JP2011050843A - Method of and system for desalinating water to be treated - Google Patents

Method of and system for desalinating water to be treated Download PDF

Info

Publication number
JP2011050843A
JP2011050843A JP2009201666A JP2009201666A JP2011050843A JP 2011050843 A JP2011050843 A JP 2011050843A JP 2009201666 A JP2009201666 A JP 2009201666A JP 2009201666 A JP2009201666 A JP 2009201666A JP 2011050843 A JP2011050843 A JP 2011050843A
Authority
JP
Japan
Prior art keywords
water
treated
seawater
reverse osmosis
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009201666A
Other languages
Japanese (ja)
Inventor
Komei Kadokawa
角川  功明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2009201666A priority Critical patent/JP2011050843A/en
Publication of JP2011050843A publication Critical patent/JP2011050843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of and a system for desalinating water to be treated capable of reducing the amount of an oxidizer used for sterilization of the water when desalinating the sterilized water by filtration with a reverse osmosis membrane. <P>SOLUTION: The method of desalinating the water to be treated includes a process of sterilizing the water by adding the oxidizer to the water, a process of filtering the sterilized water with a reverse osmosis membrane, and a process of adjusting the pH value of the water by adding a pH adjusting agent to the water prior to the sterilizing process. The desalination system includes an oxidizer adding means adding the oxidizer to the water, a reverse osmosis membrane filtering means provided in the downstream of the oxidizer adding means in relation to the flow of the water and filtering the water for desalinating, and a pH adjusting agent adding means provided in the upstream of the oxidizer adding means in relation to the flow of the water and adding the pH adjusting agent to the water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、かん水や海水などの被処理水を淡水化する方法およびシステムに関し、特には、被処理水を前処理(殺菌等)した後に逆浸透膜でろ過することにより淡水化する方法およびシステムに関するものである。   The present invention relates to a method and a system for desalinating water to be treated such as brine or seawater, and in particular, a method and a system for desalination by pretreating the water to be treated (sterilization, etc.) and then filtering with a reverse osmosis membrane. It is about.

従来、かん水や海水などの被処理水から淡水を得るための一般的手法として、逆浸透膜(RO膜)を用いた膜分離法(逆浸透法)が知られている。   Conventionally, a membrane separation method (reverse osmosis method) using a reverse osmosis membrane (RO membrane) is known as a general method for obtaining fresh water from treated water such as brine or seawater.

そして、逆浸透法を用いた海水淡水化システムでは、被処理水である海水に対し、逆浸透膜の早期の目詰まり発生を防止するための前処理として、次亜塩素酸ナトリウム等の酸化剤を用いた殺菌処理、塩化第二鉄等の凝集剤を用いた海水中の懸濁物質等の凝集処理、および凝集した懸濁物質を海水から除去するための砂ろ過等を行った後に、海水のpHを例えば6〜6.7に調整し、該pHを調整した前処理済の海水を逆浸透膜に通水することにより、海水の淡水化を行っている。   And in the seawater desalination system using the reverse osmosis method, as a pretreatment for preventing the occurrence of early clogging of the reverse osmosis membrane with respect to the seawater as the treated water, an oxidizing agent such as sodium hypochlorite After performing sterilization treatment using water, flocculation treatment of suspended substances in seawater using a coagulant such as ferric chloride, and sand filtration to remove the aggregated suspended substances from seawater, The pH of the water is adjusted to, for example, 6 to 6.7, and the pretreated seawater having the adjusted pH is passed through the reverse osmosis membrane to desalinate the seawater.

ここで、一般に、未解離の次亜塩素酸(HClO)は、次亜塩素酸イオン(ClO)の約100倍の殺菌効果を奏するので、次亜塩素酸ナトリウム等の酸化剤はpHが低い条件(未解離の次亜塩素酸量が多い条件)においてより強い殺菌力を発揮することが知られている。しかし、上記従来の海水淡水化システムでは、海水のpH調整を逆浸透膜への通水直前に行っており、海水に酸化剤を添加する際にはpHを調整していなかったため、酸化剤として添加された次亜塩素酸ナトリウムが十分な殺菌効果を奏することができなかった。そのため、従来の海水淡水化システムでは、海水を殺菌するために大量の酸化剤を添加する必要があった。 Here, in general, undissociated hypochlorous acid (HClO) has a bactericidal effect about 100 times that of hypochlorite ion (ClO ), so that an oxidizing agent such as sodium hypochlorite has a low pH. It is known that a stronger sterilizing power is exhibited under conditions (conditions where the amount of undissociated hypochlorous acid is large). However, in the conventional seawater desalination system, the pH of seawater is adjusted immediately before passing through the reverse osmosis membrane, and the pH is not adjusted when the oxidant is added to seawater. The added sodium hypochlorite could not have a sufficient bactericidal effect. Therefore, in the conventional seawater desalination system, it was necessary to add a large amount of an oxidizing agent in order to sterilize seawater.

そのため、被処理水を殺菌した後に逆浸透膜でろ過して淡水化する際に、被処理水の殺菌に用いる酸化剤の量を低減することができる、被処理水の淡水化方法および被処理水の淡水化システムを開発することが求められていた。   Therefore, when water to be treated is sterilized and then filtered through a reverse osmosis membrane for desalination, the amount of the oxidizing agent used for sterilization of the water to be treated can be reduced, and the desalination method and water to be treated are treated. There was a need to develop a water desalination system.

この発明は、上記課題を有利に解決することを目的とするものであり、本発明の被処理水の淡水化方法は、被処理水に酸化剤を添加して被処理水を殺菌する殺菌工程と、該殺菌工程を経た被処理水を逆浸透膜でろ過する逆浸透膜ろ過工程とを含む被処理水の淡水化方法であって、前記殺菌工程の前に、被処理水にpH調整剤を添加して被処理水のpHを調整するpH調整工程を更に含むことを特徴とする。なお、本発明において、「酸化剤」とは、被処理水中で次亜塩素酸(HClO)を生成し得るもの、例えば、塩素や、次亜塩素酸またはその塩等を指す。
このように、被処理水のpHを予め調整してから酸化剤を添加して被処理水の殺菌を行えば、酸化剤がより強い殺菌力を発揮し得るpH条件下で殺菌処理を行うことができるので、被処理水を淡水化処理する際の酸化剤の使用量を低減することができる。
This invention aims to solve the above-mentioned problem advantageously, and the desalination method of the water to be treated of the present invention is a sterilization step of sterilizing the water to be treated by adding an oxidizing agent to the water to be treated. And a reverse osmosis membrane filtration step of filtering the treated water that has undergone the sterilization step with a reverse osmosis membrane, and the pH adjuster is added to the treated water before the sterilization step. And a pH adjusting step of adjusting the pH of the water to be treated. In the present invention, the “oxidant” refers to a substance capable of generating hypochlorous acid (HClO) in the water to be treated, such as chlorine, hypochlorous acid or a salt thereof, and the like.
As described above, if the pH of the water to be treated is adjusted in advance and then the oxidant is added to sterilize the water to be treated, the oxidant is sterilized under pH conditions that can exert a stronger sterilizing power. Therefore, the amount of the oxidizing agent used when the water to be treated is desalinated can be reduced.

ここで、本発明の淡水化方法は、被処理水に凝集剤を添加して被処理水中の懸濁物質を凝集させる凝集工程と、前記凝集工程で形成された凝集物を被処理水から分離する凝集物分離工程とを、前記殺菌工程の後、且つ、前記逆浸透膜ろ過工程の前に更に含むことが好ましい。このように、殺菌処理を行った後に被処理水から懸濁物質を分離するようにすれば、逆浸透膜の目詰まり発生を抑制することができると共に、被処理水に酸化剤を添加してから逆浸透膜でろ過するまでの時間(滞留時間)が長くなるため、被処理水を充分に殺菌することができるからである。   Here, the desalination method of the present invention includes a coagulation step in which a coagulant is added to the water to be treated to coagulate suspended substances in the water to be treated, and the aggregate formed in the coagulation step is separated from the water to be treated. It is preferable to further include an aggregate separation step to be performed after the sterilization step and before the reverse osmosis membrane filtration step. In this way, if the suspended substances are separated from the water to be treated after sterilization, the occurrence of clogging of the reverse osmosis membrane can be suppressed, and an oxidant is added to the water to be treated. This is because the time (residence time) from the filtration to the reverse osmosis membrane becomes longer, so that the water to be treated can be sufficiently sterilized.

なお、本発明の淡水化方法は、前記pH調整工程で被処理水のpHを6.0〜7.5にすることが好ましい。被処理水のpHを7.5以下とすれば、後に続く殺菌工程で酸化剤が大きな殺菌効果を奏することができるからである。一方、逆浸透膜におけるスケーリング発生防止および逆浸透膜ろ過後の処理水(淡水)のpH調整(中和)に必要な薬品コストの削減という観点からは、逆浸透膜でろ過される被処理水の好適なpH範囲は6.0〜7.0であるところ、殺菌工程の前に被処理水のpHを6.0未満とする場合には、pH調整剤(酸およびアルカリ剤)の使用量が増加してコストが増大するからである。なお、被処理水が海水の場合には、海水は緩衝作用を有しており、pHが低下し難いので、被処理水のpHを6.0未満にするには特にコストが増大する。   In the desalination method of the present invention, the pH of the water to be treated is preferably 6.0 to 7.5 in the pH adjustment step. This is because if the pH of the water to be treated is 7.5 or less, the oxidizing agent can exert a great sterilizing effect in the subsequent sterilization step. On the other hand, from the viewpoint of reducing chemical costs necessary to prevent scaling in the reverse osmosis membrane and to adjust the pH (neutralization) of the treated water (fresh water) after filtration of the reverse osmosis membrane, the treated water filtered through the reverse osmosis membrane The pH range is preferably 6.0 to 7.0. When the pH of the water to be treated is less than 6.0 before the sterilization step, the amount of the pH adjuster (acid and alkali agent) used This increases the cost. Note that when the water to be treated is seawater, the seawater has a buffering action and the pH is unlikely to be lowered, so that the cost is particularly increased to make the pH of the water to be treated less than 6.0.

また、本発明の淡水化方法は、前記被処理水が臭化物イオンを含有していることが好ましい。被処理水中に臭化物イオンが含まれている場合、被処理水への酸化剤の添加により生成した次亜塩素酸と、臭化物イオンとが下記反応式(I)に示すように反応して、pH9程度の高pH域でも高い殺菌力を発揮し得る次亜臭素酸(HBrO)を生成するからである。
HClO+Br → HBrO+Cl ・・・(I)
In the desalination method of the present invention, it is preferable that the water to be treated contains bromide ions. When bromide ions are contained in the water to be treated, hypochlorous acid generated by the addition of an oxidizing agent to the water to be treated and bromide ions react as shown in the following reaction formula (I), resulting in a pH of 9 This is because hypobromite (HBrO) that can exhibit a high bactericidal power even in a high pH range is produced.
HClO + Br → HBrO + Cl (I)

また、本発明の淡水化システムは、被処理水に酸化剤を添加する酸化剤添加手段と、被処理水を上流側から下流側に処理する方向で見て、該酸化剤添加手段よりも下流側に設けられ、被処理水をろ過して淡水化する逆浸透膜ろ過手段とを備える被処理水の淡水化システムであって、被処理水を上流側から下流側に処理する方向で見て、前記酸化剤添加手段よりも上流側に、被処理水にpH調整剤を添加するpH調整剤添加手段を更に備えることを特徴とする。なお、本発明において、「酸化剤」とは、被処理水中で次亜塩素酸(HClO)を生成し得るもの、例えば、塩素や、次亜塩素酸またはその塩等を指す。
このように、pH調整手段の下流側に酸化剤添加手段を設ければ、酸化剤がより強い殺菌力を発揮し得るpH条件下で被処理水の殺菌を行うことができるので、淡水化システムにおける酸化剤の使用量を低減することができる。
Further, the desalination system of the present invention includes an oxidant addition means for adding an oxidant to the water to be treated, and a downstream of the oxidant addition means as viewed in the direction of treating the water to be treated from the upstream side to the downstream side. A desalination system for water to be treated comprising a reverse osmosis membrane filtration means for filtering and desalinating the water to be treated, as viewed in the direction of treating the water to be treated from the upstream side to the downstream side. Further, it is characterized by further comprising a pH adjuster adding means for adding a pH adjuster to the water to be treated upstream of the oxidizing agent adding means. In the present invention, the “oxidant” refers to a substance capable of generating hypochlorous acid (HClO) in the water to be treated, such as chlorine, hypochlorous acid or a salt thereof, and the like.
Thus, if the oxidizing agent adding means is provided downstream of the pH adjusting means, the water to be treated can be sterilized under pH conditions where the oxidizing agent can exert a stronger sterilizing power. The amount of the oxidizing agent used in can be reduced.

そして、本発明の淡水化システムは、前記酸化剤添加手段と前記逆浸透膜ろ過手段との間に、被処理水に凝集剤を添加する凝集剤添加手段と、凝集剤の添加により形成された凝集物を被処理水から分離する分離手段とを更に備えることが好ましい。このように、酸化剤を用いた殺菌処理を行った後に被処理水からの懸濁物質の分離を行うようにすれば、逆浸透膜の目詰まり発生を抑制することができると共に、被処理水に酸化剤を添加してから逆浸透膜でろ過するまでの時間(滞留時間)が長くなるため、被処理水を充分に殺菌することができるからである。   And the desalination system of this invention was formed by the addition of the flocculant between the said oxidizing agent addition means and the said reverse osmosis membrane filtration means, and the flocculant addition means which adds a flocculant to to-be-processed water. It is preferable to further comprise a separating means for separating the aggregate from the water to be treated. In this way, if the suspended substance is separated from the water to be treated after the sterilization treatment using the oxidizing agent, the occurrence of clogging of the reverse osmosis membrane can be suppressed, and the water to be treated is also treated. This is because the time (residence time) from the addition of the oxidant to the filtration with the reverse osmosis membrane becomes longer, so that the water to be treated can be sufficiently sterilized.

本発明によれば、被処理水を殺菌した後に逆浸透膜でろ過して淡水を得る淡水化処理において、被処理水の殺菌に用いる酸化剤の量を低減し得る被処理水の淡水化方法および被処理水の淡水化システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the desalination method of the to-be-processed water which can reduce the quantity of the oxidizing agent used for the sterilization of the to-be-processed water in the desalination process which filters with a reverse osmosis membrane after sterilizing to-be-processed water and obtains fresh water And the desalination system of to-be-processed water can be provided.

本発明に係る海水淡水化システムを示す説明図である。It is explanatory drawing which shows the seawater desalination system which concerns on this invention. pHが次亜塩素酸存在比および次亜臭素酸存在比に与える影響を示すグラフである。It is a graph which shows the influence which pH has on hypochlorous acid abundance ratio and hypobromite abundance ratio. 海水淡水化システムのろ過手段の洗浄方法を説明するための説明図である。It is explanatory drawing for demonstrating the washing | cleaning method of the filtration means of a seawater desalination system. 図3に示す海水淡水化システムに用いたセラミック膜の構造を説明する説明図である。It is explanatory drawing explaining the structure of the ceramic membrane used for the seawater desalination system shown in FIG.

以下、図面を参照して本発明の実施の形態を詳細に説明する。ここに、図1に示す本発明の淡水化システムの一例は、被処理水としての海水を淡水化して淡水を製造するための海水淡水化システム100であり、この海水淡水化システム100では、海水が殺菌された後に逆浸透膜でろ過される。なお、本発明の淡水化システムでは、かん水等を被処理水として淡水を製造しても良い。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, an example of the desalination system of the present invention shown in FIG. 1 is a seawater desalination system 100 for producing seawater by desalinating seawater as water to be treated. Is sterilized and then filtered through a reverse osmosis membrane. In the desalination system of the present invention, fresh water may be produced using brine or the like as treated water.

ここで、図1に示す海水淡水化システム100は、海底に設置されている取水塔10と、取水塔10を介して海SWから取水した海水を殺菌する殺菌装置20と、海水淡水化システム100における海水の流れに対して殺菌装置20の下流側に設けられ、殺菌装置20で殺菌された海水中の懸濁物質を凝集させて海水から分離除去する凝集ろ過装置40と、海水の流れに対して凝集ろ過装置40の下流側に設けられ、殺菌および懸濁物質の除去を行った海水を逆浸透膜81でろ過して淡水化する逆浸透膜ろ過装置80とを備えている。   Here, the seawater desalination system 100 shown in FIG. 1 includes a water intake tower 10 installed on the seabed, a sterilizer 20 for sterilizing seawater taken from the sea SW via the water intake tower 10, and a seawater desalination system 100. A coagulation filtration device 40 that is provided on the downstream side of the sterilization device 20 with respect to the flow of seawater in the water and agglomerates the suspended substances in the seawater sterilized by the sterilization device 20 and separates and removes them from the seawater; And a reverse osmosis membrane filtration device 80 that is provided downstream of the agglomeration filtration device 40 and filters the seawater that has been sterilized and removed of suspended substances through a reverse osmosis membrane 81 to produce fresh water.

なお、海水淡水化システム100には、殺菌装置20と凝集ろ過装置40との間に、海水から夾雑物を除去するためのフィルター(目開き200μm)31が設けられている。また、凝集ろ過装置40と逆浸透膜ろ過装置80との間には、海水に重亜硫酸ナトリウム等の還元剤を添加して海水中に存在する残留塩素を除去するための還元剤添加手段51と、還元剤を添加した水を加圧して逆浸透膜ろ過装置80へ供給するための高圧ポンプ71とが順次設けられている。   The seawater desalination system 100 is provided with a filter (aperture 200 μm) 31 for removing contaminants from seawater between the sterilizer 20 and the coagulation filtration device 40. Further, a reducing agent addition means 51 for adding a reducing agent such as sodium bisulfite to seawater to remove residual chlorine present in the seawater between the flocculation filtration device 40 and the reverse osmosis membrane filtration device 80, In addition, a high-pressure pump 71 for pressurizing the water added with the reducing agent and supplying the water to the reverse osmosis membrane filtration device 80 is sequentially provided.

殺菌装置20は、取水塔10を介して取水した海水(pH=約8)に対し、塩酸や硫酸などのpH調整剤を添加するためのpH調整剤添加手段21と、海水の流れに対してpH調整剤添加手段21の下流側に設けられ、pHを調整した海水に塩素や次亜塩素酸ナトリウムや次亜塩素酸カルシウムなどの酸化剤を添加するための酸化剤添加手段22とを有している。   The sterilizer 20 has a pH adjuster addition means 21 for adding a pH adjuster such as hydrochloric acid or sulfuric acid to seawater (pH = about 8) taken through the intake tower 10 and the flow of seawater. an oxidant addition means 22 for adding an oxidant such as chlorine, sodium hypochlorite or calcium hypochlorite to the pH-adjusted seawater provided downstream of the pH adjuster addition means 21; ing.

ここで、pH調整剤としては、安価で取り扱いが容易な硫酸を用いることが好ましく、殺菌装置20では、配管中を流れる海水、或いは、pH調整槽(図示せず)に貯留した海水に対して、pH調整剤添加手段21としての薬品注入ポンプ(図示せず)で硫酸を添加することにより、海水のpHを5.5〜7.5、好ましくは6.0〜7.0に調整する。なお、海水のpH調整は、pH調整剤を添加した海水のpHをpHメーター(図示せず)で測定し、該pHメーターで測定した海水のpH値を用いて薬品注入ポンプをフィードバック制御することにより行うことができる。   Here, as the pH adjuster, it is preferable to use sulfuric acid that is inexpensive and easy to handle. In the sterilizer 20, the seawater flowing in the pipe or the seawater stored in the pH adjusting tank (not shown) is used. The pH of the seawater is adjusted to 5.5 to 7.5, preferably 6.0 to 7.0 by adding sulfuric acid with a chemical injection pump (not shown) as the pH adjusting agent adding means 21. The pH of seawater is adjusted by measuring the pH of seawater to which a pH adjuster has been added with a pH meter (not shown) and feedback-controlling the chemical injection pump using the pH value of the seawater measured with the pH meter. Can be performed.

また、酸化剤としては、取り扱いが容易な次亜塩素酸ナトリウムを用いることができ、殺菌装置20では、配管中を流れる海水、或いは、pH調整槽または殺菌槽(図示せず)に貯留した海水に対して、酸化剤添加手段22としての薬品注入ポンプ(図示せず)で次亜塩素酸ナトリウム溶液(濃度10質量%)を有効塩素濃度が1.0mg/Lとなるように添加する。   Moreover, sodium hypochlorite which is easy to handle can be used as the oxidizer, and in the sterilizer 20, seawater flowing in the pipe, or seawater stored in a pH adjustment tank or a sterilization tank (not shown). On the other hand, a sodium hypochlorite solution (concentration: 10% by mass) is added by a chemical injection pump (not shown) as the oxidant addition means 22 so that the effective chlorine concentration becomes 1.0 mg / L.

ここで、殺菌装置20では、pHを5.5〜7.5とした条件下で次亜塩素酸ナトリウムを添加しているので、下記化学平衡式(II)からも明らかなように、海水に添加した次亜塩素酸ナトリウムの大部分は、次亜塩素酸イオンよりも殺菌力の強い次亜塩素酸(HClO)となる。
NaClO+H ⇔ HClO+Na ・・・(II)
Here, in the sterilizer 20, since sodium hypochlorite is added under the condition that the pH is 5.5 to 7.5, as is clear from the chemical equilibrium formula (II) below, Most of the added sodium hypochlorite becomes hypochlorous acid (HClO), which has stronger sterilizing power than hypochlorite ions.
NaClO + H + HCl HClO + Na + (II)

なお、海水中には、臭化物イオンが約65mg/L含まれているので、海水への次亜塩素酸ナトリウムの添加により形成した次亜塩素酸は、下記反応式(I)に示すように、pH9程度の高pH域でも高い殺菌力を発揮し得る次亜臭素酸(HBrO)を生成する。
HClO+Br → HBrO+Cl ・・・(I)
In addition, since about 65 mg / L of bromide ions are contained in seawater, hypochlorous acid formed by adding sodium hypochlorite to seawater, as shown in the following reaction formula (I), Hypobromite (HBrO) that can exhibit high bactericidal power even in a high pH range of about pH 9 is produced.
HClO + Br → HBrO + Cl (I)

従って、殺菌装置20では、海水のpHを5.5〜7.5に調整した後に次亜塩素ナトリウムを添加しているので、次亜塩素酸および次亜臭素酸を用いて海水を効果的に殺菌することができる。   Therefore, in the sterilizer 20, since sodium hypochlorite is added after adjusting the pH of seawater to 5.5-7.5, seawater is effectively used using hypochlorous acid and hypochlorous acid. Can be sterilized.

なお、次亜塩素酸と比較して次亜臭素酸の方が高いpHでも高い殺菌力を発揮し得るのは、次亜臭素酸の解離定数が小さいからであり、このことは、図2に示す、pHと次亜塩素酸存在比(未解離HClOの割合:[HClO]/([HClO]+[ClO]))との関係およびpHと次亜臭素酸存在比(未解離HBrOの割合:[HBrO]/([HBrO]+[BrO]))との関係からも明らかである。 In addition, it is because the dissociation constant of hypobromous acid has a small dissociation constant of hypobromite that hypobromite can exhibit a high bactericidal power even at a higher pH compared with hypochlorous acid. The relationship between the pH and the abundance ratio of hypochlorous acid (ratio of undissociated HClO: [HClO] / ([HClO] + [ClO ])) and the abundance ratio of pH and hypobromite (ratio of undissociated HBrO) : [HBrO] / ([HBrO] + [BrO ])).

凝集ろ過装置40は、殺菌装置20で殺菌された海水に対し、凝集剤を添加するための凝集剤添加手段41と、海水の流れに対して凝集剤添加手段41の下流側に設けられた、凝集剤の添加により形成された凝集物を海水から分離する分離手段としてのろ過手段42とを有している。   The flocculation filtration device 40 is provided on the downstream side of the flocculating agent addition means 41 with respect to the seawater sterilized by the sterilization device 20 and the flocculating agent addition means 41 for adding the flocculating agent to the flow of seawater. And a filtering means 42 as a separating means for separating the agglomerates formed by the addition of the flocculant from the seawater.

ここで、凝集剤としては海水中に含まれている懸濁物質を凝集させることができるもの、例えば塩化第二鉄を用いることが好ましく、凝集ろ過装置40では、配管中を流れる海水、或いは、凝集槽(図示せず)に貯留した海水に対して、凝集剤添加手段41としての薬品注入ポンプ(図示せず)で塩化第二鉄溶液を鉄濃度として1mg/Lとなるように添加する。なお、懸濁物質を効果的に凝集させるという観点から、塩化第二鉄を添加する際の海水のpHを6.5程度とすることがある。そのため、海水淡水化システム100では、任意に、凝集剤添加時の海水のpHが6.5となるようにpH調整剤添加手段21で海水のpHを調整しても良いし、凝集剤の添加直前に海水のpHを再度調整しても良い。   Here, as the flocculant, it is preferable to use a substance capable of aggregating suspended substances contained in seawater, for example, ferric chloride. In the aggregation filtration device 40, seawater flowing in the pipe, or A ferric chloride solution is added to seawater stored in a coagulation tank (not shown) by a chemical injection pump (not shown) as the coagulant addition means 41 so that the iron concentration becomes 1 mg / L. In addition, from the viewpoint of effectively aggregating suspended substances, the pH of seawater when adding ferric chloride may be about 6.5. Therefore, in the seawater desalination system 100, the pH of the seawater may be optionally adjusted by the pH adjuster adding means 21 so that the pH of the seawater at the time of adding the flocculant becomes 6.5, or the addition of the flocculant The pH of the seawater may be adjusted again immediately before.

ろ過手段42としては、限外ろ過膜または精密ろ過膜を備える膜ろ過装置や、砂ろ過装置等を用いることができるが、機械的強度および耐薬品性に優れ、高流束でのろ過が可能なセラミック膜(孔径0.1〜10μm)を備えるろ過装置を用いることが好ましい。   As the filtration means 42, a membrane filtration device equipped with an ultrafiltration membrane or a microfiltration membrane, a sand filtration device or the like can be used, but it has excellent mechanical strength and chemical resistance, and can be filtered at a high flux. It is preferable to use a filtration device provided with a simple ceramic membrane (pore diameter 0.1 to 10 μm).

そして、凝集ろ過装置40では、下流側に設けられた逆浸透膜81の目詰まりの原因となる海水中の懸濁物質が海水から分離される。なお、海水淡水化システム100では、殺菌装置20で海水が効果的に殺菌されているので、凝集ろ過装置40のろ過手段42は生物由来の目詰まりを生じ難い。   And in the coagulation filtration apparatus 40, the suspended substance in seawater which causes the clogging of the reverse osmosis membrane 81 provided in the downstream is isolate | separated from seawater. In the seawater desalination system 100, since the seawater is effectively sterilized by the sterilization apparatus 20, the filtration means 42 of the coagulation filtration apparatus 40 is unlikely to be clogged with living organisms.

逆浸透膜ろ過装置80は、既知の逆浸透膜81を用いたものであり、海水は、任意にpHを調整されてから、逆浸透膜ろ過装置80で、逆浸透膜81を透過した淡水と、逆浸透膜81を透過しなかった濃縮水とに分離される。そして、逆浸透膜81を透過した淡水は、任意にNaOHによるpH調整および塩素による殺菌処理を行った後、飲料水などとして用いられる。一方、逆浸透膜81を透過しなかった高圧の濃縮水は、動力回収タービン72でエネルギーを回収された後、排水として処理される。なお、海水淡水化システム100では、殺菌装置20で海水が効果的に殺菌されているので、逆浸透膜81は生物由来の目詰まりを生じ難い。   The reverse osmosis membrane filtration device 80 uses a known reverse osmosis membrane 81, and the seawater is adjusted to the pH arbitrarily, and then the reverse osmosis membrane filtration device 80 uses fresh water that has passed through the reverse osmosis membrane 81. The concentrated water that has not permeated the reverse osmosis membrane 81 is separated. And the fresh water which permeate | transmitted the reverse osmosis membrane 81 is used as drinking water etc., after performing pH adjustment by NaOH and the sterilization process by chlorine arbitrarily. On the other hand, the high-pressure concentrated water that has not permeated the reverse osmosis membrane 81 is treated as waste water after energy is recovered by the power recovery turbine 72. In the seawater desalination system 100, since the seawater is effectively sterilized by the sterilizer 20, the reverse osmosis membrane 81 is unlikely to be clogged with living organisms.

そして、このような海水淡水化システム100によれば、被処理水である海水の殺菌に用いる酸化剤の量を低減しつつ、逆浸透膜を用いて海水を淡水化することができる。なお、この海水淡水化システム100では、海水の取水直後に酸化剤を添加しているので、海水は海水淡水化システム100を流れる間に充分に殺菌される。よって、海水淡水化システム100中では、藻等は殆ど繁殖しない。なお、この海水淡水化システム100ではpHの調整および酸化剤の添加を海水の取水直後に行ったが、本発明の淡水化システムでは、pHの調整および酸化剤の添加は、逆浸透膜ろ過装置より上流側の任意の位置で行うことができる。   And according to such a seawater desalination system 100, seawater can be desalinated using a reverse osmosis membrane, reducing the quantity of the oxidizing agent used for disinfection of the seawater which is to-be-processed water. In this seawater desalination system 100, since the oxidizing agent is added immediately after the seawater is taken, the seawater is sufficiently sterilized while flowing through the seawater desalination system 100. Therefore, algae and the like hardly propagate in the seawater desalination system 100. In this seawater desalination system 100, the adjustment of pH and the addition of an oxidizing agent were performed immediately after the intake of seawater. However, in the desalination system of the present invention, the adjustment of the pH and the addition of an oxidizing agent were performed using a reverse osmosis membrane filtration device. It can be performed at an arbitrary position on the upstream side.

ここで、海水淡水化システム100では、酸化剤として次亜塩素酸ナトリウムをpH調整後に添加しており、海水は効果的に殺菌されるので、ろ過手段42の目詰まりは発生し難いが、ろ過手段42は、目詰まりの防止または解消のために、定期的に、或いは、差圧が上昇した際に逆流洗浄などの洗浄(以下、単に「洗浄」と称する)をすることが好ましい。   Here, in the seawater desalination system 100, sodium hypochlorite is added as an oxidizing agent after adjusting the pH, and the seawater is effectively sterilized, so clogging of the filtering means 42 is unlikely to occur. In order to prevent or eliminate clogging, the means 42 preferably performs cleaning such as backflow cleaning (hereinafter simply referred to as “cleaning”) periodically or when the differential pressure increases.

そこで、海水淡水化システムのろ過手段として、セラミック膜を用いた場合の洗浄方法の例を、図3を用いて、以下に説明する。なお、セラミック膜としては、図4にその一部を切り欠いて示すような、水が流入する蓮根状の孔97を有するモノリス型のセラミック膜91を用いた。このセラミック膜91では、孔97に流入した水は、ろ過されて外表面98から流出する。   Therefore, an example of a cleaning method in the case of using a ceramic membrane as the filtering means of the seawater desalination system will be described below with reference to FIG. As the ceramic film, a monolithic ceramic film 91 having a lotus root-like hole 97 into which water flows as shown in FIG. In the ceramic membrane 91, the water that flows into the holes 97 is filtered and flows out from the outer surface 98.

図3に示すように、この海水淡水化システムでは、セラミック膜91は容器90内に収容されており、セラミック膜91と容器90とでセラミック膜モジュールが構成されている。なお、このセラミック膜モジュールを備えた海水淡水化システムを用いて海水から淡水を製造する場合には、まず、殺菌処理および凝集処理がなされた海水をポンプ92でセラミック膜91の蓮根状の孔に送水して、海水をデッドエンド形式またはクロスフロー形式でろ過し、得られたろ過水をセラミック膜ろ過水槽93に貯留する。そして、セラミック膜ろ過水槽93に貯留されたろ過水(海水)を、高圧ポンプ71を用いて逆浸透膜ろ過装置80へと供給し、逆浸透膜81でろ過して、逆浸透膜81を透過した淡水と、逆浸透膜81を透過しなかった濃縮水とに分離する。なお、得られた淡水は処理水槽82に貯留され、濃縮水は廃棄される。   As shown in FIG. 3, in this seawater desalination system, the ceramic membrane 91 is accommodated in a container 90, and the ceramic membrane 91 and the container 90 constitute a ceramic membrane module. In addition, when manufacturing fresh water from seawater using the seawater desalination system provided with this ceramic membrane module, first, seawater that has been sterilized and agglomerated is converted into a lotus-like hole in the ceramic membrane 91 by a pump 92. The water is sent and the seawater is filtered in a dead end format or a cross flow format, and the obtained filtrate is stored in the ceramic membrane filtration water tank 93. Then, filtered water (seawater) stored in the ceramic membrane filtration water tank 93 is supplied to the reverse osmosis membrane filtration device 80 using the high-pressure pump 71, filtered through the reverse osmosis membrane 81, and permeated through the reverse osmosis membrane 81. The fresh water and the concentrated water that has not permeated the reverse osmosis membrane 81 are separated. The obtained fresh water is stored in the treated water tank 82, and the concentrated water is discarded.

そして、セラミック膜91の洗浄は、例えば以下のようにして行うことができる。まず、セラミック膜91の目詰まりの発生や膜差圧の上昇に関係なく、セラミック膜91を定期的に洗浄する場合の洗浄方法としては、(1)セラミック膜ろ過水槽93に貯留されているろ過水(海水)を逆洗ポンプ96で容器90内に供給し、通常のろ過時とは逆の方向(セラミック膜91の外表面98側から蓮根状の孔97内に向かう方向)にろ過水(海水)を通水する方法や、(2)セラミック膜ろ過水槽93に貯留されているろ過水(海水)を移送ポンプ94で逆洗水加圧槽95へ送り、該逆洗水加圧槽95に加圧空気を供給してろ過水(海水)を加圧することにより、高圧(300kPa)のろ過水(海水)を通常のろ過時とは逆の方向に通水する方法などが考えられる。なお、洗浄時にセラミック膜の蓮根状の孔97に流入した水は、バルブ(図示せず)を用いてセラミック膜91の片側のみから交互に(図3では、右、左の順に)排出されるようにしても良いし、セラミック膜91の双方から同時に排出されるようにしても良い。   The ceramic film 91 can be cleaned as follows, for example. First, regardless of the occurrence of clogging of the ceramic membrane 91 or an increase in the membrane differential pressure, as a cleaning method for periodically cleaning the ceramic membrane 91, (1) filtration stored in the ceramic membrane filtration water tank 93 is performed. Water (seawater) is supplied into the container 90 by the backwash pump 96, and filtered water (in the direction from the outer surface 98 side of the ceramic membrane 91 toward the lotus root hole 97) in the direction opposite to that during normal filtration ( (2) The filtered water (seawater) stored in the ceramic membrane filtration water tank 93 is sent to the backwash water pressurization tank 95 by the transfer pump 94, and the backwash water pressurization tank 95 is supplied. For example, a method of supplying high-pressure (300 kPa) filtered water (seawater) in a direction opposite to that during normal filtration by supplying pressurized air to the water and pressurizing the filtered water (seawater) can be considered. In addition, the water which flowed into the lotus root hole 97 of the ceramic membrane at the time of cleaning is alternately discharged from only one side of the ceramic membrane 91 using a valve (not shown) (in order of right and left in FIG. 3). Alternatively, it may be discharged from both of the ceramic films 91 at the same time.

ここで、セラミック膜91を洗浄する際に用いるろ過水には、海水を殺菌する際に用いた次亜塩素酸ナトリウム等の酸化剤が0.1〜1.0mg/L程度残っていることが好ましい。ろ過水中に次亜塩素酸ナトリウムが残っている場合、セラミック膜の洗浄効果が向上するからである。また、上記(1)、(2)の洗浄方法においては、海水をセラミック膜91でろ過して得られるろ過水(海水)を用いて洗浄を行っているが、セラミック膜91の洗浄は、別途、ポンプ92を用いて水道水、工業用水などの淡水をセラミック膜91でろ過してセラミック膜ろ過水槽93に貯留しておき、得られたろ過水(淡水)を用いて行うようにしても良い。このようにすれば、淡水のろ過中に配管が淡水で置換されるので、特に洗浄中にセラミック膜91の薬品への浸漬洗浄を行うような場合には、海水を用いた場合と比較して洗浄中に配管が腐食することを防止することができる。   Here, about 0.1 to 1.0 mg / L of an oxidizing agent such as sodium hypochlorite used when sterilizing seawater remains in the filtered water used when cleaning the ceramic membrane 91. preferable. This is because the cleaning effect of the ceramic membrane is improved when sodium hypochlorite remains in the filtered water. In the cleaning methods (1) and (2) above, cleaning is performed using filtered water (seawater) obtained by filtering seawater with the ceramic membrane 91. However, the ceramic membrane 91 is separately cleaned. Further, fresh water such as tap water and industrial water is filtered through the ceramic membrane 91 using the pump 92 and stored in the ceramic membrane filtered water tank 93, and the obtained filtered water (fresh water) may be used. . In this way, since the pipe is replaced with fresh water during the filtration of fresh water, especially when performing immersion cleaning of the ceramic membrane 91 in the chemical during cleaning, compared with the case where seawater is used. It is possible to prevent the pipe from being corroded during cleaning.

また、セラミック膜91の膜差圧が上昇した際にセラミック膜91を洗浄する場合の洗浄方法としては、処理水槽82に貯留された淡水に、NaClOやHClなどを添加した水を、逆洗ポンプ96を用いて通常のろ過時とは逆の方向でセラミック膜91へ通水し、その後セラミック膜91を所定時間浸漬する方法が挙げられる。このようにすれば、セラミック膜91でろ過された海水に薬品を添加して洗浄に用いた場合と比較して、薬品の添加による洗浄効果を高めることができると共に、薬品の添加による炭酸塩のスケーリング発生を抑制することができる。なお、セラミック膜91は耐薬品性に優れているので、洗浄時の有効塩素濃度は、例えば50mg/L〜1000mg/Lとすることができ、pHは、例えば1〜13とすることができる。   As a cleaning method for cleaning the ceramic film 91 when the film differential pressure of the ceramic film 91 rises, water obtained by adding NaClO or HCl to fresh water stored in the treated water tank 82 is used as a backwash pump. There is a method in which water is passed through the ceramic membrane 91 in the direction opposite to that during normal filtration using 96, and then the ceramic membrane 91 is immersed for a predetermined time. In this way, compared with the case where the chemical is added to the seawater filtered by the ceramic membrane 91 and used for cleaning, the cleaning effect by the addition of the chemical can be enhanced, and the carbonate of the chemical by the addition of the chemical can be increased. Scaling can be suppressed. In addition, since the ceramic film | membrane 91 is excellent in chemical resistance, the effective chlorine density | concentration at the time of washing | cleaning can be 50 mg / L-1000 mg / L, for example, and pH can be 1-13, for example.

なお、セラミック膜91の膜差圧が上昇した際の洗浄は、ろ過された海水を用いて行ってもよく、洗浄に使用する水に添加する薬品としては、塩素、硫酸、水酸化ナトリウム、過酸化水素なども用いることができる。また、薬品を添加して行う洗浄は、膜差圧上昇時に限らず定期的に実施することもできる。このように、定期的に洗浄すれば、高流束でセラミック膜91によるろ過をすることができる。   Washing when the membrane differential pressure of the ceramic membrane 91 is increased may be performed using filtered seawater. Chemicals added to the water used for washing include chlorine, sulfuric acid, sodium hydroxide, excess Hydrogen oxide or the like can also be used. In addition, the cleaning performed by adding a chemical can be performed not only when the film differential pressure increases but also periodically. Thus, if it wash | cleans regularly, it can filter by the ceramic membrane 91 with a high flux.

なお、上述したようなセラミック膜の洗浄方法は、適当な位置に設けたバルブ(図示せず)を開閉して洗浄に使用する水の流路を形成することにより行うことができる。また、この洗浄方法は、魚の水揚げ場などに設置される魚介類洗浄用海水ろ過装置にセラミック膜を用いた場合の洗浄方法としても用いることができる。   The ceramic film cleaning method as described above can be performed by opening and closing a valve (not shown) provided at an appropriate position to form a water flow path used for cleaning. This cleaning method can also be used as a cleaning method in the case where a ceramic membrane is used for a seawater filtration device for cleaning fish and shellfish installed in a fish landing site.

本発明によれば、被処理水を殺菌した後に逆浸透膜でろ過して淡水を得る淡水化処理において、被処理水の殺菌に用いる酸化剤の量を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the desalination process which sterilizes to-be-processed water and filters with a reverse osmosis membrane and obtains fresh water, the quantity of the oxidizing agent used for the sterilization of to-be-processed water can be reduced.

10 取水塔
20 殺菌装置
21 pH調整剤添加手段
22 酸化剤添加手段
31 フィルター
40 凝集ろ過装置
41 凝集剤添加手段
42 ろ過手段
51 還元剤添加手段
71 高圧ポンプ
72 動力回収タービン
80 逆浸透膜ろ過装置
81 逆浸透膜
82 処理水槽
90 容器
91 セラミック膜
92 ポンプ
93 セラミック膜ろ過水槽
94 移送ポンプ
95 逆洗水加圧槽
96 逆洗ポンプ
97 孔
98 外表面
100 海水淡水化システム
DESCRIPTION OF SYMBOLS 10 Water intake tower 20 Sterilizer 21 pH adjuster addition means 22 Oxidant addition means 31 Filter 40 Coagulation filtration apparatus 41 Coagulant addition means 42 Filtration means 51 Reducing agent addition means 71 High pressure pump 72 Power recovery turbine 80 Reverse osmosis membrane filtration apparatus 81 Reverse osmosis membrane 82 Treated water tank 90 Container 91 Ceramic membrane 92 Pump 93 Ceramic membrane filtered water tank 94 Transfer pump 95 Backwash water pressurizing tank 96 Backwash pump 97 Hole 98 Outer surface 100 Seawater desalination system

Claims (6)

被処理水に酸化剤を添加して被処理水を殺菌する殺菌工程と、該殺菌工程を経た被処理水を逆浸透膜でろ過する逆浸透膜ろ過工程とを含む被処理水の淡水化方法であって、
前記殺菌工程の前に、被処理水にpH調整剤を添加して被処理水のpHを調整するpH調整工程を更に含むことを特徴とする、被処理水の淡水化方法。
A desalination method of water to be treated comprising a sterilization step of sterilizing the water to be treated by adding an oxidizing agent to the water to be treated and a reverse osmosis membrane filtration step of filtering the water to be treated after the sterilization step with a reverse osmosis membrane Because
A desalination method for water to be treated, further comprising a pH adjustment step of adjusting the pH of the water to be treated by adding a pH adjuster to the water to be treated before the sterilization step.
被処理水に凝集剤を添加して被処理水中の懸濁物質を凝集させる凝集工程と、
前記凝集工程で形成された凝集物を被処理水から分離する凝集物分離工程とを、前記殺菌工程の後、且つ、前記逆浸透膜ろ過工程の前に更に含むことを特徴とする、請求項1に記載の淡水化方法。
A coagulation step of adding a flocculant to the water to be treated to aggregate suspended substances in the water to be treated;
The aggregate separation step of separating the aggregate formed in the aggregation step from the water to be treated is further included after the sterilization step and before the reverse osmosis membrane filtration step. 2. The desalination method according to 1.
前記pH調整工程で被処理水のpHを6.0〜7.5にすることを特徴とする、請求項1または2に記載の淡水化方法。   The desalination method according to claim 1 or 2, wherein the pH of the water to be treated is adjusted to 6.0 to 7.5 in the pH adjusting step. 前記被処理水が臭化物イオンを含有していることを特徴とする、請求項1〜3の何れかに記載の淡水化方法。   The desalination method according to claim 1, wherein the water to be treated contains bromide ions. 被処理水に酸化剤を添加する酸化剤添加手段と、被処理水を上流側から下流側に処理する方向で見て、該酸化剤添加手段よりも下流側に設けられ、被処理水をろ過して淡水化する逆浸透膜ろ過手段とを備える被処理水の淡水化システムであって、
被処理水を上流側から下流側に処理する方向で見て、前記酸化剤添加手段よりも上流側に、被処理水にpH調整剤を添加するpH調整剤添加手段を更に備えることを特徴とする、被処理水の淡水化システム。
An oxidant addition means for adding an oxidant to the water to be treated and a downstream side of the oxidant addition means as viewed in the direction of treating the water to be treated from the upstream side to the downstream side. A desalination system for treated water comprising reverse osmosis membrane filtration means for desalination,
It is characterized by further comprising a pH adjuster addition means for adding a pH adjuster to the treated water on the upstream side of the oxidant addition means when viewed in the direction of treating the treated water from the upstream side to the downstream side. A desalination system for treated water.
前記淡水化システムは、前記酸化剤添加手段と前記逆浸透膜ろ過手段との間に、被処理水に凝集剤を添加する凝集剤添加手段と、凝集剤の添加により形成された凝集物を被処理水から分離する分離手段とを更に備えることを特徴とする、請求項5に記載の淡水化システム。   The desalination system includes a flocculant addition means for adding a flocculant to the water to be treated and an agglomerate formed by the addition of the flocculant between the oxidant addition means and the reverse osmosis membrane filtration means. The desalination system according to claim 5, further comprising separation means for separating from the treated water.
JP2009201666A 2009-09-01 2009-09-01 Method of and system for desalinating water to be treated Pending JP2011050843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201666A JP2011050843A (en) 2009-09-01 2009-09-01 Method of and system for desalinating water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201666A JP2011050843A (en) 2009-09-01 2009-09-01 Method of and system for desalinating water to be treated

Publications (1)

Publication Number Publication Date
JP2011050843A true JP2011050843A (en) 2011-03-17

Family

ID=43940434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201666A Pending JP2011050843A (en) 2009-09-01 2009-09-01 Method of and system for desalinating water to be treated

Country Status (1)

Country Link
JP (1) JP2011050843A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951768A (en) * 2011-08-26 2013-03-06 株式会社日立工业设备技术 Desalinization system and desalinization method
CN104291477A (en) * 2014-10-12 2015-01-21 张志雄 Clutch shaft welding joint silicon nitride zinc alloy seawater desalination system
CN104291475A (en) * 2014-10-12 2015-01-21 张志雄 Flange clutch shaft aluminum oxide titanium alloy seawater desalination machine set
KR20180053434A (en) 2013-08-28 2018-05-21 오르가노 코포레이션 Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
US10351444B2 (en) 2014-05-08 2019-07-16 Organo Corporation Filtration treatment system and filtration treatment method
KR20200048106A (en) * 2018-10-29 2020-05-08 울산과학기술원 Secondary battery for desalinated water production and desalinated apparatus including the same
JP2020124701A (en) * 2019-01-31 2020-08-20 同▲済▼大学 Method for removal of chloride in water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851979A (en) * 1981-09-25 1983-03-26 Hitachi Ltd Method and apparatus for controlling ph in water-purifying plant
JP2007090333A (en) * 2005-08-30 2007-04-12 Okayama Prefecture Method for treating salt water
JP2008505083A (en) * 2004-06-30 2008-02-21 ナルコ カンパニー Stable bromine oxide composition for inhibiting biofouling, and method for producing and using the same
WO2009023241A1 (en) * 2007-08-15 2009-02-19 Siemens Water Technologies Corp. Method and system for treating ballast water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851979A (en) * 1981-09-25 1983-03-26 Hitachi Ltd Method and apparatus for controlling ph in water-purifying plant
JP2008505083A (en) * 2004-06-30 2008-02-21 ナルコ カンパニー Stable bromine oxide composition for inhibiting biofouling, and method for producing and using the same
JP2007090333A (en) * 2005-08-30 2007-04-12 Okayama Prefecture Method for treating salt water
WO2009023241A1 (en) * 2007-08-15 2009-02-19 Siemens Water Technologies Corp. Method and system for treating ballast water

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012060835; 造水技術編集企画委員会編: 造水技術-水処理のすべて- , 19830510, 355, 財団法人造水促進センター *
JPN6013012355; 造水技術ハンドブック編集企画委員会: 造水技術ハンドブック2004 , 20041125, 11-13頁, 財団法人造水促進センター *
JPN6013012356; 造水技術編集企画委員会編: 造水技術-水処理のすべて- , 19830510, 340-355頁, 財団法人造水促進センター *
JPN6013012357; 特許庁: 平成17年度標準技術集水処理技術 , 20060521, 119頁 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951768A (en) * 2011-08-26 2013-03-06 株式会社日立工业设备技术 Desalinization system and desalinization method
KR20180053434A (en) 2013-08-28 2018-05-21 오르가노 코포레이션 Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
KR20190028812A (en) 2013-08-28 2019-03-19 오르가노 코포레이션 Slime inhibition method for separation membrane
US10420344B2 (en) 2013-08-28 2019-09-24 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
US11666055B2 (en) 2013-08-28 2023-06-06 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
US10351444B2 (en) 2014-05-08 2019-07-16 Organo Corporation Filtration treatment system and filtration treatment method
CN104291477A (en) * 2014-10-12 2015-01-21 张志雄 Clutch shaft welding joint silicon nitride zinc alloy seawater desalination system
CN104291475A (en) * 2014-10-12 2015-01-21 张志雄 Flange clutch shaft aluminum oxide titanium alloy seawater desalination machine set
KR20200048106A (en) * 2018-10-29 2020-05-08 울산과학기술원 Secondary battery for desalinated water production and desalinated apparatus including the same
KR102159568B1 (en) * 2018-10-29 2020-09-24 울산과학기술원 Secondary battery for desalinated water production and desalinated apparatus including the same
JP2020124701A (en) * 2019-01-31 2020-08-20 同▲済▼大学 Method for removal of chloride in water

Similar Documents

Publication Publication Date Title
US9309138B2 (en) Fresh water production method
US8101083B2 (en) Pre-treatment reverse osmosis water recovery method for brine retentate metals removal
KR101464022B1 (en) Method and apparatus for treating water containing organic matter
WO2009128328A1 (en) Method of operating reverse osmosis membrane module
JP2011056345A (en) Desalination system
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
JP2011050843A (en) Method of and system for desalinating water to be treated
JP2009095821A (en) Method of treating salt water
JP2008229418A (en) Method and apparatus for industrial water treatment
JP2013111559A (en) Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film
JP6447133B2 (en) Fresh water generation system and fresh water generation method
JP2012196614A (en) Method and system for wastewater treatment
WO2014129383A1 (en) Water treatment system
Oh et al. Effect of ozone on microfiltration as a pretreatment of seawater reverse osmosis
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP3137831B2 (en) Membrane processing equipment
KR101197022B1 (en) A reverse osmosis water treatment system with backwash
Wittmann et al. Water treatment
JP2005185985A (en) Method and apparatus for producing water
JP5238778B2 (en) Desalination system
JP2011056411A (en) System and method for desalination of water to be treated
Solutions Filmtec™ reverse osmosis membranes
JP2016190214A (en) Method for producing fresh water
JP2011104504A (en) Washing method of water treatment facility
KR20170075085A (en) Membrane Filtration System for Drinking Water and Method for Reducing Manganese Using That Membrane Filtration System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319