JP5339054B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP5339054B2
JP5339054B2 JP2008335976A JP2008335976A JP5339054B2 JP 5339054 B2 JP5339054 B2 JP 5339054B2 JP 2008335976 A JP2008335976 A JP 2008335976A JP 2008335976 A JP2008335976 A JP 2008335976A JP 5339054 B2 JP5339054 B2 JP 5339054B2
Authority
JP
Japan
Prior art keywords
water
membrane
treatment
treated
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008335976A
Other languages
Japanese (ja)
Other versions
JP2010137209A (en
Inventor
和史 近藤
浩 蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wellthy Corp
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2008335976A priority Critical patent/JP5339054B2/en
Publication of JP2010137209A publication Critical patent/JP2010137209A/en
Application granted granted Critical
Publication of JP5339054B2 publication Critical patent/JP5339054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method which enables an efficiently stable operation without requiring large-scale equipment for sand filtration and the like when performing water purification treatment of water to be treated, such as groundwater, containing metal ions and insoluble materials. <P>SOLUTION: The water to be treated containing metal ions and insoluble materials is subjected to filtration treatment by a filtration membrane supporting a precoating agent to remove the insoluble materials, and then subjected to desalting treatment. The membrane filtration treatment and the desalting treatment are performed in a state of inhibiting oxidative precipitation of the metal ions by adding a reducing agent to the water to substantially remove dissolved oxygen in the water. The reducing agent is added before the membrane filtration treatment so that dissolved oxygen is not substantially contained in concentrate and/or permeate accompanying the desalting treatment. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、浄水処理、工業用水製造などに用いられる水処理方法に関する。  The present invention relates to a water treatment method used for water purification, industrial water production and the like.

従来より水処理方法の一つとして、有機物の分解、除菌、金属等の除去を行うために、次亜塩素酸ナトリウムなどの塩素系酸化剤やオゾンなどの酸化剤を用いて被処理水を酸化処理する方法が用いられている。  Conventionally, as one of the water treatment methods, in order to decompose organic matter, disinfect bacteria, remove metals, etc., water to be treated is treated with a chlorine-based oxidizing agent such as sodium hypochlorite or an oxidizing agent such as ozone. An oxidation treatment method is used.

例えば地下水処理に於いては、酸化剤を添加し溶解している金属を一旦酸化析出せしめ、急速ろ過した後、精密ろ過膜もしくは限外ろ過膜などで処理するのが通常である。とりわけ、被処理水が深井戸を水源とする場合、水源が無酸素状態であるため溶存金属が多く精密ろ過膜もしくは限外ろ過膜を用いる場合、前段に急速ろ過が必須となる。そのため、水処理装置が大型化し、設置に大きなスペースが必要となる。また、砂ろ過塔や膜の逆洗を実施する必要があるため、これらの処理設備から多量の排水が発生する欠点がある。
更に、深井戸を水源とし精密ろ過膜もしくは限外ろ過膜により飲料水処理する場合、原水中の硬度成分やシリカなどが処理水中にも大部分残存することになるためスケールによる問題発生も懸念される。
For example, in groundwater treatment, it is usual to add an oxidizer to oxidize and precipitate dissolved metal, and after rapid filtration, treat with a microfiltration membrane or ultrafiltration membrane. In particular, when the water to be treated is a deep well as a water source, rapid filtration is essential in the previous stage when the water source is oxygen-free and there are many dissolved metals and a microfiltration membrane or ultrafiltration membrane is used. For this reason, the water treatment apparatus becomes larger and a large space is required for installation. Moreover, since it is necessary to carry out back washing of the sand filtration tower and the membrane, there is a drawback that a large amount of waste water is generated from these treatment facilities.
Furthermore, when drinking water is treated with a microfiltration membrane or ultrafiltration membrane using a deep well as a water source, the hardness components in the raw water and silica remain mostly in the treated water, which may cause problems due to scale. The

上記した諸問題に対処する例として、特許文献1には、処理工程の前段で多価金属イオンの一部を酸化処理し、析出した固形分を除去した後、得られた1次処理水をナノろ過膜もしくは逆浸透膜を用い高度処理する方法が開示されている。この場合、淡水処理用のナノろ過膜もしくは逆浸透膜は酸化剤に対する耐性を有していないため、原水の供給に際し予め還元剤を注入し残存する酸化剤を除去することが必須となる。加えて、この被処理水を飲料用水として使用する場合、ナノろ過膜もしくは逆浸透膜による水処理後に再度酸化剤である次亜塩素酸ナトリウムを添加し、飲料水中の残留塩素を0.1mg/L以上に保持する如く注入し管理することが必要となる。したがって、多種類の薬剤を複数回繰り返し添加せねばならず、薬液量も増え、コストがかかると共に工程が煩雑となる。  As an example of dealing with the above-mentioned problems, Patent Document 1 discloses that the primary treated water obtained is obtained by oxidizing part of the polyvalent metal ions in the previous stage of the treatment process and removing the precipitated solid content. A high-level treatment method using a nanofiltration membrane or a reverse osmosis membrane is disclosed. In this case, since the nanofiltration membrane or reverse osmosis membrane for fresh water treatment does not have resistance to an oxidizing agent, it is essential to inject a reducing agent in advance and remove the remaining oxidizing agent when supplying raw water. In addition, when this treated water is used as drinking water, sodium hypochlorite, which is an oxidizing agent, is added again after water treatment with a nanofiltration membrane or reverse osmosis membrane, and residual chlorine in the drinking water is 0.1 mg / It is necessary to inject and manage it so that it is maintained at L or more. Therefore, many kinds of chemicals must be repeatedly added a plurality of times, the amount of chemicals increases, the cost increases, and the process becomes complicated.

また、原水水質にもよるが、固形分の除去に精密ろ過膜もしくは限外ろ過膜を用いた場合には、通常、1時間程度の通水処理実施後に逆通水を施すことから排水量が増加し、処理水回収率が低下する。
このように、従来の酸化処理を基にした水処理方法では、必要スペース、使用薬液量、多量の排水量など、非効率な面が多く、改良の余地があった。
Depending on the quality of the raw water, when a microfiltration membrane or ultrafiltration membrane is used to remove the solid content, the amount of wastewater increases because reverse water is usually applied after about 1 hour of water treatment. In addition, the treated water recovery rate is reduced.
As described above, the conventional water treatment method based on the oxidation treatment has many inefficient aspects such as necessary space, amount of chemical solution used, and a large amount of drainage, and there is room for improvement.

一方、特許文献2には、汲み上げた地下水を直接固液分離した後、ナノろ過膜もしくは逆浸透膜により処理する方法が開示されている。この方法は、薬液を削減している点で注目に値する。しかしこの方法に拠っても、処理工程において大気下で処理することから酸素の混入を完全に遮断することは難しく、その結果、原水中の鉄などの金属イオンが酸化され、酸化鉄などの金属酸化物の微粒子として析出してしまう。
酸化鉄は、粒径が10nm〜5000nmと分布が広いことで知られているが、酸化鉄の除去に仮に精密ろ過膜もしくは限外ろ過膜を前処理に用いた場合、発生した酸化鉄により、非常に短期間に精密ろ過膜もしくは限外ろ過膜の閉塞が惹起される。また一旦膜閉塞が発生した場合、これらの不溶解性物質は粒径が非常に小さい為、膜の物理的洗浄である逆通水を実施しても、膜差圧は回復せず処理工程に支障を来す結果となる。また、逆通水の頻度を増加させると、処理水の回収率が低下してしまう。
On the other hand, Patent Document 2 discloses a method in which groundwater pumped up is directly solid-liquid separated and then treated with a nanofiltration membrane or a reverse osmosis membrane. This method is remarkable in that the chemical solution is reduced. However, even with this method, it is difficult to completely block oxygen contamination because it is treated in the atmosphere in the treatment process. As a result, metal ions such as iron in raw water are oxidized, and metal such as iron oxide is oxidized. It precipitates as oxide fine particles.
Iron oxide is known to have a wide distribution with a particle size of 10 nm to 5000 nm, but if a microfiltration membrane or ultrafiltration membrane is used for pretreatment to remove iron oxide, The microfiltration membrane or ultrafiltration membrane is blocked in a very short time. In addition, once membrane clogging occurs, these insoluble substances have a very small particle size, so even if reverse water flow, which is a physical cleaning of the membrane, is performed, the membrane differential pressure does not recover and the treatment process is The result will be a hindrance. Moreover, if the frequency of reverse water flow is increased, the recovery rate of treated water will decrease.

また酸化鉄は、水酸化鉄及びオキシ水酸化鉄と合わせて16種類が知られているが、ベンガラなどに代表されるFeは、薬品に対する溶解性が非常に低く、原水中にこのような不溶性の酸化鉄が含まれていて、精密ろ過膜もしくは限外ろ過膜が閉塞した場合、薬品洗浄を実施しても初期状態への回復が非常に難しい。There are 16 known types of iron oxides, including iron hydroxide and iron oxyhydroxide, but Fe 2 O 3 represented by Bengala has very low solubility in chemicals, When such insoluble iron oxide is contained and the microfiltration membrane or ultrafiltration membrane is clogged, recovery to the initial state is very difficult even if chemical cleaning is performed.

以上に説明した通り、現状で開示されている方法では十分な対処が果たされておらず、更に実効有る解決方策が求められている。  As described above, the methods currently disclosed have not been adequately addressed, and more effective solutions are being sought.

特開平11−192482号公報  JP 11-192482 A 特開2007−38052号公報  JP 2007-38052 A

本発明は、金属イオンおよび不溶性物質を含む被処理水(例:地下水)を浄水処理するに際し、砂ろ過等の大型設備を必要とせず、効率的に安定運転が可能な水処理方法を提供することを目的としている。  The present invention provides a water treatment method capable of efficient and stable operation without requiring large facilities such as sand filtration when water to be treated (eg, groundwater) containing metal ions and insoluble substances is purified. The purpose is that.

本発明者等は、上記目的を達成するため鋭意研究した結果、金属イオンおよび不溶性物質を含む被処理水を膜ろ過により固液分離し脱塩処理するに際し、この一連の水処理工程を常時還元雰囲気下(溶存酸素を実質的に除去した状態下)で行うことにより、排水量を削減し、且つ安定的な運転が可能であることを見出し、本発明を完成するに至った。  As a result of diligent research to achieve the above object, the present inventors have continuously reduced this series of water treatment steps when subjecting water to be treated containing metal ions and insoluble substances to solid-liquid separation by membrane filtration and desalting. It was found that the amount of drainage was reduced and stable operation was possible by carrying out under an atmosphere (a state in which dissolved oxygen was substantially removed), and the present invention was completed.

即ち本発明の水処理方法は、金属イオンおよび不溶性物質を含む被処理水を、プレコート剤(ろ過助剤)を保持した精密ろ過膜もしくは限外ろ過膜により膜ろ過処理して不溶性物質を除去した後、逆浸透膜を用いて脱塩処理する方法であって、前記被処理水としての井戸より汲み上げられる原水に重亜硫酸ナトリウムを添加し、該被処理水中の溶存酸素を実質的に除去し、金属イオンの酸化析出を抑制した状態で、前記膜ろ過処理及び脱塩処理をすることを特徴としている。 That is, the water treatment method of the present invention removes insoluble substances by subjecting water to be treated containing metal ions and insoluble substances to membrane filtration with a microfiltration membrane or ultrafiltration membrane holding a precoat agent (filter aid). Thereafter, a desalting process using a reverse osmosis membrane, adding sodium bisulfite to the raw water pumped up from the well as the treated water, substantially removing dissolved oxygen in the treated water, The membrane filtration treatment and the desalting treatment are performed in a state where oxidation precipitation of metal ions is suppressed.

上記重亜硫酸ナトリウムは、上記脱塩処理に伴う濃縮水および/または透過水に溶存酸素が実質的に含まれなくなるように添加されることが好ましい。
具体的には、上記重亜硫酸ナトリウムは、該脱塩処理に伴う濃縮水および/または透過水中の溶存酸素濃度を、例えば0.1mg/L以下に保持するように添加する。
上記重亜硫酸ナトリウムは、上記被処理水中の溶存酸素および上記脱塩処理までに新たに溶解する酸素との反応に必要な理論量以上、好ましくは該理論量より過剰に添加されることが好ましい。ここで、重亜硫酸ナトリウムの注入量は、例えば酸素除去に必要な理論量に対し1〜50mg/L過剰に注入してもよい。
The sodium bisulfite is preferably added so that dissolved oxygen is not substantially contained in the concentrated water and / or permeated water accompanying the desalting treatment.
Specifically, the sodium bisulfite is added so that the concentration of dissolved oxygen in the concentrated water and / or permeated water accompanying the desalting treatment is maintained at, for example, 0.1 mg / L or less.
The sodium bisulfite is preferably added in excess of the theoretical amount necessary for the reaction with dissolved oxygen in the water to be treated and oxygen newly dissolved before the desalting treatment, preferably in excess of the theoretical amount. Here, the amount of sodium bisulfite to be injected may be 1 to 50 mg / L in excess of the theoretical amount necessary for oxygen removal, for example.

ここで対象となる不溶性物質は、特に限定されないが、被処理水として地下水を用いた場合には、例えば、酸化鉄、酸化マンガンなどの金属酸化物、カルシウム化合物、土壌成分、有機物、微生物などが挙げられる。また、金属イオンとしては、鉄、マンガン、カルシウム、マグネシウムなどの金属のイオンが挙げられる。  The target insoluble substances here are not particularly limited, but when groundwater is used as the water to be treated, for example, metal oxides such as iron oxide and manganese oxide, calcium compounds, soil components, organic substances, microorganisms, etc. Can be mentioned. In addition, examples of metal ions include ions of metals such as iron, manganese, calcium, and magnesium.

上記精密ろ過膜もしくは限外ろ過膜は、脱塩処理の前処理として不溶性物質(固形分)の除去を行うものである
ここで、精密ろ過膜もしくは限外ろ過膜は、通水方式(内圧式、外圧式など)、膜素材(有機、無機など)、膜形状などを問わず全て用いることができるが、続く脱塩工程に採用する逆浸透膜の膜閉塞を防止するため、膜孔径が0.1μm以下の膜を用いることが好ましい。
ろ過方式としては酸素の溶解を低減し得るためデッドエンド方式が好ましく、逆通水の頻度は、前ろ過として主として用いる精密ろ過膜もしくは限外ろ過膜の能力及び被処理水性状から適宜決定される。
The microfiltration membrane or ultrafiltration membrane is used to perform the removal of insoluble material (solids) as pretreatment desalting.
Here, any microfiltration membrane or ultrafiltration membrane can be used regardless of the water flow method (internal pressure type, external pressure type, etc.), membrane material (organic, inorganic, etc.), membrane shape, etc. In order to prevent membrane clogging of the reverse osmosis membrane employed in the process, it is preferable to use a membrane having a membrane pore diameter of 0.1 μm or less.
As the filtration method, the dead end method is preferable because it can reduce the dissolution of oxygen, and the frequency of reverse water flow is appropriately determined from the ability of the microfiltration membrane or ultrafiltration membrane used mainly as prefiltration and the state of the water to be treated. .

上記脱塩処理は、被処理水中の金属イオンを除去する処理であり、本発明では逆浸透膜を用い処理することを示すが、膜の形状は問わず、スパイラル式、中空糸式などのいずれの手段をも用いることが出来、除去率、回収率、循環量、被処理水の性状を考慮し決定することが好ましい。 The desalting treatment is a treatment for removing metal ions in the water to be treated. In the present invention, the treatment is performed using a reverse osmosis membrane, but the shape of the membrane is not limited, and any of spiral type, hollow fiber type, etc. It is preferable to determine in consideration of the removal rate, the recovery rate, the circulation rate, and the properties of the water to be treated.

本発明で用いられる重亜硫酸ナトリウムは、溶存酸素を除去し得るものであ。本発明の水処理方法が、飲料水の製造に用いられる場合には、水道用薬品の基準に適合するものを用いることとする Sodium sulfite used in the present invention, Ru der which can remove dissolved oxygen. When the water treatment method of the present invention is used for the production of drinking water, the one that meets the standards for chemicals for water supply is used .

本発明で用いられるプレコート剤(以下、保護剤ともいう)としては、平均粒径0.4〜50μmの微粒子が好ましく、精密ろ過膜もしくは限外ろ過膜に供給する場合には、膜の差圧流量特性を低下させない粒径分布及び注入量を選択することが好ましい。プレコート剤は、有機物もしくは無機物のいずれであってもよく、例えば、カオリン、ゼオライト、アルミナ、けい砂、活性炭、イオン交換樹脂、キレート樹脂、高分子ビーズなどが挙げられる。このようなプレコート剤は、1種類を単独でもしくは2種類以上を組み合わせて用いることが可能である。
また、プレコート剤は、原水性状に応じて適宜選択することが好ましい。その際、水に対する親和性、粒子形状、有機物の吸着能力などといった性状等を考慮し、プレコート剤微粒子の選択及びその混合割合を決定することが好ましい。
このようなプレコート剤をろ過膜表面にプレコートする方法としては、従来公知の方法が用いられる。
As the precoat agent (hereinafter also referred to as a protective agent) used in the present invention, fine particles having an average particle size of 0.4 to 50 μm are preferable, and when supplied to a microfiltration membrane or an ultrafiltration membrane, the differential pressure of the membrane It is preferable to select a particle size distribution and an injection amount that do not deteriorate the flow rate characteristics. The precoat agent may be either organic or inorganic, and examples thereof include kaolin, zeolite, alumina, silica sand, activated carbon, ion exchange resin, chelate resin, and polymer beads. Such a precoat agent can be used alone or in combination of two or more.
Moreover, it is preferable to select a precoat agent suitably according to raw | natural water state. At this time, it is preferable to determine the selection of precoat agent fine particles and the mixing ratio thereof in consideration of properties such as affinity for water, particle shape, adsorption ability of organic substances, and the like.
As a method of pre-coating such a pre-coating agent on the filtration membrane surface, a conventionally known method is used.

上記精密ろ過膜もしくは限外ろ過膜の差圧回復方法として、逆通水の頻度を従来の頻度よりも低減し、薬品洗浄の頻度を従来の頻度より増やすことが好ましい。ここで、逆通水とは、通常膜ろ過運転時にはろ過膜の1次側から2次側に通水するが、ろ過膜の2次側から1次側に処理水等を通水することをいう。 As a method for recovering the differential pressure of the microfiltration membrane or ultrafiltration membrane , it is preferable to reduce the frequency of reverse water flow from the conventional frequency and increase the frequency of chemical cleaning from the conventional frequency. Here, reverse water flow means that water is passed from the primary side of the filtration membrane to the secondary side during normal membrane filtration operation, but treated water or the like is passed from the secondary side of the filtration membrane to the primary side. Say.

ろ過膜として精密ろ過膜もしくは限外ろ過膜を用いた場合、逆通水を1時間ごとに1回行い、薬品洗浄は、数週間から数カ月に1回実施されることが一般的である。ところで、本発明によれば、上述のように、精密ろ過膜もしくは限外ろ過膜への負荷を著しく低減することが可能となるので、逆通水の頻度を低減することが可能となる。また、一方で、薬品洗浄回数を増やしても、例えば、洗浄薬液として溶存酸素除去に用いるのと同じ重亜硫酸ナトリウムを用いれば、すすぎ工程をせず、通水を再開することが可能となるので、薬品洗浄により操作負担が生じない。したがって、逆通水と薬品洗浄の頻度を最適化させることで、排水量を低減させることが可能となり、処理水回収率を向上させることが可能となると共に、メンテナンス回数を低減させることができるので、より長時間の安定運転が可能となる。 When a microfiltration membrane or an ultrafiltration membrane is used as a filtration membrane, reverse water flow is performed once every hour, and chemical cleaning is generally performed once every several weeks to several months. By the way, according to the present invention, as described above, the load on the microfiltration membrane or the ultrafiltration membrane can be remarkably reduced, so that the frequency of reverse water flow can be reduced. On the other hand, even if the number of times of chemical cleaning is increased, for example, if the same sodium bisulfite used for removing dissolved oxygen is used as a cleaning chemical solution, it is possible to resume water flow without performing a rinsing step. , No chemical operation is caused by chemical cleaning. Therefore, by optimizing the frequency of reverse water flow and chemical cleaning, it becomes possible to reduce the amount of drainage, improve the treated water recovery rate, and reduce the number of maintenance. Longer stable operation is possible.

精密ろ過膜もしくは限外ろ過膜の逆通水は、被処理水の性状を考慮して通水条件を決めることを基本とするが、被処理水中の溶存酸素を実質的に除去した状態下でのろ過に於いては、3から24時間に1回程度行うのが好ましい。
また、薬品洗浄については、逆通水による差圧回復性と初期差圧から決定することが好ましいが、例えば1から7日間に1回程度実施する。
The reverse flow of a microfiltration membrane or ultrafiltration membrane is based on determining the water flow conditions in consideration of the properties of the water to be treated, but under conditions where dissolved oxygen in the water to be treated has been substantially removed. The filtration is preferably performed once every 3 to 24 hours.
In addition, the chemical cleaning is preferably determined from the differential pressure recoverability by the reverse water flow and the initial differential pressure, but is performed about once every 1 to 7 days, for example.

上記薬品洗浄に、酸および還元剤を含む洗浄薬液を用い、上記精密ろ過膜もしくは限外ろ過膜の1次側に該洗浄薬液を供給し一定時間保持或いは循環させた後、該洗浄薬液を回収し、酸及び還元剤の濃度を調整した後再使用することが好ましい。
該薬品洗浄に用いられる洗浄薬液は、閉塞物により適宜選択することができるが、金属系の閉塞物が多い場合には、還元剤と酸の組み合わせが好ましい。還元剤としては、特に亜硫酸塩もしくは重亜硫酸塩の1種もしくは2種以上を好適に使用することができる。また、溶存酸素を除去するための還元剤と同じ重亜硫酸ナトリウムを用いると、薬品管理の点で好ましい。
また、各種洗浄薬液の濃度及び保持時間は、薬液の種類、得られる洗浄効果などから適宜決定され、特に限定されるものではない。なお、濃度及び保持時間の決定にはろ過膜として使用される精密ろ過膜もしくは限外ろ過膜の薬品耐性も考慮する必要がある。
A cleaning chemical solution containing an acid and a reducing agent is used for the chemical cleaning, and the cleaning chemical solution is supplied to the primary side of the microfiltration membrane or ultrafiltration membrane and held or circulated for a predetermined time, and then the cleaning chemical solution is recovered. However, it is preferable to reuse after adjusting the concentration of the acid and the reducing agent.
The cleaning chemical used for the chemical cleaning can be appropriately selected depending on the plugging material, but when there are many metal-based plugging materials, a combination of a reducing agent and an acid is preferable. Especially as a reducing agent, 1 type, or 2 or more types of sulfite or bisulfite can be used conveniently. In addition, it is preferable in terms of chemical management to use the same sodium bisulfite as the reducing agent for removing dissolved oxygen.
Further, the concentration and holding time of various cleaning chemicals are appropriately determined from the type of chemicals, the cleaning effect to be obtained, and the like, and are not particularly limited. In addition, it is necessary to consider the chemical resistance of the microfiltration membrane used as a filtration membrane or an ultrafiltration membrane for determination of a density | concentration and holding time.

上記薬品洗浄後、すすぎ工程を実施せず通液を再開することが好ましい。
即ち、次工程にすすぎ液を供給することで、すすぎ排水を削減し水処理回収率を向上出来る。更に、脱塩処理に逆浸透膜を用いるため、該すすぎ液により逆浸透膜の1次側の殺菌及び洗浄を同時に行うことが可能となるので、脱塩処理工程の安定稼働も可能となる。
ここで逆浸透膜にすすぎ液を送液した場合、逆浸透膜の処理水の導電率を監視し、導電率が所定値以上に達した場合、その処理水を中間水槽に返送することが好ましい。
After the chemical cleaning, it is preferable to resume the liquid flow without performing the rinsing step.
That is, by supplying the rinsing liquid to the next step, it is possible to reduce the rinsing waste water and improve the water treatment recovery rate. Furthermore, because the reverse osmosis membrane used in the desalination process, it becomes possible to perform the primary sterilization and washing by Rigyaku osmosis membrane in the rinsing liquid at the same time stable operation possible desalting process It becomes.
Here , when the rinsing liquid is fed to the reverse osmosis membrane, the conductivity of the treated water of the reverse osmosis membrane is monitored, and when the conductivity reaches a predetermined value or more, the treated water is preferably returned to the intermediate water tank. .

本発明の他の態様は、金属イオンおよび不溶性物質を含む被処理水に重亜硫酸ナトリウムを注入する還元剤注入手段と、重亜硫酸ナトリウム注入後の被処理水から不溶性物質を分離する固液分離装置と、該固液分離装置より得られる1次処理水から金属イオンを分離する、逆浸透膜を備えた脱塩装置と、該脱塩装置より得られる濃縮水および/または透過水の溶存酸素濃度を測定する溶存酸素計とを備え、前記溶存酸素計で測定される溶存酸素濃度に応じて前記重亜硫酸ナトリウムの注入量を制御する水処理システムである。 Another aspect of the present invention is a reducing agent injection means for injecting sodium bisulfite into water to be treated containing metal ions and insoluble substances, and a solid-liquid separation device for separating insoluble substances from the water to be treated after sodium bisulfite injection. And a desalinator equipped with a reverse osmosis membrane for separating metal ions from primary treated water obtained from the solid-liquid separator, and a dissolved oxygen concentration of concentrated water and / or permeate obtained from the desalter A water treatment system that controls the amount of sodium bisulfite injected according to the dissolved oxygen concentration measured by the dissolved oxygen meter.

本発明の水処理方法によれば、被処理水に重亜硫酸ナトリウムを添加し、被処理水中の溶存酸素を実質的に除去しているので、被処理水中に含まれる金属イオンの酸化析出を抑制しつつ、膜ろ過及び脱塩処理を行うことが可能となる。したがって、精密ろ過膜もしくは限外ろ過膜に付着し、薬品洗浄等によっても除去し難い膜閉塞の原因となる不溶性物質の量を最小限に留めことが可能となり、精密ろ過膜もしくは限外ろ過膜のメンテナンス回数を低減し、排水量を減らすことが可能となる。また、膜面にプレコート剤を保持することにより、膜差圧の上昇を抑制することが可能であると共に、精密ろ過膜もしくは限外ろ過膜に付着した不溶性物質の除去を容易とすることが可能となる。したがって、安定稼働が可能でかつ水処理回収率を向上し得る水処理方法を提供することが可能となる。 According to the water treatment method of the present invention, sodium bisulfite is added to the water to be treated, and dissolved oxygen in the water to be treated is substantially removed, so that oxidation precipitation of metal ions contained in the water to be treated is suppressed. However, membrane filtration and desalting can be performed. Accordingly, microfiltration membranes or adhere to the ultrafiltration membrane, it is possible minimizing the amount of insoluble material which also causes removal difficult film closed by chemical cleaning or the like, microfiltration membranes or ultrafiltration membranes The number of maintenance operations can be reduced, and the amount of drainage can be reduced. In addition, by holding a precoat agent on the membrane surface, it is possible to suppress an increase in membrane differential pressure, and it is possible to easily remove insoluble substances attached to the microfiltration membrane or ultrafiltration membrane. It becomes. Therefore, it is possible to provide a water treatment method capable of stable operation and improving the water treatment recovery rate.

また、従来の酸化処理を基本とする方法では、処理工程に砂ろ過などの大型設備を必要とし、更にナノろ過膜もしくは逆浸透膜を用いる場合には、ナノろ過膜もしくは逆浸透膜に供給する前に酸化剤を除去し、処理後に酸化剤の再度添加が必要となるなど、工程が複雑で薬液量などのコストも高かった。しかし、本発明によれば、大型設備を必要としないため、省スペース化を図ることが可能であり、また、還元処理を基本とするため、薬液量を低減し、処理工程を簡略化することが可能となる。したがって、本発明の方法によれば極めて安価に水質のよい飲料水を安定して得ることが可能となる点で工業的効用は著大であるものと確信する。  In addition, the conventional method based on oxidation treatment requires large equipment such as sand filtration in the treatment process, and when a nanofiltration membrane or a reverse osmosis membrane is used, it is supplied to the nanofiltration membrane or the reverse osmosis membrane. The process was complicated and the cost of the chemical solution was high, such as removing the oxidant before and re-adding the oxidant after the treatment. However, according to the present invention, it is possible to save space because a large facility is not required, and since the reduction process is the basis, the amount of the chemical solution is reduced and the processing process is simplified. Is possible. Therefore, according to the method of the present invention, it is convinced that the industrial utility is remarkable in that it is possible to stably obtain drinking water with good water quality at a very low cost.

以下、本発明の実施の形態を図1に基づいて説明する。
図1は、本発明の一実施形態に係る水処理方法に好適に用いられる水処理システムの全体の流れを説明するために示したフロー図である。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a flowchart for explaining the entire flow of a water treatment system suitably used in a water treatment method according to an embodiment of the present invention.

図1に示すように、この水処理システムは、井戸1より汲み上げられる原水に溶存酸素を除去するために還元剤として重亜硫酸ナトリウムを注入する還元剤注入手段と、不溶性金属成分(例:不溶性金属酸化物)などの不溶性物質を固液分離する膜分離装置(MS)2(以下、固液分離装置ともいう)と、膜分離装置2からの1次処理水を脱塩処理する逆浸透膜(RO)3とを主に備えている。
As shown in FIG. 1, this water treatment system includes a reducing agent injection means for injecting sodium bisulfite as a reducing agent to remove dissolved oxygen from raw water pumped from a well 1, and an insoluble metal component (eg, insoluble metal). Membrane separation device (MS) 2 (hereinafter also referred to as solid-liquid separation device) for solid-liquid separation of insoluble substances such as oxide) and reverse osmosis membrane for desalting primary treated water from membrane separation device 2 ( RO) 3.

ここで還元剤注入手段は、還元剤タンクT2及び第1の還元剤ポンプP4から主に構成されている。還元剤の注入量は、逆浸透膜3の濃縮水を排水する濃縮排水ラインL7に設けられた溶存酸素計(DO)4により計測される測定値が常時0mg/L付近となるよう調節される。還元剤注入量の管理方法は、特には限定されないが、例えば、DO計4の測定データを図示せぬ制御部に送り、測定値が所定値(例えば0.1mg/L)を一定時間(例えば120秒間)超えた場合に、還元剤の注入量を増加するよう第1の還元剤ポンプP4に指示するよう構成してもよい。その際、還元剤の増加量は、例えば増加した酸素量に応じた量(反応当量)またはそれを越える値とし、溶存酸素濃度が所定値に戻った際には、還元剤の注入量を初期注入量に戻すよう構成してもよい。また、予め被処理水に含まれる溶存酸素量、本水処理行程で混入する酸素量、酸素との反応以外に消費される還元剤の消費量等のデータを収集し、当該データに基づき必要とされる還元剤の量を算出し、当該計算値以上の還元剤を注入することとしてもよい。  Here, the reducing agent injection means mainly comprises a reducing agent tank T2 and a first reducing agent pump P4. The injection amount of the reducing agent is adjusted so that the measured value measured by the dissolved oxygen meter (DO) 4 provided in the concentrated drainage line L7 for draining the concentrated water of the reverse osmosis membrane 3 is always around 0 mg / L. . Although the management method of the reducing agent injection amount is not particularly limited, for example, the measurement data of the DO meter 4 is sent to a control unit (not shown), and the measurement value is a predetermined value (for example, 0.1 mg / L) for a certain time (for example, If it exceeds 120 seconds), the first reducing agent pump P4 may be instructed to increase the injection amount of the reducing agent. At this time, the amount of increase of the reducing agent is, for example, an amount corresponding to the increased amount of oxygen (reaction equivalent) or a value exceeding it, and when the dissolved oxygen concentration returns to a predetermined value, the injection amount of the reducing agent is initially set. You may comprise so that it may return to injection amount. In addition, data such as the amount of dissolved oxygen contained in the water to be treated, the amount of oxygen mixed in the main water treatment process, the consumption of reducing agent consumed in addition to the reaction with oxygen, etc. are collected and required based on the data. It is good also as calculating the quantity of the reducing agent to be injected and injecting the reducing agent more than the said calculation value.

図1に、水処理ラインを破線で示し、薬洗ラインを一点鎖線で示した。水処理ラインは、被処理水中の不溶性物質を膜ろ過により固液分離した後、被処理水中に残存する金属イオンを脱塩処理するラインである。具体的には、図1に示すように、井戸1より汲み上げた地下水(被処理水)を膜分離装置2へ移送し、膜分離後に得られる1次処理水を中間タンクT3を介して逆浸透膜3に移送し、脱塩処理後の透過水を処理水タンクT4に移送するまでのラインをいう。  In FIG. 1, the water treatment line is indicated by a broken line, and the chemical washing line is indicated by a one-dot chain line. The water treatment line is a line for desalting metal ions remaining in the water to be treated after solid-liquid separation of insoluble substances in the water to be treated by membrane filtration. Specifically, as shown in FIG. 1, the groundwater (treated water) pumped from the well 1 is transferred to the membrane separation device 2, and the primary treated water obtained after membrane separation is reverse osmosis through the intermediate tank T3. This refers to the line from the transfer to the membrane 3 to the transfer of the desalted permeated water to the treated water tank T4.

薬洗ラインは、膜分離装置2の洗浄を行うためのラインであり、具体的には、図1に示すように、薬液タンクT5内に貯留された薬液を薬品供給ラインL10を介して膜分離装置2に移送し、洗浄後の薬液を薬品回収ラインL11を介して再び薬液タンクT5に返送する循環ラインをいう。  The chemical washing line is a line for cleaning the membrane separation device 2, and specifically, as shown in FIG. 1, the chemical solution stored in the chemical solution tank T5 is subjected to membrane separation via the chemical supply line L10. This is a circulation line that is transferred to the apparatus 2 and returns the cleaned chemical liquid to the chemical liquid tank T5 again via the chemical recovery line L11.

なお、上記実施形態では、DO計を濃縮排水ラインL7に設けたが、特に限定するものではなく、逆浸透膜3により分離される透過水及び/または濃縮水の経路(例えば、L5、L6、L12など)のいずれに設けてもよい。なお、還元剤は、膜ろ過前に添加されるが、その後の過程で補充してもよい。以上、本発明について説明したが、本発明はこれら及び後述の実施例に限定されて解釈されるものではなく、本発明の範囲を逸脱しない限り、当業者の知識に基づいて、種々の変更、修正、改良を加えることは可能である。
In the above embodiment, is provided with the D O meter concentration drain line L7, not particularly limited, the path of the permeate and / or retentate is separated by a reverse osmosis membrane 3 (for example, L5, L6 , L12, etc.). The reducing agent is added before membrane filtration, but may be replenished in the subsequent process. Although the present invention has been described above, the present invention is not construed as being limited to these and the examples described below, and various modifications and changes can be made based on the knowledge of those skilled in the art without departing from the scope of the present invention. It is possible to make corrections and improvements.

本実施例に於いては、地下水(井戸水)にメタケイ酸ソーダ5水塩、カオリン、塩化第一鉄4水和物、塩化マンガン(II)4水和物、シリカ分散剤(GE社製MSI300)、有機物として名糖産業(株)製名糖アップルティー(粉末紅茶)を添加し、pH=6.7〜7.3、シリカ濃度50mg/L、カオリン濃度が50mg/L、鉄濃度1mg/L、マンガン濃度50mg/L、TOC濃度3mg/L、シリカ分散剤濃度が3mg/Lとなるように調製した模擬原水を供給原水として使用した。  In this example, sodium metasilicate pentahydrate, kaolin, ferrous chloride tetrahydrate, manganese (II) chloride tetrahydrate, silica dispersant (GE MSI300) in the ground water (well water). , Name sugar apple tea (powdered black tea) manufactured by Meisho Sangyo Co., Ltd. is added as an organic substance, pH = 6.7-7.3, silica concentration 50 mg / L, kaolin concentration 50 mg / L, iron concentration 1 mg / L Simulated raw water prepared to have a manganese concentration of 50 mg / L, a TOC concentration of 3 mg / L, and a silica dispersant concentration of 3 mg / L was used as the feed raw water.

本実施例では、図1に示したフローに従い、下記の条件で地下水の飲料水化を行った。  In this example, drinking water for groundwater was formed under the following conditions according to the flow shown in FIG.

まず、通水を開始するに際し、準備動作として、中間タンクT3に図示せぬ供給ラインより水道水を供給して貯留した後、前処理ポンプP1を稼働させ、保護剤供給ラインL1より、膜分離装置2の1次側に送液を行い、得られたMSの1次処理水を、中間タンクT3に回収し、中間タンクT3とMSとの間を水道水が循環できる状態にした。この循環処理の最中に、必要に応じて保護剤タンクT1から保護剤ポンプP2により保護剤供給ラインL1に保護剤を供給し得る様に設定した。  First, when water flow is started, as a preparatory operation, tap water is supplied and stored in the intermediate tank T3 from a supply line (not shown), and then the pretreatment pump P1 is operated, and membrane separation is performed from the protective agent supply line L1. The liquid was sent to the primary side of the apparatus 2, and the primary treated water of the obtained MS was collected in the intermediate tank T3 so that tap water could circulate between the intermediate tank T3 and the MS. During the circulation process, the protective agent was set so that the protective agent was supplied from the protective agent tank T1 to the protective agent supply line L1 by the protective agent pump P2 as necessary.

ここで、膜分離装置2には、ウェルシィ社製限外ろ過膜「ウェルピュアS」を用いた。また、保護剤は、林化成株式会社製含水カオリンASP200(平均粒径0.4μm)を80g/L用い、膜分離装置2を循環通水させた状態で、保護剤を注入し、ろ過膜の1次側に保護層を設け、流量、差圧が変化しないことを確認し実験に供した。  Here, the membrane separator 2 was an ultrafiltration membrane “Well Pure S” manufactured by Welsey. In addition, the protective agent was 80 g / L of hydrous kaolin ASP200 (average particle size 0.4 μm) manufactured by Hayashi Kasei Co., Ltd., and the protective agent was injected in a state where the membrane separator 2 was circulated and passed through. A protective layer was provided on the primary side, and it was confirmed that the flow rate and differential pressure did not change and were used for the experiment.

次いで調製した原水は、井戸ポンプP3より原水供給ラインL2を介し膜分離装置2に移送し、その際、原水供給ラインL2に還元剤タンクT2より第1の還元剤ポンプP4を用いて還元剤を注入した。逆浸透膜3による脱塩後の濃縮排水を溶存酸素計4により測定し、得られる測定値に応じて還元剤注入量の管理を行った。ここで、溶存酸素計4は、株式会社堀場アドバンスドテクノ社製工業用溶存酸素計(型名:HD−480、測定方式:ガルバニ電池法、分解能0.01mg/L、繰り返し性±0.5%、直線性±0.5%)を用いた。
得られたMSの処理水は1次処理水送液ラインL3を経て中間タンクT3に貯留した。ここで、膜分離装置2は、膜ろ過流速2.4m/Dayで通水出来る様に設定した。
Next, the prepared raw water is transferred from the well pump P3 to the membrane separation device 2 via the raw water supply line L2, and at that time, the reducing agent is supplied to the raw water supply line L2 from the reducing agent tank T2 using the first reducing agent pump P4. Injected. Concentrated waste water after desalting by the reverse osmosis membrane 3 was measured with a dissolved oxygen meter 4 and the amount of reducing agent injected was controlled according to the measured value obtained. Here, the dissolved oxygen meter 4 is an industrial dissolved oxygen meter manufactured by HORIBA Advanced Techno Co., Ltd. (model name: HD-480, measurement method: galvanic cell method, resolution 0.01 mg / L, repeatability ± 0.5%) , Linearity ± 0.5%) was used.
The MS treated water obtained was stored in the intermediate tank T3 via the primary treated water feed line L3. Here, the membrane separation apparatus 2 was set so that water could be passed at a membrane filtration flow rate of 2.4 m / day.

次いでこの処理水を、中間タンクT3から昇圧ポンプP5により1次処理水供給ラインL4を介し逆浸透膜3に供給し、得られた高度処理水は、導電率計(CD)5により計測を行い、70μS/cm以下の条件で処理水ラインL5を介し処理水タンクT4に貯留し、70μS/cmを越える条件で、処理水循環ラインL12を介し中間タンクT3に返送する様に設定した。  Next, this treated water is supplied from the intermediate tank T3 to the reverse osmosis membrane 3 through the primary treated water supply line L4 by the booster pump P5, and the obtained advanced treated water is measured by the conductivity meter (CD) 5. The water was stored in the treated water tank T4 via the treated water line L5 under the condition of 70 μS / cm or less, and returned to the intermediate tank T3 via the treated water circulation line L12 under the condition exceeding 70 μS / cm.

また濃縮水は、一部を、循環ラインL6を通じ昇圧ポンプP5に供給し、残りは、濃縮排水ラインL7を経て排水した。
ここでRO装置3としては、ダウ社製BW30−4040を用い、回収率を75%で処理出来る様に設定した。
A part of the concentrated water was supplied to the booster pump P5 through the circulation line L6, and the rest was drained through the concentrated drain line L7.
Here, as the RO apparatus 3, BW30-4040 manufactured by Dow was used, and the recovery rate was set to be 75%.

膜分離装置2の通液が所定の時間に到達したら、中間タンクT3から1次処理水を昇圧ポンプP5により逆通水ラインL8を経て膜分離装置2の2次側に供給し、その排水は排水ラインL9より排出し得る様に設定した。逆洗条件としては、任意の流量で60秒間逆洗を実施後、通水再開出来る様に設定した。  When the flow of the membrane separation device 2 reaches a predetermined time, the primary treated water is supplied from the intermediate tank T3 to the secondary side of the membrane separation device 2 via the reverse water flow line L8 by the booster pump P5. It was set so that it could be discharged from the drain line L9. The backwash conditions were set so that water flow could be resumed after backwashing at an arbitrary flow rate for 60 seconds.

更に、膜分離装置2の通液が所定の時間に到達したら、薬品洗浄が実施できるように設定した。先ず排水ラインL9より膜分離装置2中の原水を排出し、その後薬液タンクT5から薬液供給ポンプP6により薬品供給ラインL10を経て膜分離装置2の1次側に洗浄薬液を供給する。その際、薬洗ラインに、酸タンクT6から酸ポンプP7により酸を任意の量注入し、還元剤タンクT2から第2の還元剤ポンプP8により任意の量の還元剤を注入することが出来る様に設定した。
この薬液は、薬品回収ラインL11より薬液タンクT5に回収し、任意の時間、薬液を循環出来る様に設定した。
なお、ここで還元剤としては重亜硫酸ナトリウムを20%、酸としてはクエン酸を0.1%で用いた。
Furthermore, it set so that a chemical | medical agent washing | cleaning could be implemented when the liquid flow of the membrane separator 2 reached | attained predetermined time. First, the raw water in the membrane separation device 2 is discharged from the drain line L9, and then the cleaning chemical solution is supplied from the chemical solution tank T5 to the primary side of the membrane separation device 2 through the chemical supply line L10 by the chemical solution supply pump P6. At that time, an arbitrary amount of acid can be injected into the chemical washing line from the acid tank T6 by the acid pump P7, and an arbitrary amount of reducing agent can be injected from the reducing agent tank T2 by the second reducing agent pump P8. Set to.
This chemical solution was recovered from the chemical recovery line L11 to the chemical solution tank T5 and set so that the chemical solution could be circulated for an arbitrary time.
Here, 20% sodium bisulfite was used as the reducing agent, and citric acid was used at 0.1% as the acid.

供給原水中への還元剤注入量は、濃縮排水の溶存酸素濃度が0mg/Lでほぼ安定保持される状態に管理し給水を実施した。なお、溶存酸素の実測濃度は、処理工程の切り替えに伴う120秒以内の0.1mg/Lを超える瞬間的な溶存酸素濃度の上昇はあったが、1時間毎に算出した平均はいずれも0.02mg/L(瞬間的上昇以外の最大値は0.08mg/L)であった。また、限外ろ過膜の逆通水は、通常運転時(水処理運転時)の通水時間がそれぞれ1、3、6、12、24時間経過した後に実施する条件で評価を実施し、薬品洗浄は、1日毎に実施した。
ここで、実施例1に於いて実施した種々の逆通水間隔における差圧の経時変化を図2に示す。
The amount of reducing agent injected into the raw feed water was controlled so that the dissolved oxygen concentration in the concentrated wastewater was kept almost stable at 0 mg / L, and water was supplied. In addition, although the actual concentration of dissolved oxygen instantaneously increased dissolved oxygen concentration exceeding 0.1 mg / L within 120 seconds due to the switching of the treatment process, the average calculated every hour was 0 in all cases. 0.02 mg / L (maximum value other than momentary increase was 0.08 mg / L). In addition, the reverse flow of the ultrafiltration membrane is evaluated under the conditions that the water flow time during normal operation (water treatment operation) is performed after 1, 3, 6, 12, 24 hours have passed, respectively. Washing was performed every day.
Here, the time-dependent change of the differential pressure in the various reverse water flow intervals implemented in Example 1 is shown in FIG.

図2から、通水時間が1、3、6、12、24時間と長くなるにつれ限外ろ過膜の差圧が上昇することが確認できるが、すべての条件に於いても薬品洗浄実施後に、膜差圧が通水初期と同程度の0.02MPa程度に回復していることが確認出来る。
このことから、供給原水から逆通水後の濃縮排水に至るまでの溶存酸素量を0mg/Lに管理し、精密ろ過膜もしくは限外ろ過膜表面に保護層を設けることで、膜差圧の上昇を低減し、逆通水頻度を削減することが可能であることが確認出来た。更に、定常的に薬品洗浄を実施することにより初期差圧に回復させることが出来、この結果により本件発明の効果を証明する事が出来た。尚、本実施例では、薬品洗浄を1日1回(24時間毎に)実施しているが、井戸原水性状と膜差圧上昇程度を考慮し洗浄間隔を延ばすことも可能である。
From FIG. 2, it can be confirmed that the differential pressure of the ultrafiltration membrane increases as the water passage time becomes longer as 1, 3, 6, 12, 24 hours. It can be confirmed that the membrane differential pressure has recovered to about 0.02 MPa, which is the same level as in the initial stage of water flow.
From this, the amount of dissolved oxygen from the raw feed water to the concentrated drainage water after reverse water flow is controlled at 0 mg / L, and a protective layer is provided on the surface of the microfiltration membrane or ultrafiltration membrane, thereby reducing the membrane differential pressure. It was confirmed that it was possible to reduce the rise and reduce the frequency of reverse water flow. Furthermore, by carrying out chemical cleaning regularly, it was possible to recover the initial differential pressure, and this result proved the effect of the present invention. In this embodiment, chemical cleaning is performed once a day (every 24 hours), but it is possible to extend the cleaning interval in consideration of the well raw water state and the increase in membrane differential pressure.

比較例1Comparative Example 1

比較例1では、還元剤の注入量を供給原水中の溶存酸素濃度に相当する量とし、RO濃縮排水中の溶存酸素濃度が継続して0.2mg/L以上となる状態を含む溶存酸素の除去が十分とはいえない条件下で通水および再生を実施し、かつ限外ろ過膜の逆通水の頻度を下記とした以外は、実施例1と同様の条件で行った。
尚、この比較例1では、限外ろ過膜に保護剤を保持させ通水を行っている。
また、限外ろ過膜の逆通水は、通水時間が6時間経過した後実施する条件で評価を実施し、薬品洗浄は、1日毎に実施した。
ここで比較例1に於いて実施した限外ろ過膜の差圧経時変化を図3に、濃縮排水中の溶存酸素の経時変化を図4に夫々示す。
In Comparative Example 1, the amount of the reducing agent injected is an amount corresponding to the dissolved oxygen concentration in the feed raw water, and the dissolved oxygen concentration including the state where the dissolved oxygen concentration in the RO concentrated waste water continues to be 0.2 mg / L or more. Water was passed and regenerated under conditions where removal could not be sufficient, and the conditions were the same as in Example 1 except that the frequency of reverse water passing through the ultrafiltration membrane was set as follows.
In Comparative Example 1, the ultrafiltration membrane holds the protective agent and allows water to pass therethrough.
Moreover, the reverse water flow of the ultrafiltration membrane was evaluated under the condition that the water flow time was 6 hours later, and the chemical cleaning was performed every day.
Here, FIG. 3 shows the change with time of the differential pressure of the ultrafiltration membrane carried out in Comparative Example 1, and FIG. 4 shows the change with time of the dissolved oxygen in the concentrated waste water.

図3、図4に示されるように、逆浸透膜3の濃縮排水中の溶存酸素濃度が一旦継続して上昇した状態となった場合、その後に逆通水を行っても限外ろ過膜の差圧をほとんど回復することはできなかった。また、逆通水によっても差圧が解消しないまま運転を継続した場合、限外ろ過膜の差圧が24時間経過後、初期差圧に対して0.12MPa上昇することを確認した。このように、非常に短期間に差圧が上昇することから、薬品洗浄を1日複数回実施する必要があり、その間装置を停止しなければならない。また、想定以上の速度で閉塞が進行するなど、安定運転できないことが分かる。  As shown in FIGS. 3 and 4, when the dissolved oxygen concentration in the concentrated effluent of the reverse osmosis membrane 3 once rises continuously, the ultrafiltration membrane can be removed even if reverse flow is performed thereafter. The pressure difference could hardly be recovered. Further, when the operation was continued without eliminating the differential pressure even by reverse water flow, it was confirmed that the differential pressure of the ultrafiltration membrane increased by 0.12 MPa relative to the initial differential pressure after 24 hours. Thus, since the differential pressure rises in a very short time, it is necessary to perform chemical cleaning several times a day, and the apparatus must be stopped during that time. In addition, it can be seen that stable operation cannot be achieved, for example, the blockage proceeds at a speed higher than expected.

比較例2Comparative Example 2

比較例2では、限外ろ過膜に保護剤を保持しない条件下で運転を実施し、限外ろ過膜の逆通水の頻度を下記とした以外は、実施例1に於ける条件と同様に実施した。
また、限外ろ過膜の逆通水は、通常運転の通水時間が6時間経過した後実施する条件で評価を実施し、薬品洗浄は、1日毎に実施した。
ここで比較例2に於いて実施した限外ろ過膜の差圧経時変化を図5に示す。
In Comparative Example 2, the operation was carried out under the condition that the protective agent was not retained in the ultrafiltration membrane, and the reverse water flow frequency of the ultrafiltration membrane was changed to the following, similarly to the conditions in Example 1. Carried out.
Moreover, the reverse water flow of the ultrafiltration membrane was evaluated under the condition that the water flow time of normal operation was performed after 6 hours passed, and the chemical cleaning was performed every day.
Here, the time-dependent change in the differential pressure of the ultrafiltration membrane carried out in Comparative Example 2 is shown in FIG.

図5から、逆浸透膜3の濃縮排水中の溶存酸素濃度を0mg/L付近(最大0.62mg/L)に保持した条件下で運転した場合、限外ろ過膜差圧が24時間経過後、初期差圧に対して0.04MPa上昇し、薬品洗浄を行っても0.04MPaまでしか回復しなかった。その後続けて通水を実施すると、37時間後には、膜差圧が0.2MPaを超過した。
この限外ろ過膜は、初回の薬品洗浄後にも通水初期差圧に回復せず10日間の通水後薬品洗浄後には全く膜差圧が回復しない状況となり好ましくない現象となったとこを確認した。
From FIG. 5, when operating under the condition that the dissolved oxygen concentration in the concentrated effluent of the reverse osmosis membrane 3 is maintained at around 0 mg / L (maximum 0.62 mg / L), the ultrafiltration membrane differential pressure is 24 hours later. The initial differential pressure increased by 0.04 MPa, and even after chemical cleaning, it recovered only to 0.04 MPa. Subsequently, when water flow was carried out, the membrane differential pressure exceeded 0.2 MPa after 37 hours.
It was confirmed that this ultrafiltration membrane did not recover to the initial differential pressure after passing the chemical for the first time and did not recover at all after the chemical cleaning for 10 days. did.

実施例2では、逆通水の頻度を、6時間毎に1回とした以外は、実施例1と同様の条件で行い、評価を行った。
ここで実施例2に於いて実施した限外ろ過膜の差圧経時変化を図6に、逆浸透膜の濃縮排水中の溶存酸素の経時変化を図7に、逆浸透膜の差圧経時変化を図8に、逆浸透膜処理水の導電率の経時変化を図9に、供給原水、限外ろ過膜処理水及び逆浸透膜処理水の水質を表1に夫々示す。なお、水質の測定法は、厚生労働省告示261号に従った。
In Example 2, evaluation was performed under the same conditions as in Example 1 except that the frequency of reverse water flow was once every 6 hours.
Here, the time-dependent change in pressure difference of the ultrafiltration membrane carried out in Example 2 is shown in FIG. 6, the time-dependent change in dissolved oxygen in the concentrated effluent of the reverse osmosis membrane is shown in FIG. 8 shows the change over time in the conductivity of the reverse osmosis membrane treated water, and FIG. 9 shows the quality of the feed raw water, ultrafiltration membrane treated water, and reverse osmosis membrane treated water, respectively. The water quality was measured in accordance with Ministry of Health, Labor and Welfare Notification No. 261.

Figure 0005339054
Figure 0005339054

図6、図7から、溶解性及び不溶性金属成分を含む井戸原水を直接限外ろ過処理しても溶存酸素を0mg/L付近(最大0.02mg/L)に保持し、限外ろ過膜の表面に保護剤を保持する条件下で運転を実施することで限外ろ過膜差圧を抑制し安定運転できることが分かる。
この連続運転でも限外ろ過膜の差圧は、薬品洗浄後に通水初期差圧に回復し、3か月間の通水期間、安定運転が可能であり、3ヶ月後の最後に薬品洗浄を実施した後の初期差圧は、0.02MPaと通水開始直後と同程度であることを確認した。
From FIG. 6 and FIG. 7, even if the raw well water containing soluble and insoluble metal components is directly ultrafiltered, the dissolved oxygen is maintained at around 0 mg / L (maximum 0.02 mg / L), and the ultrafiltration membrane It can be seen that by performing the operation under the condition that the protective agent is retained on the surface, the ultrafiltration membrane differential pressure is suppressed and the stable operation can be achieved.
Even in this continuous operation, the differential pressure of the ultrafiltration membrane recovers to the initial differential pressure after water washing, and stable operation is possible for a water passage period of 3 months. It was confirmed that the initial differential pressure after the test was 0.02 MPa, which is similar to that immediately after the start of water flow.

また、図8、図9、表1から後段の処理に用いられる逆浸透膜3の膜差圧及びRO処理水の水質が一定であること、及び溶解性の各種イオン及び有機物が除去され、水道法の基準を満たしていることから飲用水処理に適用することが可能であることが確認された。  Further, from FIG. 8, FIG. 9 and Table 1, the membrane differential pressure of the reverse osmosis membrane 3 used in the subsequent treatment and the water quality of the RO treated water are constant, and various soluble ions and organic substances are removed. It was confirmed that it can be applied to drinking water treatment because it meets legal standards.

更に、薬品洗浄後のすすぎ液を逆浸透膜に供給してもRO処理水の最大導電率は、70μS/cmであることを確認し、最低20μS/cm、平均32μS/cmの処理水が安定して得られることを確認した。
これらは、井戸原水を直接限外ろ過もしくは精密ろ過することが出来、安定して処理可能なシステムおよび装置を提供するもので、この結果により本件発明の効果を証明する事が出来た。
Furthermore, even if the rinse solution after chemical cleaning is supplied to the reverse osmosis membrane, the maximum conductivity of the RO treated water is confirmed to be 70 μS / cm, and the treated water with a minimum of 20 μS / cm and an average of 32 μS / cm is stable. It was confirmed that it was obtained.
These provide a system and an apparatus capable of directly ultrafiltration or microfiltration of well raw water and capable of stably treating the well water, and the results proved the effect of the present invention.

図1は、本発明の水処理方法の一実施形態を示すフロー図である。  FIG. 1 is a flowchart showing an embodiment of the water treatment method of the present invention. 図2は、実施例1における限外ろ過膜の差圧の経時変化を示すグラフである。  FIG. 2 is a graph showing the change over time in the differential pressure of the ultrafiltration membrane in Example 1. 図3は、比較例1における限外ろ過膜の差圧の経時変化を示すグラフである。  FIG. 3 is a graph showing the change over time in the differential pressure of the ultrafiltration membrane in Comparative Example 1. 図4は、比較例1における濃縮水中の溶存酸素の経時変化を示すグラフである。  FIG. 4 is a graph showing the change with time of dissolved oxygen in the concentrated water in Comparative Example 1. 図5は、比較例2における限外ろ過膜の差圧の経時変化を示すグラフである。  FIG. 5 is a graph showing the change over time in the differential pressure of the ultrafiltration membrane in Comparative Example 2. 図6は、実施例2における限外ろ過膜の差圧の経時変化を示すグラフである。  6 is a graph showing the change over time in the differential pressure of the ultrafiltration membrane in Example 2. FIG. 図7は、実施例2における濃縮水中の溶存酸素の経時変化を示すグラフである。  FIG. 7 is a graph showing the change with time of dissolved oxygen in the concentrated water in Example 2. 図8は、実施例2における逆浸透膜の差圧の経時変化を示すグラフである。  FIG. 8 is a graph showing the change over time in the differential pressure of the reverse osmosis membrane in Example 2. 図9は、実施例2における逆浸透膜の導電率の経時変化を示すグラフである。  FIG. 9 is a graph showing the change with time of the conductivity of the reverse osmosis membrane in Example 2.

符号の説明Explanation of symbols

1 井戸
2 膜分離装置(MS)
3 逆浸透膜(RO)
4 溶存酸素計(DO)
5 導電率計(CD)
L1 保護剤供給ライン
L2 原水供給ライン
L3 1次処理水送液ライン
L4 1次処理水供給ライン
L5 処理水ライン
L6 循環ライン
L7 濃縮排水ライン
L8 逆通水ライン
L9 排水ライン
L10 薬品供給ライン
L11 薬品回収ライン
L12 処理水循環ライン
P1 前処理ポンプ
P2 保護剤ポンプ
P3 井戸ポンプ
P4 第1の還元剤ポンプ
P5 昇圧ポンプ
P6 薬液供給ポンプ
P7 酸ポンプ
P8 第2の還元剤ポンプ
T1 保護剤タンク
T2 還元剤タンク
T3 中間タンク
T4 処理水タンク
T5 薬液タンク
T6 酸タンク
1 well 2 membrane separator (MS)
3 Reverse osmosis membrane (RO)
4 dissolved oxygen meter (DO)
5 Conductivity meter (CD)
L1 Protective agent supply line L2 Raw water supply line L3 Primary treated water feed line L4 Primary treated water supply line L5 Treated water line L6 Circulation line L7 Concentrated drainage line L8 Reverse drainage line L9 Drainage line L10 Chemical supply line L11 Chemical recovery Line L12 Treated water circulation line P1 Pretreatment pump P2 Protective agent pump P3 Well pump P4 First reducing agent pump P5 Booster pump P6 Chemical supply pump P7 Acid pump P8 Second reducing agent pump T1 Protecting agent tank T2 Reducing agent tank T3 Intermediate Tank T4 Treated water tank T5 Chemical tank T6 Acid tank

Claims (3)

金属イオンおよび不溶性物質を含む被処理水を、プレコート剤を保持した精密ろ過膜もしくは限外ろ過膜により膜ろ過処理して不溶性物質を除去した後、逆浸透膜を用いて脱塩処理する方法であって、
前記被処理水としての井戸より汲み上げられる原水に重亜硫酸ナトリウムを添加し、該被処理水中の溶存酸素を実質的に除去し、金属イオンの酸化析出を抑制した状態で、前記膜ろ過処理及び脱塩処理をすることを特徴とする水処理方法。
A method in which water to be treated containing metal ions and insoluble substances is subjected to membrane filtration treatment with a microfiltration membrane or ultrafiltration membrane holding a precoat agent to remove insoluble substances, and then desalted using a reverse osmosis membrane. There,
Sodium bisulfite is added to the raw water pumped up from the well as the water to be treated, the dissolved oxygen in the water to be treated is substantially removed, and oxidation and precipitation of metal ions is suppressed, and the membrane filtration treatment and desorption are performed. The water treatment method characterized by performing salt treatment.
前記重亜硫酸ナトリウムが、前記脱塩処理に伴う濃縮水および/または透過水に溶存酸素が実質的に含まれなくなるように添加されることを特徴とする請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the sodium bisulfite is added so that dissolved oxygen is not substantially contained in the concentrated water and / or permeated water accompanying the desalting treatment. 前記重亜硫酸ナトリウムが、前記被処理水中の溶存酸素および前記脱塩処理までに新たに溶解する酸素との反応に必要な理論量以上添加されることを特徴とする請求項1または請求項2に記載の水処理方法 The said sodium bisulfite is added more than the theoretical amount required for reaction with the dissolved oxygen in the said to-be-processed water, and the oxygen newly melt | dissolved by the said desalination process, The Claim 1 or Claim 2 characterized by the above-mentioned. Water treatment method described
JP2008335976A 2008-12-09 2008-12-09 Water treatment method Active JP5339054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335976A JP5339054B2 (en) 2008-12-09 2008-12-09 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335976A JP5339054B2 (en) 2008-12-09 2008-12-09 Water treatment method

Publications (2)

Publication Number Publication Date
JP2010137209A JP2010137209A (en) 2010-06-24
JP5339054B2 true JP5339054B2 (en) 2013-11-13

Family

ID=42347806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335976A Active JP5339054B2 (en) 2008-12-09 2008-12-09 Water treatment method

Country Status (1)

Country Link
JP (1) JP5339054B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963570B2 (en) * 2012-06-28 2016-08-03 株式会社ウェルシィ Groundwater purification apparatus and operation method thereof
JP6315881B2 (en) * 2012-08-21 2018-04-25 株式会社ウェルシィ Water treatment method and water treatment apparatus
JP6433737B2 (en) * 2014-09-24 2018-12-05 オルガノ株式会社 Preparation method of ultrafiltration membrane
CN113716746B (en) * 2021-09-07 2023-08-29 浙江太阳石水处理有限公司 Advanced treatment system for chemical wastewater by combining ultrafiltration and reverse osmosis

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930443B2 (en) * 1976-11-09 1984-07-27 荏原インフイルコ株式会社 Membrane separation method
JPS56121685A (en) * 1980-02-29 1981-09-24 Ebara Infilco Co Ltd Treatment of liquid containing iron ion and manganese ion
JPS62110705A (en) * 1985-11-08 1987-05-21 Toray Ind Inc Method for sterilizing reverse osmosis equipment
JP3547018B2 (en) * 1994-06-10 2004-07-28 東レ株式会社 Reverse osmosis treatment method and fresh water method
JP3491268B2 (en) * 1996-04-27 2004-01-26 オルガノ株式会社 Desalination method and device using reverse osmosis membrane
JP2000157850A (en) * 1998-11-27 2000-06-13 Nitto Denko Corp Separating membrane preservation liquid and separating membrane module
JP4309633B2 (en) * 2002-10-09 2009-08-05 メタウォーター株式会社 Water treatment method

Also Published As

Publication number Publication date
JP2010137209A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
KR101464022B1 (en) Method and apparatus for treating water containing organic matter
JP4241684B2 (en) Membrane module cleaning method
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
JP5564174B2 (en) Purification method and apparatus for purification of water containing metal components
JP2005087887A (en) Membrane washing method
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP5339054B2 (en) Water treatment method
Ahn et al. Application of microfiltration with a novel fouling control method for reuse of wastewater from a large-scale resort complex
JP3731555B2 (en) Cooling water treatment method and treatment apparatus
WO2014129383A1 (en) Water treatment system
JP3137831B2 (en) Membrane processing equipment
JP2005169372A (en) Method and apparatus for treating organic material-containing waste water
JP2007014902A (en) Desalination apparatus and washing method of pretreatment membrane of desalination apparatus
JP2001029752A (en) Manufacture of high-purity water and device therefor
EP3240622B1 (en) Multifunctional method for membrane protection and biofouling control
JP2006181445A (en) Waste water treatment apparatus
JP6540154B2 (en) Reverse osmosis membrane cleaning method
JP4899565B2 (en) Water treatment apparatus and water treatment method
JP2007268359A (en) Membrane separation method
JPH10192851A (en) Water purifying treatment apparatus
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP2006255671A (en) Membrane separation method of manganese in soluble manganese-containing water
JP6606367B2 (en) Iron / manganese-containing water treatment apparatus and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5339054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250