし、ここで用いられる
RO膜装置のRO膜は通常の純水製造装置に採用される
脱塩率99%以上の高脱塩率のものである。従って、通
常、純水製造装置の原水とされる市水レベルの水質の水
(導電率150〜200μS/cm程度)を処理する場
合、RO膜装置を水回収率90%以上で処理することに
より導電率10μS/cm以上の透過水を得ることがで
きる。
On the other hand, as shown in FIG.
By operating at a water recovery rate of 90% or more, 5% or more of the ions of the water to be introduced are leaked (salt leak rate of 5% or more). However, the RO membrane of the RO membrane apparatus used here has a high desalination rate of 99% or more, which is employed in an ordinary pure water production apparatus. Therefore, when treating water of a city water level (conductivity of about 150 to 200 μS / cm), which is usually used as raw water for a pure water production apparatus, the RO membrane apparatus is treated at a water recovery rate of 90% or more. Permeated water having a conductivity of 10 μS / cm or more can be obtained.

【0016】また、シリカ、TOCの水質が要求されな
い場合には、RO膜に代えてNF膜(ナノフィルトレー
ション、ルーズRO)を用いても良い。例えば、日東電
工(株)製「LES90」、「NTR−729HF」な
どを利用できる。
When the water quality of silica or TOC is not required, an NF film (nanofiltration, loose RO) may be used instead of the RO film. For example, “LES90” and “NTR-729HF” manufactured by Nitto Denko Corporation can be used.

【0017】ところで、市水中には通常20mg/L
(SiO換算)程度のシリカが含まれており、このよ
うな水をRO膜装置において水回収率90%以上で処理
すると、RO膜装置の濃縮水のシリカ濃度は10倍濃縮
で200mg/L程度となる。一方で、シリカの飽和溶
解度は図6に示す通りであることから、200mg/L
では濃縮水中にシリカが析出し、シリカスケールによる
RO膜閉塞の問題が懸念される。
By the way, in city water, usually 20 mg / L
(In terms of SiO 2 ), silica is contained, and when such water is treated at a water recovery rate of 90% or more in the RO membrane device, the silica concentration of the concentrated water in the RO membrane device is 200 mg / L at 10-fold concentration. About. On the other hand, since the saturation solubility of silica is as shown in FIG. 6, 200 mg / L
In this case, silica is precipitated in the concentrated water, and there is a concern that the RO membrane may be blocked by silica scale.

【0018】しかし、本発明者らの研究により、RO膜
でのシリカスケールが析出する濃度は図6の破線に示す
通りであり、pH3.0〜5.5であれば、飽和溶解度
を超えてシリカが析出してもRO膜に付着することはな
く、例えば、pH3.0ではシリカ濃度500mg/L
でもスケールの析出はなく、膜閉塞による透過水量の低
下の問題はないことが見出された。また、このようにp
H酸性とすることで、炭酸カルシウム等のアルカリ領域
で発生するスケールの問題も回避される。
However, according to the study of the present inventors, the concentration at which silica scale precipitates in the RO film is as shown by the broken line in FIG. 6, and if the pH is 3.0 to 5.5, the concentration exceeds the saturation solubility. Even if silica is precipitated, it does not adhere to the RO film. For example, at pH 3.0, silica concentration of 500 mg / L
However, it was found that there was no scale deposition and there was no problem of a decrease in the amount of permeated water due to membrane blockage. Also, like this
By using H acid, the problem of scale generated in an alkaline region such as calcium carbonate is also avoided.

【0019】従って、本発明によれば、RO膜装置にお
ける水回収率を高めてもスケール障害等を引き起こすこ
となく、電気脱イオン装置における導電率を確保して高
水質の処理水を得ることができる。
Therefore, according to the present invention, even if the water recovery rate in the RO membrane device is increased, the conductivity in the electrodeionization device can be ensured and high-quality treated water can be obtained without causing scale disturbance or the like. it can.

【0020】本発明では、RO膜装置の透過水中にイオ
ンをリークさせることにより、電気脱イオン装置の濃縮
水及び/又は電極水の導電率を50μS/cm以上とす
ることが好ましい。
In the present invention, it is preferable that the conductivity of the concentrated water and / or the electrode water of the electrodeionization device be 50 μS / cm or more by leaking ions into the permeated water of the RO membrane device.

【0021】なお、前述の如く、本発明ではシリカスケ
ールを防止できることから、本発明はシリカ濃度20m
g/L(SiO換算)以上というようなシリカ濃度の
高い被処理水の処理に有効である。
As described above, since silica scale can be prevented in the present invention, the present invention has a silica concentration of 20 m.
It is effective for treating water to be treated having a high silica concentration such as g / L (equivalent to SiO 2 ) or more.

【0022】本発明においては、RO膜装置に導入され
る水、またはRO膜装置の透過水を脱ガス装置で処理す
ることが好ましく、これにより電気脱イオン装置で除去
し難い炭酸ガスを予め除去して電気脱イオン装置に導入
される水の炭酸ガス(CO)濃度を1mg/L以下と
することにより、電気脱イオン装置におけるCO以外
のシリカ、ホウ素等の弱電解質の除去率も向上し、より
一層高水質の処理水を得ることができる。
In the present invention, it is preferable that water introduced into the RO membrane device or permeated water of the RO membrane device is treated by a degassing device, whereby carbon dioxide gas which is difficult to remove by an electrodeionization device is removed in advance. By reducing the carbon dioxide (CO 2 ) concentration of water introduced into the electrodeionization apparatus to 1 mg / L or less, the removal rate of weak electrolytes such as silica and boron other than CO 2 in the electrodeionization apparatus is also improved. In addition, it is possible to obtain treated water having higher quality.

【0023】[0023]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0024】図1は本発明の純水の製造方法の実施の形
態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the method for producing pure water of the present invention.

【0025】図示の方法では、市水等の原水を活性炭装
置1で処理した後、HCl等の酸を添加してpH3.0
〜5.5に調整し、これを脱ガス装置4で処理し、次い
でRO膜装置2及び電気脱イオン装置3で順次処理して
処理水を得る。
In the method shown in the figure, raw water such as city water is treated in an activated carbon apparatus 1, and then an acid such as HCl is added to adjust the pH to 3.0.
It is adjusted to 5.5, and this is treated by the degassing device 4, and then sequentially treated by the RO membrane device 2 and the electrodeionization device 3 to obtain treated water.

【0026】このような純水製造装置で処理するに当た
り、本発明においてはRO膜装置2の被処理水のpH
3.0〜5.5、水回収率90%以上、塩類リーク率5%
以上で処理を行う。
In the treatment with such a pure water production apparatus, in the present invention, the pH of the water to be treated in the RO membrane apparatus 2 is adjusted.
3.0-5.5, water recovery rate 90% or more, salt leak rate 5%
The processing is performed as described above.

【0027】RO膜装置2の被処理水のpHが5.5を
超えるとシリカスケールで経時によりRO膜装置の透過
水量が低減する。このpHが3.0未満の強酸性ではp
H調整のための薬剤コストの高騰、装置腐食等の問題が
あり好ましくない。
If the pH of the water to be treated in the RO membrane device 2 exceeds 5.5, the amount of water permeated through the RO membrane device decreases over time on a silica scale. When the pH is less than 3.0, p
It is not preferable because there are problems such as an increase in the cost of chemicals for adjusting H and corrosion of the apparatus.

【0028】なお、pH調整に用いる酸としては、特に
制限はないが、塩類リーク率5%以上を確保するために
一価の酸、例えばHClが好適である。
The acid used for pH adjustment is not particularly limited, but a monovalent acid, for example, HCl is preferable in order to secure a salt leak rate of 5% or more.

【0029】また、RO膜装置の水回収率が90%未満
では塩類リーク率5%以上を達成することが難しく、電
気脱イオン装置における導電率を確保し得ない。
When the water recovery rate of the RO membrane device is less than 90%, it is difficult to achieve a salt leak rate of 5% or more, and it is not possible to secure conductivity in the electrodeionization device.

【0030】この水回収率は過度に高いとRO膜装置の
透過水の導電率が高くなり過ぎ、RO膜装置による前処
理の効果が損なわれるため、原水の水質にもよるが、R
O膜装置の水回収率は特に90〜95%で、塩類リーク
率5〜25%程度で導電率5〜40μS/cm程度の透
過水を得ることが望ましい。
If the water recovery rate is excessively high, the conductivity of the permeated water of the RO membrane device becomes too high, and the effect of the pretreatment by the RO membrane device is impaired.
The water recovery rate of the O membrane device is particularly preferably 90 to 95%, and it is desirable to obtain permeated water having a salt leak rate of about 5 to 25% and a conductivity of about 5 to 40 μS / cm.

【0031】本発明においては、このようにRO膜装置
の水回収率90%以上で塩類リーク率5%以上として、
好ましくは導電率5μS/cm以上、より好ましくは1
0μS/cm以上の透過水を得るために、次のような条
件を採用することが好ましい。
In the present invention, the water recovery rate of the RO membrane device is 90% or more and the salt leakage rate is 5% or more.
Preferably the conductivity is 5 μS / cm or more, more preferably 1
In order to obtain permeated water of 0 μS / cm or more, it is preferable to employ the following conditions.

【0032】原水水質:導電率150〜200μS/c
m程度の市水、工水。なお、前述のシリカスケール防止
効果の面から、本発明は、特に、シリカ濃度20mg/
L以上、とりわけ25mg/L以上の原水に有効であ
る。RO膜装置のRO膜:脱塩率99%以上のRO膜。
Raw water quality: conductivity 150 to 200 μS / c
About m of city water and industrial water. In addition, from the viewpoint of the above-mentioned silica scale prevention effect, the present invention particularly provides a silica concentration of 20 mg /
It is effective for raw water of L or more, especially 25 mg / L or more. RO membrane of RO membrane apparatus: RO membrane having a desalination rate of 99% or more.

【0033】また、このような透過水を処理して電気脱
イオン装置において濃縮水及び/又は電極水の導電率を
50μS/cm以上、好ましくは100〜500μS/
cm、電極室の電気抵抗を2Ω(V/(A/m))以
下とするために、電気脱イオン装置においては水回収率
75〜90%程度で処理を行うのが好ましい。
Further, such a permeated water is treated and the electric conductivity of the concentrated water and / or the electrode water in the electrodeionization apparatus is 50 μS / cm or more, preferably 100 to 500 μS / cm.
cm, the electrical resistance of the electrode chamber is preferably 2Ω (V / (A / m 2 )) or less. In the electrodeionization apparatus, it is preferable to perform the treatment at a water recovery of about 75 to 90%.

【0034】このような運転条件で処理を行うことによ
り、電気脱イオン装置の電極水供給水に電解質を注入し
たり、電極室内にイオン交換体を充填することなく、高
い電流効率で処理を行うことが可能となる。
By performing the process under such operating conditions, the process can be performed with high current efficiency without injecting the electrolyte into the electrode water supply water of the electrodeionization apparatus or filling the electrode chamber with the ion exchanger. It becomes possible.

【0035】なお、図1に示す純水製造装置は、本発明
の実施の形態の一例であって、本発明で用いる純水製造
装置の構成は、その要旨を超えない限り、何ら図示のも
のに限定されるわけではない。
The pure water producing apparatus shown in FIG. 1 is an example of the embodiment of the present invention, and the constitution of the pure water producing apparatus used in the present invention is not limited to the one shown in the drawings unless it exceeds the gist. It is not limited to.

【0036】例えば、RO膜装置を2機以上用い、これ
を直列に配置しても良い。この場合には、電気脱イオン
装置のカルシウムスケール負荷軽減、スライム発生防止
等による処理運転の安定化、水質向上(シリカ、比抵
抗)という効果が奏される。また、脱ガス装置は必ずし
も必要とされないが、脱ガス装置を設けて電気脱イオン
装置で除去し難いCOを予め除去することにより、処
理水の水質を高めることができ、有利である。脱ガス装
置は、図1に示す如く、RO膜装置の前段に設けても良
く、RO膜装置の後段に設けても良いが、脱ガス装置に
導入される水のpHが酸性領域であることが重要であ
る。脱ガス装置による処理は、電気脱イオン装置の給水
のCO濃度が1mg/L以下となるように行うのが好
ましい。
For example, two or more RO membrane devices may be used and arranged in series. In this case, the effects of reducing the calcium scale load of the electrodeionization apparatus, stabilizing the processing operation by preventing the generation of slime, and improving the water quality (silica, specific resistance) are exhibited. Although the degassing device is not necessarily required, by previously removing the hard CO 2 which is removed by the electrodeionization apparatus provided with a degassing device, can increase the quality of treated water, it is advantageous. As shown in FIG. 1, the degassing device may be provided before the RO membrane device or may be provided after the RO membrane device. However, the pH of the water introduced into the degassing device is in an acidic range. is important. The treatment by the degassing device is preferably performed so that the CO 2 concentration of the feed water of the electrodeionization device becomes 1 mg / L or less.

【0037】[0037]

【実施例】以下に実験例及び実施例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically with reference to experimental examples and examples.

【0038】実験例1 RO膜装置として下記仕様のものを用い、下記水質の水
を原水として表1に示す水回収率で処理を行った。 [RO膜装置の仕様] 栗田工業(株)製「膜エースKN200」 RO膜として日東電工(株)製「NTR759」 (脱塩率99%)を装填。 [原水水質] シリカ濃度:30mg/L 導電率 :150μS/cm pH :5.0
EXPERIMENTAL EXAMPLE 1 An RO membrane device having the following specifications was used, and treatment was performed at a water recovery rate shown in Table 1 using water having the following water quality as raw water. [Specification of RO membrane device] "Membrane Ace KN200" manufactured by Kurita Kogyo Co., Ltd. "NTR759" manufactured by Nitto Denko Corporation (desalting rate: 99%) was loaded as an RO membrane. [Raw water quality] Silica concentration: 30 mg / L Conductivity: 150 μS / cm pH: 5.0

【0039】各水回収率におけるRO膜装置の流入水、
濃縮水、透過水の導電率、塩類リーク率は表1に示す通
りであり、水回収率90%以上で処理を行うことによ
り、塩類リーク率5%以上で透過水の導電率5〜10μ
S/cm以上を確保できることがわかる。
The inflow water of the RO membrane device at each water recovery rate,
The conductivity of the concentrated water and the permeated water and the salt leak rate are as shown in Table 1. By performing the treatment at a water recovery rate of 90% or more, the conductivity of the permeated water is 5 to 10 μm at a salt leak rate of 5% or more.
It can be seen that S / cm or more can be secured.

【0040】[0040]

【表1】 [Table 1]

【0041】実験例2 実験例1において、原水のpHを表2に示す通り変え、
水回収率95%で同様に処理を行った。10日間処理を
維続したときの運転圧力の上昇率(運転初期の圧力に対
する10日間運転後の圧力上昇割合)を求め、結果を表
2に示した。また、10日間運転後のRO膜装置のRO
膜を取り出し、シリカスケールの付着の有無を調べ、結
果を表2に示した。
Experimental Example 2 In Experimental Example 1, the pH of the raw water was changed as shown in Table 2,
The same treatment was performed at a water recovery of 95%. The rate of increase in operating pressure when the treatment was continued for 10 days (the rate of increase in pressure after 10 days of operation relative to the pressure in the initial operation) was determined. The results are shown in Table 2. In addition, RO of RO membrane device after 10 days of operation
The film was taken out, and the presence or absence of silica scale was examined. The results are shown in Table 2.

【0042】[0042]

【表2】 [Table 2]

【0043】表2により、pH5.5以下であれば、水
回収率90%以上でもシリカスケールによる透過水量の
低下の問題はないことがわかる。
From Table 2, it can be seen that if the pH is 5.5 or less, there is no problem of a decrease in the amount of permeated water due to the silica scale even if the water recovery is 90% or more.

【0044】実施例1 下記の活性炭装置、脱ガス装置、RO膜装置及び電気脱
イオン装置を図1に示すように直列に設置した純水製造
装置を用い、表3に示す水質の市水を原水として100
L/hrで処理した。
Example 1 Using a pure water production apparatus in which the following activated carbon apparatus, degassing apparatus, RO membrane apparatus and electrodeionization apparatus were installed in series as shown in FIG. 100 as raw water
L / hr.

【0045】[0045]

【表3】 [Table 3]

【0046】 活性炭装置 :栗田工業(株)製「クリコールKW10−30」 脱ガス装置 :栗田工業(株)製「オキシエース」 RO膜装置 :実験例1で用いたものと同仕様 電気脱イオン装置:栗田工業(株)製「ピュアエースPA−200」 処理量:100L/hrActivated carbon device: “Crycol KW10-30” manufactured by Kurita Kogyo Co., Ltd. Degassing device: “Oxyace” manufactured by Kurita Kogyo Co., Ltd. RO membrane device: same as that used in Experimental Example 1 Electrodeionizer : "Pure Ace PA-200" manufactured by Kurita Kogyo Co., Ltd. Processing volume: 100 L / hr

【0047】上記電気脱イオン装置のイオン交換膜とし
て下記のものを用い、また、脱塩室に充填するイオン交
換樹脂として下記のアニオン交換樹脂とカチオン交換樹
脂とをアニオン交換樹脂:カチオン交換樹脂=6:4
(体積比)で混合したものを用い、図2に示すような電
気脱イオン装置を組み立てた。なお、アニオン交換樹脂
及びカチオン交換樹脂は超純水で十分に洗浄したものを
用いた。 アニオン交換膜 :(株)トクヤマ製「ネオセプタAHA」 カチオン交換膜 :(株)トクヤマ製「ネオセプタCMB」 アニオン交換樹脂:三菱化学(株)製「SA10A」 カチオン交換樹脂:三菱化学(株)製「SK1B」
The following are used as the ion exchange membrane of the above electrodeionization apparatus, and the following anion exchange resin and cation exchange resin are used as the ion exchange resin to be filled in the desalting chamber: anion exchange resin: cation exchange resin = 6: 4
An electrodeionization device as shown in FIG. 2 was assembled by using the mixture (volume ratio). The anion exchange resin and the cation exchange resin used were sufficiently washed with ultrapure water. Anion exchange membrane: “Neoceptor AHA” manufactured by Tokuyama Corporation Cation exchange membrane: “Neosepta CMB” manufactured by Tokuyama Corporation Anion exchange resin: “SA10A” manufactured by Mitsubishi Chemical Corporation Cation exchange resin: “Made by Mitsubishi Chemical Corporation” SK1B "

【0048】活性炭装置の流出水にはHClを添加して
pH3.5に調整した。また、RO膜装置の水回収率は
95%とし、電気脱イオン装置の水回収率は90%、印
加電圧30V、電流0.5Aとした。
HCl was added to the effluent of the activated carbon unit to adjust the pH to 3.5. The water recovery of the RO membrane device was 95%, the water recovery of the electrodeionization device was 90%, the applied voltage was 30 V, and the current was 0.5 A.

【0049】このときの電気脱イオン装置の給水(RO
膜装置の透過水)、濃縮水及び脱イオン水の水質は表3
に示す通りであり、高水質の処理水を得ることができ
た。また、このときの電気脱イオン装置の電極室の電気
抵抗は0.5Ω(V/(A/m ))であった。
At this time, the water supply (RO)
Table 3 shows the quality of the permeated water of the membrane device), concentrated water and deionized water.
As shown in the figure, high quality treated water can be obtained.
Was. At this time, the electricity in the electrode chamber of the electrodeionization device
The resistance is 0.5Ω (V / (A / m 2))Met.

【0050】[0050]

【発明の効果】以上詳述した通り、本発明の純水の製造
方法によれば、RO膜装置と電気脱イオン装置で構成さ
れる純水製造装置において、スケール障害を引き起こす
ことなく、電気脱イオン装置における導電率を確保して
脱塩に必要な電流値を十分に高め、低電力で高水質の処
理水を高い水回収率にて安定に得ることができる。
As described above in detail, according to the method for producing pure water of the present invention, in a pure water producing apparatus composed of an RO membrane device and an electrodeionization device, the electric water can be removed without causing scale disturbance. The electric current required for desalination can be sufficiently increased by securing the conductivity in the ion device, and the treated water with low power and high quality can be stably obtained at a high water recovery rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の純水の製造方法の実施の形態を説明す
る系統図である。
FIG. 1 is a system diagram illustrating an embodiment of a method for producing pure water of the present invention.

【図2】一般的な電気脱イオン装置の構成を示す模式的
な断面図である。
FIG. 2 is a schematic sectional view showing a configuration of a general electrodeionization apparatus.

【図3】一般的な純水製造装置の系統図である。FIG. 3 is a system diagram of a general pure water production apparatus.

【図4】電気脱イオン装置における濃縮水の導電率と電
気抵抗との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the electrical conductivity of the concentrated water and the electrical resistance in the electrodeionization apparatus.

【図5】RO膜装置の水回収率と塩類リーク率との関係
を示すグラフである。
FIG. 5 is a graph showing a relationship between a water recovery rate and a salt leak rate of the RO membrane device.

【図6】シリカの飽和溶解度を示すグラフである。FIG. 6 is a graph showing the saturation solubility of silica.

【符号の説明】 1 活性炭装置 2 RO膜装置 3 電気脱イオン装置 4 脱ガス装置[Description of Signs] 1 Activated carbon device 2 RO membrane device 3 Electrodeionization device 4 Degassing device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/20 C02F 1/20 A 1/44 1/44 H 1/469 9/00 502F 9/00 502 502H 502M 502Z 503B 503 503C 504D 504 504E 1/46 103 (72)発明者 大澤 公伸 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D006 GA03 KA02 KA72 KB01 KB12 KD12 KE03Q KE12Q KE13Q KE15Q KE19P MC54 PA02 PB06 PB23 PC03 4D037 AA03 AB11 BA23 BB01 BB02 CA01 CA03 CA04 CA14 4D061 DA03 DB18 EA09 EB13 EB17 EB19 EB37 EB39 FA06 FA09 FA11 GA21 GC05 GC18 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/20 C02F 1/20 A 1/44 1/44 H 1/469 9/00 502F 9/00 502 502H 502M 502Z 503B 503 503C 504D 504 504E 1/46 103 (72) Inventor Kiminobu Osawa 3-7, Nishishinjuku, Shinjuku-ku, Tokyo F-term in Kurita Kogyo Co., Ltd. 4D006 GA03 KA02 KA72 KB01 KB12 KD03 KE03Q KE12Q KE13Q KE15Q KE19P MC54 PA02 PB06 PB23 PC03 4D037 AA03 AB11 BA23 BB01 BB02 CA01 CA03 CA04 CA14 4D061 DA03 DB18 EA09 EB13 EB17 EB19 EB37 EB39 FA06 FA09 FA11 GA21 GC05 GC18 GC18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 逆浸透膜装置と電気脱イオン装置とを有
し、該逆浸透膜脱塩装置の透過水を該電気脱イオン装置
に供給するようにした純水の製造方法において、 該逆浸透膜装置にpH3.0〜5.5の被処理水を導入
し、該逆浸透膜装置において、水回収率90%以上、塩
類リーク率5%以上で処理することを特徴とする純水の
製造方法。
1. A method for producing pure water, comprising: a reverse osmosis membrane device and an electrodeionization device, wherein permeated water of the reverse osmosis membrane desalination device is supplied to the electrodeionization device. Pure water characterized by introducing water to be treated having a pH of 3.0 to 5.5 into an osmosis membrane device and treating the reverse osmosis membrane device at a water recovery rate of 90% or more and a salt leak rate of 5% or more. Production method.
【請求項2】 請求項1において、該逆浸透膜装置に導
入される水、又は該逆浸透膜装置の透過水を脱ガス装置
で処理することにより、該電気脱イオン装置に導入され
る水の炭酸ガス濃度を1mg/L以下とすることを特徴
とする純水の製造方法。
2. The water introduced into the electrodeionization apparatus according to claim 1, wherein water introduced into the reverse osmosis membrane apparatus or water permeated through the reverse osmosis membrane apparatus is treated by a degassing apparatus. A method for producing pure water, wherein the carbon dioxide concentration of the water is 1 mg / L or less.
【請求項3】 請求項1又は2において、該電気脱イオ
ン装置の濃縮水及び/又は電極水の導電率が50μS/
cm以上であることを特徴とする純水の製造方法。
3. The electric deionization apparatus according to claim 1, wherein the electric conductivity of the concentrated water and / or the electrode water of the electrodeionization device is 50 μS /.
cm or more.
【請求項4】 請求項1ないし3のいずれか1項におい
て、該被処理水のシリカ濃度が20mg/L(SiO
換算)以上であることを特徴とする純水の製造方法。
4. The method according to claim 1, wherein the silica concentration of the water to be treated is 20 mg / L (SiO 2
A method for producing pure water.
JP2000259279A 2000-08-29 2000-08-29 Pure water production method Expired - Fee Related JP4505965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259279A JP4505965B2 (en) 2000-08-29 2000-08-29 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259279A JP4505965B2 (en) 2000-08-29 2000-08-29 Pure water production method

Publications (2)

Publication Number Publication Date
JP2002066259A true JP2002066259A (en) 2002-03-05
JP4505965B2 JP4505965B2 (en) 2010-07-21

Family

ID=18747474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259279A Expired - Fee Related JP4505965B2 (en) 2000-08-29 2000-08-29 Pure water production method

Country Status (1)

Country Link
JP (1) JP4505965B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049501A1 (en) * 2003-11-18 2005-06-02 Kurita Water Industries Ltd. Method of treating waste water containing organic substance and treating apparatus
EP1549420A4 (en) * 2002-05-06 2006-03-29 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
JP2007289887A (en) * 2006-04-26 2007-11-08 Kurita Water Ind Ltd Pure water production apparatus
JP4663012B2 (en) * 2005-06-14 2011-03-30 韓国電力技術株式会社 Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process
JP2011083666A (en) * 2009-10-13 2011-04-28 Miura Co Ltd Water treatment system
JP2017140548A (en) * 2016-02-08 2017-08-17 栗田工業株式会社 Method of operating electrodeionization apparatus
JP7477009B1 (en) 2023-03-30 2024-05-01 栗田工業株式会社 Method for operating an electrodeionization apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262771A (en) * 1998-03-16 1999-09-28 Kurita Water Ind Ltd Production of pure water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262771A (en) * 1998-03-16 1999-09-28 Kurita Water Ind Ltd Production of pure water

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320756B2 (en) 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
EP1549420A4 (en) * 2002-05-06 2006-03-29 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
KR100976903B1 (en) * 2002-05-06 2010-08-18 드바시쉬 무코파드헤이 Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
WO2005049501A1 (en) * 2003-11-18 2005-06-02 Kurita Water Industries Ltd. Method of treating waste water containing organic substance and treating apparatus
KR101098679B1 (en) 2003-11-18 2011-12-23 쿠리타 고교 가부시키가이샤 Method of treating waste water containing organic substance and treating apparatus
JP4663012B2 (en) * 2005-06-14 2011-03-30 韓国電力技術株式会社 Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process
JP2007289887A (en) * 2006-04-26 2007-11-08 Kurita Water Ind Ltd Pure water production apparatus
JP2011083666A (en) * 2009-10-13 2011-04-28 Miura Co Ltd Water treatment system
JP2017140548A (en) * 2016-02-08 2017-08-17 栗田工業株式会社 Method of operating electrodeionization apparatus
JP7477009B1 (en) 2023-03-30 2024-05-01 栗田工業株式会社 Method for operating an electrodeionization apparatus

Also Published As

Publication number Publication date
JP4505965B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
JP3969221B2 (en) Method and apparatus for producing deionized water
JP2008259961A (en) Electrodeionizing apparatus and its operation method
KR20060018877A (en) Electric type deionized water production apparatus operating method, electric type deionized water production system, and electric type deionized water production apparatus
JPH11244853A (en) Production of pure water
JP3137831B2 (en) Membrane processing equipment
JP2007307561A (en) High-purity water producing apparatus and method
JP2001198577A (en) Electric deionizing device
JP2002066259A (en) Pure water production
JP2000317457A (en) Production of pure water
JP3966103B2 (en) Operation method of electrodeionization equipment
JP3952127B2 (en) Electrodeionization treatment method
JP4152544B2 (en) Deionized water production method and apparatus
JP2001259644A (en) Pure water producer and pure water production method using the same
JP2001170630A (en) Pure water production device
JP2003145163A (en) Electric deionization device and electric deionization method
JPH11114576A (en) Deionized water producing device
JP2001038359A (en) Deionized water production and device therefor
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP2002011476A (en) Method of operating electric deionization device
JP2001219161A (en) Water cleaning apparatus
JP2007245120A (en) Electrically operated apparatus for producing deionized water
JP3674475B2 (en) Pure water production method
JP3511459B2 (en) Electric deionized water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees