WO2014129383A1 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
WO2014129383A1
WO2014129383A1 PCT/JP2014/053381 JP2014053381W WO2014129383A1 WO 2014129383 A1 WO2014129383 A1 WO 2014129383A1 JP 2014053381 W JP2014053381 W JP 2014053381W WO 2014129383 A1 WO2014129383 A1 WO 2014129383A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
osmosis membrane
water
sub
membrane device
Prior art date
Application number
PCT/JP2014/053381
Other languages
French (fr)
Japanese (ja)
Inventor
嘉晃 伊藤
英夫 岩橋
克憲 松井
貴一 ▲徳▼永
匡仙 河田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2014129383A1 publication Critical patent/WO2014129383A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment system, and more particularly to a water treatment system suitable for use in producing fresh water from seawater.
  • RO membrane ReversemOsmosis Membrane
  • the reverse osmosis membrane device is configured, for example, by accommodating a plurality of reverse osmosis membrane units (reverse osmosis membrane elements) formed by stacking a plurality of reverse osmosis membranes with a spacer in between in a pressure vessel.
  • an oxidizing agent such as hypochlorous acid is added in order to prevent organisms such as algae and shellfish from adhering to water intakes, pipes, and water channels for taking seawater.
  • an inorganic flocculant such as ferric chloride or a polymer flocculant such as PAC is added to agglomerate suspensions such as fine particles and colloids in seawater, and are removed by filtration with a sand filter.
  • water is passed through a filter, for example, a container filled with a filter material called a cartridge filter (CF) to remove particles of 5 to 10 ⁇ m or less that cannot be removed by sand filtration.
  • CF cartridge filter
  • the pH of the seawater is adjusted so as to suppress the precipitation (scaling) of inorganic ions, particularly calcium ions and magnesium ions in the seawater.
  • the filtration efficiency of the cartridge filter or the like may not be sufficient depending on the quality of the seawater (treated water), and as a result, the reverse of the reverse osmosis membrane device in the latter stage is caused.
  • suspended particles are collected on the surface of the osmotic membrane or a spacer between the membranes, and the membrane performance deteriorates early.
  • the water treatment system includes a main reverse osmosis membrane device for separating the water to be treated into concentrated water and fresh water having a high solute concentration, and before supplying the water to the main reverse osmosis membrane device. And a sub-reverse osmosis membrane device as a pretreatment device for removing an obstacle that deteriorates the membrane performance of the reverse osmosis membrane of the main reverse osmosis membrane device from the water to be treated in advance.
  • the pretreatment device for treating the water to be treated such as seawater includes the sub reverse osmosis membrane device, Inhibitors that are present in the water to be treated and reduce the membrane performance of the reverse osmosis membrane, that is, fine particles that clog the reverse osmosis membrane and microorganisms that propagate on the reverse osmosis membrane and cause clogging. It can be collected by the reverse osmosis membrane of the sub reverse osmosis membrane device before the main reverse osmosis membrane device. In other words, by using the sub-reverse osmosis membrane device like a filtration device, an obstacle that reduces the membrane performance of the reverse osmosis membrane can be removed at the pretreatment stage of the water to be treated.
  • the reverse osmosis membrane (reverse osmosis membrane module) of the main reverse osmosis membrane device that generates fresh water from the treated water in particular, the reverse osmosis membrane (reverse osmosis membrane) of the main reverse osmosis membrane device arranged on the upstream side of the treated water flow direction It is possible to prevent the membrane performance of the osmotic membrane module) from being deteriorated early.
  • the water treatment system includes a plurality of the pretreatment devices.
  • the plurality of pretreatment devices individually supply treated water to one main reverse osmosis membrane device, and are connected to the main reverse osmosis membrane devices via first on-off valves, respectively. .
  • each pretreatment device including a sub reverse osmosis membrane device is connected to one main reverse osmosis membrane device via a first on-off valve. That is, a plurality of pretreatment devices are connected to one main reverse osmosis membrane device through a plurality of first on-off valves, respectively.
  • the first on-off valve of this pretreatment device is closed to stop the supply of water to be treated to the main reverse osmosis membrane device.
  • the first on-off valve of the other pretreatment device can be opened, and the water to be treated treated by the sub reverse osmosis membrane device of the other pretreatment device can be supplied to the main reverse osmosis membrane device.
  • the sub-reverse osmosis membrane device of another pretreatment device removes the obstacle. Treated water can be supplied to the main reverse osmosis membrane device. For this reason, it is not necessary to stop the operation of the water treatment system, and it becomes possible to produce fresh water more efficiently and economically.
  • the pretreatment device includes backwashing means.
  • the backwashing means is connected to the sub reverse osmosis membrane device via a second on-off valve, and backwashes the reverse osmosis membrane of the sub reverse osmosis membrane device from the downstream side to the upstream side in the treated water flow direction. Supply water.
  • the second on-off valve is opened and the reverse osmosis membrane of the sub reverse osmosis membrane device is treated from the back washing means.
  • the membrane performance of the reverse osmosis membrane such as suspended particles clogged in the reverse osmosis membrane, is reduced. Inhibitors can be backwashed away.
  • the reverse osmosis membrane of the sub reverse osmosis membrane device is back-washed by normal osmosis of the backwash water, so the reverse of the reverse osmosis membrane is utilized using a water level difference etc. without using a pump or the like. It is also possible to wash. This makes it possible to efficiently and economically restore the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device.
  • the pretreatment device includes an acid agent supply means and / or a bactericide supply means.
  • the acid agent supply means is connected to the sub reverse osmosis membrane device via a third on-off valve, and an acid agent for removing scale adhered to the reverse osmosis membrane of the sub reverse osmosis membrane device is used as water to be treated.
  • the sterilizing agent supplying means is connected to the sub reverse osmosis membrane device via a fourth on-off valve, and the sterilizing agent for removing organisms attached to the reverse osmosis membrane of the sub reverse osmosis membrane device is used as water to be treated. Supply.
  • the acid agent supplying means can selectively open the third on / off valve and the acid agent supply means.
  • the sterilizing agent can be appropriately supplied from the sterilizing agent supply means to the water to be treated in the sub reverse osmosis membrane device.
  • scale such as calcium carbonate adheres to the reverse osmosis membrane and the membrane performance deteriorates
  • the scale is dissolved and removed by supplying acidic water (acidic agent) from the acidic agent supply means. be able to.
  • the organism when organisms adhere to and propagate on the reverse osmosis membrane and the membrane performance deteriorates, the organism can be killed by supplying a chlorine-based disinfectant such as hypochlorous acid from the disinfectant supply means. Can be removed. As a result, the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device can be recovered more efficiently and economically.
  • a chlorine-based disinfectant such as hypochlorous acid
  • the pretreatment device measures the pressure difference for measuring the pressure difference between the upstream side and the downstream side of the sub-reverse osmosis membrane device in the direction of water to be treated. Means.
  • the differential pressure measuring means measures the pressure difference between the upstream side and the downstream side of the sub-reverse osmosis membrane device in the flow direction of the water to be treated. (Decrease status) can be confirmed. Thereby, it is possible to determine whether the reverse osmosis membrane of the sub reverse osmosis membrane device needs to be maintained or replaced.
  • the pressure difference increases proportionally according to the amount of treated water, it is determined that suspended particles are clogged in the reverse osmosis membrane and the membrane performance is degraded.
  • a pressure difference becomes large irrespective of the amount of treated water to be treated, it is determined that the membrane performance is deteriorated due to adhesion of organisms and scales.
  • the pretreatment device in the water treatment system, includes the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve.
  • Control means for controlling opening / closing of the on-off valve provided in the processing apparatus based on the measurement result of the differential pressure measuring means is provided.
  • the pretreatment device among the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve
  • the opening / closing valve By controlling the opening / closing valve provided, maintenance of the sub reverse osmosis membrane device and production of fresh water can be efficiently performed, for example, fully automatically or semi-automatically.
  • the pretreatment device for treating the water to be treated such as seawater includes the sub reverse osmosis membrane device, Inhibitors present in the water to be treated and degrading the membrane performance of the reverse osmosis membrane can be collected by the reverse osmosis membrane of the sub reverse osmosis membrane device before the main reverse osmosis membrane device.
  • the reverse osmosis membrane (reverse osmosis membrane module) of the main reverse osmosis membrane device that generates fresh water from the treated water in particular, the reverse osmosis membrane (reverse osmosis membrane) of the main reverse osmosis membrane device arranged on the upstream side of the treated water flow direction It is possible to prevent the membrane performance of the osmotic membrane module) from being deteriorated early.
  • a pretreatment device that collects the inhibitor at the stage of pretreatment of water to be treated by configuring the sub reverse osmosis membrane device with a smaller number of reverse osmosis membranes than the main reverse osmosis membrane device.
  • the water treatment system will be described as a system in which seawater is used as the water to be treated, and this seawater is separated into concentrated water and fresh water by a reverse osmosis membrane (RO membrane) to produce fresh water.
  • the treated water according to the present embodiment is not necessarily limited to seawater, and the present invention may be applied to treat other treated water such as river water.
  • the water treatment system A of this embodiment includes pretreatment devices 1 and 2 and a main reverse osmosis membrane device (main RO membrane device) 3 as shown in FIG.
  • the main reverse osmosis membrane device 3 houses a plurality of reverse osmosis membrane units 3a in a pressure vessel.
  • the main reverse osmosis membrane device 3 sequentially passes the seawater (treated water) 4 after being processed by the pretreatment devices 1 and 2 through a plurality of reverse osmosis membrane units 3a arranged in parallel, and the solute concentration is increased. Separated into highly concentrated water (concentrated brine) 5 and fresh water 6.
  • each reverse osmosis membrane unit 3a of the main reverse osmosis membrane device 3 is formed by stacking a plurality of reverse osmosis membranes with a spacer interposed therebetween, for example.
  • the concentrated water discharge pipe 7 for discharging the concentrated water 5 after processing by each reverse osmosis membrane unit 3a outside, and the fresh water 6 for permeated water are discharged.
  • a permeate pipe 8 is connected.
  • the main reverse osmosis membrane device 3 includes a water supply pipe 9 to be treated for supplying the seawater 4 treated by the pretreatment devices 1 and 2 upstream in the seawater circulation direction T (upstream in the treatment water circulation direction, raw water). Side).
  • the pretreatment devices 1 and 2 of the present embodiment inhibit the membrane performance of the reverse osmosis membrane of the main reverse osmosis membrane device 3 from the seawater 4 which is the pretreated water before supplying it to the main reverse osmosis membrane device 3. It is for removing things. More specifically, the pretreatment devices 1 and 2 remove microparticles and colloids in the seawater 4, microorganisms such as algae and shellfish, and the membrane performance of each reverse osmosis membrane unit 3a of the main reverse osmosis membrane device 3 decreases. This is to suppress the phenomenon (fouling phenomenon).
  • the pretreatment devices 1 and 2 are provided upstream of the main reverse osmosis membrane device 3 in the seawater circulation direction T.
  • the water treatment system A of the present embodiment includes a plurality of pretreatment devices 1 and 2.
  • a treated water supply pipe 9 having a first on-off valve 10 is provided so that a plurality of pretreatment devices 1 and 2 individually supply treated seawater 4 to one main reverse osmosis membrane device 3.
  • each pre-processing apparatus 1 and 2 are the sub reverse osmosis membrane apparatus 11, the backwashing means 12, the acidic agent supply means 13, the disinfectant supply means 14, and the reducing agent supply means 15. , Differential pressure measuring means 16, pH measuring means 17, and control means 18.
  • the sub reverse osmosis membrane device 11 is configured with a smaller number of reverse osmosis membranes than the main reverse osmosis membrane device 3.
  • the main reverse osmosis membrane device 3 accommodates a plurality of reverse osmosis membrane units 3 a in parallel in a pressure vessel, whereas the sub reverse osmosis membrane device 11 is a reverse of the main reverse osmosis membrane device 3.
  • One reverse osmosis membrane unit 11a having the same configuration as the osmosis membrane unit 3a is accommodated in a pressure vessel.
  • the sub-reverse osmosis membrane device 11 supplies the raw water supply pipe 20 for supplying the raw water seawater 4 and the seawater 4 processed by the sub-reverse osmosis membrane device 11 to the main reverse osmosis membrane device 3.
  • the to-be-processed water supply pipe 9 is connected.
  • the sub reverse osmosis membrane device 11 may reuse the reverse osmosis membrane (reverse osmosis membrane unit 3a) after being used in the main reverse osmosis membrane device 3, for example.
  • FIG. 1 shows that raw water seawater 4 is supplied as it is to the sub-reverse osmosis membrane device 11 through the raw water supply pipe 20, but each pretreatment device 1, 2 of the water treatment system A of the present embodiment. May include a cartridge filter, a sand filter, an oxidizing agent supply device, and a reducing agent supply device, and these devices may be provided upstream of the sub reverse osmosis membrane device 11 in the seawater flow direction T.
  • the backwashing means (backwashing device) 12 includes a backwashing water tank 12a that temporarily stores backwashing water W1 and a backwashing water pipe 12b that connects the backwashing water tank 12a and the sub reverse osmosis membrane device 11. Yes. Further, the back washing water pipe 12b is provided with a second on-off valve 21 such as an electromagnetic valve. The backwashing means 12 is connected to the sub reverse osmosis membrane device 11 via the second on-off valve 21. Further, when the back washing means 12 opens the second on-off valve 21, the back washing water W1 in the back washing water tank 12a is upstream from the downstream side in the seawater circulation direction T with respect to the reverse osmosis membrane of the sub reverse osmosis membrane device 11.
  • the backwash water W1 in the backwash water tank 12a is supplied to the sub reverse osmosis membrane device 11 due to the water level difference, and the sub reverse osmosis membrane device 11 is supplied.
  • the reverse osmosis membrane of the membrane device 11 is configured to flow in the forward osmosis direction.
  • the backwash water W1 is seawater, even if it is clean water such as tap water or groundwater, as long as the reverse osmosis membrane of the sub reverse osmosis membrane device 11 can be backwashed (backwash).
  • generated by the main reverse osmosis membrane apparatus 3 may be sufficient, and it does not specifically limit.
  • the acid agent supply means (acid agent supply device) 13 includes an acid water tank 13a that temporarily stores acid agent (acid water) W2, an acid water pipe 13b that connects the acid water tank 13a and the sub reverse osmosis membrane device 11, An acidic water pump 13c for supplying the acidic water W2 to the sub reverse osmosis membrane device 11 through the acidic water pipe 13b is provided.
  • the acidic water pipe 13b is provided with a third on-off valve 22 such as an electromagnetic valve.
  • the acid agent supply means 13 is connected to the sub reverse osmosis membrane device 11 via the third on-off valve 22.
  • the acidic agent supply means 13 may connect the acidic water pipe 13b directly to the sub reverse osmosis membrane device 11 as long as the acidic water W2 can be brought into contact with the reverse osmosis membrane of the sub reverse osmosis membrane device 11. Even if the acidic water pipe 13b is connected to the raw water supply pipe 20 to supply the acidic water W2 to the raw water seawater 4, the acidic water pipe 13b is connected to the backwash water pipe 12b and the sub-reverse osmosis membrane together with the backwash water W1. You may make it supply the acidic water W2 to the apparatus 11.
  • the acid agent W2 is for dissolving and removing scales deposited on the reverse osmosis membrane by depositing inorganic ions such as calcium ions and magnesium ions in the seawater 4. For this reason, as long as it has pH of the acid side which can dissolve a scale, especially the chemical
  • the disinfectant supply means (disinfectant supply device) 14 includes, for example, a disinfecting water tank 14a for temporarily storing a chlorine-based disinfectant (sterilizing water W3) such as hypochlorous acid, a disinfecting water tank 14a, and a sub reverse osmosis.
  • a sterilizing water pipe 14b connecting the membrane apparatus 11 and a sterilizing water pump 14c for supplying the sterilizing water W3 to the sub reverse osmosis membrane apparatus 11 through the sterilizing water pipe 14b are provided.
  • the sterilizing water pipe 14 b is provided with a fourth on-off valve 23 such as an electromagnetic valve, and the sterilizing agent supply means 14 is connected to the sub reverse osmosis membrane device 11 through the fourth on-off valve 23.
  • the sterilizing water pipe 14b is directly connected to the sub reverse osmosis. Even if it is connected to the membrane device 11, the sterilizing water pipe 14b is connected to the raw water supply pipe 20 and the sterilizing water W3 is supplied to the raw water seawater 4, or the sterilizing water pipe 14b is connected to the backwash water pipe 12b and vice versa. You may make it supply the sterilization water W3 to the sub reverse osmosis membrane apparatus 11 with the washing water W1.
  • the disinfectant W3 is for killing and removing microorganisms (organisms) attached to the reverse osmosis membrane. For this reason, if the microorganisms adhering to the reverse osmosis membrane can be killed, the chemical
  • the reducing agent supply means (reducing agent supply device) 15 is for neutralizing the chlorine-based disinfectant W3 supplied by the disinfectant supplying means 14 and remaining in the seawater 4 in the previous stage.
  • the reducing agent W4 and neutralizing it By supplying the reducing agent W4 and neutralizing it, the reverse osmosis membrane of the main reverse osmosis membrane device 3 at the latter stage is oxidized and the membrane performance is prevented from being deteriorated.
  • the reducing agent supply means 15 of the present embodiment includes a reducing agent tank 15a that temporarily stores a reducing agent W4 such as sodium bisulfite (SBS), and a reducing agent that connects the reducing agent tank 15a and the water supply pipe 9 to be treated.
  • a reducing agent W4 such as sodium bisulfite (SBS)
  • SBS sodium bisulfite
  • a reducing agent that connects the reducing agent tank 15a and the water supply pipe 9 to be treated.
  • reducing agent W4 such as sodium bisulfite (SBS)
  • SBS sodium bisulfite
  • the differential pressure measuring means (differential pressure measuring device) 16 is for measuring the pressure difference between the sub-reverse osmosis membrane device 11 in the seawater circulation direction T upstream side and downstream side.
  • the differential pressure measuring means 16 detects the pressure on the upstream and downstream sides of the sub-reverse osmosis membrane device 11 in the seawater circulation direction T by using two water pressure gauges, and measures the pressure difference.
  • the differential pressure measuring means 16 is for confirming the state of the membrane performance of the sub reverse osmosis membrane device 11 by measuring the pressure difference.
  • the pH measuring means (pH meter) 17 measures the pH of seawater 4 which is the treated water downstream of the sub reverse osmosis membrane device 11 in the seawater circulation direction T. By measuring the pH, the sub reverse osmosis is performed. This is for confirming the state of the membrane performance of the membrane device 11.
  • the control means (control device) 18 includes the first on-off valve 10, the second on-off valve 21, the third on-off valve 22, the fourth on-off valve 23, and the fifth on-off valve 24 provided in the pretreatment devices 1 and 2. Opening / closing control is performed based on the measurement results of the differential pressure measuring means 16 and the pH measuring means 17.
  • the control means 18 controls the opening and closing of the first to fifth on-off valves 10, 21, 22, 23 and 24, and based on the measurement results of the differential pressure measuring means 16 and the pH measuring means 17. Then, driving of the acidic water pump 13c, the sterilizing water pump 14c, and the reducing agent pump 15c is controlled.
  • the plurality of pretreatment devices 1 and 2 are controlled by one control means 18.
  • the seawater 4 taken in is sent to the sub reverse osmosis membrane device 11 through the raw water supply pipe 20, and the reverse osmosis membrane unit of the sub reverse osmosis membrane device 11 is used. It passes through the reverse osmosis membrane of 11a.
  • the sub reverse osmosis membrane device 11 as the pretreatment devices 1 and 2 for treating the seawater 4 before supplying it to the main reverse osmosis membrane device 3 that generates the fresh water 6, it exists in the seawater 4, Inhibitors that degrade the membrane performance of the reverse osmosis membrane, that is, fine particles that clog the reverse osmosis membrane, or microorganisms that propagate on the reverse osmosis membrane and cause clogging, are the main reverse osmosis membrane device 3. It is collected by the reverse osmosis membrane of the sub reverse osmosis membrane device 11 before.
  • the obstruction that reduces the membrane performance of the reverse osmosis membrane of the main reverse osmosis membrane device 3 that generates fresh water 6 from the seawater 4 is removed in advance by the sub reverse osmosis membrane device 11 having the same reverse osmosis membrane. Therefore, the reverse osmosis membrane (reverse osmosis membrane unit 3a) of the main reverse osmosis membrane device 3, particularly the reverse osmosis membrane (reverse osmosis membrane unit 3a) of the main reverse osmosis membrane device 3 arranged on the upstream side in the seawater circulation direction T.
  • the membrane performance is not deteriorated at an early stage.
  • the membrane performance of the sub reverse osmosis membrane device 11 gradually decreases. For this reason, it is necessary to perform maintenance and replacement at a stage where the membrane performance has deteriorated to some extent, and to recover and improve the membrane performance of the reverse osmosis membrane device (reverse osmosis membrane unit 11a) of the sub reverse osmosis membrane device 11.
  • the water treatment system A of the present embodiment includes a plurality of pretreatment devices 1 and 2 for one main reverse osmosis membrane device 3.
  • the plurality of pretreatment devices 1 and 2 individually supply treated seawater (treated water) 4 and are connected to the main reverse osmosis membrane device 3 via the first on-off valve 10. For this reason, when the membrane performance of the sub reverse osmosis membrane device 11 of a certain pretreatment device 1 deteriorates, the first on-off valve 10 of this pretreatment device 1 is closed and the seawater 4 to the main reverse osmosis membrane device 3 is closed.
  • the 1st on-off valve 10 of the other pretreatment apparatus 2 is opened, and the seawater 4 processed with the sub reverse osmosis membrane apparatus 11 of this other pretreatment apparatus 2 is supplied to the main reverse osmosis membrane apparatus 3 To do.
  • the sub reverse osmosis membrane device 11 of the other pretreatment device 2 prevents the obstruction.
  • the seawater 4 from which the water has been removed is supplied to the main reverse osmosis membrane device 3 and the fresh water 6 is continuously produced. For this reason, the maintenance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 with reduced membrane performance can be performed without stopping the operation of the water treatment system A.
  • the pressure difference between the upstream side and the downstream side of the sub reverse osmosis membrane device 11 in the seawater circulation direction T is measured by the differential pressure measuring means 16.
  • the state of the membrane performance of the sub reverse osmosis membrane device 11 is monitored by this pressure difference.
  • the pH of the seawater 4 on the downstream side in the seawater circulation direction T of the sub reverse osmosis membrane device 11 is measured by the pH measuring means 17.
  • the state of the membrane performance of the sub reverse osmosis membrane device 11 is also monitored by this pH measurement value.
  • the preprocessing devices 1 and 2 include the control means 18.
  • the control means 18 controls the opening and closing of the first to fifth on-off valves 10, 21, 22, 23, 24 of the pretreatment devices 1, 2 based on the measurement results of the differential pressure measuring means 16 and the pH measuring means 17. Yes.
  • the control means 18 controls the drive of the acidic water pump 13c, the sterilizing water pump 14c, and the reducing agent pump 15c based on the measurement results of the differential pressure measuring means 16 and the pH measuring means 17.
  • the pressure difference measured by the differential pressure measuring means 16 is proportionally large according to the amount of treated water in the seawater 4, suspended particles are clogged in the reverse osmosis membrane, resulting in a decrease in membrane performance. It can be judged that Moreover, when a pressure difference becomes large irrespective of the amount of treated water of the seawater 4, it can be judged that the membrane performance is degraded due to the attachment of organisms and scales.
  • the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 can also be determined by grasping the tendency of the change in pH of the seawater 4 downstream of the sub reverse osmosis membrane device 11 in the seawater circulation direction T. It can be judged whether the decrease factor is due to clogging of suspended particles or due to the attachment of organisms or scales.
  • the control means 18 closes the first on-off valve 10 and the second on-off valve 21 of the pretreatment apparatus 1 equipped with the sub reverse osmosis membrane apparatus 11, and opens the second on / off valve 21 from the back washing means 12 to the sub reverse osmosis membrane apparatus 11.
  • Backwash water W1 is supplied to the reverse osmosis membrane.
  • the membrane performance of the reverse osmosis membrane decreases due to the attachment of organisms or scales, for example, by comparing the measurement results of the differential pressure measurement means 16 and the measurement results of the pH measurement means 17 with past data such as seasons and temperatures.
  • the control means 18 closes the first on-off valve 10 of the pretreatment device 1 including the sub-reverse osmosis membrane device 11 and the third on-off valve 22 and / or the fourth on-off valve.
  • the acidic water supply unit 13 and / or the bactericidal agent supply unit 14 supplies the acidic water W2 and / or the bactericidal agent W3 to the reverse osmosis membrane of the sub reverse osmosis membrane device 11.
  • the sterilizing agent W3 the fifth on-off valve 24 is opened, and the reducing agent W4 is supplied from the reducing agent supply means 15 to the seawater 4 to be treated.
  • the scale attached to the reverse osmosis membrane of the sub reverse osmosis membrane device 11 is removed by the acidic water W2.
  • the bactericidal agent W3 is supplied by the bactericidal agent supply means 14
  • organisms attached to the reverse osmosis membrane of the sub reverse osmosis membrane device 11 are killed and removed by the bactericidal agent W3.
  • the remaining bactericide W3 is neutralized by supplying the reducing agent W4 by the reducing agent supply means 15
  • the reverse osmosis membrane of the main reverse osmosis membrane device 3 at the subsequent stage is oxidized, and the membrane performance is improved. The possibility of lowering can be reduced.
  • the pretreatment devices 1 and 2 for treating the seawater (treated water) 4 are sub-subjected before being supplied to the main reverse osmosis membrane device 3 that generates the fresh water 6.
  • the reverse osmosis membrane device 11 By providing the reverse osmosis membrane device 11, the fine particles that clog the reverse osmosis membrane and the obstacles such as microorganisms that propagate on the reverse osmosis membrane and cause clogging are more effective than the main reverse osmosis membrane device 3. It can be collected by the reverse osmosis membrane of the previous sub-reverse osmosis membrane device 11. That is, by using the sub-reverse osmosis membrane device 11 like a filtration device, an obstacle that lowers the membrane performance of the reverse osmosis membrane can be removed at the pretreatment stage of the seawater 4.
  • the number of membranes of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 is made smaller than that of the main reverse osmosis membrane device 3, thereby inhibiting the obstacles at the pretreatment stage of the seawater 4.
  • the membrane performance of the main reverse osmosis membrane device 3 can be maintained for a long time and maintenance work can be reduced, and fresh water can be produced efficiently and economically. It becomes possible.
  • a plurality of pretreatment devices 1 and 2 are provided, and each of the pretreatment devices 1 and 2 including the sub reverse osmosis membrane device 11 is connected via the first on-off valve 10. It is connected to one main reverse osmosis membrane device 3. For this reason, when the membrane performance of the sub reverse osmosis membrane device 11 of a certain pretreatment device 1 is deteriorated, the seawater 4 is supplied to the main reverse osmosis membrane device 3 by closing the first on-off valve 10 of the pretreatment device 1. And the first on-off valve 10 of the other pretreatment device 2 is opened, and the seawater 4 treated by the sub reverse osmosis membrane device 11 of the other pretreatment device 2 is supplied to the main reverse osmosis membrane device 3. be able to.
  • the sub reverse osmosis membrane device 11 of the other pretreatment device 2 prevents the obstruction. Since the seawater 4 from which water has been removed can be supplied to the main reverse osmosis membrane device 3, it is not necessary to stop the operation of the water treatment system A, and the fresh water 6 can be produced more efficiently and economically. .
  • the second on-off valve 21 is opened and the sub reverse osmosis membrane device from the back washing means 12 is opened.
  • the reverse osmosis membrane of the sub-reverse osmosis membrane device 11 is back-washed by normal osmosis of the backwash water W1, so that the reverse osmosis membrane is utilized by utilizing the water level difference without using a pump or the like. It is also possible to perform backwashing. Thereby, the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 can be restored efficiently and economically.
  • the third on-off valve 22 and the fourth on-off valve 23 are selectively opened.
  • the acid agent W2 from the acid agent supply unit 13 and the bactericide W3 from the bactericide supply unit 14 can be appropriately supplied to the seawater 4 in the sub reverse osmosis membrane device 11.
  • scale such as calcium carbonate adheres to the reverse osmosis membrane and the membrane performance deteriorates
  • the scale is dissolved by supplying acidic water (acidic agent) W2 from the acidic agent supply means 13. Can be removed.
  • the organism when organisms adhere to and propagate on the reverse osmosis membrane and the membrane performance is reduced, the organism is reduced by supplying a chlorine-based disinfectant W3 such as hypochlorous acid from the disinfectant supply means 14. Can be killed and removed. Thereby, the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 can be recovered more efficiently and economically.
  • a chlorine-based disinfectant W3 such as hypochlorous acid
  • the sub reverse osmosis membrane device 11 is measured by measuring the pressure difference between the upstream side and the downstream side in the seawater circulation direction T of the sub reverse osmosis membrane device 11 by the differential pressure measuring means 16.
  • the film performance (deterioration of film performance) can be confirmed. Thereby, it is possible to determine whether the reverse osmosis membrane of the sub reverse osmosis membrane device 11 needs to be maintained or replaced.
  • the pressure difference increases proportionally according to the amount of treated water of the seawater 4, it is determined that the suspended osmosis membrane is clogged and the membrane performance is deteriorated. Moreover, when a pressure difference becomes large without correlating with the amount of treated water of the seawater 4, it is judged that the membrane performance is degraded due to the attachment of organisms and scales.
  • the pressure difference together with the type and properties of the water to be treated, it is possible to identify the factors that degrade the membrane performance.
  • any one of the backwashing means 12, the acid agent supply means 13, and the bactericide supply means 14 can be selected to effectively restore the membrane performance. It becomes possible.
  • the on-off valve 23 and the fifth on-off valve 24 By controlling opening and closing of the on-off valve 23 and the fifth on-off valve 24, the maintenance of the sub reverse osmosis membrane device 11 and the manufacture of the fresh water 6 can be efficiently performed, for example, fully automatically or semi-automatically.
  • the present invention is not limited to the above-mentioned embodiment, and can be suitably changed in the range which does not deviate from the meaning.
  • the water treatment system A includes a plurality of pretreatment devices 1 and 2 for one main reverse osmosis membrane device 3.
  • the plurality of pretreatment devices 1 and 2 individually supply treated seawater (treated water) 4 and are connected to the main reverse osmosis membrane device 3 via the first on-off valve 10.
  • the water treatment system A does not necessarily have to be provided with a plurality of pretreatment devices 1 and 2, and as shown in FIG. You may prepare.
  • the storage tank 25 that temporarily stores the seawater 4 processed by the pretreatment device 1 (sub-reverse osmosis membrane device 11), and the seawater 4 from the storage tank 25 to the main reverse osmosis membrane device 3.
  • a water supply pump 26 is provided. That is, the seawater 4 processed by the sub reverse osmosis membrane device 11 of the pretreatment device 1 is temporarily stored in the storage tank 25 and sent from the storage tank 25 to the main reverse osmosis membrane device 3 by the water pump 26, so that the fresh water 6 is supplied. Can be manufactured.
  • the pretreatment device for treating the water to be treated such as seawater before the supply to the main reverse osmosis membrane device that generates fresh water includes the sub reverse osmosis membrane device.
  • Inhibitors existing in the water to be treated and degrading the membrane performance of the reverse osmosis membrane can be collected by the reverse osmosis membrane of the sub reverse osmosis membrane device before the main reverse osmosis membrane device.

Abstract

The water treatment system is provided with: a main reverse osmosis membrane device (3) for separating water (4) that is to be treated into concentrated brine (5) with high solute concentrations and fresh water (6); and pre-treatment devices (1, 2) for removing harmful substances, which reduce the membrane performance of the reverse osmosis membranes of the main reverse osmosis membrane device (3), from the water(4) that is to be treated before supplying same to the main reverse osmosis membrane device (3). The pre-treatment devices (1, 2) are also provided with a sub-reverse osmosis membrane device (11).

Description

水処理システムWater treatment system
 本発明は、水処理システムに関し、特に海水から淡水を製造する際に用いて好適な水処理システムに関する。
 本願は、2013年2月25日に、日本に出願された特願2013-034732号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a water treatment system, and more particularly to a water treatment system suitable for use in producing fresh water from seawater.
This application claims priority based on Japanese Patent Application No. 2013-034732 filed in Japan on February 25, 2013, the contents of which are incorporated herein by reference.
 例えば砂漠地帯や離島、発展途上国、大量の淡水を要する工業地帯など、河川や湖沼等の淡水源がないあるいは十分に確保できず、気候特性によって雨水に依存することもできず、慢性的または季節的に深刻な水不足が生じる地域がある。このような地域の一部では、大量に存在する海水を処理して淡水(飲料水)を造りだすことが行われる。この淡水の製造手法として、海水を中空糸膜やスパイラル膜などの逆浸透膜(RO膜:Reverse Osmosis Membrane)に通し、淡水を漉し出す方法が多用されている(例えば、特許文献1参照)。また、逆浸透膜装置は、例えば、スペーサーを挟んで複数の逆浸透膜を積層して形成される逆浸透膜ユニット(逆浸透膜エレメント)を圧力容器に複数収容して構成されている。 There are no freshwater sources such as rivers and lakes, such as desert areas, remote islands, developing countries, and industrial areas that require a large amount of freshwater. There are areas where severe water shortages occur seasonally. In some of these regions, fresh water (drinking water) is created by processing a large amount of seawater. As a method for producing this fresh water, a method is often used in which seawater is passed through a reverse osmosis membrane (RO membrane: ReversemOsmosis Membrane) such as a hollow fiber membrane or a spiral membrane (see, for example, Patent Document 1). The reverse osmosis membrane device is configured, for example, by accommodating a plurality of reverse osmosis membrane units (reverse osmosis membrane elements) formed by stacking a plurality of reverse osmosis membranes with a spacer in between in a pressure vessel.
 海水から淡水を製造する際には、逆浸透膜に浸透させる前に海水を前処理装置で処理する必要がある。この前処理では、一般に、海水を取水する取水口や配管、水路に藻類や貝類等の生物付着を防止するために、次亜塩素酸などの酸化剤を添加する。また、塩化第二鉄などの無機凝集剤、またはPACなどの高分子凝集剤を添加して、海水中の微粒子やコロイドなどの懸濁物を凝集させ、砂ろ過器でろ過して除去する。さらに、フィルター、例えばカートリッジフィルター(CF)と呼ばれるろ過材を充填した容器に通水して、砂ろ過で除去しきれない5~10μm以下の粒子を除去するようにしている。また、海水のpHを調整し、海水中の無機イオン、特にカルシウムイオン、マグネシウムイオンの析出(スケーリング)の発生を抑えるようにしている。 When producing fresh water from seawater, it is necessary to treat the seawater with a pretreatment device before permeating the reverse osmosis membrane. In this pretreatment, in general, an oxidizing agent such as hypochlorous acid is added in order to prevent organisms such as algae and shellfish from adhering to water intakes, pipes, and water channels for taking seawater. In addition, an inorganic flocculant such as ferric chloride or a polymer flocculant such as PAC is added to agglomerate suspensions such as fine particles and colloids in seawater, and are removed by filtration with a sand filter. Further, water is passed through a filter, for example, a container filled with a filter material called a cartridge filter (CF) to remove particles of 5 to 10 μm or less that cannot be removed by sand filtration. In addition, the pH of the seawater is adjusted so as to suppress the precipitation (scaling) of inorganic ions, particularly calcium ions and magnesium ions in the seawater.
 また、塩素系の酸化剤が残留すると、逆浸透膜の酸化を招く。これに伴って逆浸透膜の膜性能の低下が生じるため、逆浸透膜に海水が透過する前に重亜硫酸ソーダ(SBS)などの還元剤を、酸化還元電位を計測しながら添加し、中和処理するようにしている。 Also, residual chlorine-based oxidant causes oxidation of the reverse osmosis membrane. Along with this, the membrane performance of the reverse osmosis membrane deteriorates. Therefore, before seawater permeates the reverse osmosis membrane, a reducing agent such as sodium bisulfite (SBS) is added while measuring the oxidation-reduction potential and neutralized. I am trying to process it.
 このような海水の前処理を行うことによって、海水を取水する取水口や配管、水路などへの生物付着を防止する。また、生物の繁殖や懸濁物、無機イオンの析出物の目詰まりによる逆浸透膜の膜性能の早期低下(ファウリング)を防止する。これにより、効率的且つ経済的に淡水を製造することが可能になる。 生物 By performing such pretreatment of seawater, organisms are prevented from adhering to intakes, pipes, and waterways that take in seawater. It also prevents early deterioration (fouling) of reverse osmosis membrane performance due to biological growth, clogging of suspended matter and inorganic ion deposits. This makes it possible to produce fresh water efficiently and economically.
特開2002-143849号公報JP 2002-143849 A
 しかしながら、上記従来の水処理システムでは、海水(被処理水)の水質によってカートリッジフィルターなどでのろ過効率が十分とは言えない場合もあり、これに起因して、後段の逆浸透膜装置の逆浸透膜表面や膜間にあるスペーサーに懸濁粒子が捕集され、膜性能が早期に低下してしまう場合があった。 However, in the conventional water treatment system, the filtration efficiency of the cartridge filter or the like may not be sufficient depending on the quality of the seawater (treated water), and as a result, the reverse of the reverse osmosis membrane device in the latter stage is caused. In some cases, suspended particles are collected on the surface of the osmotic membrane or a spacer between the membranes, and the membrane performance deteriorates early.
 また、特に、上流側に逆浸透膜を備えている場合、又は、複数の逆浸透膜ユニットを備えている場合にはより上流側の逆浸透膜ユニットの膜性能が早期に低下する。一般に、メンテナンスによって逆浸透膜装置の処理性能(逆浸透膜の膜性能)を回復させる際には、各逆浸透膜ユニット全体、さらに逆浸透膜装置全体を逆洗(逆流洗浄/正浸透)するようにしており、このメンテナンス作業に多大な時間と労力を要している。また、逆浸透膜装置のメンテナンスを行うために、水処理システムの運転を停止、ひいては淡水の製造を停止する場合がある。 In particular, when a reverse osmosis membrane is provided on the upstream side, or when a plurality of reverse osmosis membrane units are provided, the membrane performance of the upstream reverse osmosis membrane unit deteriorates earlier. In general, when the processing performance of the reverse osmosis membrane device (reverse osmosis membrane performance) is restored by maintenance, the entire reverse osmosis membrane unit and the entire reverse osmosis membrane device are backwashed (backwash / forward osmosis). Therefore, this maintenance work requires a great deal of time and labor. Moreover, in order to perform maintenance of the reverse osmosis membrane device, the operation of the water treatment system may be stopped, and as a result, the production of fresh water may be stopped.
 このため、逆浸透膜装置の膜性能の低下(ファウリング)を極力抑え、メンテナンス作業を軽減して、より効率的且つ経済的に淡水を製造できるようにすることが強く望まれていた。 For this reason, it has been strongly desired to reduce the performance (fouling) of the reverse osmosis membrane device as much as possible, reduce the maintenance work, and produce fresh water more efficiently and economically.
 本発明の第一の態様によれば、水処理システムは、被処理水を溶質濃度が高い濃縮水と淡水に分離するためのメイン逆浸透膜装置と、前記メイン逆浸透膜装置に供給する前に、予め被処理水から前記メイン逆浸透膜装置の逆浸透膜の膜性能を低下させる阻害物を除去するための前処理装置としてのサブ逆浸透膜装置とを備えている。 According to the first aspect of the present invention, the water treatment system includes a main reverse osmosis membrane device for separating the water to be treated into concentrated water and fresh water having a high solute concentration, and before supplying the water to the main reverse osmosis membrane device. And a sub-reverse osmosis membrane device as a pretreatment device for removing an obstacle that deteriorates the membrane performance of the reverse osmosis membrane of the main reverse osmosis membrane device from the water to be treated in advance.
 上述の水処理システムにおいては、淡水を生成するメイン逆浸透膜装置に供給する前で、海水などの被処理水を処理するための前処理装置がサブ逆浸透膜装置を備えていることにより、被処理水中に存在し、逆浸透膜の膜性能を低下させる阻害物、すなわち、逆浸透膜を目詰まりさせる微細粒子や、逆浸透膜で繁殖して目詰まりを生じさせる微生物などの阻害物を、メイン逆浸透膜装置よりも前のサブ逆浸透膜装置の逆浸透膜で捕集することができる。言い換えれば、サブ逆浸透膜装置をろ過装置のように使用することで、逆浸透膜の膜性能を低下させる阻害物を、被処理水の前処理の段階で除去することができる。 In the above-mentioned water treatment system, before supplying to the main reverse osmosis membrane device for generating fresh water, the pretreatment device for treating the water to be treated such as seawater includes the sub reverse osmosis membrane device, Inhibitors that are present in the water to be treated and reduce the membrane performance of the reverse osmosis membrane, that is, fine particles that clog the reverse osmosis membrane and microorganisms that propagate on the reverse osmosis membrane and cause clogging. It can be collected by the reverse osmosis membrane of the sub reverse osmosis membrane device before the main reverse osmosis membrane device. In other words, by using the sub-reverse osmosis membrane device like a filtration device, an obstacle that reduces the membrane performance of the reverse osmosis membrane can be removed at the pretreatment stage of the water to be treated.
 これにより、被処理水から淡水を生成するメイン逆浸透膜装置の逆浸透膜(逆浸透膜モジュール)、特に被処理水流通方向上流側に配置されたメイン逆浸透膜装置の逆浸透膜(逆浸透膜モジュール)の膜性能が早期に低下することを防止できる。 Thereby, the reverse osmosis membrane (reverse osmosis membrane module) of the main reverse osmosis membrane device that generates fresh water from the treated water, in particular, the reverse osmosis membrane (reverse osmosis membrane) of the main reverse osmosis membrane device arranged on the upstream side of the treated water flow direction It is possible to prevent the membrane performance of the osmotic membrane module) from being deteriorated early.
 本発明の第二の態様によれば、水処理システムは、複数の前記前処理装置を備えている。複数の前記前処理装置は、一つの前記メイン逆浸透膜装置に対して、処理した被処理水をそれぞれ個別に供給し、第1開閉弁を介してそれぞれ前記メイン逆浸透膜装置に接続される。 According to the second aspect of the present invention, the water treatment system includes a plurality of the pretreatment devices. The plurality of pretreatment devices individually supply treated water to one main reverse osmosis membrane device, and are connected to the main reverse osmosis membrane devices via first on-off valves, respectively. .
 上述の水処理システムにおいては、複数の前処理装置が設けられ、サブ逆浸透膜装置を備えた各前処理装置が第1開閉弁を介して一つのメイン逆浸透膜装置に接続されている。すなわち、複数の前処理装置が複数の第1開閉弁を介してそれぞれ一つのメイン逆浸透膜装置に接続されている。これにより、ある前処理装置のサブ逆浸透膜装置の膜性能が低下した場合に、この前処理装置の第1開閉弁を閉じてメイン逆浸透膜装置への被処理水の供給を停止するとともに、他の前処理装置の第1開閉弁をあけて、この他の前処理装置のサブ逆浸透膜装置で処理した被処理水をメイン逆浸透膜装置に供給することができる。 In the above-described water treatment system, a plurality of pretreatment devices are provided, and each pretreatment device including a sub reverse osmosis membrane device is connected to one main reverse osmosis membrane device via a first on-off valve. That is, a plurality of pretreatment devices are connected to one main reverse osmosis membrane device through a plurality of first on-off valves, respectively. As a result, when the membrane performance of the sub-reverse osmosis membrane device of a certain pretreatment device deteriorates, the first on-off valve of this pretreatment device is closed to stop the supply of water to be treated to the main reverse osmosis membrane device. The first on-off valve of the other pretreatment device can be opened, and the water to be treated treated by the sub reverse osmosis membrane device of the other pretreatment device can be supplied to the main reverse osmosis membrane device.
 これにより、膜性能が低下して、前処理装置のサブ逆浸透膜装置のメンテナンスが必要になった場合であっても、他の前処理装置のサブ逆浸透膜装置で阻害物を除去した被処理水をメイン逆浸透膜装置に供給することができる。このため、水処理システムの運転を停止する必要がなく、さらに効率的且つ経済的に淡水を製造することが可能になる。 As a result, even if the membrane performance deteriorates and maintenance of the sub-reverse osmosis membrane device of the pretreatment device becomes necessary, the sub-reverse osmosis membrane device of another pretreatment device removes the obstacle. Treated water can be supplied to the main reverse osmosis membrane device. For this reason, it is not necessary to stop the operation of the water treatment system, and it becomes possible to produce fresh water more efficiently and economically.
 本発明の第三の態様によれば、水処理システムにおいて、前記前処理装置は、逆洗手段を備えている。前記逆洗手段は、第2開閉弁を介して前記サブ逆浸透膜装置に接続され、前記サブ逆浸透膜装置の逆浸透膜に対し被処理水流通方向下流側から上流側に向けて逆洗水を供給する。 According to the third aspect of the present invention, in the water treatment system, the pretreatment device includes backwashing means. The backwashing means is connected to the sub reverse osmosis membrane device via a second on-off valve, and backwashes the reverse osmosis membrane of the sub reverse osmosis membrane device from the downstream side to the upstream side in the treated water flow direction. Supply water.
 上述の水処理システムにおいては、サブ逆浸透膜装置の逆浸透膜の膜性能が低下した際に、第2開閉弁を開けて逆洗手段からサブ逆浸透膜装置の逆浸透膜に、被処理水流通方向下流側から上流側に向けて(正浸透方向に)逆洗水を供給することによって、例えば逆浸透膜に目詰まりした懸濁粒子など、逆浸透膜の膜性能を低下させている阻害物を逆洗除去することができる。また、このとき、サブ逆浸透膜装置の逆浸透膜に対し、逆洗水を正浸透させることで逆洗するため、ポンプなどを用いることなく、水位差等を利用して逆浸透膜の逆洗を行うことも可能である。これにより、サブ逆浸透膜装置の逆浸透膜の膜性能を効率的且つ経済的に回復させることが可能になる。 In the water treatment system described above, when the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device deteriorates, the second on-off valve is opened and the reverse osmosis membrane of the sub reverse osmosis membrane device is treated from the back washing means. By supplying backwash water from the downstream side of the water flow direction to the upstream side (in the forward osmosis direction), the membrane performance of the reverse osmosis membrane, such as suspended particles clogged in the reverse osmosis membrane, is reduced. Inhibitors can be backwashed away. At this time, the reverse osmosis membrane of the sub reverse osmosis membrane device is back-washed by normal osmosis of the backwash water, so the reverse of the reverse osmosis membrane is utilized using a water level difference etc. without using a pump or the like. It is also possible to wash. This makes it possible to efficiently and economically restore the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device.
 本発明の第四の態様によれば、水処理システムにおいて、前記前処理装置は、酸性剤供給手段、及び/又は殺菌剤供給手段を備えている。前記酸性剤供給手段は、第3開閉弁を介して前記サブ逆浸透膜装置に接続され、前記サブ逆浸透膜装置の逆浸透膜に付着したスケールを除去するための酸性剤を被処理水に供給する。前記殺菌剤供給手段は、第4開閉弁を介して前記サブ逆浸透膜装置に接続され、前記サブ逆浸透膜装置の逆浸透膜に付着した生物を除去するための殺菌剤を被処理水に供給する。 According to the fourth aspect of the present invention, in the water treatment system, the pretreatment device includes an acid agent supply means and / or a bactericide supply means. The acid agent supply means is connected to the sub reverse osmosis membrane device via a third on-off valve, and an acid agent for removing scale adhered to the reverse osmosis membrane of the sub reverse osmosis membrane device is used as water to be treated. Supply. The sterilizing agent supplying means is connected to the sub reverse osmosis membrane device via a fourth on-off valve, and the sterilizing agent for removing organisms attached to the reverse osmosis membrane of the sub reverse osmosis membrane device is used as water to be treated. Supply.
 上述の水処理システムにおいては、サブ逆浸透膜装置の逆浸透膜の膜性能が低下した際に、第3開閉弁や第4開閉弁を選択的に開けることで、酸性剤供給手段から酸性剤、殺菌剤供給手段から殺菌剤を適宜サブ逆浸透膜装置内の被処理水に供給することができる。例えば逆浸透膜に炭酸カルシウムなどのスケールが付着生成して膜性能が低下している場合には、酸性剤供給手段から酸性水(酸性剤)を供給することで、スケールを溶解させて除去することができる。また、例えば、逆浸透膜に生物が付着繁殖して膜性能が低下している場合には、殺菌剤供給手段から次亜塩素酸等の塩素系殺菌剤を供給することで、生物を死滅させて除去することができる。これにより、サブ逆浸透膜装置の逆浸透膜の膜性能をより効率的且つ経済的に回復させることが可能になる。 In the above water treatment system, when the membrane performance of the reverse osmosis membrane of the sub-reverse osmosis membrane device is deteriorated, the acid agent supplying means can selectively open the third on / off valve and the acid agent supply means. The sterilizing agent can be appropriately supplied from the sterilizing agent supply means to the water to be treated in the sub reverse osmosis membrane device. For example, when scale such as calcium carbonate adheres to the reverse osmosis membrane and the membrane performance deteriorates, the scale is dissolved and removed by supplying acidic water (acidic agent) from the acidic agent supply means. be able to. In addition, for example, when organisms adhere to and propagate on the reverse osmosis membrane and the membrane performance deteriorates, the organism can be killed by supplying a chlorine-based disinfectant such as hypochlorous acid from the disinfectant supply means. Can be removed. As a result, the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device can be recovered more efficiently and economically.
 本発明の第五の態様によれば、水処理システムにおいて、前記前処理装置は、前記サブ逆浸透膜装置の被処理水流通方向上流側と下流側の圧力差を計測するための差圧計測手段を備えている。 According to a fifth aspect of the present invention, in the water treatment system, the pretreatment device measures the pressure difference for measuring the pressure difference between the upstream side and the downstream side of the sub-reverse osmosis membrane device in the direction of water to be treated. Means.
 上述の水処理システムにおいては、差圧計測手段によってサブ逆浸透膜装置の被処理水流通方向上流側と下流側の圧力差を計測することによって、サブ逆浸透膜装置の膜性能(膜性能の低下状況)を確認することができる。これにより、サブ逆浸透膜装置の逆浸透膜のメンテナンス、交換の要否を判断することができる。 In the above water treatment system, the differential pressure measuring means measures the pressure difference between the upstream side and the downstream side of the sub-reverse osmosis membrane device in the flow direction of the water to be treated. (Decrease status) can be confirmed. Thereby, it is possible to determine whether the reverse osmosis membrane of the sub reverse osmosis membrane device needs to be maintained or replaced.
 さらに、例えば、被処理水の処理水量に応じて比例的に圧力差が大きくなる場合には、逆浸透膜に懸濁粒子が目詰まりして膜性能が低下していると判断する。また、被処理水の処理水量に相関なく圧力差が大きくなる場合には、生物やスケールの付着によって膜性能が低下していると判断する。このように、被処理水の種類や性状などとともに、圧力差を計測することによって、膜性能の低下要因を特定することが可能になる。これにより、特定した膜性能の低下要因に応じて、例えば逆洗手段、酸性剤供給手段、殺菌剤供給手段のいずれかを選択して、効果的に膜性能の回復を図ることが可能になる。 Furthermore, for example, when the pressure difference increases proportionally according to the amount of treated water, it is determined that suspended particles are clogged in the reverse osmosis membrane and the membrane performance is degraded. Moreover, when a pressure difference becomes large irrespective of the amount of treated water to be treated, it is determined that the membrane performance is deteriorated due to adhesion of organisms and scales. Thus, by measuring the pressure difference together with the type and properties of the water to be treated, it is possible to identify the factors that degrade the membrane performance. This makes it possible to effectively restore the membrane performance by selecting, for example, any one of the backwashing means, the acid agent supply means, and the bactericidal agent supply means according to the specified factor of the membrane performance deterioration. .
 本発明の第六の態様によれば、水処理システムにおいて、前記前処理装置は、前記第1開閉弁と前記第2開閉弁と前記第3開閉弁と前記第4開閉弁のうち、前記前処理装置に具備された開閉弁を、前記差圧計測手段の計測結果に基づいて開閉制御する制御手段を備えている。 According to a sixth aspect of the present invention, in the water treatment system, the pretreatment device includes the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve. Control means for controlling opening / closing of the on-off valve provided in the processing apparatus based on the measurement result of the differential pressure measuring means is provided.
 上述の水処理システムにおいては、差圧計測手段の計測結果に基づいて、前記第1開閉弁と前記第2開閉弁と前記第3開閉弁と前記第4開閉弁のうち、前記前処理装置に具備された開閉弁を開閉制御することで、サブ逆浸透膜装置のメンテナンスや淡水の製造を、例えば全自動、半自動で、効率的に行うことが可能になる。 In the above-described water treatment system, based on the measurement result of the differential pressure measuring means, the pretreatment device among the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve By controlling the opening / closing valve provided, maintenance of the sub reverse osmosis membrane device and production of fresh water can be efficiently performed, for example, fully automatically or semi-automatically.
 上述の水処理システムにおいては、淡水を生成するメイン逆浸透膜装置に供給する前で、海水などの被処理水を処理するための前処理装置がサブ逆浸透膜装置を備えていることにより、被処理水中に存在し、逆浸透膜の膜性能を低下させる阻害物を、メイン逆浸透膜装置よりも前のサブ逆浸透膜装置の逆浸透膜で捕集することができる。 In the above-mentioned water treatment system, before supplying to the main reverse osmosis membrane device for generating fresh water, the pretreatment device for treating the water to be treated such as seawater includes the sub reverse osmosis membrane device, Inhibitors present in the water to be treated and degrading the membrane performance of the reverse osmosis membrane can be collected by the reverse osmosis membrane of the sub reverse osmosis membrane device before the main reverse osmosis membrane device.
 これにより、被処理水から淡水を生成するメイン逆浸透膜装置の逆浸透膜(逆浸透膜モジュール)、特に被処理水流通方向上流側に配置されたメイン逆浸透膜装置の逆浸透膜(逆浸透膜モジュール)の膜性能が早期に低下することを防止できる。そして、例えばサブ逆浸透膜装置の逆浸透膜の膜数をメイン逆浸透膜装置よりも少なくして構成することにより、被処理水の前処理の段階で前記阻害物を捕集する前処理装置のサブ逆浸透膜装置のメンテナンスや逆浸透膜の交換を行う際、従来よりもメンテナンス作業に要する時間と労力を軽減することが可能になる。 Thereby, the reverse osmosis membrane (reverse osmosis membrane module) of the main reverse osmosis membrane device that generates fresh water from the treated water, in particular, the reverse osmosis membrane (reverse osmosis membrane) of the main reverse osmosis membrane device arranged on the upstream side of the treated water flow direction It is possible to prevent the membrane performance of the osmotic membrane module) from being deteriorated early. And, for example, a pretreatment device that collects the inhibitor at the stage of pretreatment of water to be treated by configuring the sub reverse osmosis membrane device with a smaller number of reverse osmosis membranes than the main reverse osmosis membrane device When performing maintenance of the sub reverse osmosis membrane device or replacement of the reverse osmosis membrane device, it is possible to reduce the time and labor required for the maintenance work as compared with the conventional case.
 よって、上述の水処理システムによれば、メイン逆浸透膜装置の膜性能を長期間維持することができるとともにメンテナンス作業を軽減でき、効率的且つ経済的に淡水を製造することが可能になる。 Therefore, according to the water treatment system described above, it is possible to maintain the membrane performance of the main reverse osmosis membrane device for a long period of time, reduce the maintenance work, and efficiently and economically produce fresh water.
本発明の一実施形態に係る水処理システムを示す図である。It is a figure which shows the water treatment system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水処理システムの変更例を示す図である。It is a figure which shows the example of a change of the water treatment system which concerns on one Embodiment of this invention.
 以下、図1を参照し、本発明の一実施形態に係る水処理システムについて説明する。ここで、本実施形態では、水処理システムが、被処理水として海水を用い、この海水を逆浸透膜(RO膜)で濃縮水と淡水に分離して淡水を製造するシステムとして説明を行う。本実施形態に係る被処理水は必ずしも海水に限定する必要はなく、河川水など他の被処理水を処理するために本発明を適用してもよい。 Hereinafter, a water treatment system according to an embodiment of the present invention will be described with reference to FIG. Here, in the present embodiment, the water treatment system will be described as a system in which seawater is used as the water to be treated, and this seawater is separated into concentrated water and fresh water by a reverse osmosis membrane (RO membrane) to produce fresh water. The treated water according to the present embodiment is not necessarily limited to seawater, and the present invention may be applied to treat other treated water such as river water.
 本実施形態の水処理システムAは、図1に示すように、前処理装置1、2と、メイン逆浸透膜装置(メインRO膜装置)3とを備えている。 The water treatment system A of this embodiment includes pretreatment devices 1 and 2 and a main reverse osmosis membrane device (main RO membrane device) 3 as shown in FIG.
 まず、メイン逆浸透膜装置3は、複数の逆浸透膜ユニット3aを圧力容器に収容している。メイン逆浸透膜装置3は、並列配置された複数の逆浸透膜ユニット3aに順次、前処理装置1、2で処理した後の海水(被処理水)4を通過させて処理し、溶質濃度が高い濃縮水(濃縮塩水)5と淡水6とに分離する。また、このメイン逆浸透膜装置3の各逆浸透膜ユニット3aは、例えば、スペーサーを挟んで複数の逆浸透膜を積層している。そして、このメイン逆浸透膜装置3には、各逆浸透膜ユニット3aで処理した後の濃縮水5を外部に排出させるための濃縮水排出管7と、透過水の淡水6を排出させるための透過水管8が接続されている。さらに、メイン逆浸透膜装置3には、前処理装置1、2で処理した海水4を給水するための被処理水給水管9が海水流通方向T上流側(被処理水流通方向上流側、原水側)に接続されている。 First, the main reverse osmosis membrane device 3 houses a plurality of reverse osmosis membrane units 3a in a pressure vessel. The main reverse osmosis membrane device 3 sequentially passes the seawater (treated water) 4 after being processed by the pretreatment devices 1 and 2 through a plurality of reverse osmosis membrane units 3a arranged in parallel, and the solute concentration is increased. Separated into highly concentrated water (concentrated brine) 5 and fresh water 6. Further, each reverse osmosis membrane unit 3a of the main reverse osmosis membrane device 3 is formed by stacking a plurality of reverse osmosis membranes with a spacer interposed therebetween, for example. And in this main reverse osmosis membrane apparatus 3, the concentrated water discharge pipe 7 for discharging the concentrated water 5 after processing by each reverse osmosis membrane unit 3a outside, and the fresh water 6 for permeated water are discharged. A permeate pipe 8 is connected. Further, the main reverse osmosis membrane device 3 includes a water supply pipe 9 to be treated for supplying the seawater 4 treated by the pretreatment devices 1 and 2 upstream in the seawater circulation direction T (upstream in the treatment water circulation direction, raw water). Side).
 本実施形態の前処理装置1、2は、メイン逆浸透膜装置3に供給する前に、予め被処理水である海水4からメイン逆浸透膜装置3の逆浸透膜の膜性能を低下させる阻害物を除去するためのものである。より具体的に、前処理装置1、2は、海水4中の微粒子やコロイド、藻類や貝類などの微生物などを除去し、メイン逆浸透膜装置3の各逆浸透膜ユニット3aの膜性能が低下する現象(ファウリング現象)を抑えるためのものである。前処理装置1、2は、メイン逆浸透膜装置3の海水流通方向T上流側に設けられている。 The pretreatment devices 1 and 2 of the present embodiment inhibit the membrane performance of the reverse osmosis membrane of the main reverse osmosis membrane device 3 from the seawater 4 which is the pretreated water before supplying it to the main reverse osmosis membrane device 3. It is for removing things. More specifically, the pretreatment devices 1 and 2 remove microparticles and colloids in the seawater 4, microorganisms such as algae and shellfish, and the membrane performance of each reverse osmosis membrane unit 3a of the main reverse osmosis membrane device 3 decreases. This is to suppress the phenomenon (fouling phenomenon). The pretreatment devices 1 and 2 are provided upstream of the main reverse osmosis membrane device 3 in the seawater circulation direction T.
 本実施形態の水処理システムAは、複数の前処理装置1、2を備えている。一つのメイン逆浸透膜装置3に対して、複数の前処理装置1、2がそれぞれ、処理した海水4を個別に供給するように、第1開閉弁10を備えた被処理水給水管9を介してメイン逆浸透膜装置3に接続されている。 The water treatment system A of the present embodiment includes a plurality of pretreatment devices 1 and 2. A treated water supply pipe 9 having a first on-off valve 10 is provided so that a plurality of pretreatment devices 1 and 2 individually supply treated seawater 4 to one main reverse osmosis membrane device 3. To the main reverse osmosis membrane device 3.
 また、本実施形態において、各前処理装置1、2は、サブ逆浸透膜装置11と、逆洗手段12と、酸性剤供給手段13と、殺菌剤供給手段14と、還元剤供給手段15と、差圧計測手段16と、pH計測手段17と、制御手段18とを備えている。 Moreover, in this embodiment, each pre-processing apparatus 1 and 2 are the sub reverse osmosis membrane apparatus 11, the backwashing means 12, the acidic agent supply means 13, the disinfectant supply means 14, and the reducing agent supply means 15. , Differential pressure measuring means 16, pH measuring means 17, and control means 18.
 サブ逆浸透膜装置11は、メイン逆浸透膜装置3よりも逆浸透膜の膜数を少なくして構成される。本実施形態では、メイン逆浸透膜装置3が、複数の逆浸透膜ユニット3aを圧力容器に並列に収容しているのに対し、サブ逆浸透膜装置11は、メイン逆浸透膜装置3の逆浸透膜ユニット3aと同じ構成の逆浸透膜ユニット11aを一つ、圧力容器に収容している。そして、このサブ逆浸透膜装置11は、原水の海水4を供給するための原水供給管20と、サブ逆浸透膜装置11で処理した後の海水4をメイン逆浸透膜装置3に供給するための被処理水給水管9とが接続されている。 The sub reverse osmosis membrane device 11 is configured with a smaller number of reverse osmosis membranes than the main reverse osmosis membrane device 3. In this embodiment, the main reverse osmosis membrane device 3 accommodates a plurality of reverse osmosis membrane units 3 a in parallel in a pressure vessel, whereas the sub reverse osmosis membrane device 11 is a reverse of the main reverse osmosis membrane device 3. One reverse osmosis membrane unit 11a having the same configuration as the osmosis membrane unit 3a is accommodated in a pressure vessel. The sub-reverse osmosis membrane device 11 supplies the raw water supply pipe 20 for supplying the raw water seawater 4 and the seawater 4 processed by the sub-reverse osmosis membrane device 11 to the main reverse osmosis membrane device 3. The to-be-processed water supply pipe 9 is connected.
 サブ逆浸透膜装置11は、例えばメイン逆浸透膜装置3で使用した後の逆浸透膜(逆浸透膜ユニット3a)を再利用してもよい。また、図1には、原水供給管20を通じて原水の海水4がそのままサブ逆浸透膜装置11に供給されるように図示したが、本実施形態の水処理システムAの各前処理装置1、2は、別途、カートリッジフィルター、砂ろ過器、酸化剤供給装置、還元剤供給装置を備え、これらの装置をサブ逆浸透膜装置11の海水流通方向T上流側に設けてもよい。 The sub reverse osmosis membrane device 11 may reuse the reverse osmosis membrane (reverse osmosis membrane unit 3a) after being used in the main reverse osmosis membrane device 3, for example. Further, FIG. 1 shows that raw water seawater 4 is supplied as it is to the sub-reverse osmosis membrane device 11 through the raw water supply pipe 20, but each pretreatment device 1, 2 of the water treatment system A of the present embodiment. May include a cartridge filter, a sand filter, an oxidizing agent supply device, and a reducing agent supply device, and these devices may be provided upstream of the sub reverse osmosis membrane device 11 in the seawater flow direction T.
 逆洗手段(逆洗装置)12は、逆洗水W1を一時的に貯留する逆洗水タンク12aと、逆洗水タンク12aとサブ逆浸透膜装置11を繋ぐ逆洗水管12bとを備えている。
また、逆洗水管12bには電磁弁などの第2開閉弁21が設けられている。逆洗手段12は、第2開閉弁21を介してサブ逆浸透膜装置11に接続されている。さらに、逆洗手段12は、第2開閉弁21を開けると、逆洗水タンク12a内の逆洗水W1がサブ逆浸透膜装置11の逆浸透膜に対し、海水流通方向T下流側から上流側に向けて供給されるように構成されている。すなわち、本実施形態では、ポンプ等を用いず、第2開閉弁21を開けると、水位差によって逆洗水タンク12a内の逆洗水W1がサブ逆浸透膜装置11に供給され、サブ逆浸透膜装置11の逆浸透膜を正浸透方向に流通するように構成されている。また、逆洗水W1としては、サブ逆浸透膜装置11の逆浸透膜を逆洗(逆流洗浄)することが可能であれば、水道水や地下水などの清浄水であっても、海水であっても、メイン逆浸透膜装置3で生成した濃縮水5や淡水6であってもよく、特に限定しない。
The backwashing means (backwashing device) 12 includes a backwashing water tank 12a that temporarily stores backwashing water W1 and a backwashing water pipe 12b that connects the backwashing water tank 12a and the sub reverse osmosis membrane device 11. Yes.
Further, the back washing water pipe 12b is provided with a second on-off valve 21 such as an electromagnetic valve. The backwashing means 12 is connected to the sub reverse osmosis membrane device 11 via the second on-off valve 21. Further, when the back washing means 12 opens the second on-off valve 21, the back washing water W1 in the back washing water tank 12a is upstream from the downstream side in the seawater circulation direction T with respect to the reverse osmosis membrane of the sub reverse osmosis membrane device 11. It is configured to be supplied toward the side. That is, in this embodiment, when the second on-off valve 21 is opened without using a pump or the like, the backwash water W1 in the backwash water tank 12a is supplied to the sub reverse osmosis membrane device 11 due to the water level difference, and the sub reverse osmosis membrane device 11 is supplied. The reverse osmosis membrane of the membrane device 11 is configured to flow in the forward osmosis direction. The backwash water W1 is seawater, even if it is clean water such as tap water or groundwater, as long as the reverse osmosis membrane of the sub reverse osmosis membrane device 11 can be backwashed (backwash). However, the concentrated water 5 and the fresh water 6 produced | generated by the main reverse osmosis membrane apparatus 3 may be sufficient, and it does not specifically limit.
 酸性剤供給手段(酸性剤供給装置)13は、酸性剤(酸性水)W2を一時的に貯留する酸性水タンク13aと、酸性水タンク13aとサブ逆浸透膜装置11を繋ぐ酸性水管13bと、酸性水管13bを通じて酸性水W2をサブ逆浸透膜装置11に供給するための酸性水ポンプ13cとを備えている。また、酸性水管13bには電磁弁などの第3開閉弁22が設けられている。酸性剤供給手段13は、第3開閉弁22を介してサブ逆浸透膜装置11に接続されている。 The acid agent supply means (acid agent supply device) 13 includes an acid water tank 13a that temporarily stores acid agent (acid water) W2, an acid water pipe 13b that connects the acid water tank 13a and the sub reverse osmosis membrane device 11, An acidic water pump 13c for supplying the acidic water W2 to the sub reverse osmosis membrane device 11 through the acidic water pipe 13b is provided. The acidic water pipe 13b is provided with a third on-off valve 22 such as an electromagnetic valve. The acid agent supply means 13 is connected to the sub reverse osmosis membrane device 11 via the third on-off valve 22.
 なお、酸性剤供給手段13は、酸性水W2をサブ逆浸透膜装置11の逆浸透膜に接触させることが可能であれば、酸性水管13bを直接、サブ逆浸透膜装置11に接続しても、酸性水管13bを原水供給管20に接続して原水の海水4に酸性水W2を供給するようにしても、酸性水管13bを逆洗水管12bに接続して逆洗水W1とともにサブ逆浸透膜装置11に酸性水W2を供給するようにしてもよい。酸性剤W2は、海水4中の無機イオン、例えばカルシウムイオン、マグネシウムイオンなどが析出して逆浸透膜に付着したスケールを溶解して除去するためのものである。このため、スケールを溶解させることが可能な酸性側のpHを備えていれば、塩酸、硫酸、硝酸など、特に酸性剤(酸性水)W2を生成するための薬剤を限定しない。言い換えれば、析出するスケールに適した薬剤を用いればよい。 The acidic agent supply means 13 may connect the acidic water pipe 13b directly to the sub reverse osmosis membrane device 11 as long as the acidic water W2 can be brought into contact with the reverse osmosis membrane of the sub reverse osmosis membrane device 11. Even if the acidic water pipe 13b is connected to the raw water supply pipe 20 to supply the acidic water W2 to the raw water seawater 4, the acidic water pipe 13b is connected to the backwash water pipe 12b and the sub-reverse osmosis membrane together with the backwash water W1. You may make it supply the acidic water W2 to the apparatus 11. FIG. The acid agent W2 is for dissolving and removing scales deposited on the reverse osmosis membrane by depositing inorganic ions such as calcium ions and magnesium ions in the seawater 4. For this reason, as long as it has pH of the acid side which can dissolve a scale, especially the chemical | medical agent for producing | generating acidic agent (acid water) W2, such as hydrochloric acid, sulfuric acid, nitric acid, is not limited. In other words, a chemical suitable for the scale of precipitation may be used.
 殺菌剤供給手段(殺菌剤供給装置)14は、例えば次亜塩素酸などの塩素系の殺菌剤(殺菌水W3)を一時的に貯留する殺菌水タンク14aと、殺菌水タンク14aとサブ逆浸透膜装置11を繋ぐ殺菌水管14bと、殺菌水管14bを通じて殺菌水W3をサブ逆浸透膜装置11に供給するための殺菌水ポンプ14cとを備えている。また、殺菌水管14bには電磁弁などの第4開閉弁23が設けられ、殺菌剤供給手段14は、第4開閉弁23を介してサブ逆浸透膜装置11に接続されている。 The disinfectant supply means (disinfectant supply device) 14 includes, for example, a disinfecting water tank 14a for temporarily storing a chlorine-based disinfectant (sterilizing water W3) such as hypochlorous acid, a disinfecting water tank 14a, and a sub reverse osmosis. A sterilizing water pipe 14b connecting the membrane apparatus 11 and a sterilizing water pump 14c for supplying the sterilizing water W3 to the sub reverse osmosis membrane apparatus 11 through the sterilizing water pipe 14b are provided. The sterilizing water pipe 14 b is provided with a fourth on-off valve 23 such as an electromagnetic valve, and the sterilizing agent supply means 14 is connected to the sub reverse osmosis membrane device 11 through the fourth on-off valve 23.
 この殺菌剤供給手段14においても、酸性剤供給手段13と同様、殺菌水W3をサブ逆浸透膜装置11の逆浸透膜に接触させることが可能であれば、殺菌水管14bを直接、サブ逆浸透膜装置11に接続しても、殺菌水管14bを原水供給管20に接続して原水の海水4に殺菌水W3を供給するようにしても、殺菌水管14bを逆洗水管12bに接続して逆洗水W1とともにサブ逆浸透膜装置11に殺菌水W3を供給するようにしてもよい。殺菌剤W3は、逆浸透膜に付着した微生物(生物)を死滅させて除去するためのものである。このため、逆浸透膜に付着した微生物を死滅させることが可能であれば、特に、殺菌剤(殺菌水W3)を生成するための薬剤を限定しない。言い換えれば、被処理水(海水4)の性状に合わせた薬剤を用いればよい。 In the sterilizing agent supply means 14 as well as the acidic agent supply means 13, if the sterilizing water W3 can be brought into contact with the reverse osmosis membrane of the sub reverse osmosis membrane device 11, the sterilizing water pipe 14b is directly connected to the sub reverse osmosis. Even if it is connected to the membrane device 11, the sterilizing water pipe 14b is connected to the raw water supply pipe 20 and the sterilizing water W3 is supplied to the raw water seawater 4, or the sterilizing water pipe 14b is connected to the backwash water pipe 12b and vice versa. You may make it supply the sterilization water W3 to the sub reverse osmosis membrane apparatus 11 with the washing water W1. The disinfectant W3 is for killing and removing microorganisms (organisms) attached to the reverse osmosis membrane. For this reason, if the microorganisms adhering to the reverse osmosis membrane can be killed, the chemical | medical agent for producing | generating a bactericidal agent (sterilizing water W3) is not specifically limited. In other words, a chemical that matches the properties of the water to be treated (seawater 4) may be used.
 還元剤供給手段(還元剤供給装置)15は、前段で、殺菌剤供給手段14によって供給され、海水4中に残った塩素系の殺菌剤W3を中和処理するためのものである。還元剤W4を供給して中和処理することによって、後段のメイン逆浸透膜装置3の逆浸透膜が酸化されて、膜性能が低下することを防止するためのものである。 The reducing agent supply means (reducing agent supply device) 15 is for neutralizing the chlorine-based disinfectant W3 supplied by the disinfectant supplying means 14 and remaining in the seawater 4 in the previous stage. By supplying the reducing agent W4 and neutralizing it, the reverse osmosis membrane of the main reverse osmosis membrane device 3 at the latter stage is oxidized and the membrane performance is prevented from being deteriorated.
 本実施形態の還元剤供給手段15は、例えば重亜硫酸ソーダ(SBS)などの還元剤W4を一時的に貯留する還元剤タンク15aと、還元剤タンク15aと被処理水給水管9を繋ぐ還元剤管15bと、還元剤管15bを通じて還元剤W4を被処理水給水管9内の海水4に供給するための還元剤ポンプ15cと、還元剤W4を添加した海水4の酸化還元電位を計測するための酸化還元電位計とを備えている。また、還元剤管15bには電磁弁などの第5開閉弁24が設けられている。還元剤供給手段15は、第5開閉弁24を介して被処理水給水管9に接続されている。 The reducing agent supply means 15 of the present embodiment includes a reducing agent tank 15a that temporarily stores a reducing agent W4 such as sodium bisulfite (SBS), and a reducing agent that connects the reducing agent tank 15a and the water supply pipe 9 to be treated. In order to measure the redox potential of the seawater 4 to which the reducing agent pump 15c for supplying the reducing agent W4 to the seawater 4 in the to-be-processed water supply pipe 9 through the pipe | tube 15b, the reducing agent pipe | tube 15b, and the reducing agent W4 were added. And an oxidation-reduction potentiometer. The reducing agent pipe 15b is provided with a fifth on-off valve 24 such as an electromagnetic valve. The reducing agent supply means 15 is connected to the treated water supply pipe 9 via the fifth on-off valve 24.
 差圧計測手段(差圧計測装置)16は、サブ逆浸透膜装置11の海水流通方向T上流側と下流側の圧力差を計測するためのものである。差圧計測手段16は、2つの水圧計でサブ逆浸透膜装置11の海水流通方向T上流側と下流側の圧力を検知し、圧力差を計測する。そして、差圧計測手段16は、圧力差を計測することによって、サブ逆浸透膜装置11の膜性能の状態を確認するためのものである。 The differential pressure measuring means (differential pressure measuring device) 16 is for measuring the pressure difference between the sub-reverse osmosis membrane device 11 in the seawater circulation direction T upstream side and downstream side. The differential pressure measuring means 16 detects the pressure on the upstream and downstream sides of the sub-reverse osmosis membrane device 11 in the seawater circulation direction T by using two water pressure gauges, and measures the pressure difference. The differential pressure measuring means 16 is for confirming the state of the membrane performance of the sub reverse osmosis membrane device 11 by measuring the pressure difference.
 pH計測手段(pH計)17は、サブ逆浸透膜装置11の海水流通方向T下流側の被処理水である海水4のpHを計測するものであり、pHを計測することによって、サブ逆浸透膜装置11の膜性能の状態を確認するためのものである。 The pH measuring means (pH meter) 17 measures the pH of seawater 4 which is the treated water downstream of the sub reverse osmosis membrane device 11 in the seawater circulation direction T. By measuring the pH, the sub reverse osmosis is performed. This is for confirming the state of the membrane performance of the membrane device 11.
 制御手段(制御装置)18は、前処理装置1、2に具備された第1開閉弁10と第2開閉弁21と第3開閉弁22と第4開閉弁23と第5開閉弁24を、差圧計測手段16やpH計測手段17の計測結果に基づいて開閉制御する。また、本実施形態では、この制御手段18が、第1から第5開閉弁10、21、22、23、24を開閉制御するとともに、差圧計測手段16やpH計測手段17の計測結果に基づいて、酸性水ポンプ13c、殺菌水ポンプ14c、還元剤ポンプ15cの駆動を制御する。複数の前処理装置1、2は一つの制御手段18で制御されている。 The control means (control device) 18 includes the first on-off valve 10, the second on-off valve 21, the third on-off valve 22, the fourth on-off valve 23, and the fifth on-off valve 24 provided in the pretreatment devices 1 and 2. Opening / closing control is performed based on the measurement results of the differential pressure measuring means 16 and the pH measuring means 17. In the present embodiment, the control means 18 controls the opening and closing of the first to fifth on-off valves 10, 21, 22, 23 and 24, and based on the measurement results of the differential pressure measuring means 16 and the pH measuring means 17. Then, driving of the acidic water pump 13c, the sterilizing water pump 14c, and the reducing agent pump 15c is controlled. The plurality of pretreatment devices 1 and 2 are controlled by one control means 18.
 そして、上記構成からなる本実施形態の水処理システムAにおいては、原水供給管20を通じて、取水した海水4がサブ逆浸透膜装置11に送られ、このサブ逆浸透膜装置11の逆浸透膜ユニット11aの逆浸透膜を通過する。 In the water treatment system A of the present embodiment having the above-described configuration, the seawater 4 taken in is sent to the sub reverse osmosis membrane device 11 through the raw water supply pipe 20, and the reverse osmosis membrane unit of the sub reverse osmosis membrane device 11 is used. It passes through the reverse osmosis membrane of 11a.
 このとき、淡水6を生成するメイン逆浸透膜装置3に供給する前で海水4を処理する前処理装置1、2として、サブ逆浸透膜装置11を用いることで、海水4中に存在し、逆浸透膜の膜性能を低下させる阻害物、すなわち、逆浸透膜を目詰まりさせる微細粒子や、逆浸透膜で繁殖して目詰まりを生じさせる微生物などの阻害物が、メイン逆浸透膜装置3よりも前のサブ逆浸透膜装置11の逆浸透膜で捕集される。 At this time, by using the sub reverse osmosis membrane device 11 as the pretreatment devices 1 and 2 for treating the seawater 4 before supplying it to the main reverse osmosis membrane device 3 that generates the fresh water 6, it exists in the seawater 4, Inhibitors that degrade the membrane performance of the reverse osmosis membrane, that is, fine particles that clog the reverse osmosis membrane, or microorganisms that propagate on the reverse osmosis membrane and cause clogging, are the main reverse osmosis membrane device 3. It is collected by the reverse osmosis membrane of the sub reverse osmosis membrane device 11 before.
 このように、従来、海水4から淡水6を生成するメイン逆浸透膜装置3の逆浸透膜の膜性能を低下させる阻害物が同じ逆浸透膜を備えるサブ逆浸透膜装置11によって事前に除去されるため、メイン逆浸透膜装置3の逆浸透膜(逆浸透膜ユニット3a)、特に海水流通方向T上流側に配置されたメイン逆浸透膜装置3の逆浸透膜(逆浸透膜ユニット3a)の膜性能が早期に低下することがなくなる。 Thus, conventionally, the obstruction that reduces the membrane performance of the reverse osmosis membrane of the main reverse osmosis membrane device 3 that generates fresh water 6 from the seawater 4 is removed in advance by the sub reverse osmosis membrane device 11 having the same reverse osmosis membrane. Therefore, the reverse osmosis membrane (reverse osmosis membrane unit 3a) of the main reverse osmosis membrane device 3, particularly the reverse osmosis membrane (reverse osmosis membrane unit 3a) of the main reverse osmosis membrane device 3 arranged on the upstream side in the seawater circulation direction T. The membrane performance is not deteriorated at an early stage.
 一方、サブ逆浸透膜装置11によって前記阻害物が捕集されるため、サブ逆浸透膜装置11の膜性能が徐々に低下してゆく。このため、ある程度膜性能が低下した段階で、メンテナンスや交換を行い、サブ逆浸透膜装置11の逆浸透膜(逆浸透膜ユニット11a)の膜性能の回復、向上を図ることが必要になる。 On the other hand, since the inhibitor is collected by the sub reverse osmosis membrane device 11, the membrane performance of the sub reverse osmosis membrane device 11 gradually decreases. For this reason, it is necessary to perform maintenance and replacement at a stage where the membrane performance has deteriorated to some extent, and to recover and improve the membrane performance of the reverse osmosis membrane device (reverse osmosis membrane unit 11a) of the sub reverse osmosis membrane device 11.
 これに対し、本実施形態の水処理システムAでは、一つのメイン逆浸透膜装置3に対して、複数の前処理装置1、2を備えている。複数の前処理装置1、2は、処理した海水(被処理水)4をそれぞれ個別に供給し、第1開閉弁10を介してそれぞれメイン逆浸透膜装置3に接続されている。このため、ある前処理装置1のサブ逆浸透膜装置11の膜性能が低下した場合には、この前処理装置1の第1開閉弁10を閉じてメイン逆浸透膜装置3への海水4の供給を停止するとともに、他の前処理装置2の第1開閉弁10をあけて、この他の前処理装置2のサブ逆浸透膜装置11で処理した海水4をメイン逆浸透膜装置3に供給する。 In contrast, the water treatment system A of the present embodiment includes a plurality of pretreatment devices 1 and 2 for one main reverse osmosis membrane device 3. The plurality of pretreatment devices 1 and 2 individually supply treated seawater (treated water) 4 and are connected to the main reverse osmosis membrane device 3 via the first on-off valve 10. For this reason, when the membrane performance of the sub reverse osmosis membrane device 11 of a certain pretreatment device 1 deteriorates, the first on-off valve 10 of this pretreatment device 1 is closed and the seawater 4 to the main reverse osmosis membrane device 3 is closed. While stopping supply, the 1st on-off valve 10 of the other pretreatment apparatus 2 is opened, and the seawater 4 processed with the sub reverse osmosis membrane apparatus 11 of this other pretreatment apparatus 2 is supplied to the main reverse osmosis membrane apparatus 3 To do.
 これにより、膜性能が低下して、前処理装置1のサブ逆浸透膜装置11のメンテナンスが必要になった場合であっても、他の前処理装置2のサブ逆浸透膜装置11で阻害物を除去した海水4がメイン逆浸透膜装置3に供給され、継続的に淡水6の製造が行われる。このため、水処理システムAの運転を停止することなく、膜性能が低下したサブ逆浸透膜装置11の逆浸透膜のメンテナンスが行える。 Thereby, even if it is a case where the membrane performance deteriorates and the maintenance of the sub reverse osmosis membrane device 11 of the pretreatment device 1 becomes necessary, the sub reverse osmosis membrane device 11 of the other pretreatment device 2 prevents the obstruction. The seawater 4 from which the water has been removed is supplied to the main reverse osmosis membrane device 3 and the fresh water 6 is continuously produced. For this reason, the maintenance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 with reduced membrane performance can be performed without stopping the operation of the water treatment system A.
 また、本実施形態では、差圧計測手段16によってサブ逆浸透膜装置11の海水流通方向T上流側と下流側の圧力差が計測されている。この圧力差によって、サブ逆浸透膜装置11の膜性能の状態が監視されている。さらに、pH計測手段17によってサブ逆浸透膜装置11の海水流通方向T下流側の海水4のpHが計測されている。このpH計測値によっても、サブ逆浸透膜装置11の膜性能の状態が監視されている。 In the present embodiment, the pressure difference between the upstream side and the downstream side of the sub reverse osmosis membrane device 11 in the seawater circulation direction T is measured by the differential pressure measuring means 16. The state of the membrane performance of the sub reverse osmosis membrane device 11 is monitored by this pressure difference. Further, the pH of the seawater 4 on the downstream side in the seawater circulation direction T of the sub reverse osmosis membrane device 11 is measured by the pH measuring means 17. The state of the membrane performance of the sub reverse osmosis membrane device 11 is also monitored by this pH measurement value.
 また、本実施形態では、前処理装置1、2が制御手段18を備えている。この制御手段18が、前処理装置1、2の第1から第5開閉弁10、21、22、23、24を差圧計測手段16やpH計測手段17の計測結果に基づいて開閉制御している。さらに、制御手段18が、差圧計測手段16やpH計測手段17の計測結果に基づいて、酸性水ポンプ13c、殺菌水ポンプ14c、還元剤ポンプ15cの駆動を制御している。 In the present embodiment, the preprocessing devices 1 and 2 include the control means 18. The control means 18 controls the opening and closing of the first to fifth on-off valves 10, 21, 22, 23, 24 of the pretreatment devices 1, 2 based on the measurement results of the differential pressure measuring means 16 and the pH measuring means 17. Yes. Furthermore, the control means 18 controls the drive of the acidic water pump 13c, the sterilizing water pump 14c, and the reducing agent pump 15c based on the measurement results of the differential pressure measuring means 16 and the pH measuring means 17.
 そして、例えば、差圧計測手段16によって計測される圧力差が、海水4の処理水量に応じて比例的に大きい場合には、逆浸透膜に懸濁粒子が目詰まりして膜性能が低下していると判断できうる。また、海水4の処理水量に相関なく圧力差が大きくなる場合には、生物やスケールの付着によって膜性能が低下していると判断できうる。 For example, when the pressure difference measured by the differential pressure measuring means 16 is proportionally large according to the amount of treated water in the seawater 4, suspended particles are clogged in the reverse osmosis membrane, resulting in a decrease in membrane performance. It can be judged that Moreover, when a pressure difference becomes large irrespective of the amount of treated water of the seawater 4, it can be judged that the membrane performance is degraded due to the attachment of organisms and scales.
 また、これと同様に、サブ逆浸透膜装置11の海水流通方向T下流側の海水4のpHの大小変化の傾向を捉えることによっても、サブ逆浸透膜装置11の逆浸透膜の膜性能の低下要因が、懸濁粒子の目詰まりによるものか、生物やスケールの付着によるものかを判断することができうる。 In the same manner, the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 can also be determined by grasping the tendency of the change in pH of the seawater 4 downstream of the sub reverse osmosis membrane device 11 in the seawater circulation direction T. It can be judged whether the decrease factor is due to clogging of suspended particles or due to the attachment of organisms or scales.
 このため、例えば、差圧計測手段16の計測結果、pH計測手段17の計測結果に基づいて、逆浸透膜に懸濁粒子が目詰まりして膜性能が低下していると判断される場合、制御手段18は、このサブ逆浸透膜装置11を備えている前処理装置1の第1開閉弁10を閉じるとともに第2開閉弁21を開けて、逆洗手段12からサブ逆浸透膜装置11の逆浸透膜に逆洗水W1を供給する。これにより、逆浸透膜に目詰まりした懸濁粒子が逆洗除去され、サブ逆浸透膜装置11の膜性能の回復、向上が図られる。逆洗手段12による逆洗を行うことによって、懸濁粒子だけが除去されるわけではなく、逆浸透膜の膜性能を低下させる他の阻害物の微生物やスケールも逆洗除去することが可能である。 For this reason, for example, based on the measurement result of the differential pressure measurement means 16 and the measurement result of the pH measurement means 17, when it is determined that the suspended particles are clogged in the reverse osmosis membrane and the membrane performance is reduced, The control means 18 closes the first on-off valve 10 and the second on-off valve 21 of the pretreatment apparatus 1 equipped with the sub reverse osmosis membrane apparatus 11, and opens the second on / off valve 21 from the back washing means 12 to the sub reverse osmosis membrane apparatus 11. Backwash water W1 is supplied to the reverse osmosis membrane. Thereby, the suspended particles clogged in the reverse osmosis membrane are backwashed and removed, and the membrane performance of the sub reverse osmosis membrane device 11 is recovered and improved. By performing the backwashing by the backwashing means 12, not only suspended particles are removed, but also other inhibitor microorganisms and scales that reduce the membrane performance of the reverse osmosis membrane can be backwashed and removed. is there.
 一方、例えば、差圧計測手段16の計測結果、pH計測手段17の計測結果を季節や温度などの過去のデータに照らし合わせるなどして、逆浸透膜の膜性能が生物やスケールの付着によって低下していると判断される場合、制御手段18は、このサブ逆浸透膜装置11を備えている前処理装置1の第1開閉弁10を閉じるとともに第3開閉弁22及び/又は第4開閉弁23を開けて、酸性剤供給手段13、及び/又は殺菌剤供給手段14からサブ逆浸透膜装置11の逆浸透膜に酸性水W2及び/又は殺菌剤W3を供給する。また、殺菌剤W3を供給する場合には、第5開閉弁24を開けて、還元剤供給手段15から被処理水の海水4に還元剤W4を供給する。 On the other hand, the membrane performance of the reverse osmosis membrane decreases due to the attachment of organisms or scales, for example, by comparing the measurement results of the differential pressure measurement means 16 and the measurement results of the pH measurement means 17 with past data such as seasons and temperatures. When it is determined that the control valve 18 is closed, the control means 18 closes the first on-off valve 10 of the pretreatment device 1 including the sub-reverse osmosis membrane device 11 and the third on-off valve 22 and / or the fourth on-off valve. 23, the acidic water supply unit 13 and / or the bactericidal agent supply unit 14 supplies the acidic water W2 and / or the bactericidal agent W3 to the reverse osmosis membrane of the sub reverse osmosis membrane device 11. When supplying the sterilizing agent W3, the fifth on-off valve 24 is opened, and the reducing agent W4 is supplied from the reducing agent supply means 15 to the seawater 4 to be treated.
 そして、酸性剤供給手段13で酸性水W2を供給した場合には、この酸性水W2によってサブ逆浸透膜装置11の逆浸透膜に付着したスケールが除去される。また、殺菌剤供給手段14で殺菌剤W3を供給した場合には、この殺菌剤W3によってサブ逆浸透膜装置11の逆浸透膜に付着した生物が死滅して除去される。さらに、還元剤供給手段15によって還元剤W4を供給することで、残った殺菌剤W3が中和処理されるため、後段のメイン逆浸透膜装置3の逆浸透膜が酸化して、膜性能が低下する可能性を低減できる。 When the acidic water W2 is supplied by the acidic agent supply means 13, the scale attached to the reverse osmosis membrane of the sub reverse osmosis membrane device 11 is removed by the acidic water W2. Further, when the bactericidal agent W3 is supplied by the bactericidal agent supply means 14, organisms attached to the reverse osmosis membrane of the sub reverse osmosis membrane device 11 are killed and removed by the bactericidal agent W3. Furthermore, since the remaining bactericide W3 is neutralized by supplying the reducing agent W4 by the reducing agent supply means 15, the reverse osmosis membrane of the main reverse osmosis membrane device 3 at the subsequent stage is oxidized, and the membrane performance is improved. The possibility of lowering can be reduced.
 したがって、本実施形態の水処理システムAにおいては、淡水6を生成するメイン逆浸透膜装置3に供給する前で、海水(被処理水)4を処理するための前処理装置1、2がサブ逆浸透膜装置11を備えていることにより、逆浸透膜を目詰まりさせる微細粒子や、逆浸透膜で繁殖して目詰まりを生じさせる微生物などの阻害物を、メイン逆浸透膜装置3よりも前のサブ逆浸透膜装置11の逆浸透膜で捕集することができる。すなわち、サブ逆浸透膜装置11をろ過装置のように使用することで、逆浸透膜の膜性能を低下させる阻害物を、海水4の前処理の段階で除去することができる。 Therefore, in the water treatment system A of the present embodiment, the pretreatment devices 1 and 2 for treating the seawater (treated water) 4 are sub-subjected before being supplied to the main reverse osmosis membrane device 3 that generates the fresh water 6. By providing the reverse osmosis membrane device 11, the fine particles that clog the reverse osmosis membrane and the obstacles such as microorganisms that propagate on the reverse osmosis membrane and cause clogging are more effective than the main reverse osmosis membrane device 3. It can be collected by the reverse osmosis membrane of the previous sub-reverse osmosis membrane device 11. That is, by using the sub-reverse osmosis membrane device 11 like a filtration device, an obstacle that lowers the membrane performance of the reverse osmosis membrane can be removed at the pretreatment stage of the seawater 4.
 これにより、海水4から淡水6を生成するメイン逆浸透膜装置3の逆浸透膜、特に海水流通方向T上流側に配置されたメイン逆浸透膜装置3の逆浸透膜の膜性能が早期に低下することを防止できる。そして、本実施形態のように、サブ逆浸透膜装置11の逆浸透膜の膜数をメイン逆浸透膜装置3よりも少なくして構成することにより、海水4の前処理の段階で阻害物を捕集する前処理装置1、2のサブ逆浸透膜装置11のメンテナンスや逆浸透膜の交換を行う際、従来よりもメンテナンス作業に要する時間と労力を軽減することが可能になる。 As a result, the membrane performance of the reverse osmosis membrane of the main reverse osmosis membrane device 3 that generates fresh water 6 from the seawater 4, particularly the reverse osmosis membrane of the main reverse osmosis membrane device 3 arranged on the upstream side in the seawater circulation direction T, is deteriorated early. Can be prevented. And like this embodiment, the number of membranes of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 is made smaller than that of the main reverse osmosis membrane device 3, thereby inhibiting the obstacles at the pretreatment stage of the seawater 4. When performing maintenance of the sub-reverse osmosis membrane device 11 of the pretreatment devices 1 and 2 to be collected or replacement of the reverse osmosis membrane, it is possible to reduce the time and labor required for the maintenance work as compared with the conventional case.
 よって、本実施形態の水処理システムAによれば、メイン逆浸透膜装置3の膜性能を長期間維持することができるとともにメンテナンス作業を軽減でき、効率的且つ経済的に淡水を製造することが可能になる。 Therefore, according to the water treatment system A of the present embodiment, the membrane performance of the main reverse osmosis membrane device 3 can be maintained for a long time and maintenance work can be reduced, and fresh water can be produced efficiently and economically. It becomes possible.
 また、本実施形態の水処理システムAにおいては、複数の前処理装置1、2が設けられ、サブ逆浸透膜装置11を備えた各前処理装置1、2が第1開閉弁10を介して一つのメイン逆浸透膜装置3に接続されている。このため、ある前処理装置1のサブ逆浸透膜装置11の膜性能が低下した場合に、この前処理装置1の第1開閉弁10を閉じてメイン逆浸透膜装置3への海水4の供給を停止するとともに、他の前処理装置2の第1開閉弁10をあけて、この他の前処理装置2のサブ逆浸透膜装置11で処理した海水4をメイン逆浸透膜装置3に供給することができる。 Further, in the water treatment system A of the present embodiment, a plurality of pretreatment devices 1 and 2 are provided, and each of the pretreatment devices 1 and 2 including the sub reverse osmosis membrane device 11 is connected via the first on-off valve 10. It is connected to one main reverse osmosis membrane device 3. For this reason, when the membrane performance of the sub reverse osmosis membrane device 11 of a certain pretreatment device 1 is deteriorated, the seawater 4 is supplied to the main reverse osmosis membrane device 3 by closing the first on-off valve 10 of the pretreatment device 1. And the first on-off valve 10 of the other pretreatment device 2 is opened, and the seawater 4 treated by the sub reverse osmosis membrane device 11 of the other pretreatment device 2 is supplied to the main reverse osmosis membrane device 3. be able to.
 これにより、膜性能が低下して、前処理装置1のサブ逆浸透膜装置11のメンテナンスが必要になった場合であっても、他の前処理装置2のサブ逆浸透膜装置11で阻害物を除去した海水4をメイン逆浸透膜装置3に供給することができるため、水処理システムAの運転を停止する必要がなく、さらに効率的且つ経済的に淡水6を製造することが可能になる。 Thereby, even if it is a case where the membrane performance deteriorates and the maintenance of the sub reverse osmosis membrane device 11 of the pretreatment device 1 becomes necessary, the sub reverse osmosis membrane device 11 of the other pretreatment device 2 prevents the obstruction. Since the seawater 4 from which water has been removed can be supplied to the main reverse osmosis membrane device 3, it is not necessary to stop the operation of the water treatment system A, and the fresh water 6 can be produced more efficiently and economically. .
 さらに、本実施形態の水処理システムAにおいては、サブ逆浸透膜装置11の逆浸透膜の膜性能が低下した際に、第2開閉弁21を開けて逆洗手段12からサブ逆浸透膜装置11の逆浸透膜に、海水流通方向T下流側から上流側に向けて(正浸透方向に)逆洗水W1を供給することによって、例えば逆浸透膜に目詰まりした懸濁粒子など、逆浸透膜の膜性能を低下させている阻害物を逆洗除去することができる。また、このとき、サブ逆浸透膜装置11の逆浸透膜に対し、逆洗水W1を正浸透させることで逆洗するため、ポンプなどを用いることなく、水位差等を利用して逆浸透膜の逆洗を行うことも可能である。これにより、サブ逆浸透膜装置11の逆浸透膜の膜性能を効率的且つ経済的に回復させることが可能になる。 Further, in the water treatment system A of the present embodiment, when the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 is lowered, the second on-off valve 21 is opened and the sub reverse osmosis membrane device from the back washing means 12 is opened. By supplying backwash water W1 to the reverse osmosis membrane 11 from the downstream side in the seawater circulation direction T toward the upstream side (in the forward osmosis direction), for example, reverse osmosis such as suspended particles clogged in the reverse osmosis membrane Inhibitors that degrade the membrane performance of the membrane can be backwashed away. At this time, the reverse osmosis membrane of the sub-reverse osmosis membrane device 11 is back-washed by normal osmosis of the backwash water W1, so that the reverse osmosis membrane is utilized by utilizing the water level difference without using a pump or the like. It is also possible to perform backwashing. Thereby, the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 can be restored efficiently and economically.
 また、本実施形態の水処理システムAにおいては、サブ逆浸透膜装置11の逆浸透膜の膜性能が低下した際に、第3開閉弁22や第4開閉弁23を選択的に開けることで、酸性剤供給手段13から酸性剤W2、殺菌剤供給手段14から殺菌剤W3を適宜サブ逆浸透膜装置11内の海水4に供給することができる。そして、例えば逆浸透膜に炭酸カルシウムなどのスケールが付着生成して膜性能が低下している場合には、酸性剤供給手段13から酸性水(酸性剤)W2を供給することで、スケールを溶解させて除去することができる。
また、例えば、逆浸透膜に生物が付着繁殖して膜性能が低下している場合には、殺菌剤供給手段14から次亜塩素酸等の塩素系殺菌剤W3を供給することで、生物を死滅させて除去することができる。これにより、サブ逆浸透膜装置11の逆浸透膜の膜性能をより効率的且つ経済的に回復させることが可能になる。
Moreover, in the water treatment system A of this embodiment, when the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 is lowered, the third on-off valve 22 and the fourth on-off valve 23 are selectively opened. The acid agent W2 from the acid agent supply unit 13 and the bactericide W3 from the bactericide supply unit 14 can be appropriately supplied to the seawater 4 in the sub reverse osmosis membrane device 11. For example, when scale such as calcium carbonate adheres to the reverse osmosis membrane and the membrane performance deteriorates, the scale is dissolved by supplying acidic water (acidic agent) W2 from the acidic agent supply means 13. Can be removed.
In addition, for example, when organisms adhere to and propagate on the reverse osmosis membrane and the membrane performance is reduced, the organism is reduced by supplying a chlorine-based disinfectant W3 such as hypochlorous acid from the disinfectant supply means 14. Can be killed and removed. Thereby, the membrane performance of the reverse osmosis membrane of the sub reverse osmosis membrane device 11 can be recovered more efficiently and economically.
 さらに、本実施形態の水処理システムAにおいては、差圧計測手段16によってサブ逆浸透膜装置11の海水流通方向T上流側と下流側の圧力差を計測することによって、サブ逆浸透膜装置11の膜性能(膜性能の低下状況)を確認することができる。これにより、サブ逆浸透膜装置11の逆浸透膜のメンテナンス、交換の要否を判断することができる。 Furthermore, in the water treatment system A of this embodiment, the sub reverse osmosis membrane device 11 is measured by measuring the pressure difference between the upstream side and the downstream side in the seawater circulation direction T of the sub reverse osmosis membrane device 11 by the differential pressure measuring means 16. The film performance (deterioration of film performance) can be confirmed. Thereby, it is possible to determine whether the reverse osmosis membrane of the sub reverse osmosis membrane device 11 needs to be maintained or replaced.
 さらに、例えば、海水4の処理水量に応じて比例的に圧力差が大きくなる場合には、逆浸透膜に懸濁粒子が目詰まりして膜性能が低下していると判断する。また、海水4の処理水量に相関なく圧力差が大きくなる場合には、生物やスケールの付着によって膜性能が低下していると判断する。このように、被処理水の種類や性状などとともに、圧力差を計測することによって、膜性能の低下要因を特定することが可能になる。これにより、特定した膜性能の低下要因に応じて、例えば逆洗手段12、酸性剤供給手段13、殺菌剤供給手段14のいずれかを選択して、効果的に膜性能の回復を図ることが可能になる。 Furthermore, for example, when the pressure difference increases proportionally according to the amount of treated water of the seawater 4, it is determined that the suspended osmosis membrane is clogged and the membrane performance is deteriorated. Moreover, when a pressure difference becomes large without correlating with the amount of treated water of the seawater 4, it is judged that the membrane performance is degraded due to the attachment of organisms and scales. Thus, by measuring the pressure difference together with the type and properties of the water to be treated, it is possible to identify the factors that degrade the membrane performance. Thereby, according to the specified factor of deterioration of the membrane performance, for example, any one of the backwashing means 12, the acid agent supply means 13, and the bactericide supply means 14 can be selected to effectively restore the membrane performance. It becomes possible.
 また、本実施形態の水処理システムAにおいては、差圧計測手段16やpH計測手段17の計測結果に基づいて、第1開閉弁10と第2開閉弁21と第3開閉弁22と第4開閉弁23と第5開閉弁24を開閉制御することで、サブ逆浸透膜装置11のメンテナンスや淡水6の製造を、例えば全自動、半自動で、効率的に行うことが可能になる。 In the water treatment system A of the present embodiment, the first on-off valve 10, the second on-off valve 21, the third on-off valve 22, and the fourth on the basis of the measurement results of the differential pressure measuring means 16 and the pH measuring means 17. By controlling opening and closing of the on-off valve 23 and the fifth on-off valve 24, the maintenance of the sub reverse osmosis membrane device 11 and the manufacture of the fresh water 6 can be efficiently performed, for example, fully automatically or semi-automatically.
 以上、本発明に係る水処理システムの一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although one embodiment of the water treatment system concerning the present invention was described, the present invention is not limited to the above-mentioned embodiment, and can be suitably changed in the range which does not deviate from the meaning.
 例えば、本実施形態では、水処理システムAが、一つのメイン逆浸透膜装置3に対して、複数の前処理装置1、2を備える。複数の前処理装置1、2は、処理した海水(被処理水)4をそれぞれ個別に供給し、第1開閉弁10を介してそれぞれメイン逆浸透膜装置3に接続される。この構成によって、ある前処理装置1のサブ逆浸透膜装置11の膜性能が低下し、メンテナンスや交換が必要になったとき、他の前処理装置2で処理した海水4をメイン逆浸透膜装置3に供給することで、水処理システムAの運転を停止することなく、効率的に淡水6を製造できると説明した。 For example, in this embodiment, the water treatment system A includes a plurality of pretreatment devices 1 and 2 for one main reverse osmosis membrane device 3. The plurality of pretreatment devices 1 and 2 individually supply treated seawater (treated water) 4 and are connected to the main reverse osmosis membrane device 3 via the first on-off valve 10. With this configuration, when the membrane performance of the sub-reverse osmosis membrane device 11 of a certain pretreatment device 1 deteriorates and maintenance or replacement becomes necessary, the seawater 4 treated by another pretreatment device 2 is converted into the main reverse osmosis membrane device. It has been explained that the fresh water 6 can be produced efficiently without stopping the operation of the water treatment system A by supplying the water to 3.
 これに対し、本実施形態に係る水処理システムAにおいては、必ずしも複数の前処理装置1、2を備えることに限定しなくてもよく、図2に示すように、一つの前処理装置1を備えてもよい。そして、この場合には、例えば、前処理装置1(サブ逆浸透膜装置11)で処理した海水4を一時的に溜める貯留タンク25と、貯留タンク25からメイン逆浸透膜装置3に海水4を送る送水ポンプ26を備える。すなわち、前処理装置1のサブ逆浸透膜装置11で処理した海水4を一時的に貯留タンク25に溜め、送水ポンプ26によって貯留タンク25からメイン逆浸透膜装置3に送ることで、淡水6を製造することができる。このため、一つの前処理装置1のサブ逆浸透膜装置11の膜性能が低下してメンテナンスや交換が必要になった場合であっても、貯留タンク25に溜めた海水4を用いて淡水6の製造を継続することができ、複数の前処理装置1、2を備えた本実施形態と同様の作用効果を得ることが可能である。 On the other hand, in the water treatment system A according to the present embodiment, the water treatment system A does not necessarily have to be provided with a plurality of pretreatment devices 1 and 2, and as shown in FIG. You may prepare. In this case, for example, the storage tank 25 that temporarily stores the seawater 4 processed by the pretreatment device 1 (sub-reverse osmosis membrane device 11), and the seawater 4 from the storage tank 25 to the main reverse osmosis membrane device 3. A water supply pump 26 is provided. That is, the seawater 4 processed by the sub reverse osmosis membrane device 11 of the pretreatment device 1 is temporarily stored in the storage tank 25 and sent from the storage tank 25 to the main reverse osmosis membrane device 3 by the water pump 26, so that the fresh water 6 is supplied. Can be manufactured. For this reason, even if the membrane performance of the sub reverse osmosis membrane device 11 of one pretreatment device 1 is deteriorated and maintenance or replacement is necessary, the fresh water 6 using the seawater 4 stored in the storage tank 25 is used. Can be continued, and it is possible to obtain the same effect as the present embodiment including the plurality of pretreatment devices 1 and 2.
 上述の水処理システムによれば、淡水を生成するメイン逆浸透膜装置に供給する前で、海水などの被処理水を処理するための前処理装置がサブ逆浸透膜装置を備えていることにより、被処理水中に存在し、逆浸透膜の膜性能を低下させる阻害物を、メイン逆浸透膜装置よりも前のサブ逆浸透膜装置の逆浸透膜で捕集することができる。 According to the water treatment system described above, the pretreatment device for treating the water to be treated such as seawater before the supply to the main reverse osmosis membrane device that generates fresh water includes the sub reverse osmosis membrane device. Inhibitors existing in the water to be treated and degrading the membrane performance of the reverse osmosis membrane can be collected by the reverse osmosis membrane of the sub reverse osmosis membrane device before the main reverse osmosis membrane device.
1  前処理装置
2  前処理装置
3  メイン逆浸透膜装置
3a  逆浸透膜ユニット
4  海水(被処理水)
5  濃縮水
6  淡水
7  濃縮水排出管
8  透過水管
9  被処理水給水管
10  第1開閉弁
11  サブ逆浸透膜装置
11a  逆浸透膜ユニット
12  逆洗手段
12a  逆洗水タンク
12b  逆洗水管
13  酸性剤供給手段
13a  酸性水タンク
13b  酸性水管
13c  酸性水ポンプ
14  殺菌剤供給手段
14a  殺菌水タンク
14b  殺菌水管
14c  殺菌水ポンプ
15  還元剤供給手段
15a  還元剤タンク
15b  還元剤管
15c  還元剤ポンプ
16  差圧計測手段
17  pH計測手段
18  制御手段
20  原水供給管
21  第2開閉弁
22  第3開閉弁
23  第4開閉弁
24  第5開閉弁
25  貯留タンク
26  送水ポンプ
A  水処理システム
T  被処理水流通方向
W1  逆洗水
W2  酸性水(酸性剤)
W3  殺菌水(殺菌剤)
W4  還元剤
1 Pretreatment device 2 Pretreatment device 3 Main reverse osmosis membrane device 3a Reverse osmosis membrane unit 4 Seawater (treated water)
DESCRIPTION OF SYMBOLS 5 Concentrated water 6 Fresh water 7 Concentrated water discharge pipe 8 Permeated water pipe 9 To-be-processed water supply pipe 10 1st on-off valve 11 Sub reverse osmosis membrane apparatus 11a Reverse osmosis membrane unit 12 Backwash means 12a Backwash water tank 12b Backwash water pipe 13 Acidity Agent supply means 13a Acidic water tank 13b Acidic water pipe 13c Acidic water pump 14 Bactericidal agent supply means 14a Bactericidal water tank 14b Bactericidal water pipe 14c Bactericidal water pump 15 Reducing agent supply means 15a Reducing agent tank 15b Reducing agent pipe 15c Reducing agent pump 16 Differential pressure Measuring means 17 pH measuring means 18 Control means 20 Raw water supply pipe 21 Second on-off valve 22 Third on-off valve 23 Fourth on-off valve 24 Fifth on-off valve 25 Storage tank 26 Water supply pump A Water treatment system T Untreated water flow direction W1 Backwash water W2 Acid water (acid agent)
W3 Disinfectant water (disinfectant)
W4 reducing agent

Claims (6)

  1.  被処理水を溶質濃度が高い濃縮水と淡水に分離するためのメイン逆浸透膜装置と、
     前記メイン逆浸透膜装置に供給する前に、予め被処理水から前記メイン逆浸透膜装置の逆浸透膜の膜性能を低下させる阻害物を除去するための前処理装置としてのサブ逆浸透膜装置とを備えている水処理システム。
    A main reverse osmosis membrane device for separating treated water into concentrated water and fresh water having a high solute concentration;
    A sub-reverse osmosis membrane device as a pretreatment device for removing an obstacle that degrades the membrane performance of the reverse osmosis membrane of the main reverse osmosis membrane device from the water to be treated in advance before being supplied to the main reverse osmosis membrane device And a water treatment system.
  2.  請求項1記載の水処理システムは、複数の前記前処理装置を備え、
     複数の前記前処理装置は、一つの前記メイン逆浸透膜装置に対して、処理した被処理水をそれぞれ個別に供給し、第1開閉弁を介してそれぞれ前記メイン逆浸透膜装置に接続される水処理システム。
    The water treatment system according to claim 1, comprising a plurality of the pretreatment devices,
    The plurality of pretreatment devices individually supply treated water to one main reverse osmosis membrane device, and are connected to the main reverse osmosis membrane devices via first on-off valves, respectively. Water treatment system.
  3.  請求項1または請求項2に記載の水処理システムにおいて、
     前記前処理装置は、逆洗手段を備え、
     前記逆洗手段は、第2開閉弁を介して前記サブ逆浸透膜装置に接続され、前記サブ逆浸透膜装置の逆浸透膜に対し被処理水流通方向下流側から上流側に向けて逆洗水を供給する水処理システム。
    In the water treatment system according to claim 1 or 2,
    The pretreatment device includes backwashing means,
    The backwashing means is connected to the sub reverse osmosis membrane device via a second on-off valve, and backwashes the reverse osmosis membrane of the sub reverse osmosis membrane device from the downstream side to the upstream side in the treated water flow direction. Water treatment system that supplies water.
  4.  請求項1から請求項3のいずれか一項に記載の水処理システムにおいて、
     前記前処理装置は、酸性剤供給手段及び/又は、
     殺菌剤供給手段を備え、
     前記酸性剤供給手段は、第3開閉弁を介して前記サブ逆浸透膜装置に接続され、前記サブ逆浸透膜装置の逆浸透膜に付着したスケールを除去するための酸性剤を被処理水に供給し、
     前記殺菌剤供給手段は、第4開閉弁を介して前記サブ逆浸透膜装置に接続され、前記サブ逆浸透膜装置の逆浸透膜に付着した生物を除去するための殺菌剤を被処理水に供給する水処理システム。
    In the water treatment system according to any one of claims 1 to 3,
    The pretreatment device comprises an acid agent supply means and / or
    A disinfectant supply means,
    The acid agent supply means is connected to the sub reverse osmosis membrane device via a third on-off valve, and an acid agent for removing scale adhered to the reverse osmosis membrane of the sub reverse osmosis membrane device is used as water to be treated. Supply
    The sterilizing agent supplying means is connected to the sub reverse osmosis membrane device via a fourth on-off valve, and the sterilizing agent for removing organisms attached to the reverse osmosis membrane of the sub reverse osmosis membrane device is used as water to be treated. Supply water treatment system.
  5.  請求項1から請求項4のいずれか一項に記載の水処理システムにおいて、
     前記前処理装置は、前記サブ逆浸透膜装置の被処理水流通方向上流側と下流側の圧力差を計測するための差圧計測手段を備えている水処理システム。
    In the water treatment system according to any one of claims 1 to 4,
    The said pre-processing apparatus is a water treatment system provided with the differential pressure measurement means for measuring the pressure difference of the to-be-processed water distribution direction upstream and downstream of the said sub reverse osmosis membrane apparatus.
  6.  請求項5記載の水処理システムにおいて、
     前記前処理装置は、前記第1開閉弁と前記第2開閉弁と前記第3開閉弁と前記第4開閉弁のうち、前記前処理装置に具備された開閉弁を、前記差圧計測手段の計測結果に基づいて開閉制御する制御手段を備えている水処理システム。
    The water treatment system according to claim 5,
    The pre-processing device includes an on-off valve provided in the pre-processing device among the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve. A water treatment system comprising control means for controlling opening and closing based on a measurement result.
PCT/JP2014/053381 2013-02-25 2014-02-13 Water treatment system WO2014129383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-034732 2013-02-25
JP2013034732A JP2014161795A (en) 2013-02-25 2013-02-25 Water treatment system

Publications (1)

Publication Number Publication Date
WO2014129383A1 true WO2014129383A1 (en) 2014-08-28

Family

ID=51391177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053381 WO2014129383A1 (en) 2013-02-25 2014-02-13 Water treatment system

Country Status (2)

Country Link
JP (1) JP2014161795A (en)
WO (1) WO2014129383A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2969972A4 (en) * 2013-03-15 2016-11-09 Ecolab Usa Inc Methods of inhibiting fouling in liquid systems
JPWO2016030939A1 (en) * 2014-08-25 2017-04-27 三菱重工業株式会社 Water treatment apparatus and operation method thereof
JPWO2016030945A1 (en) * 2014-08-25 2017-06-08 三菱重工業株式会社 Water treatment apparatus and operation method thereof
EP3778496A4 (en) * 2018-03-27 2021-07-14 Toray Industries, Inc. Water treatment method and water treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056130A1 (en) * 2014-10-10 2016-04-14 三菱重工業株式会社 Raw water filtration treatment system, and method for cleaning filtration device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322876A (en) * 1976-08-17 1978-03-02 Itarou Niitsu Method of decreasing solution concentration using reverse osmosis membrane
JPH10263539A (en) * 1997-03-28 1998-10-06 Japan Organo Co Ltd Member treating method of water to be treated and membrane treating device
JP2003117552A (en) * 2001-10-15 2003-04-22 Mitsubishi Heavy Ind Ltd Desalination apparatus
JP2006272135A (en) * 2005-03-29 2006-10-12 Toray Ind Inc Membrane separation method and membrane separation device
JP2008238051A (en) * 2007-03-27 2008-10-09 Kurita Water Ind Ltd Organic matter treatment method and organic matter treatment apparatus
WO2011070894A1 (en) * 2009-12-09 2011-06-16 三菱重工業株式会社 Water desalination device, and water desalination method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359312A (en) * 1986-08-29 1988-03-15 Kyocera Corp Washing method for reverse osmosis membrane module of reverse osmosis desalination device
JPH09276865A (en) * 1996-04-15 1997-10-28 Kurita Water Ind Ltd High purity water making apparatus
JP2001170458A (en) * 1999-12-15 2001-06-26 Meidensha Corp Method of detecting membrane breaking and fouling in membrane cleaning
JP2005238135A (en) * 2004-02-27 2005-09-08 Nitto Denko Corp Washing method of membrane separation device
JP2006122787A (en) * 2004-10-27 2006-05-18 Kobelco Eco-Solutions Co Ltd Seawater desalting method
JP2008161818A (en) * 2006-12-28 2008-07-17 Kurita Water Ind Ltd Pure water production method and apparatus
JP2010064028A (en) * 2008-09-11 2010-03-25 Hakatako Kanri Kk Water treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322876A (en) * 1976-08-17 1978-03-02 Itarou Niitsu Method of decreasing solution concentration using reverse osmosis membrane
JPH10263539A (en) * 1997-03-28 1998-10-06 Japan Organo Co Ltd Member treating method of water to be treated and membrane treating device
JP2003117552A (en) * 2001-10-15 2003-04-22 Mitsubishi Heavy Ind Ltd Desalination apparatus
JP2006272135A (en) * 2005-03-29 2006-10-12 Toray Ind Inc Membrane separation method and membrane separation device
JP2008238051A (en) * 2007-03-27 2008-10-09 Kurita Water Ind Ltd Organic matter treatment method and organic matter treatment apparatus
WO2011070894A1 (en) * 2009-12-09 2011-06-16 三菱重工業株式会社 Water desalination device, and water desalination method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2969972A4 (en) * 2013-03-15 2016-11-09 Ecolab Usa Inc Methods of inhibiting fouling in liquid systems
US11186499B2 (en) 2013-03-15 2021-11-30 Ecolab Usa Inc. Methods of inhibiting fouling in liquid systems
JPWO2016030939A1 (en) * 2014-08-25 2017-04-27 三菱重工業株式会社 Water treatment apparatus and operation method thereof
JPWO2016030945A1 (en) * 2014-08-25 2017-06-08 三菱重工業株式会社 Water treatment apparatus and operation method thereof
EP3778496A4 (en) * 2018-03-27 2021-07-14 Toray Industries, Inc. Water treatment method and water treatment apparatus

Also Published As

Publication number Publication date
JP2014161795A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
Matin et al. Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies
Ang et al. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants
US8236178B2 (en) Reverse osmosis water recover method
US8101083B2 (en) Pre-treatment reverse osmosis water recovery method for brine retentate metals removal
JP5433633B2 (en) Seawater desalination system using forward osmosis membrane
WO2009128328A1 (en) Method of operating reverse osmosis membrane module
JP5549589B2 (en) Fresh water system
WO2014129383A1 (en) Water treatment system
JP2013111559A (en) Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film
AU2014285172B2 (en) Water treatment system and water treatment method
WO2016035174A1 (en) Deposit monitoring device for water treatment device, water treatment device, operating method for same, and washing method for water treatment device
KR20180017149A (en) Biocidal compositions and methods
JP2011050843A (en) Method of and system for desalinating water to be treated
Li et al. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate
Oh et al. Effect of ozone on microfiltration as a pretreatment of seawater reverse osmosis
Jacangelo et al. Pretreatment for seawater reverse osmosis: existing plant performance and selection guidance
Solutions Filmtec™ reverse osmosis membranes
EP2218494B1 (en) Method and device for the purification of an aqueous fluid
Li et al. Application of backwashing with demineralized water for UF fouling control in UF-RO desalination
Varma et al. An improved technique for reducing water wastage from micro-RO-membrane-based water purification systems: An experimental study
JP7354983B2 (en) Support device, support method, and support program
US20240025780A1 (en) Method for eliminating the use of chemical products in pre-treatment in seawater desalination plants based on reverse osmosis
JP2007260638A (en) Water treatment method using reverse osmosis membrane
JP2001252536A (en) Method for cleaning filter membrane and apparatus for filtering seawater using the same
WO2015002186A1 (en) Water treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754201

Country of ref document: EP

Kind code of ref document: A1