JP3731555B2 - Cooling water treatment method and treatment apparatus - Google Patents
Cooling water treatment method and treatment apparatus Download PDFInfo
- Publication number
- JP3731555B2 JP3731555B2 JP2002076616A JP2002076616A JP3731555B2 JP 3731555 B2 JP3731555 B2 JP 3731555B2 JP 2002076616 A JP2002076616 A JP 2002076616A JP 2002076616 A JP2002076616 A JP 2002076616A JP 3731555 B2 JP3731555 B2 JP 3731555B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- cooling water
- membrane
- treatment
- reverse osmosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は冷却水の処理方法及び処理装置に係り、特に、循環冷却水系の冷却塔ブロー水を回収して補給水として再利用するための処理方法及び処理装置に関する。
【0002】
【従来の技術及び先行技術】
循環冷却水系においては、系内のスケール成分の濃縮によるスケール障害を防止するために、冷却塔から系内の水をブロー水として排出し、このブロー水量に見合う水量の水を補給水として補給している。このブロー水は、循環冷却水系の6〜8倍の高濃縮運転により、硬度成分やシリカ等のスケール成分が既に析出限界にまで濃縮された水である。このため、一般的には、これを回収して再利用することはなされていなかったが、逆浸透(RO)膜分離装置(以下「RO膜装置」と称す。)で脱塩処理して回収、再利用する方法も提案されている。
【0003】
また、本発明者らは、このブロー水をRO膜装置で処理して再利用するに当たり、簡易な装置で安価に安定かつ効率的に処理することができる水処理システムとして、ブロー水に塩酸等を添加してpH3〜6に調整した後脱炭酸処理し、次いで膜濾過処理し、その後RO膜装置で脱塩処理する方法を提案した(特願2001−127946)。
【0004】
この方法であれば、ブロー水をpH3〜6の弱酸性で脱炭酸処理することにより、水中の炭酸イオン、重炭酸イオンを炭酸ガスとして効率的に除去することができ、後段のRO膜装置でのスケール障害の最も大きな要因となる炭酸カルシウム等の炭酸塩スケールの析出を有効に防止することが可能となる。また、膜濾過処理により懸濁物質(SS)を除去することにより、RO膜装置での目詰まりや閉塞を防止することができる。
【0005】
ところで、循環冷却水系ではスケール障害だけでなく、微生物によるスライム障害も考慮する必要がある。即ち、循環冷却水系の高濃縮運転では、冷却水の水質が悪化し、細菌、黴、藻類などの微生物群に、土砂、塵埃などが混ざり合って形成されるスライムが発生し易くなり、熱交換器における熱効率の低下や通水の悪化を引き起こす。また、スライム付着部の下部において、機器や配管の局部腐食を誘発する。
【0006】
そこで、従来においては、このようなスライムによる障害を防止するために、一般にスライムコントロール剤として塩素系薬剤や非塩素系の微生物忌避剤を循環冷却水中に添加することが行われている。
【0007】
従って、上記のようにRO膜装置により脱塩処理したブロー水を再利用するに当っても、これらのスライムコントロール剤の添加が必要とされていた。
【0008】
一方、RO膜装置や膜濾過装置でもスライム障害を防止するために、これらの装置の供給水や逆洗水に塩素系殺菌剤や非塩素系の微生物忌避剤を添加することが行われている。
【0009】
【発明が解決しようとする課題】
しかし、ブロー水をRO膜装置で脱塩処理し、更にスライムコントロール剤を添加して冷却水系に戻したり、RO膜装置や膜濾過装置の供給水や逆洗水にスライムコントロール剤を添加するためには、脱塩処理システムに加えて、スライムコントロール剤添加のための薬品タンク、薬注ポンプ等の薬注設備を必要とする上に、薬剤の搬入、薬剤の在庫管理等の煩雑な作業が必要となる。
【0010】
本発明は上記従来の問題点を解決し、循環冷却水系のブロー水をRO膜装置で脱塩処理して再利用すると共に、スライムコントロール剤としての遊離塩素をも供給することができる冷却水の処理方法及び処理装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
【0013】
本発明の冷却水の処理方法は、冷却水系の冷却水の少なくとも一部を除濁装置により懸濁物質除去処理した後、逆浸透膜分離処理し、該逆浸透膜分離処理による濃縮水を電解処理して、該電解処理水を該除濁装置の逆洗水として使用することを特徴とする。
【0014】
本発明の冷却水の処理装置は、冷却水系の冷却水の少なくとも一部を懸濁物質除去処理する除濁装置と、該除濁装置からの除濁水を逆浸透膜分離処理する逆浸透膜分離装置と、該逆浸透膜分離装置からの濃縮水を電解処理する電解処理装置と、該電解処理水で前記除濁装置を逆洗するための逆洗手段とを有することを特徴とする。
【0015】
循環冷却水系の補給水として用いられる水道水や工業用水には、通常数mg−Cl−/L〜10mg−Cl−/L程度の塩化物イオンが含まれている。
【0016】
このため、循環冷却水系の冷却水には、6〜8倍の高濃縮運転で、この補給水中の塩化物イオンが濃縮されており、この冷却水を更にRO膜装置で脱塩処理して得られる濃縮水(以下「RO濃縮水」と称す。)では、更に塩化物イオンが濃縮されている。このため、このRO濃縮水を電解処理することにより、RO濃縮水中の塩化物イオンからスライムコントロール剤として有効な遊離塩素を発生させることができる。従って、遊離塩素を含む電解処理水を冷却水系やRO膜装置の前段に戻したり、RO膜装置の前段に設けた除濁装置の逆洗水に注入することにより、スライム障害を防止することができる。
【0017】
即ち、電解処理装置では、陽極と陰極との間に外部電源を用いて直流電圧を印加すると共に、両極間にRO濃縮水を通水する。これにより、陽極の表面においてRO濃縮水中の塩化物イオンが酸化され、次亜塩素酸などの強い酸化力を有する塩素が生成する。生成した遊離塩素は、スライムの原因となる微生物を殺菌し、あるいは増殖を抑制するので、循環冷却水系のスライム発生を効果的に防止することができる。
【0018】
【発明の実施の形態】
以下に、図面を参照して本発明の冷却水の処理方法及び処理装置の実施の形態を詳細に説明する。
【0019】
図1は本発明の冷却水の処理方法及び処理装置の実施の形態を示す系統図である。図中、1はストレーナ、2は脱炭酸塔であり、入口にpH計2Aを備える。3は膜濾過装置、4は中間槽であり、pH計4Aとレベルスイッチ4Bを備える。5はRO膜装置、6は電解処理装置(例えば、電解次亜塩素酸ナトリウム発生装置)である。V1〜V6は開閉弁を示す。
【0020】
冷却塔からのブロー水は、電解処理装置6からの電解処理水の一部をスライムコントロール剤として添加され、ストレーナ1で除塵された後、pH調整のためのHCl等の酸が添加され、その後脱炭酸塔2で脱炭酸処理される。
【0021】
ここでスライムコントロール剤としては、必要あればさらに次亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩、塩素ガス、クロラミン、塩素化イソシアヌル酸塩などの塩素剤、ジブロモヒダントインなどの臭素剤、DBNPA(ジブロモニトリロプロピオンアミド)、MIT(メチルイソチアゾロン)などの有機剤を添加してもよい。
【0022】
図1の装置によれば、電解処理装置6で発生したスライムコントロール剤としての遊離塩素が循環冷却水系にも添加されるため、このストレーナ1前段でのスライムコントロール剤の添加は必ずしも必要とされないが、処理系内のスライム障害を防止するためには、遊離塩素濃度が0.5〜2mg/Lの範囲となるように添加することが望ましい。
【0023】
脱炭酸塔2の入口でのpH調整は、pHが3〜6、好ましくはpHが4.5〜5.5の範囲となるように行う。このような酸性条件とすることにより、ブロー水中のMアルカリ成分、即ち炭酸イオン(CO3 2−)や重炭酸イオン(HCO3 −)を炭酸ガスに変換して脱炭酸塔2で効率的に除去し、後段のRO膜装置5での炭酸成分に起因するスケール障害を有効に防止することができると共に、RO膜装置5を透過する炭酸成分を低減して処理水の水質を向上することができる。この脱炭酸効率の面からはpHが低い方が望ましいが、過度にpHが低いと、脱炭酸塔2の流出水のpHが下がり過ぎ、RO膜装置5の前段においてpHを再調整する必要が生じたり、腐食が生じるため、調整pHはpH3〜6、好ましくは4〜6とする。
【0024】
脱炭酸塔2の流出水は、ポンプP1により懸濁物質除去手段としての膜濾過装置3に導入され、膜濾過により、水中のSS(懸濁物質)が除去される。この膜濾過装置3は、RO膜装置5の膜汚染の原因となる水中の濁質やコロイダル成分を除去するためのものであり、MF(精密濾過)膜、UF(限界濾過)膜等、好ましくはUF膜を用いることができ、その膜型式にも特に制限はなく、中空糸型、スパイラル型等の膜濾過装置を採用することができる。また、濾過方式にも制限はなく、内圧濾過、外圧濾過、クロスフロー濾過、全量濾過のいずれの方式も適用可能である。
【0025】
この膜濾過装置3の濃縮水は脱炭酸塔2に返送され、透過水は必要に応じてpH調整剤、スケール防止剤が添加された後、中間槽4に貯留される。
【0026】
この膜濾過装置3では、膜の目詰りによる膜性能の低下を防止するために定期的に逆洗を行う必要がある。膜濾過時には、弁V1,V3,V5を開、弁V2,V4を閉として脱炭酸処理水を導入し、濃縮水及び透過水を取り出すが、逆洗時には、弁V1,V3,V5を閉、弁V2,V4を開として、電解処理水が添加された清水を膜濾過装置3の膜の透過側から逆流させ、逆洗排水は必要に応じてpH調整した後系外へ排出する。なお、この逆洗の間、ポンプP1からの脱炭酸処理水は脱炭酸塔2に返送する。
【0027】
RO膜装置5の入口側でのpH調整は、シリカによるスケール障害を防止するために、pH3〜6、好ましくは4〜6、さらに好ましくは4.5〜5.5となるように行う。脱炭酸処理して得られる脱炭酸処理水は、脱炭酸処理前に比較してpHが変動する。このため、この中間槽4の入口側では必要に応じてpH調整剤として塩酸、硫酸、硝酸などの酸やNaOH、KOHなどのアルカリを添加する。RO膜装置5におけるスケール障害防止の面からは、この調整pHは酸性にすることが好ましいが、過度に調整pHが低いと機器や配管材質の腐食の原因となるので、上記pH範囲とする必要がある。
【0028】
スケール防止剤は、例えばホスホン酸系、ポリリン酸系、ポリアクリル酸系、ポリアクリルアミド系等のスケール防止剤を用いることができるが、有機系のスケール防止剤はRO膜装置でのファウリングの原因となることがあるため、ホスホン酸系、ポリリン酸系のスケール防止剤が好適に用いられる。
【0029】
通常の場合、循環冷却水には、既にスケール防止剤が添加されていることから、このスケール防止剤の添加は必ずしも必要とされないが、1〜20mg/L程度の添加により、RO膜装置5内でのスケール生成をより確実に防止することができ好ましい。なお、スケール防止剤は、RO膜装置5の前段で添加されていれば良く、RO膜装置5の入口部に限らず、脱炭酸塔2の入口側又は出口側その他、その添加箇所には特に制限はない。
【0030】
中間槽4内の水はポンプP2によりRO膜装置5に導入され、RO膜処理され、RO透過水は必要に応じてpH調整された後、処理水として系外へ排出され、通常の場合、循環冷却水の補給水として返送される。
【0031】
このRO膜装置5のRO膜の種類としては、酸化剤に対し耐性のある酢酸セルロース系RO膜が好ましく、脱塩率については85%以上、特に90%以上のものが好ましい。脱塩率がこれよりも悪いと、脱イオン効率が悪く、良好な水質の処理水(透過水)を得ることができない。
【0032】
RO膜装置5のRO濃縮水の必要量は、電解処理装置6に送給されて電解処理される。
【0033】
このRO濃縮水の塩化物イオン濃度は、ブロー水の水質やRO膜装置5の脱塩性能等によっても異なるが、一般的には、1000〜3000mg/L程度である。従って、このような塩化物イオン濃度のRO濃縮水を電解処理することにより、例えば、次亜塩素酸ナトリウム1900〜5700mg/L程度の遊離塩素含有水を得ることができ、このような電解処理水は、スライムコントロール剤として循環冷却水系に有効に利用することができる。
【0034】
電解処理装置6で用いる電極の材質には、特に制限はないが、陽極としては、例えば、チタンなどの耐食性の材料に白金、イリジウムなどの白金系元素の単体及び/又はその酸化物を被覆した次亜塩素酸の生成効率が良好な材質を好適に用いることができる。陰極としては、例えば、ステンレス鋼、アルミニウム、銀などを用いることができるが、陰極と陽極を同一のタイプとすることもできる。また、電流の方向は特に固定する必要はなく、電流の正負を定期的又は随意的に逆転させ、陰極と陽極とを反転させながら電解を行うことができる(極性変換)。この極性変換により、陰極に付着した炭酸カルシウムなどのスケールを剥離しながら運転することができるため、電解効率の低下を防ぐことができる。なお、この場合、両電極を同一のタイプのものとすれば、一定の次亜塩素酸の発生効率が得られる。この場合、用いる電極としては、例えば、チタンを基材としたものに白金やイリジウムなどを被覆したものなどが挙げられる。極性変換の頻度としては5〜100hr、好ましくは12〜24hr毎に行う。
【0035】
本発明において、電解のために印加する直流電圧に特に制限はないが、通常2〜20Vであり、好ましくは3〜10V、3〜4Vであることがより好ましい。印加する電圧が2V未満であると、遊離塩素の生成効率が低下するおそれがある。印加する電圧が50Vを超えると、人体に対して危険性が生ずるおそれがある。本発明方法において、電解のために通電する電流値に特に制限はないが、導入されるRO濃縮水1L/hrに対して、0.5〜5Aであることが好ましい。
【0036】
前述の如く、RO濃縮水は、十分に高い塩化物イオン濃度を有し、従って、RO濃縮水には特に塩化物イオンを補給することなく電解処理装置6で処理して十分量の遊離塩素濃度の電解処理水を得ることができるが、必要に応じてRO濃縮水に食塩(NaCl)等を添加して塩化物イオン濃度を5,000〜20,000mg/L程度にまで高めても良い。
【0037】
また、電解処理に当って、RO濃縮水は特にpH調整を行う必要はないが、生成した遊離塩素の気中への飛散を防止するためには、pH7〜9程度に調整しても良い。
【0038】
電解処理装置6で得られる遊離塩素を含む電解処理水は、スライムコントロール剤として循環冷却水系に添加されるが、この電解処理水は、遊離塩素濃度が高く、このような電解処理水を長い配管で移送することは、配管腐食等の面から好ましくない。従って、図1に示す如く、電解処理水の取出配管をRO透過水の排出配管に接続し、スライムコントロール剤としての必要量の電解処理水を、RO透過水に混合して循環冷却水系に返送するのが好ましい。
【0039】
この場合、循環冷却水系への返送に当ってpH調整が必要であれば、RO透過水と混合した後pH調整を行えば良い。
【0040】
なお、ブロー水をRO膜装置で処理して得られるRO濃縮水の全量を電解処理して循環冷却水系に返送すると、RO膜装置で除去した塩類を再び循環冷却水系に戻すことになり好ましくない。従って、一般的にはブロー水をRO膜装置で処理して得られるRO濃縮水の1/400〜1/100程度を電解処理し、例えば次亜塩素酸ナトリウム1900〜5700mg/L程度の遊離塩素含有水を得、これをRO透過水と共に循環冷却水系に戻すことが好ましい。
【0041】
従って、電解処理に供さない残余のRO濃縮水は必要に応じてpH調整した後排水として系外へ排出される。
【0042】
図1に示す装置は本発明の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。
【0043】
ブロー水への酸添加方法としては、被処理水導入ラインやライン中に設けたラインミキサに直接或いは、別途設けたpH調整槽に薬注ポンプ等により行う方法などを挙げることができる。ここで使用される酸は特に限定されるものではなく、塩酸、硫酸、硝酸などの無機酸を好適に用いることができる。
【0044】
酸添加後の脱炭酸処理手段としては、通常の炭酸ガス除去手段を用いることができ、脱炭酸塔等の他、脱気膜や曝気塔などを採用することができる。
【0045】
pH調整手段としては、本実施例では脱炭酸塔2の入口に酸添加手段を設け、脱炭酸塔2とRO膜装置5との間にpH調整剤添加手段を設け、脱炭酸塔入口側及びRO膜装置入口側のそれぞれで、各薬剤の添加量を自動或いは手動によって調整することで実施している。しかし、RO膜装置5の入口側のpH調整剤添加手段を省略して、脱炭酸塔2の入口側での酸添加のみにより、脱炭酸塔2の入口側及びRO膜装置5の入口側のpHを共に上記pH範囲に収まるよう調整することも可能である。
【0046】
RO膜装置の前段のSS除去手段としては、特に制限はなく、膜濾過装置の他、カートリッジフィルタ等を用いることもできる。
【0047】
このSS除去手段は、RO膜装置等の脱イオン処理手段の前段に設ければ良く、脱炭酸処理手段の前でも後でも良い。図1に示す如く、脱炭酸処理手段である脱炭酸塔と脱イオン処理手段であるRO膜装置との間に設けた場合には、スケールの生成し易い循環冷却水がそのまま流入することによる膜濾過装置等のSS除去手段でのスケール障害の問題が解消されるという利点がある。
【0048】
また、脱炭酸処理手段の前段にSS除去手段を設けた場合には、膜濾過装置等のSS除去手段の逆洗排水等として系外へ排出される水量分のpH調整剤を節減することができると共に、pH調整前の水が導入されるということから、SS除去手段の構成材料を耐酸性のものにする必要がなくなる。
【0049】
このSS除去手段は、後段のRO膜装置の安定運転のために、RO膜装置の前段側に設けてSSを除去する。
【0050】
なお、図1においては、冷却塔のブロー水を原水として処理を行っているが、本発明で対象とする被処理水はブロー水に限らず、本発明では循環冷却水系の循環配管から循環冷却水の一部又は全部を引き抜いて本発明に従って処理した後当該循環冷却水系に戻すようにしても良い。
【0051】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0052】
実施例1
図1に示す装置により、水道水を補給水とする循環冷却水系の冷却塔のブロー水(水質は表1に示す通り。)を216L/hrの処理量で処理した。
【0053】
各装置の仕様は次の通りであり、ブロー水中の遊離塩素濃度が1mg/Lとなるように、ストレーナの前段で電解処理水の一部を添加し、更に脱炭酸塔の入口において、HClを添加して脱炭酸塔入口での被処理水をpH4.9±0.2に調整した。
【0054】
また、RO膜処理する水には必要に応じてNaOH等を添加してpH4.9±0.2に調整すると共にスケール防止剤としてホスホン酸系スケール防止剤を20mg/L添加した。
【0055】
RO膜装置の透過水180L/hr及び濃縮水36L/hrの水質は表1に示す通りであった。このRO濃縮水の一部36L/hrは電解処理装置に送給して電解処理し、残部は排水として系外へ排出した。
【0056】
なお膜濾過装置は遊離塩素濃度が1.5mg/Lになるように電解処理水を添加した清水で20分に1回の頻度で逆洗浄を実施した。
【0057】
【表1】
【0058】
RO透過水は循環冷却水系の補給水として再利用可能な高水質処理水であった。
【0059】
また、塩化物イオン濃度1000〜3000mg/L、平均約1800mg/LのRO濃縮水を電解処理装置で電解処理することにより、平均で約3420mg/Lの次亜塩素酸ナトリウムを発生させることができ、この電解処理水は、循環冷却水系及び冷却水処理装置内のスライムコントロール剤として有効に使用することができた。
【0060】
実施例2
実施例1において、RO濃縮水に食塩を加えて塩化物イオン濃度を約6000mg/Lに調整した後、電解処理したこと以外は同様にしてブロー水の処理を行ったところ、約11400mg/Lの次亜塩素酸ナトリウムを含有する電解処理水を得ることができ、この電解処理水は、循環冷却水系及び冷却水処理装置内のスライムコントロール剤として有効に使用することができた。
【0061】
なお、実施例1,2において、電解処理装置の極性変換を行わない場合には、数日の処理で電圧上昇が生じたが、極性変換を行って、12hrに1回の頻度で陽極と陰極とを交互に変換させたところ、電圧が安定し、次亜塩素酸ナトリウム(遊離塩素)の発生も安定することが確認された。
【0062】
【発明の効果】
以上詳述した通り、本発明の冷却水の処理方法及び処理装置によれば、循環冷却水のブロー水をRO膜装置で処理して補給水として再利用可能な処理水を得ると共に、RO濃縮水を電解処理することにより遊離塩素を発生させ、これをスライムコントロール剤として循環冷却水系に有効利用することが可能となる。
【0063】
このため、本発明によれば、冷却水の水回収と共にスライムコントロール剤としての遊離塩素の供給が可能となり、冷却水の有効利用を図ることができる。
【図面の簡単な説明】
【図1】本発明の冷却水の処理方法及び処理装置の実施の形態を示す系統図である。
【符号の説明】
1 ストレーナ
2 脱炭酸塔
3 膜濾過装置
4 中間槽
5 RO膜装置
6 電解処理装置(電解次亜塩素酸ナトリウム発生装置)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling water processing method and processing apparatus, and more particularly to a processing method and processing apparatus for recovering cooling tower blow water of a circulating cooling water system and reusing it as makeup water.
[0002]
[Prior art and prior art]
In a circulating cooling water system, water in the system is discharged from the cooling tower as blow water to prevent scale failure due to concentration of scale components in the system, and water corresponding to this blow water volume is replenished as makeup water. ing. This blow water is water in which hardness components and scale components such as silica have already been concentrated to the precipitation limit by a
[0003]
Further, the present inventors treated the blow water with an RO membrane device and reused it as a water treatment system that can be stably and efficiently treated at a low cost with a simple device. Was added to adjust the pH to 3 to 6, followed by decarboxylation treatment, membrane filtration treatment, and then desalting treatment with an RO membrane device (Japanese Patent Application No. 2001-127946).
[0004]
With this method, the carbonated water and bicarbonate ions in the water can be efficiently removed as carbon dioxide gas by decarboxylating blow water with a weak acidity of pH 3-6, It is possible to effectively prevent the precipitation of carbonate scale such as calcium carbonate, which is the biggest cause of scale failure. Moreover, clogging and blockage in the RO membrane device can be prevented by removing the suspended substance (SS) by membrane filtration treatment.
[0005]
By the way, in the circulating cooling water system, it is necessary to consider not only scale failure but also slime failure caused by microorganisms. That is, in the high concentration operation of the circulating cooling water system, the quality of the cooling water deteriorates, and it becomes easy to generate slime that is formed by mixing soil, sand, dust, etc. with microorganisms such as bacteria, straw, and algae. Cause deterioration of thermal efficiency and water flow in the vessel. In addition, local corrosion of equipment and piping is induced below the slime adhesion part.
[0006]
Therefore, conventionally, in order to prevent such damage caused by slime, generally, a chlorine-based chemical or a non-chlorine-based microbial repellent is added to the circulating cooling water as a slime control agent.
[0007]
Therefore, even when the blow water desalted by the RO membrane device as described above is reused, it is necessary to add these slime control agents.
[0008]
On the other hand, in order to prevent slime failure in RO membrane devices and membrane filtration devices, adding chlorine-based disinfectants and non-chlorine microorganism repellents to the supply water and backwash water of these devices is performed. .
[0009]
[Problems to be solved by the invention]
However, the desalination treatment of blow water with RO membrane device and addition of slime control agent to return to the cooling water system, or addition of slime control agent to the supply water and backwash water of RO membrane device and membrane filtration device In addition to the desalination treatment system, a chemical tank for adding a slime control agent, a chemical injection facility such as a chemical injection pump, etc. are required, and complicated operations such as drug delivery and chemical inventory management are required. Necessary.
[0010]
The present invention solves the above-mentioned conventional problems, recycles the circulating cooling water blow water with the RO membrane device and reuses it, and can also supply free chlorine as a slime control agent. An object is to provide a processing method and a processing apparatus.
[0011]
[Means for Solving the Problems]
[0013]
How to process the cooling water of the present invention, after suspended solids removing treatment by clarifier at least part of the cooling water of the cooling water system, treated reverse osmosis membrane separation, the concentrated water by the reverse osmosis membrane separation process Electrolytically treated, the electrolytically treated water is used as backwash water for the turbidity removing device.
[0014]
Processing equipment for the cooling water of the present invention, a clarifier for suspended solids removal processing at least a portion of the cooling water of the cooling water system, a reverse osmosis membrane for reverse osmosis membrane separation process removal turbid water from該除turbidity device It has a separation device, an electrolytic treatment device for electrolytically treating the concentrated water from the reverse osmosis membrane separation device, and a backwashing means for backwashing the turbidity device with the electrolytic treatment water.
[0015]
The tap water or industrial water used as make-up water for circulating cooling water system, usually the number of mg-Cl - / L~10mg-Cl - / L of about contains chloride ions.
[0016]
For this reason, the cooling water in the circulating cooling water system is enriched with chloride ions in the make-up water by 6-8 times high concentration operation, and this cooling water is obtained by further desalting with the RO membrane device. In the concentrated water (hereinafter referred to as “RO concentrated water”), chloride ions are further concentrated. Therefore, by subjecting this RO concentrated water to electrolytic treatment, free chlorine effective as a slime control agent can be generated from chloride ions in the RO concentrated water. Therefore, it is possible to prevent slime damage by returning the electrolytically treated water containing free chlorine to the cooling water system or the front stage of the RO membrane apparatus or by injecting it into the backwash water of the turbidity apparatus provided at the front stage of the RO membrane apparatus. it can.
[0017]
That is, in the electrolytic treatment apparatus, a DC voltage is applied between an anode and a cathode using an external power source, and RO concentrated water is passed between both electrodes. As a result, chloride ions in the RO concentrated water are oxidized on the surface of the anode, and chlorine having strong oxidizing power such as hypochlorous acid is generated. The generated free chlorine sterilizes microorganisms that cause slime, or suppresses growth, so that generation of slime in the circulating cooling water system can be effectively prevented.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a cooling water treatment method and a treatment apparatus according to the present invention will be described below in detail with reference to the drawings.
[0019]
FIG. 1 is a system diagram showing an embodiment of a cooling water treatment method and treatment apparatus according to the present invention. In the figure, 1 is a strainer, 2 is a decarboxylation tower, and is equipped with a
[0020]
The blow water from the cooling tower is added with a part of the electrolyzed water from the
[0021]
Here, as a slime control agent, if necessary, a hypochlorite such as sodium hypochlorite (NaClO), a chlorine agent such as chlorine gas, chloramine, chlorinated isocyanurate, a bromine agent such as dibromohydantoin, An organic agent such as DBNPA (dibromonitrilopropionamide) or MIT (methylisothiazolone) may be added.
[0022]
According to the apparatus of FIG. 1, since free chlorine as a slime control agent generated in the
[0023]
The pH adjustment at the inlet of the decarboxylation tower 2 is carried out so that the pH is in the range of 3 to 6, preferably 4.5 to 5.5. By making such acidic conditions, the M alkali component in blown water, that is, carbonate ions (CO 3 2− ) and bicarbonate ions (HCO 3 − ) are converted into carbon dioxide gas, and the decarbonation tower 2 efficiently It is possible to effectively prevent scale failure caused by the carbonic acid component in the subsequent RO membrane device 5 and to improve the quality of treated water by reducing the carbonic acid component that permeates the RO membrane device 5. it can. From the viewpoint of the decarboxylation efficiency, it is desirable that the pH is low. However, if the pH is excessively low, the pH of the effluent of the decarboxylation tower 2 is too low, and it is necessary to readjust the pH in the front stage of the RO membrane device 5. Since it occurs or corrosion occurs, the adjusted pH is adjusted to
[0024]
Effluent decarboxylation column 2 by the pump P 1 is introduced into the
[0025]
The concentrated water of the
[0026]
In the
[0027]
The pH adjustment on the inlet side of the RO membrane device 5 is performed so that the pH is 3 to 6, preferably 4 to 6, and more preferably 4.5 to 5.5 in order to prevent scale failure due to silica. The pH of decarboxylated water obtained by decarboxylation varies as compared to before decarboxylation. For this reason, an acid such as hydrochloric acid, sulfuric acid or nitric acid or an alkali such as NaOH or KOH is added as a pH adjuster on the inlet side of the intermediate tank 4 as necessary. From the standpoint of preventing scale failure in the RO membrane device 5, it is preferable that the adjusted pH be acidic, but excessively low adjusted pH may cause corrosion of equipment and piping materials, and thus needs to be within the above pH range. There is.
[0028]
As the scale inhibitor, for example, a phosphonic acid-based, polyphosphoric acid-based, polyacrylic acid-based, or polyacrylamide-based scale inhibitor can be used, but an organic scale inhibitor is a cause of fouling in the RO membrane device. Therefore, a phosphonic acid-based or polyphosphoric acid-based scale inhibitor is preferably used.
[0029]
Usually, since the scale inhibitor is already added to the circulating cooling water, it is not always necessary to add this scale inhibitor. However, by adding about 1 to 20 mg / L, the RO membrane device 5 Therefore, it is preferable that scale generation in the above can be prevented more reliably. The scale inhibitor only needs to be added before the RO membrane device 5, and is not limited to the inlet portion of the RO membrane device 5. There is no limit.
[0030]
The water in the intermediate tank 4 is introduced into the RO membrane device 5 by the pump P 2 and subjected to RO membrane treatment. The pH of the RO permeated water is adjusted as necessary and then discharged out of the system as treated water. Returned as makeup water for circulating cooling water.
[0031]
The RO membrane type of the RO membrane device 5 is preferably a cellulose acetate RO membrane that is resistant to an oxidizing agent, and the desalting rate is preferably 85% or more, particularly 90% or more. If the desalting rate is worse than this, the deionization efficiency is poor, and treated water (permeated water) with good water quality cannot be obtained.
[0032]
The required amount of RO concentrated water in the RO membrane device 5 is supplied to the
[0033]
The chloride ion concentration of this RO concentrated water is generally about 1000 to 3000 mg / L, although it varies depending on the quality of blow water and the desalting performance of the RO membrane device 5. Therefore, by subjecting RO concentrated water having such a chloride ion concentration to electrolytic treatment, for example, free chlorine-containing water of about 1900 to 5700 mg / L of sodium hypochlorite can be obtained. Can be effectively used in a circulating cooling water system as a slime control agent.
[0034]
The material of the electrode used in the
[0035]
In the present invention, the DC voltage applied for electrolysis is not particularly limited, but is usually 2 to 20 V, preferably 3 to 10 V, more preferably 3 to 4 V. If the voltage to be applied is less than 2V, the production efficiency of free chlorine may be reduced. If the applied voltage exceeds 50V, there is a risk of danger to the human body. In the method of the present invention, the current value to be energized for electrolysis is not particularly limited, but is preferably 0.5 to 5 A with respect to 1 L / hr of RO concentrated water to be introduced.
[0036]
As described above, the RO concentrated water has a sufficiently high chloride ion concentration. Therefore, the RO concentrated water is treated with the
[0037]
Further, in the electrolytic treatment, it is not necessary to adjust the pH of the RO concentrated water, but the pH may be adjusted to about 7 to 9 in order to prevent the generated free chlorine from scattering into the air.
[0038]
The electrolyzed water containing free chlorine obtained by the
[0039]
In this case, if pH adjustment is necessary for returning to the circulating cooling water system, pH adjustment may be performed after mixing with RO permeate.
[0040]
If the entire amount of RO concentrated water obtained by treating blow water with the RO membrane device is electrolytically treated and returned to the circulating cooling water system, the salts removed by the RO membrane device are returned to the circulating cooling water system again, which is not preferable. . Therefore, generally, about 1/400 to 1/100 of RO concentrated water obtained by treating blow water with an RO membrane device is subjected to electrolytic treatment, for example, free chlorine of about 1900 to 5700 mg / L of sodium hypochlorite. It is preferable to obtain the contained water and return it to the circulating cooling water system together with the RO permeated water.
[0041]
Therefore, the remaining RO concentrated water not subjected to the electrolytic treatment is discharged out of the system as waste water after pH adjustment as necessary.
[0042]
The apparatus shown in FIG. 1 is an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as it does not exceed the gist thereof.
[0043]
Examples of the method for adding acid to the blow water include a method in which a treatment water introduction line and a line mixer provided in the line are directly used or a pH adjustment tank provided separately by a chemical injection pump or the like. The acid used here is not particularly limited, and inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid can be suitably used.
[0044]
As the decarboxylation treatment means after the acid addition, a normal carbon dioxide gas removal means can be used, and in addition to a decarboxylation tower, a degassing membrane, an aeration tower, and the like can be employed.
[0045]
As the pH adjusting means, in this embodiment, an acid addition means is provided at the inlet of the decarbonation tower 2, and a pH adjuster addition means is provided between the decarbonation tower 2 and the RO membrane device 5, and the decarbonation tower inlet side and This is performed by adjusting the amount of each drug added automatically or manually on the RO membrane device inlet side. However, the pH adjusting agent addition means on the inlet side of the RO membrane device 5 is omitted, and only the acid addition at the inlet side of the decarboxylation tower 2 is performed on the inlet side of the decarbonation tower 2 and the inlet side of the RO membrane device 5. It is also possible to adjust the pH to be within the above pH range.
[0046]
There are no particular limitations on the SS removal means in the previous stage of the RO membrane device, and a cartridge filter or the like can be used in addition to the membrane filtration device.
[0047]
This SS removing means may be provided before the deionizing means such as the RO membrane device, and may be before or after the decarbonation means. As shown in FIG. 1, when it is provided between a decarbonation tower that is a decarbonation treatment means and an RO membrane device that is a deionization treatment means, a membrane formed by the inflow of circulating cooling water that easily generates scales. There is an advantage that the problem of scale failure in the SS removing means such as a filtration device is solved.
[0048]
In addition, when the SS removing means is provided in front of the decarbonation means, it is possible to reduce the pH adjusting agent for the amount of water discharged out of the system as backwash waste water of the SS removing means such as a membrane filtration device. In addition, since water before pH adjustment is introduced, it is not necessary to make the constituent material of the SS removing means acid-resistant.
[0049]
The SS removal means for stable operation of the RO membrane apparatus of the rear stage, remove the SS is provided in the preceding stage of the R O film device.
[0050]
In FIG. 1, treatment is performed using the blow water of the cooling tower as raw water, but the water to be treated in the present invention is not limited to blow water, and in the present invention, circulation cooling is performed from the circulation pipe of the circulation cooling water system. A part or all of the water may be withdrawn and treated according to the present invention, and then returned to the circulating cooling water system.
[0051]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0052]
Example 1
The apparatus shown in FIG. 1 was used to treat blow water (water quality as shown in Table 1) of a circulating cooling water system using tap water as make-up water at a throughput of 216 L / hr.
[0053]
The specifications of each device are as follows. A part of the electrolyzed water is added at the front stage of the strainer so that the free chlorine concentration in the blow water becomes 1 mg / L, and HCl is added at the inlet of the decarboxylation tower. The water to be treated at the inlet of the decarboxylation tower was adjusted to pH 4.9 ± 0.2.
[0054]
Moreover, NaOH etc. were added to the water which carries out RO membrane treatment as needed, and it adjusted to pH4.9 ± 0.2, and 20 mg / L of phosphonic acid type scale inhibitors were added as a scale inhibitor.
[0055]
Table 1 shows the water quality of the permeated water 180 L / hr and the concentrated water 36 L / hr of the RO membrane device. A portion 36 L / hr of this RO concentrated water was supplied to the electrolytic treatment apparatus for electrolytic treatment, and the remainder was discharged out of the system as waste water.
[0056]
The membrane filtration apparatus was back-washed once every 20 minutes with fresh water to which electrolytic treatment water was added so that the free chlorine concentration was 1.5 mg / L.
[0057]
[Table 1]
[0058]
The RO permeated water was high quality treated water that could be reused as makeup water for the circulating cooling water system.
[0059]
Moreover, by subjecting RO concentrated water having a chloride ion concentration of 1000 to 3000 mg / L and an average of about 1800 mg / L to electrolytic treatment with an electrolytic treatment apparatus, an average of about 3420 mg / L of sodium hypochlorite can be generated. The electrolytically treated water could be effectively used as a slime control agent in the circulating cooling water system and the cooling water treatment apparatus.
[0060]
Example 2
In Example 1, sodium chloride was added to RO concentrated water to adjust the chloride ion concentration to about 6000 mg / L, and then the blow water was treated in the same manner except that the electrolytic treatment was performed. Electrolyzed water containing sodium hypochlorite could be obtained, and this electrolyzed water could be effectively used as a slime control agent in the circulating cooling water system and the cooling water treatment apparatus.
[0061]
In Examples 1 and 2, when the polarity conversion of the electrolytic treatment apparatus is not performed, the voltage rises in the treatment for several days. However, the polarity conversion is performed, and the anode and the cathode are once in every 12 hours. It was confirmed that the voltage was stable and the generation of sodium hypochlorite (free chlorine) was also stable.
[0062]
【The invention's effect】
As described above in detail, according to the cooling water treatment method and treatment apparatus of the present invention, the blown water of the circulating cooling water is treated with the RO membrane device to obtain treated water that can be reused as makeup water, and the RO concentration. Free chlorine is generated by electrolytic treatment of water, and this can be effectively used in a circulating cooling water system as a slime control agent.
[0063]
For this reason, according to this invention, supply of free chlorine as a slime control agent is attained with recovery of cooling water, and effective use of cooling water can be achieved.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a cooling water treatment method and treatment apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Strainer 2
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002076616A JP3731555B2 (en) | 2002-03-19 | 2002-03-19 | Cooling water treatment method and treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002076616A JP3731555B2 (en) | 2002-03-19 | 2002-03-19 | Cooling water treatment method and treatment apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003275761A JP2003275761A (en) | 2003-09-30 |
JP3731555B2 true JP3731555B2 (en) | 2006-01-05 |
Family
ID=29205331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002076616A Expired - Fee Related JP3731555B2 (en) | 2002-03-19 | 2002-03-19 | Cooling water treatment method and treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3731555B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017216580A1 (en) * | 2016-06-17 | 2017-12-21 | Portsmouth Aviation Limited | Membrane water purification with disinfection by means of electrolyzed water |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101397606B1 (en) * | 2006-08-08 | 2014-05-27 | 가부시키가이샤 고가네이 | Method of purifying water and apparatus therefor |
CN101489940B (en) | 2006-08-29 | 2014-06-18 | 株式会社小金井 | Method of purifying water and apparatus therefor |
JP4866221B2 (en) * | 2006-12-07 | 2012-02-01 | オルガノ株式会社 | Filtration treatment apparatus and filtration treatment method |
KR100896128B1 (en) | 2007-08-20 | 2009-05-07 | 한국식품연구원 | Cooling water recycling system |
JP4867930B2 (en) * | 2008-02-21 | 2012-02-01 | 栗田工業株式会社 | Disinfection method of aqueous Legionella bacteria |
JP5471242B2 (en) * | 2009-09-29 | 2014-04-16 | 栗田工業株式会社 | Water treatment method and apparatus |
JP2013158750A (en) * | 2012-02-08 | 2013-08-19 | Omega:Kk | Desalination method |
US20160115061A1 (en) * | 2013-07-05 | 2016-04-28 | Mitsubishi Heavy Industries, Ltd. | Water treatment system, water treatment method, cooling facility and power generating facility |
CN106422794A (en) * | 2016-08-25 | 2017-02-22 | 北京航天环境工程有限公司 | Cleaning system and method for filter membrane used in membrane-method sea water desalination |
CN111573920B (en) * | 2020-05-28 | 2022-04-15 | 宁波中车时代电气设备有限公司 | Vehicle-mounted hanging type high-concentration sewage treatment device |
JP7297312B2 (en) * | 2020-06-19 | 2023-06-26 | ゼオライト株式会社 | Bathhouse drainage purification equipment |
JP7521965B2 (en) * | 2020-07-31 | 2024-07-24 | オルガノ株式会社 | Ammonia concentration method and ammonia concentration device |
CN117490437B (en) * | 2023-12-29 | 2024-03-29 | 海明(江苏)环境科技有限公司 | Corrosion-resistant seawater horizontal shell-and-tube condenser |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09294986A (en) * | 1996-05-01 | 1997-11-18 | Mitsubishi Heavy Ind Ltd | Sea water desalination plant |
JPH1043745A (en) * | 1996-08-01 | 1998-02-17 | T R P:Kk | Washing and regenerating mechanism for filter media |
JP4304803B2 (en) * | 1999-12-28 | 2009-07-29 | Jfeエンジニアリング株式会社 | Water treatment apparatus cleaning method and water treatment apparatus |
JP3870712B2 (en) * | 2000-05-02 | 2007-01-24 | 栗田工業株式会社 | Circulating cooling water treatment method and treatment apparatus |
-
2002
- 2002-03-19 JP JP2002076616A patent/JP3731555B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017216580A1 (en) * | 2016-06-17 | 2017-12-21 | Portsmouth Aviation Limited | Membrane water purification with disinfection by means of electrolyzed water |
Also Published As
Publication number | Publication date |
---|---|
JP2003275761A (en) | 2003-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6464877B1 (en) | Water treating method | |
EP1900417B1 (en) | Method of bacteriostasis or disinfection for permselective membrane | |
JP3731555B2 (en) | Cooling water treatment method and treatment apparatus | |
JP3870712B2 (en) | Circulating cooling water treatment method and treatment apparatus | |
JP6251095B2 (en) | Membrane filtration system, membrane filtration method, and apparatus for producing water for breeding aquatic organisms | |
WO2008150541A1 (en) | Aqueous treatment apparatus utilizing precursor materials and ultrasonics to generate customized oxidation-reduction-reactant chemistry environments in electrochemical cells and/or similar devices | |
WO2002085794A1 (en) | System for producing alkaline drinking water product | |
JP5471242B2 (en) | Water treatment method and apparatus | |
JP3903746B2 (en) | Circulating cooling water treatment method | |
JP2007007502A (en) | Manufacturing method of low sodium chloride electrolytic water and manufacturing device thereof | |
JP3137831B2 (en) | Membrane processing equipment | |
JP2001029752A (en) | Manufacture of high-purity water and device therefor | |
JP2008178845A (en) | Electrolyzed hypochlorous water production apparatus | |
CN218561247U (en) | System for preparing water for preparing green hydrogen by utilizing sewage | |
JP5339054B2 (en) | Water treatment method | |
JP4576760B2 (en) | Circulating cooling water treatment method | |
JP3148849B2 (en) | Seawater desalination method by reverse osmosis | |
JP4304803B2 (en) | Water treatment apparatus cleaning method and water treatment apparatus | |
JP7188942B2 (en) | MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD | |
JP3353810B2 (en) | Reverse osmosis seawater desalination system | |
JPH09294977A (en) | Water purifying apparatus | |
JPH09323029A (en) | Water desalting method and device therefor | |
JP3514828B2 (en) | Operation method of water purification system and water purification device | |
JPH11277060A (en) | Apparatus for treating water containing manganese | |
US20240025780A1 (en) | Method for eliminating the use of chemical products in pre-treatment in seawater desalination plants based on reverse osmosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051003 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091021 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091021 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101021 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101021 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121021 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121021 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131021 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |