JP2001029752A - Manufacture of high-purity water and device therefor - Google Patents

Manufacture of high-purity water and device therefor

Info

Publication number
JP2001029752A
JP2001029752A JP11209470A JP20947099A JP2001029752A JP 2001029752 A JP2001029752 A JP 2001029752A JP 11209470 A JP11209470 A JP 11209470A JP 20947099 A JP20947099 A JP 20947099A JP 2001029752 A JP2001029752 A JP 2001029752A
Authority
JP
Japan
Prior art keywords
water
treated
reverse osmosis
osmosis membrane
membrane device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11209470A
Other languages
Japanese (ja)
Other versions
JP3565098B2 (en
Inventor
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP20947099A priority Critical patent/JP3565098B2/en
Publication of JP2001029752A publication Critical patent/JP2001029752A/en
Application granted granted Critical
Publication of JP3565098B2 publication Critical patent/JP3565098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the proliferation of bacteria in a system to prevent a slime contamination from occurring by adjusting untreated water to a specific pH value range and running the pH value-adjusted water through a reverse osmosis membrane device and a deoxidation device of a front stage and further, running the pH value-readjusted water through an electric deionizing device with the passage of deionized water through an osmosis membrane of a rear stage. SOLUTION: Untreated water originating from a plant as waste water is previously treated using a turbidity removing device 1 and a specified acid is added to the treated water to adjust its pH value to 4-6. At the same time, the pH value-adjusted water is treated by means of a reverse osmosis membrane device 2 and a deoxidation device 3 of a front stage respectively. That is, oxygen and a carbon dioxide gas are removed by adjusting the pH value and at the same time, the proliferation of slime (live bacteria) is inhibited by lowering the dissolved oxygen concentration of the treated water to 100 ppb or less by a deoxidation process. Next the pH value of the treated water is adjusted to 7-8 by adding alkali and at the same time, the treated water is further treated using an electric deionizing device 4. In succession, the deionized water is treated with the help of a reverse osmosis device 5 of a rear stage. Thus it is possible to remove an organic matter, silica and the like included in the treated water to enhance its purity and deliver it as high-purity water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超純水の製造方法及
び装置に係り、特に、逆浸透(RO)膜装置におけるス
ライム(生菌)の発生を抑制し、高純度水を長期に亘り
安定に得る超純水の製造方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing ultrapure water, and in particular, suppresses the generation of slime (live bacteria) in a reverse osmosis (RO) membrane apparatus and stabilizes high-purity water for a long period of time. And a method and an apparatus for producing ultrapure water.

【0002】[0002]

【従来の技術】従来、工水、市水、井水或いは半導体製
造工程等からの回収水を処理して純水を製造するシステ
ムとしては、次のようなものが提供されている。
2. Description of the Related Art Conventionally, the following system is provided as a system for producing pure water by treating recovered water from industrial water, city water, well water, semiconductor manufacturing processes or the like.

【0003】 多床塔イオン交換樹脂で処理した後、
RO膜装置で処理する方法 RO膜装置で処理した後、混床塔イオン交換樹脂で
処理し、更にRO膜装置で処理する方法 RO膜装置で処理した後、電気透析装置で処理し、
更にRO膜装置で処理する方法
After treating with a multi-bed ion exchange resin,
Method of treating with RO membrane device After treating with RO membrane device, treating with mixed bed tower ion exchange resin, and further treating with RO membrane device After treating with RO membrane device, treating with electrodialysis device,
Further processing method with RO membrane equipment

【0004】[0004]

【発明が解決しようとする課題】上記〜のいずれの
方法においても、系内の菌の増殖を抑制することができ
ず、長期間運転することにより、後段のRO膜装置のR
O膜面にスライム(菌)が堆積し、水質の悪化、膜の透
過流束の低下をもたらすため、定期的にRO膜装置の殺
菌洗浄が必要であるという欠点がある。
In any of the above methods (1) to (4), the growth of bacteria in the system cannot be suppressed.
Since slime (bacterium) accumulates on the O membrane surface, resulting in deterioration of water quality and decrease in permeation flux of the membrane, there is a drawback in that it is necessary to periodically sterilize and wash the RO membrane device.

【0005】特に、,の方法では、再生後のイオン
交換樹脂からの溶出物による後段のRO膜装置の汚染の
問題もある。
[0005] In particular, in the method (1), there is also a problem of contamination of the RO membrane device in the latter stage due to the eluted substances from the ion exchange resin after regeneration.

【0006】なお、の方法で使用されている電気透析
装置はCO2の除去のために設けられたものであり、イ
オン交換膜のみで構成され、脱イオン能力はあるが殺菌
作用は弱い。電気透析装置で殺菌作用を得るためには、
限界電流密度以上の高い電流を流す必要があり、経済的
に不利である。
The electrodialysis apparatus used in the above method is provided for removing CO 2 , and is constituted only by an ion exchange membrane, and has a deionizing ability but a weak sterilizing action. In order to obtain a bactericidal action with an electrodialysis machine,
It is necessary to supply a current higher than the limit current density, which is economically disadvantageous.

【0007】本発明は上記従来の問題点を解決し、系内
の菌の増殖を抑制して、RO膜装置のスライム汚染を防
止し、高純度の水を長期間連続して安定に得ることがで
きる超純水の製造方法及び装置を提供することを目的と
する。
[0007] The present invention solves the above-mentioned conventional problems, suppresses the growth of bacteria in the system, prevents slime contamination of the RO membrane device, and continuously and stably obtains high-purity water for a long period of time. It is an object of the present invention to provide a method and an apparatus for producing ultrapure water.

【0008】[0008]

【課題を解決するための手段】本発明の超純水の製造方
法は、原水をpH4〜6に調整した後、第1段目の逆浸
透膜装置と脱酸素装置に通液し、その後pHを7〜8に
調整した後、電気脱イオン装置に通液し、得られた脱イ
オン水を第2段目の逆浸透膜装置に通液することを特徴
とする。
According to the method for producing ultrapure water of the present invention, raw water is adjusted to pH 4 to 6, and then passed through a first-stage reverse osmosis membrane device and a deoxygenation device. Is adjusted to 7 to 8, and then passed through an electrodeionization apparatus, and the obtained deionized water is passed through a second-stage reverse osmosis membrane apparatus.

【0009】本発明の超純水の製造装置は、原水をpH
4〜6に調整する第1のpH調整手段と、該第1のpH
調整手段でpH調整された水を処理する第1段目の逆浸
透膜装置及び脱酸素装置と、該第1段目の逆浸透膜装置
及び脱酸素装置で処理された水をpH7〜8に調整する
第2のpH調整手段と、該第2のpH調整手段でpH調
整された水を処理する電気脱イオン装置と、該電気脱イ
オン装置で得られた脱イオン水を処理する逆浸透膜装置
とを備えてなることを特徴とする。
[0009] The apparatus for producing ultrapure water of the present invention converts raw water to pH.
First pH adjusting means for adjusting the pH to 4 to 6, and the first pH adjusting means;
A first-stage reverse osmosis membrane device and a deoxygenation device for treating the water whose pH has been adjusted by the adjusting means, and the water treated by the first-stage reverse osmosis membrane device and the deoxygenation device to a pH of 7 to 8. Second pH adjusting means for adjusting, an electrodeionization apparatus for treating water whose pH has been adjusted by the second pH adjustment means, and a reverse osmosis membrane for treating deionized water obtained by the electrodeionization apparatus And a device.

【0010】前述の如く、イオン交換膜のみで構成さ
れ、イオン交換膜間に導電性を有する物質が設けられて
いない電気透析装置では、水の電気伝導性に依存して電
流が流れるのみであり、イオン除去程度の電流では殺菌
作用はない。電気透析装置では、限界電流密度以上で殺
菌作用が得られるとされているが、通常、そのために
は、30A/m2以上の高い電流密度が必要であり、経
済的に不利である。
[0010] As described above, in an electrodialysis apparatus comprising only an ion exchange membrane and having no conductive substance between the ion exchange membranes, only an electric current flows depending on the electric conductivity of water. However, there is no germicidal action at a current of about the ion removal level. It is said that an electrodialysis apparatus can achieve a bactericidal action at a current density equal to or higher than the limit current density. However, for this purpose, a high current density of 30 A / m 2 or more is usually required, which is economically disadvantageous.

【0011】これに対して、イオン交換膜間に導電性の
物質(イオン交換体)を充填した電気脱イオン装置であ
れば、このイオン交換体の表面を媒体として、低電流で
殺菌作用を得ることができる。
On the other hand, in an electrodeionization apparatus in which a conductive substance (ion exchanger) is filled between ion exchange membranes, a sterilizing action can be obtained at a low current using the surface of the ion exchanger as a medium. be able to.

【0012】本発明に従って、RO膜装置と脱酸素装置
とで処理して溶存酸素(DO)を低減した水を、電気脱
イオン装置で処理することにより、電気脱イオン装置に
おいて低電流で良好な殺菌作用が得られ、後段のRO膜
装置のスライム汚染を防止して、長期に亘り高水質を維
持して安定運転を継続できる。この電気脱イオン装置の
後段のRO膜装置では、電気脱イオン装置からの脱イオ
ン水中の微粒子やTOC、シリカ等が効率的に除去され
る。このように、電気脱イオン装置とRO膜装置を組み
合せることで、通常、超純水の製造システムに設けられ
ている非再生型イオン交換樹脂設備を不要とすることが
でき、設備コストの低減を図ることができる。
According to the present invention, the water treated with an RO membrane device and a deoxidizer to reduce dissolved oxygen (DO) is treated with an electric deionizer so that the electric deionizer has low current and good current. Sterilization action is obtained, slime contamination of the RO membrane device at the subsequent stage is prevented, and high water quality can be maintained for a long period of time to maintain stable operation. In the RO membrane device subsequent to the electrodeionization device, fine particles, TOC, silica, and the like in deionized water from the electrodeionization device are efficiently removed. As described above, by combining the electrodeionization apparatus and the RO membrane apparatus, the non-regeneration type ion exchange resin equipment usually provided in the ultrapure water production system can be eliminated, and the equipment cost can be reduced. Can be achieved.

【0013】[0013]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】図1(a)〜(c)は本発明の超純水の製
造方法及び装置の実施の形態を示す系統図である。
FIGS. 1A to 1C are system diagrams showing an embodiment of a method and an apparatus for producing ultrapure water according to the present invention.

【0015】本発明において、処理対象となる原水は、
工水、市水、井水又は製造プロセス回収水、例えば半導
体又は液晶等の製造プロセスの洗浄排水であり、これら
の2種以上を混合して原水としても良い。半導体製造回
収水のような製造プロセス回収水を原水とする場合であ
って、当該回収水の有機物(TOC)濃度が高い場合に
は、図1(c)に示す如く、生物処理手段、加熱手段、
触媒による分解手段、或いはRO膜装置等のTOC除去
装置6で予め処理し、TOCを0.5mg/L以下とす
るのが好ましい。
In the present invention, the raw water to be treated is
Industrial water, municipal water, well water, or recovered water from a manufacturing process, for example, washing wastewater from a manufacturing process for semiconductors, liquid crystals, or the like. In the case where recovered water from a manufacturing process such as recovered water for semiconductor manufacturing is used as raw water, and when the concentration of organic matter (TOC) in the recovered water is high, as shown in FIG. ,
It is preferable to preliminarily treat the catalyst with a decomposition means using a catalyst or a TOC removing device 6 such as an RO membrane device to reduce the TOC to 0.5 mg / L or less.

【0016】また、工水、市水、井水等の原水は、必要
に応じて除濁装置1で前処理するのが好ましく、この除
濁装置1としては、一般に、限外濾過(UF)膜装置、
精密濾過(MF)膜装置等が用いられるが、生物処理装
置等のTOC除去装置やRO膜装置等であっても良い。
また、工水、市水、井水等の硬度成分含有水について
は、軟化装置で硬度成分を除去しても良い。
Raw water such as industrial water, city water, well water, etc., is preferably pre-treated as necessary by a clarifier 1. The clarifier 1 generally has an ultrafiltration (UF) filter. Membrane equipment,
Although a microfiltration (MF) membrane device or the like is used, a TOC removal device such as a biological treatment device or an RO membrane device may be used.
Further, with respect to water containing hardness components such as industrial water, city water, and well water, the hardness components may be removed by a softening device.

【0017】原水又はその除濁処理水(又はTOC除去
処理水)は、HCl,H2SO4等の鉱酸を添加してpH
4〜6に調整した後、第1段目のRO膜装置(以下「第
1のRO膜装置」と称す。)2及び脱酸素装置3で処理
する。
Raw water or its turbidity-treated water (or TOC-removed water) is prepared by adding a mineral acid such as HCl or H 2 SO 4 to pH.
After the adjustment to 4 to 6, processing is performed by the first-stage RO film apparatus (hereinafter, referred to as “first RO film apparatus”) 2 and the deoxidizer 3.

【0018】ここで、調整pHは酸素と共に炭酸ガスを
除去するために行うものであり、後段の脱塩装置の負荷
を軽減させる。pHが6を超えると静菌効果が劣化し、
4未満では腐食による影響が顕著になるため、調整pH
は4〜6とする。
Here, the adjusted pH is used to remove carbon dioxide gas together with oxygen, and reduces the load on the subsequent desalination apparatus. If the pH exceeds 6, the bacteriostatic effect deteriorates,
If it is less than 4, the influence of corrosion becomes remarkable.
Is 4 to 6.

【0019】第1のRO膜装置2と脱酸素装置3の処理
順序には特に制限はなく、図1(a),(c)に示す如
く、第1のRO膜装置2で脱塩処理した後脱酸素装置3
で脱酸素処理しても良く、図1(b)に示す如く、脱酸
素装置3で処理した後第1のRO膜装置2で処理しても
良い。いずれの場合であっても、脱酸素装置3による脱
酸素処理で、処理水のDOが100ppb以下となるよ
うに処理を行うのが好ましい。DOが100ppbを超
えると後段の電気脱イオン装置4での殺菌処理を行って
も、十分な生菌の増殖抑制効果を得ることはできない。
There is no particular limitation on the processing order of the first RO membrane device 2 and the deoxidizing device 3, and as shown in FIGS. 1 (a) and 1 (c), the first RO membrane device 2 is desalted. Rear deoxygenator 3
Alternatively, as shown in FIG. 1B, the first RO film apparatus 2 may perform the first oxygen treatment after the first oxygen treatment. In any case, it is preferable to perform the deoxidizing treatment by the deoxidizing device 3 so that the DO of the treated water becomes 100 ppb or less. If the DO exceeds 100 ppb, a sufficient effect of suppressing the growth of viable bacteria cannot be obtained even if sterilization is performed in the subsequent electrodeionization apparatus 4.

【0020】この脱酸素装置3としては、膜脱気装置、
真空脱気装置、窒素ガス脱気装置等を用いることができ
る。
The deoxidizer 3 includes a membrane deaerator,
A vacuum deaerator, a nitrogen gas deaerator, or the like can be used.

【0021】また、第1のRO膜装置2のRO膜として
は特に制限はなく、ポリスルホン、ポリアミド、ポリ酢
酸ビニル等のRO膜を用いることができ、通常の場合、
入口圧7.0〜15.0kg/cm2、水回収率70〜
85%の条件でRO膜処理される。
The RO film of the first RO film device 2 is not particularly limited, and an RO film of polysulfone, polyamide, polyvinyl acetate, or the like can be used.
Inlet pressure 7.0-15.0 kg / cm 2 , water recovery 70-
The RO film is processed under the condition of 85%.

【0022】第1のRO膜装置2及び脱酸素装置3で処
理された水は、NaOH等のアルカリを添加してpH7
〜8に調整した後、電気脱イオン装置4で処理し、次い
で第2段目のRO膜装置(以下「第2のRO膜装置」と
称す。)5で処理する。シリカの除去効率の面から、こ
の調整pHは高い方が好ましいが、調整pHが過度に高
いと超純水としての要求特性を満たさなくなるため、こ
の調整pHは7〜8、好ましくは7〜7.5とする。
The water treated in the first RO membrane device 2 and the deoxidizer 3 is added to an alkali such as NaOH to adjust the pH to 7.
After the adjustment to 処理 8, the treatment is performed by the electrodeionization apparatus 4 and then by the second stage RO membrane apparatus (hereinafter, referred to as “second RO membrane apparatus”) 5. From the standpoint of silica removal efficiency, the higher the adjusted pH, the better. However, if the adjusted pH is excessively high, the characteristics required as ultrapure water will not be satisfied, so the adjusted pH is 7-8, preferably 7-7. .5.

【0023】電気脱イオン装置4としては、陽極を備え
る陽極室と陰極を備える陰極室との間に、複数のアニオ
ン交換膜及びカチオン交換膜を交互に配列して濃縮室と
脱塩室とを交互に形成し、脱塩室にアニオン交換樹脂と
カチオン交換樹脂との混合樹脂やイオン交換繊維等のイ
オン交換体を充填した一般的なものを使用することがで
き、このような電気脱イオン装置4であれば、電流密度
4〜20A/m2、好ましくは6〜10A/m2の比較的
低い電流密度で脱イオン処理と共に殺菌処理効果を得る
ことができる。
As the electrodeionization apparatus 4, a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode to form a concentration chamber and a desalination chamber. It is possible to use a general one formed alternately and filled in a desalting chamber with an ion exchanger such as a mixed resin of anion exchange resin and cation exchange resin or ion exchange fiber. If it is 4, the sterilization effect can be obtained together with the deionization treatment at a relatively low current density of 4 to 20 A / m 2 , preferably 6 to 10 A / m 2 .

【0024】電気脱イオン装置4の脱イオン水は、次い
で第2のRO膜装置5で処理して、更に残留する微量の
TOCやシリカ等を除去して純度を高めた後、処理水
(超純水)として取り出される。
The deionized water of the electrodeionization apparatus 4 is then treated in the second RO membrane apparatus 5 to remove the remaining traces of TOC, silica, etc., thereby increasing the purity. (Pure water).

【0025】この第2のRO膜装置5においては、前段
の電気脱イオン装置4において、低DO条件下で殺菌処
理されたことにより、生菌の増殖が抑制され、長期に亘
り、膜面へのスライムの堆積による膜の透過流束の低下
や処理水水質の悪化等の問題を引き起こすことなく、安
定な処理を行って、高水質処理水を得ることができる。
In the second RO membrane device 5, the sterilization treatment under the low DO condition in the preceding electrodeionization device 4 suppresses the growth of viable bacteria, and extends to the membrane surface for a long time. Stable treatment can be performed without causing problems such as a decrease in the permeation flux of the membrane due to the accumulation of the slime and a deterioration in the quality of the treated water, so that high-quality treated water can be obtained.

【0026】第2のRO膜装置5のRO膜としても特に
制限はなく、ポリスルホン、ポリアミド、ポリ酢酸ビニ
ル等のRO膜を用いることができ、通常の場合、入口圧
7.0〜15.0kg/cm2、水回収率80〜90%
の条件でRO膜処理される。
The RO membrane of the second RO membrane apparatus 5 is not particularly limited, and an RO membrane of polysulfone, polyamide, polyvinyl acetate, or the like can be used. In a normal case, the inlet pressure is 7.0 to 15.0 kg. / Cm 2 , water recovery rate 80-90%
The RO film is processed under the following conditions.

【0027】なお、本発明においては、図1(c)に示
す如く、電気脱イオン装置4の濃縮水及び第2のRO膜
装置5の濃縮水は第1のRO膜装置2の入口側に返送し
て循環処理するのが水回収率の向上の面で好ましい。こ
の場合においても、電気脱イオン装置4及び第2のRO
膜装置5の給水は、前段の第1のRO膜装置2や脱酸素
装置3による処理で十分に水質が高められているため、
これらの濃縮水を第1のRO膜装置2の入口側に返送す
ることによる処理水水質の低下の問題は殆どなく、良好
な処理を行える。
In the present invention, as shown in FIG. 1C, the concentrated water of the electrodeionization device 4 and the concentrated water of the second RO membrane device 5 are supplied to the inlet side of the first RO membrane device 2. Returning and circulating is preferred in terms of improving the water recovery rate. Also in this case, the electrodeionization device 4 and the second RO
Since the water supply of the membrane device 5 is sufficiently enhanced by the treatment by the first RO membrane device 2 and the deoxidizer 3 in the preceding stage,
By returning these concentrated waters to the inlet side of the first RO membrane device 2, there is almost no problem of deterioration in the quality of treated water, and good treatment can be performed.

【0028】[0028]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0029】実施例1 図1(b)に示す方法で、市水を原水として超純水の製
造を行った。
Example 1 By the method shown in FIG. 1B, ultrapure water was produced using city water as raw water.

【0030】用いた装置及び処理条件は次の通りであ
る。
The equipment used and the processing conditions are as follows.

【0031】除濁装置:UF膜装置(栗田工業(株)製
「プレブロックス」分画分子量20,000) 脱酸素装置:膜脱気装置(ヘキスト社製「リキセル」4
インチ,2本シリーズ) 圧力=30Torr スイープガス=N2(0.2N−m3/hr) 処理水量=1.0m3/hr 第1のRO膜装置:RO膜(日本電工社製「ES−20
−D」4インチ,2本シリーズ) 入口圧=9kg/cm2 水回収率=70% 電気脱イオン装置:電気脱イオン装置(栗田工業(株)
製「M−10型」2台) 処理水量=120L/hr 水回収率=70% 第2のRO膜装置:RO膜(日本電工社製「NTR−7
59」2.5インチ,1本) 入口圧=7kg/cm2 水回収率=90% なお、脱酸素装置(膜脱気装置)の給水にはHClを添
加してpH5.0とした。この膜脱気装置の処理水のD
Oは50ppbであった。また、電気脱イオン装置の給
水にはNaOHを添加してpH7〜7.5とした。電気
脱イオン装置の濃縮水と第2のRO膜装置の濃縮水は第
1のRO膜装置の入口側に返送した。
Denaturation device: UF membrane device (Preblocks manufactured by Kurita Industries Co., Ltd., fractional molecular weight: 20,000) Deoxygenation device: Membrane deaerator (Liquicel 4 manufactured by Hoechst)
Pressure, 30 Torr Sweep gas = N 2 (0.2 N-m 3 / hr) Treated water amount = 1.0 m 3 / hr First RO membrane device: RO membrane (Nippon Denko “ES- 20
-D "4 inch, 2 pieces series) Inlet pressure = 9 kg / cm 2 Water recovery = 70% Electrodeionizer: Electrodeionizer (Kurita Kogyo Co., Ltd.)
"M-10 type" (2 units) Treated water volume = 120 L / hr Water recovery rate = 70% Second RO membrane device: RO membrane (Nippon Denko "NTR-7"
59 "2.5 inches, 1 line) Inlet pressure = 7 kg / cm 2 Water recovery rate = 90% HCl was added to the water supply of the deoxidizer (membrane deaerator) to adjust the pH to 5.0. D of treated water of this membrane deaerator
O was 50 ppb. NaOH was added to the water supplied to the electrodeionization apparatus to adjust the pH to 7 to 7.5. The concentrated water of the electrodeionization device and the concentrated water of the second RO membrane device were returned to the inlet side of the first RO membrane device.

【0032】電気脱イオン装置の電流密度を3A/m2
又は6A/m2とし、このときの電気脱イオン装置出口
水(脱イオン水、即ち第2のRO膜装置の給水)の生菌
数と4ヶ月連続運転した後のRO膜装置の透過流束と、
RO膜装置の処理水の水質を調べ、結果を表1に示し
た。
The current density of the electrodeionization apparatus is 3 A / m 2
Or 6 A / m 2 , the number of viable bacteria in the water at the outlet of the electrodeionization apparatus (deionized water, that is, water supply to the second RO membrane apparatus) and the permeation flux of the RO membrane apparatus after continuous operation for 4 months When,
The quality of the treated water of the RO membrane device was examined, and the results are shown in Table 1.

【0033】比較例1 実施例1において、電気脱イオン装置の代りに、電気透
析装置(旭硝子社製「CS−O型」セレミオン膜,2
台)を用い、電流密度10A/m2又は30A/m2で処
理水量120L/hr,水回収率70%で運転を行った
こと以外は、実施例1と同様にして処理を行い、同様
に、電気透析装置出口水(脱イオン水、即ち第2のRO
膜装置の給水)の生菌数と4ヶ月連続運転した後のRO
膜装置の透過流束と、RO膜装置の処理水の水質を調
べ、結果を表1に示した。
Comparative Example 1 In Example 1, an electrodialysis device (“CS-O type” Selemion membrane, 2 manufactured by Asahi Glass Co., Ltd.) was used instead of the electrodeionization device.
), And the operation was performed in the same manner as in Example 1 except that operation was performed at a current density of 10 A / m 2 or 30 A / m 2 , a treated water amount of 120 L / hr, and a water recovery rate of 70%. , The electrodialyzer outlet water (deionized water, ie the second RO
Number of viable bacteria in water supply to membrane device) and RO after continuous operation for 4 months
The permeation flux of the membrane device and the quality of the treated water of the RO membrane device were examined, and the results are shown in Table 1.

【0034】なお、比較例1のうち電流密度30A/m
2というような運転条件は、電圧が高くなり過ぎ、経済
的に不利である。
In Comparative Example 1, the current density was 30 A / m
Operating conditions such as 2 are too high in voltage and are economically disadvantageous.

【0035】[0035]

【表1】 [Table 1]

【0036】実施例1及び比較例1における連続運転後
の処理水の水質の低下は、RO膜面に付着した生菌数か
らの溶出物とCO2の流出によるものと考えられる。運
転を停止してRO膜を0.3重量%H22水で殺菌洗浄
することにより、処理水の水質は運転開始初期と同等に
回復させることができたが、RO膜の透過流束は十分に
回復しなかった。
The decrease in the quality of the treated water after the continuous operation in Example 1 and Comparative Example 1 is considered to be due to the eluate from the number of viable bacteria attached to the RO membrane surface and the outflow of CO 2 . Although the operation was stopped and the RO membrane was sterilized and washed with 0.3% by weight of H 2 O 2 water, the quality of the treated water could be restored to the same level as at the beginning of the operation. Did not recover well.

【0037】比較例2 実施例1において、膜脱気装置の代りに1インチのネッ
トリングを充填し、10N−m2/m2・minの空気を
上向流で流す脱炭酸塔を用い、この脱炭酸塔に通水LV
=40m3/m2・hrで向流処理したこと以外は同様に
して処理を行い、2ヶ月運転後の脱イオン水(電気脱イ
オン装置の出口水,即ち第2のRO膜装置の給水)の生
菌数を調べ、結果を表2に示した。
COMPARATIVE EXAMPLE 2 In Example 1, a 1-inch net ring was used instead of the membrane deaerator, and a decarbonation tower through which air of 10 N-m 2 / m 2 · min flowed upward was used. Water LV through this decarbonation tower
= Deionized water after operation for 2 months (exit water of the electrodeionization device, ie, water supply to the second RO membrane device) except that the countercurrent treatment was performed at 40 m 3 / m 2 · hr. Was examined and the results are shown in Table 2.

【0038】なお、表2には、実施例1における2ヶ月
運転後の脱イオン水(電気脱イオン装置の出口水,即ち
第2のRO膜装置の給水)の生菌数も併記した。
Table 2 also shows the viable cell count of deionized water (outlet water of the electrodeionization apparatus, ie, water supply to the second RO membrane apparatus) after two months of operation in Example 1.

【0039】[0039]

【表2】 [Table 2]

【0040】以上の結果から、DOを除去した後、電気
脱イオン装置で処理し、その後RO膜装置で処理するこ
とにより、高い水質を維持して長期連続運転を行えるこ
とがわかる。
From the above results, it can be seen that long-term continuous operation can be performed while maintaining high water quality by removing DO, treating with an electrodeionization apparatus, and then treating with an RO membrane apparatus.

【0041】[0041]

【発明の効果】以上詳述した通り、本発明の超純水の製
造方法及び装置によれば、系内の菌の増殖を抑制して、
RO膜装置のスライム汚染による処理水水質の低下、膜
の透過流束の低下を防止し、高純度の水を長期間連続し
て安定に得ることができる。
As described in detail above, according to the method and apparatus for producing ultrapure water of the present invention, the growth of bacteria in the system is suppressed,
It is possible to prevent a decrease in the quality of treated water and a decrease in permeation flux of the membrane due to slime contamination of the RO membrane device, and to obtain high-purity water continuously and stably for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超純水の製造方法及び装置の実施の形
態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method and an apparatus for producing ultrapure water according to the present invention.

【符号の説明】[Explanation of symbols]

1 除濁装置 2 第1のRO膜装置 3 脱酸素装置 4 電気脱イオン装置 5 第2のRO膜装置 REFERENCE SIGNS LIST 1 turbidity device 2 first RO membrane device 3 deoxygenation device 4 electrodeionization device 5 second RO membrane device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 502 C02F 9/00 502Z 502L 502K 503B 503 504B 504 504E 1/46 103 Fターム(参考) 4D006 GA03 KB01 KB17 MA13 MA14 MC21 MC54 MC62 PA01 PB02 PB05 PB23 PC02 4D037 AA03 AB11 BA23 BB05 BB07 CA03 CA04 CA14 4D061 DA02 DB02 EA09 EB01 EB13 EB19 EB37 FA03 FA09 FA11 GA30 GC01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 9/00 502 C02F 9/00 502Z 502L 502K 503B 503 504B 504 504E 1/46 103 F Term (Reference) 4D006 GA03 KB01 KB17 MA13 MA14 MC21 MC54 MC62 PA01 PB02 PB05 PB23 PC02 4D037 AA03 AB11 BA23 BB05 BB07 CA03 CA04 CA14 4D061 DA02 DB02 EA09 EB01 EB13 EB19 EB37 FA03 FA09 FA11 GA30 GC01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原水をpH4〜6に調整した後、第1段
目の逆浸透膜装置と脱酸素装置に通液し、その後pHを
7〜8に調整した後、電気脱イオン装置に通液し、得ら
れた脱イオン水を第2段目の逆浸透膜装置に通液するこ
とを特徴とする超純水の製造方法。
1. After adjusting the pH of raw water to 4 to 6, the solution is passed through a first-stage reverse osmosis membrane device and a deoxygenation device, and then the pH is adjusted to 7 to 8 and then passed through an electrodeionization device. A method for producing ultrapure water, characterized in that the ultrapure water is passed through a second-stage reverse osmosis membrane device.
【請求項2】 原水が工水、市水、井水又は製造プロセ
ス回収水であることを特徴とする請求項1の超純水の製
造方法。
2. The method for producing ultrapure water according to claim 1, wherein the raw water is industrial water, city water, well water, or water recovered from a production process.
【請求項3】 電気脱イオン装置の流入水の溶存酸素濃
度を100ppb以下とすることを特徴とする請求項1
又は2の超純水の製造方法。
3. The method according to claim 1, wherein the concentration of dissolved oxygen in the inflow water of the electrodeionization apparatus is 100 ppb or less.
Or 2) a method for producing ultrapure water.
【請求項4】 電気脱イオン装置から排出される濃縮水
と第2段目の逆浸透膜装置から排出される濃縮水を、第
1段目の逆浸透膜装置の前段に返送することを特徴とす
る請求項1ないし3のいずれか1項に記載の超純水の製
造方法。
4. The concentrated water discharged from the electrodeionization apparatus and the concentrated water discharged from the second-stage reverse osmosis membrane device are returned to the preceding stage of the first-stage reverse osmosis membrane device. The method for producing ultrapure water according to any one of claims 1 to 3, wherein
【請求項5】 原水をpH4〜6に調整する第1のpH
調整手段と、 該第1のpH調整手段でpH調整された水を処理する第
1段目の逆浸透膜装置及び脱酸素装置と、 該第1段目の逆浸透膜装置及び脱酸素装置で処理された
水をpH7〜8に調整する第2のpH調整手段と、 該第2のpH調整手段でpH調整された水を処理する電
気脱イオン装置と、 該電気脱イオン装置で得られた脱イオン水を処理する逆
浸透膜装置とを備えてなることを特徴とする超純水の製
造装置。
5. A first pH for adjusting raw water to pH 4 to 6.
Adjusting means; a first-stage reverse osmosis membrane device and a deoxygenation device for treating the water whose pH has been adjusted by the first pH adjustment device; and a first-stage reverse osmosis membrane device and a deoxygenation device. A second pH adjusting means for adjusting the pH of the treated water to 7 to 8, an electrodeionization apparatus for treating the water whose pH has been adjusted by the second pH adjustment means, and an electrodeionization apparatus obtained by the electrodeionization apparatus. An apparatus for producing ultrapure water, comprising: a reverse osmosis membrane device for treating deionized water.
【請求項6】 電気脱イオン装置から排出される濃縮水
を第1段目の逆浸透膜装置の前段へ送給する手段と、第
2段目の逆浸透膜装置の濃縮水を第1段目の逆浸透膜装
置の前段へ送給する手段とを備えてなることを特徴とす
る請求項5の超純水の製造装置。
6. A means for feeding concentrated water discharged from the electrodeionization device to a stage preceding the first stage reverse osmosis membrane device, and means for supplying concentrated water from the second stage reverse osmosis membrane device to the first stage. 6. An apparatus for producing ultrapure water according to claim 5, further comprising means for feeding the water to a stage preceding the reverse osmosis membrane device of the eye.
JP20947099A 1999-07-23 1999-07-23 Ultrapure water production method and apparatus Expired - Fee Related JP3565098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20947099A JP3565098B2 (en) 1999-07-23 1999-07-23 Ultrapure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20947099A JP3565098B2 (en) 1999-07-23 1999-07-23 Ultrapure water production method and apparatus

Publications (2)

Publication Number Publication Date
JP2001029752A true JP2001029752A (en) 2001-02-06
JP3565098B2 JP3565098B2 (en) 2004-09-15

Family

ID=16573401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20947099A Expired - Fee Related JP3565098B2 (en) 1999-07-23 1999-07-23 Ultrapure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP3565098B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126744A (en) * 2000-10-19 2002-05-08 Ngk Insulators Ltd Method for sterilizing electric reproduction type deionizing pure water device
JP2003190979A (en) * 2001-10-18 2003-07-08 Kurita Water Ind Ltd Apparatus for manufacturing ultrapure water and method
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2004167423A (en) * 2002-11-21 2004-06-17 Kurita Water Ind Ltd Apparatus and method for pure water production
KR100501417B1 (en) * 2002-06-21 2005-07-18 한국전력공사 The apparatus to remove inorgaic materials in waste water using osmosis membrane and energy saving electrodes
JP2005254201A (en) * 2004-03-15 2005-09-22 Japan Organo Co Ltd Bacterium growth inhibition method in electric desalted water production device
EP1833590A4 (en) * 2004-12-23 2009-09-30 Univ Murdoch Increased conductivity and enhanced electrolytic and electrochemical processes
JP2010058013A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production system
JP2010058011A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production apparatus
US7955503B2 (en) 2005-03-18 2011-06-07 Kurita Water Industries Ltd. Pure water producing apparatus
US8206592B2 (en) 2005-12-15 2012-06-26 Siemens Industry, Inc. Treating acidic water
JP2013525003A (en) * 2010-04-30 2013-06-20 ゼネラル・エレクトリック・カンパニイ Disinfection method for electrodeionization equipment

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480251B2 (en) * 2000-10-19 2010-06-16 日本碍子株式会社 Disinfection of electric regenerative deionized water purifier
JP2002126744A (en) * 2000-10-19 2002-05-08 Ngk Insulators Ltd Method for sterilizing electric reproduction type deionizing pure water device
JP2003190979A (en) * 2001-10-18 2003-07-08 Kurita Water Ind Ltd Apparatus for manufacturing ultrapure water and method
KR100501417B1 (en) * 2002-06-21 2005-07-18 한국전력공사 The apparatus to remove inorgaic materials in waste water using osmosis membrane and energy saving electrodes
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2004167423A (en) * 2002-11-21 2004-06-17 Kurita Water Ind Ltd Apparatus and method for pure water production
JP2005254201A (en) * 2004-03-15 2005-09-22 Japan Organo Co Ltd Bacterium growth inhibition method in electric desalted water production device
EP1833590A4 (en) * 2004-12-23 2009-09-30 Univ Murdoch Increased conductivity and enhanced electrolytic and electrochemical processes
US7955503B2 (en) 2005-03-18 2011-06-07 Kurita Water Industries Ltd. Pure water producing apparatus
US8206592B2 (en) 2005-12-15 2012-06-26 Siemens Industry, Inc. Treating acidic water
JP2010058013A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production system
JP2010058011A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production apparatus
JP2013525003A (en) * 2010-04-30 2013-06-20 ゼネラル・エレクトリック・カンパニイ Disinfection method for electrodeionization equipment
US9790109B2 (en) 2010-04-30 2017-10-17 General Electric Company Method for sanitizing an electrodeionization device

Also Published As

Publication number Publication date
JP3565098B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
TWI430965B (en) Method and apparatus for desalination
JP3575271B2 (en) Pure water production method
JP2001047054A (en) Sterilizing method of deionized water making apparatus and deionized water making method
WO2015012054A1 (en) Method and device for treating boron-containing water
US20030173296A1 (en) High recovery reverse osmosis process and apparatus
JP3565098B2 (en) Ultrapure water production method and apparatus
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP3137831B2 (en) Membrane processing equipment
JP2004000919A (en) Apparatus for producing desalted water
JP6158658B2 (en) Purified water production equipment
JP3731555B2 (en) Cooling water treatment method and treatment apparatus
JP3656458B2 (en) Pure water production method
JP2007307561A (en) High-purity water producing apparatus and method
JP2000051665A (en) Desalination method
JP2001149950A (en) Water treating method and water treating device
JPS6336890A (en) Apparatus for producing high-purity water
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2001170630A (en) Pure water production device
JP2004167423A (en) Apparatus and method for pure water production
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
TWI826657B (en) Pure water production apparatus and pure water production method
JPH09294977A (en) Water purifying apparatus
JP2002355683A (en) Ultrapure water making method and apparatus
JPH11244854A (en) Production of pure water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Ref document number: 3565098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees