JP6735830B2 - Membrane filtration method and membrane filtration system - Google Patents

Membrane filtration method and membrane filtration system Download PDF

Info

Publication number
JP6735830B2
JP6735830B2 JP2018532907A JP2018532907A JP6735830B2 JP 6735830 B2 JP6735830 B2 JP 6735830B2 JP 2018532907 A JP2018532907 A JP 2018532907A JP 2018532907 A JP2018532907 A JP 2018532907A JP 6735830 B2 JP6735830 B2 JP 6735830B2
Authority
JP
Japan
Prior art keywords
coagulant
treatment
membrane
membrane filtration
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018532907A
Other languages
Japanese (ja)
Other versions
JPWO2018030109A1 (en
Inventor
佳介 瀧口
佳介 瀧口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Publication of JPWO2018030109A1 publication Critical patent/JPWO2018030109A1/en
Application granted granted Critical
Publication of JP6735830B2 publication Critical patent/JP6735830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • External Artificial Organs (AREA)

Description

本発明は、膜ろ過方法及び膜ろ過システムの技術に関する。 TECHNICAL FIELD The present invention relates to a technique of a membrane filtration method and a membrane filtration system.

従来、被処理水に有機系凝集剤を添加して、凝集沈殿処理や加圧浮上処理を行う排水処理が知られている(例えば、特許文献1参照)。 Conventionally, wastewater treatment is known in which an organic flocculant is added to water to be treated to perform flocculation and sedimentation treatment or pressure floating treatment (see, for example, Patent Document 1).

特開平11−57313号公報JP, 11-57313, A

ところで、有機系凝集剤を用いた凝集沈殿処理や加圧浮上処理により得られる処理水に対して、さらに限外ろ過膜や精密ろ過膜を使用すると、膜の表面が汚染され、細孔が塞がれてしまう現象(ファウリング)が生じる場合がある。そこで、本開示の目的は、有機系凝集剤を用いた凝集沈殿処理や加圧浮上処理により得られる処理水に対して、限外ろ過膜や精密ろ過膜のファウリングを抑制し、安定した運転を可能とする膜ろ過方法及び膜ろ過システムを提供することにある。 By the way, if ultrafiltration membranes or microfiltration membranes are used for treated water obtained by coagulation sedimentation treatment using an organic coagulant or pressure flotation treatment, the surface of the membrane is contaminated and pores are blocked. A phenomenon of fouling (fouling) may occur. Therefore, an object of the present disclosure is to suppress the fouling of the ultrafiltration membrane or the microfiltration membrane with respect to the treated water obtained by the flocculation-precipitation treatment or the pressure flotation treatment using an organic flocculant, and perform stable operation. It is to provide a membrane filtration method and a membrane filtration system that enable the above.

(1)本実施形態の一態様は、被処理水に有機系凝集剤を添加して凝集沈殿処理又は凝集加圧浮上処理した処理水に、無機系凝集剤を添加して、限外ろ過膜処理及び精密ろ過膜処理のうち少なくともいずれか一方の膜ろ過処理を行う膜ろ過方法であって、前記有機系凝集剤は、ポリアクリルアミド系凝集剤、ポリスルホン酸系凝集剤、ポリアクリル酸系凝集剤、ポリアクリル酸エステル系凝集剤、ポリアミン系凝集剤、ポリメタクリル酸凝集剤のうちの少なくともいずれか1つである。 (1) One aspect of the present embodiment is to add an inorganic coagulant to treated water obtained by adding an organic coagulant to the water to be treated to perform coagulation sedimentation treatment or coagulation pressurization floating treatment, and then use an ultrafiltration membrane. A membrane filtration method for performing at least one of membrane treatment and microfiltration membrane treatment , wherein the organic flocculant is a polyacrylamide flocculant, a polysulfonic acid flocculant, or a polyacrylic acid flocculant. At least one of a polyacrylic acid ester-based coagulant, a polyamine-based coagulant, and a polymethacrylic acid coagulant .

(2)上記(1)に記載の膜ろ過方法において、前記膜ろ過処理の際に、前記処理水に対して撹拌機を用いて撹拌速度200〜1000rpmで撹拌して剪断力を付与するか、前記処理水に酸化剤を添加するかのうち少なくともいずれか一方を行い、前記処理水中の有機系凝集剤の平均分子量を前記膜ろ過処理で使用する膜の分画分子量以下にすることが好ましい。 (2) In the membrane filtration method described in the above (1), during the membrane filtration process, or to impart a shearing force by stirring at a stirring speed 200~1000rpm using a stirrer to pair with the treated water It is preferable that at least one of adding an oxidant to the treated water is performed so that the average molecular weight of the organic coagulant in the treated water is not more than the molecular weight cutoff of the membrane used in the membrane filtration treatment. ..

(3)上記(1)又は(2)に記載の膜ろ過方法において、前記無機系凝集剤の添加量は、前記被処理水中の有機系凝集剤の濃度(mg/L)に対して、0.5倍〜75倍の範囲であることが好ましい。 (3) In the membrane filtration method according to (1) or (2), the amount of the inorganic flocculant added is 0 with respect to the concentration (mg/L) of the organic flocculant in the water to be treated. It is preferably in the range of 0.5 to 75 times.

(4)上記(1)〜(3)のいずれか1つに記載の膜ろ過方法において、前記無機凝集剤の添加量を、前記凝集沈殿処理又は凝集加圧浮上処理した処理水において、LC−OCDにより検出される高分子有機物の濃度に応じて制御することが好ましい。 (4) In the membrane filtration method according to any one of (1) to (3) above, an addition amount of the inorganic coagulant in treated water subjected to the coagulation sedimentation treatment or the coagulation pressurization floating treatment is LC- It is preferable to control according to the concentration of the high molecular weight organic substance detected by OCD.

(5)上記(1)〜(4)のいずれか1つに記載の膜ろ過方法において、前記膜ろ過処理した処理水に対して、活性炭処理及び逆浸透膜処理のうち少なくともいずれか一方の後処理を行うことが好ましい。 (5) In the membrane filtration method according to any one of (1) to (4) above, after the membrane-treated water is treated with at least one of activated carbon treatment and reverse osmosis membrane treatment. Treatment is preferred.

(6)上記(1)〜(5)のいずれか1つに記載の膜ろ過方法において、前記膜ろ過処理の際に、前記処理水のランゲリア指数(LSI)が0未満となるように、前記処理水のpHを調整することが好ましい。 (6) In the membrane filtration method according to any one of (1) to (5) above, the Langerlia index (LSI) of the treated water is set to be less than 0 during the membrane filtration treatment. It is preferable to adjust the pH of the treated water.

(7)本実施形態の一態様は、被処理水に有機系凝集剤を添加して凝集沈殿処理又は凝集加圧浮上処理した処理水に、無機系凝集剤を添加する無機凝集剤添加手段と、限外ろ過膜及び精密ろ過膜のうち少なくともいずれか一方を有し、前記無機系凝集剤を添加した処理水を膜ろ過処理する膜ろ過処理手段と、を備え、前記有機系凝集剤は、ポリアクリルアミド系凝集剤、ポリスルホン酸系凝集剤、ポリアクリル酸系凝集剤、ポリアクリル酸エステル系凝集剤、ポリアミン系凝集剤、ポリメタクリル酸凝集剤のうちの少なくともいずれか1つである膜ろ過システムである。 (7) One aspect of the present embodiment is an inorganic coagulant adding means for adding an inorganic coagulant to the treated water obtained by adding an organic coagulant to the water to be treated to perform coagulation sedimentation treatment or coagulation pressurization floating treatment. , Having at least one of an ultrafiltration membrane and a microfiltration membrane, comprising a membrane filtration treatment means for subjecting the treated water to which the inorganic flocculant has been added to a membrane filtration treatment, to the organic flocculant, Membrane filtration system which is at least one of polyacrylamide type coagulant, polysulfonic acid type coagulant, polyacrylic acid type coagulant, polyacrylic acid ester type coagulant, polyamine type coagulant, polymethacrylic acid coagulant Is.

(8)上記(7)に記載の膜ろ過システムにおいて、前記膜ろ過処理の際に、前記処理水に対して撹拌速度200〜1000rpmで撹拌してせん断力を付与するせん断力付与手段及び前記処理水に酸化剤を添加する酸化剤添加手段のうち少なくともいずれか一方を備え、前記せん断力の付与及び前記酸化剤の添加のうち少なくともいずれか一方により、前記処理水中の有機系凝集剤の平均分子量を前記膜ろ過処理で使用する膜の分画分子量以下にすることが好ましい。 (8) In the membrane filtration system according to the above (7), a shearing force imparting means for agitating the treated water at a stirring speed of 200 to 1000 rpm to impart a shearing force to the treated water, and the treatment. An average molecular weight of the organic coagulant in the treated water is provided by at least one of oxidant addition means for adding an oxidant to water, and by at least one of imparting the shearing force and adding the oxidant. Is preferably not more than the molecular weight cutoff of the membrane used in the membrane filtration treatment.

(9)上記(7)又は(8)に記載の膜ろ過システムにおいて、前記無機系凝集剤の添加量は、前記被処理水中の有機系凝集剤の濃度(mg/L)に対して、0.5倍〜75倍の範囲であることが好ましい。 (9) In the membrane filtration system according to (7) or (8), the amount of the inorganic flocculant added is 0 with respect to the concentration (mg/L) of the organic flocculant in the water to be treated. It is preferably in the range of 0.5 to 75 times.

(10)上記(7)〜(9)のいずれか1つに記載の膜ろ過システムにおいて、前記膜ろ過処理した処理水に対して後処理を行う後処理手段を有し、前記後処理手段は、活性炭処理手段及び逆浸透膜処理手段のうち少なくともいずれか一方を備えることが好ましい。 (10) In the membrane filtration system according to any one of (7) to (9) above, there is a post-treatment means for performing a post-treatment on the treated water subjected to the membrane filtration treatment, and the post-treatment means is It is preferable to provide at least one of the activated carbon treatment means and the reverse osmosis membrane treatment means.

(11)上記(7)〜(10)のいずれか1つに記載の膜ろ過システムにおいて、前記膜ろ過処理の際に、前記処理水のランゲリア指数(LSI)が0未満となるように、前記処理水のpHを調整するpH調整手段を備えることが好ましい。 (11) In the membrane filtration system according to any one of (7) to (10), during the membrane filtration treatment, the Langeria index (LSI) of the treated water may be less than 0. It is preferable to provide a pH adjusting means for adjusting the pH of the treated water.

本実施形態による膜ろ過方法及び膜ろ過システムによれば、有機系凝集剤を用いた凝集沈殿処理や加圧浮上処理により得られる処理水に対して、限外ろ過膜や精密ろ過膜のファウリングを抑制し、安定した運転を可能とする。 According to the membrane filtration method and the membrane filtration system according to the present embodiment, fouling of the ultrafiltration membrane or the microfiltration membrane with respect to the treated water obtained by the coagulation sedimentation treatment using the organic coagulant or the pressure floating treatment. It suppresses the noise and enables stable operation.

本実施形態に係る処理システムの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing system which concerns on this embodiment. 他の実施形態に係る処理システムの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing system which concerns on other embodiment. 他の実施形態に係る処理システムの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing system which concerns on other embodiment. 他の実施形態に係る処理システムの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing system which concerns on other embodiment. 他の実施形態に係る処理システムの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing system which concerns on other embodiment. 参考例における処理システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the processing system in a reference example. 実施例1〜2、及び比較例1〜2における膜ろ過装置のろ過量(m/m)に対するろ過抵抗(1/m)の結果を示す図である。Is a graph showing the results of filtration resistance to filtration rate of the membrane filtration apparatus in Examples 1-2, and Comparative Examples 1~2 (m 3 / m 2) (1 / m). 実施例3及び比較例3における膜ろ過装置のろ過量(m/m)に対するろ過抵抗(1/m)の結果を示す図である。Is a graph showing the results of filtration resistance to filtration rate of the membrane filtration apparatus in Embodiment 3 and Comparative Example 3 (m 3 / m 2) (1 / m). 実施例4及び比較例4における膜ろ過装置のろ過量(m/m)に対するろ過抵抗(1/m)の結果を示す図である。It is a figure which shows the result of the filtration resistance (1/m) with respect to the filtration amount (m< 3 >/m< 2 >) of the membrane filtration apparatus in Example 4 and Comparative Example 4.

以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described. The present embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る処理システムの構成の一例を示す模式図である。図1に示す処理システム1は、凝集沈殿システム、膜ろ過システムを備えている。凝集沈殿システムは、第1凝集反応槽10、有機系凝集剤添加ライン12、凝集沈殿槽14を備えている。膜ろ過システムは、無機系凝集剤添加手段の一例としての無機系凝集剤添加装置15及び無機系凝集剤添加ライン16、第2凝集反応槽18、膜ろ過処理手段の一例としての膜ろ過装置20を備えている。 FIG. 1 is a schematic diagram showing an example of the configuration of a processing system according to this embodiment. The processing system 1 shown in FIG. 1 includes a coagulating sedimentation system and a membrane filtration system. The coagulation sedimentation system includes a first coagulation reaction tank 10, an organic coagulant addition line 12, and a coagulation sedimentation tank 14. The membrane filtration system includes an inorganic flocculant addition device 15 as an example of an inorganic flocculant addition means, an inorganic flocculant addition line 16, a second flocculation reaction tank 18, and a membrane filtration device 20 as an example of a membrane filtration treatment means. Equipped with.

第1凝集反応槽10の入口には、被処理水配管22が接続されている。また、接続配管24aの一端は第1凝集反応槽10の出口に接続され、他端が凝集沈殿槽14の入口に接続され、接続配管24bの一端は凝集沈殿槽14の出口に接続され、他端は第2凝集反応槽18の入口に接続され、接続配管24cの一端は第2凝集反応槽18の出口に接続され、他端は膜ろ過装置20の入口に接続されている。また、膜ろ過装置20の出口には、処理水配管26が接続されている。有機系凝集剤添加ライン12は第1凝集反応槽10に接続されている。また、無機系凝集剤添加ライン16の一端は、無機系凝集剤添加装置15に接続され、他端は第2凝集反応槽18に接続されている。 A treated water pipe 22 is connected to the inlet of the first flocculation reaction tank 10. Further, one end of the connection pipe 24a is connected to the outlet of the first coagulation reaction tank 10, the other end is connected to the inlet of the coagulation sedimentation tank 14, one end of the connection pipe 24b is connected to the exit of the coagulation sedimentation tank 14, and the like. The end is connected to the inlet of the second flocculation reaction tank 18, one end of the connection pipe 24c is connected to the outlet of the second flocculation reaction tank 18, and the other end is connected to the inlet of the membrane filtration device 20. A treated water pipe 26 is connected to the outlet of the membrane filtration device 20. The organic flocculant addition line 12 is connected to the first flocculation reaction tank 10. Further, one end of the inorganic coagulant addition line 16 is connected to the inorganic coagulant addition device 15, and the other end is connected to the second coagulation reaction tank 18.

無機系凝集剤添加装置15は、例えば、無機系凝集剤を収容するタンク、無機系凝集剤を吐出するポンプ、バルブ等から構成されている。無機系凝集剤添加装置15から供給される無機系凝集剤は、無機系凝集剤添加ライン16を通して、第2凝集反応槽18に供給される。本実施形態で用いられる無機系凝集剤は、例えば、ポリ塩化アルミニウム(PAC)、硫酸バンド、塩化第二鉄、硫酸第二鉄、塩化アルミニウム、硫酸アルミニウムなどが挙げられる。 The inorganic coagulant addition device 15 is composed of, for example, a tank that stores the inorganic coagulant, a pump that discharges the inorganic coagulant, a valve, and the like. The inorganic coagulant supplied from the inorganic coagulant addition device 15 is supplied to the second coagulation reaction tank 18 through the inorganic coagulant addition line 16. Examples of the inorganic flocculant used in the present embodiment include polyaluminum chloride (PAC), sulfuric acid band, ferric chloride, ferric sulfate, aluminum chloride, aluminum sulfate and the like.

本実施形態で用いられる有機系凝集剤は、ポリアクリルアミド系凝集剤、ポリスルホン酸系凝集剤、ポリアクリル酸系凝集剤、ポリアクリル酸エステル系凝集剤、ポリアミン系凝集剤、ポリメタクリル酸凝集剤等の高分子凝集剤、界面活性剤等の低分子凝集剤(凝結剤)等が挙げられる。有機系凝集剤は、例えば、不図示の有機系凝集剤添加装置等から有機系凝集剤添加ライン12を通して、第1凝集反応槽10に供給される。 The organic coagulant used in the present embodiment includes polyacrylamide coagulant, polysulfonic acid coagulant, polyacrylic acid coagulant, polyacrylic acid ester coagulant, polyamine coagulant, polymethacrylic acid coagulant, etc. Examples thereof include high-molecular coagulants, low-molecular coagulants (coagulants) such as surfactants, and the like. The organic flocculant is supplied to the first flocculation reaction tank 10 through an organic flocculant addition line 12 from, for example, an organic flocculant addition device (not shown).

膜ろ過装置20は、限外ろ過膜を備えるUF膜装置、精密ろ過膜を備えるMF膜装置のうち少なくともいずれか一方の装置を備えていればよい。UF膜装置やMF膜装置は、例えば、限外ろ過膜や精密ろ過膜を密閉可能な容器に収納した少なくとも1つのモジュールから構成されている。限外ろ過膜や精密ろ過膜の形状は特に制限されるものではなく、例えば、中空糸膜、管状膜、平膜、スパイラル等が挙げられる。膜ろ過装置20の通水方式は、内圧型、外圧型等のあらゆる通水方式が適用可能であり、クロスフローろ過やデッドエンドろ過等のあらゆるろ過方法が適用可能である。 The membrane filtration device 20 may include at least one of a UF membrane device including an ultrafiltration membrane and an MF membrane device including a microfiltration membrane. The UF membrane device and the MF membrane device are composed of, for example, at least one module in which an ultrafiltration membrane or a microfiltration membrane is housed in a sealable container. The shape of the ultrafiltration membrane or the microfiltration membrane is not particularly limited, and examples thereof include a hollow fiber membrane, a tubular membrane, a flat membrane, and a spiral. As the water-passing method of the membrane filtration device 20, any water-passing method such as an internal pressure type or an external pressure type can be applied, and any filtering method such as cross-flow filtration or dead end filtration can be applied.

限外ろ過膜や精密ろ過膜の材質は、例えば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)、ポリエーテルサルフォン(PES)、セルロースアセテート(CA)等の有機膜、セラミック製の無機膜等が挙げられる。 The material of the ultrafiltration membrane or the microfiltration membrane is, for example, an organic membrane such as polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polyether sulfone (PES), cellulose acetate (CA), or an inorganic ceramic material. Examples include membranes.

限外ろ過膜の分画分子量は、例えば、5,000〜360,000の範囲であり、10,000〜360,000の範囲が好ましい。限外ろ過膜の細孔径は、例えば、0.01〜0.1の範囲であり、0.01〜0.03の範囲が好ましい。精密ろ過膜の細孔径は、例えば、0.1〜0.5の範囲であり、0.1〜0.2の範囲が好ましい。 The molecular weight cutoff of the ultrafiltration membrane is, for example, in the range of 5,000 to 360,000, preferably in the range of 10,000 to 360,000. The pore size of the ultrafiltration membrane is, for example, in the range of 0.01 to 0.1, preferably 0.01 to 0.03. The pore size of the microfiltration membrane is, for example, in the range of 0.1 to 0.5, preferably 0.1 to 0.2.

処理システム1で処理される被処理水は、特に制限されるものではなく、例えば懸濁物質、カルシウム等のスケール成分等の不純物を含む原水等であり、具体的には、工業排水(例えば、めっき系排水等)、水道水、地下水(例えば、井戸水、湧水、伏流水等)、地表水(例えば、河川水、湖沼水等)等である。 The water to be treated in the treatment system 1 is not particularly limited and is, for example, raw water containing impurities such as suspended substances and scale components such as calcium. Specifically, industrial wastewater (for example, Plating system drainage, etc.), tap water, ground water (eg, well water, spring water, underground water, etc.), surface water (eg, river water, lake water, etc.), etc.

本実施形態の処理システム1の動作の一例を説明する。 An example of the operation of the processing system 1 of this embodiment will be described.

被処理水が被処理水配管22を通り、第1凝集反応槽10に供給されると共に、有機系凝集剤が有機系凝集剤添加ライン12から第1凝集反応槽10に供給される。第1凝集反応槽10内では、撹拌機28aにより被処理水と有機系凝集剤とが撹拌され、被処理水中の懸濁物質等の不純物がフロック化される。その後、有機系凝集剤を含む被処理水は、接続配管24aを通り、凝集沈殿槽14に供給され、フロック化した懸濁物質等の不純物を汚泥として沈殿させる。 The water to be treated is supplied to the first coagulation reaction tank 10 through the water to be treated 22 and the organic coagulant is supplied to the first coagulation reaction tank 10 from the organic coagulant addition line 12. In the first flocculation reaction tank 10, the stirrer 28a stirs the water to be treated and the organic coagulant to flocculate impurities such as suspended substances in the water to be treated. Then, the water to be treated containing the organic flocculant is supplied to the flocculation sedimentation tank 14 through the connection pipe 24a, and impurities such as flocculated suspended substances are precipitated as sludge.

上澄み液は、凝集沈殿処理した処理水として、接続配管24bを通り第2凝集反応槽18に供給される。また、無機系凝集剤が、無機系凝集剤添加装置15から無機系凝集剤添加ライン16を通して、第2凝集反応槽18に供給される。第2凝集反応槽18内では、撹拌機28bにより処理水と無機系凝集剤とが撹拌され、処理水中に残存する有機系凝集剤と無機系凝集剤とを接触させる。無機系凝集剤が添加された処理水は、接続配管24cを通り膜ろ過装置20に導入される。処理水中の不純物は、膜ろ過装置20内の限外ろ過膜や精密ろ過膜により捕捉され、不純物が除去された処理水が処理水配管26から排出される。得られた処理水は、例えば、食品加工工場、化学工場、半導体工場、機械工場等の洗浄水等として使用される。 The supernatant liquid is supplied to the second agglutination reaction tank 18 as the treated water subjected to the agglomeration and sedimentation treatment through the connection pipe 24b. Further, the inorganic coagulant is supplied from the inorganic coagulant addition device 15 to the second coagulation reaction tank 18 through the inorganic coagulant addition line 16. In the second flocculation reaction tank 18, the treated water and the inorganic flocculant are stirred by the stirrer 28b to bring the organic flocculant and the inorganic flocculant remaining in the treated water into contact with each other. The treated water to which the inorganic coagulant has been added is introduced into the membrane filtration device 20 through the connection pipe 24c. The impurities in the treated water are captured by the ultrafiltration membrane or the microfiltration membrane in the membrane filtration device 20, and the treated water from which the impurities have been removed is discharged from the treated water pipe 26. The treated water thus obtained is used, for example, as cleaning water for food processing factories, chemical factories, semiconductor factories, machine factories and the like.

膜ろ過装置20は、膜ろ過処理により得られた処理水等を用いて定期的に逆洗され、膜表面に堆積した不純物は逆洗排水と共に系外へ排出されるか、或いは凝集沈殿槽14に送液される。逆洗排水は、逆洗排水中の懸濁物質を沈降分離できる点、水回収率(処理水量/供給水量のことで、系外に排出すると水回収率が下がる。)の点等から、凝集沈殿槽14に送液されることが好ましい。 The membrane filtration device 20 is regularly backwashed with treated water or the like obtained by the membrane filtration treatment, and the impurities accumulated on the membrane surface are discharged out of the system together with the backwash drainage, or the coagulating sedimentation tank 14 Is sent to. The backwash wastewater is aggregated because of the fact that suspended substances in the backwash wastewater can be separated by sedimentation and the water recovery rate (treated water quantity/supply water quantity, which reduces the water recovery rate when discharged outside the system). The liquid is preferably sent to the settling tank 14.

通常、有機系凝集剤を含む処理水を、限外ろ過膜や精密ろ過膜等で膜ろ過処理すると、膜表面に有機系凝集剤が堆積し、膜のファウリングが引き起こされ易い。しかし、本実施形態では、有機系凝集剤に無機系凝集剤を接触させることで、有機系凝集剤上に無機系凝集剤が付着し、有機系凝集剤が、膜表面に付着し難い形態、或いは逆洗等で膜表面から容易に剥がれ易い形態に変化していると考えられる。したがって、無機系凝集剤を添加して膜ろ過処理することで、無機系凝集剤を添加しないで膜ろ過処理する場合と比べて、膜のファウリングを抑制し、安定な運転が可能となる。ところで、有機系凝集剤を用いた凝集沈殿処理において、有機系凝集剤と共に無機系凝集剤を添加して凝集沈殿することも考えられるが、このような系でも凝集沈殿処理により得られる処理水には一定量の有機系凝集剤(例えば無機系凝集剤が付着していない有機系凝集剤)が残存するため、本実施形態のように凝集沈殿処理した処理水に無機系凝集剤を添加して膜ろ過処理する方法と比べて、膜のファウリングを十分に抑制することは困難であり、安定した処理を行うことは難しい。 Usually, when treated water containing an organic flocculant is subjected to a membrane filtration treatment with an ultrafiltration membrane, a microfiltration membrane, or the like, the organic flocculant is deposited on the membrane surface, and fouling of the membrane is easily caused. However, in the present embodiment, by bringing the inorganic flocculant into contact with the organic flocculant, the inorganic flocculant is attached on the organic flocculant, and the organic flocculant is a form that is difficult to attach to the film surface, Alternatively, it is considered that the film has changed to a form that is easily peeled off from the film surface by backwashing or the like. Therefore, by performing the membrane filtration treatment with the addition of the inorganic flocculant, the fouling of the membrane can be suppressed and the stable operation can be performed, as compared with the case of performing the membrane filtration treatment without adding the inorganic flocculant. By the way, in the coagulation-sedimentation treatment using an organic coagulant, it is possible to coagulate and sediment by adding an inorganic coagulant together with an organic coagulant. Since a certain amount of the organic flocculant (for example, the organic flocculant to which the inorganic flocculant is not attached) remains, the inorganic flocculant is added to the treated water that has been subjected to the coagulation sedimentation treatment as in this embodiment. It is difficult to sufficiently suppress fouling of the membrane, and it is difficult to perform stable treatment, as compared with the method of performing membrane filtration treatment.

無機系凝集剤の添加量は、膜のファウリングを抑制することができる添加量であれば特に制限されるものではないが、例えば、被処理水中の有機系凝集剤の濃度(mg/L)に対して0.5倍〜75倍の範囲であることが好ましく、経済性の観点から0.5倍〜2.5倍の範囲であることがより好ましい。無機系凝集剤の添加量が、0.5倍未満であると、膜のファウリング抑制ができないと考えられ、75倍を超えると、無機凝集剤由来のフロックによるろ過抵抗が大きくなると考えられる。したがって、上記範囲を満たす方が、上記範囲を満たさない場合と比較して、膜のファウリングを効果的に抑制することが可能となる。 The addition amount of the inorganic coagulant is not particularly limited as long as it can suppress the fouling of the film, but for example, the concentration of the organic coagulant in the water to be treated (mg/L) It is preferably in the range of 0.5 times to 75 times, and more preferably in the range of 0.5 times to 2.5 times from the viewpoint of economy. When the amount of the inorganic flocculant added is less than 0.5 times, it is considered that the fouling of the membrane cannot be suppressed, and when it exceeds 75 times, the filtration resistance due to the flocs derived from the inorganic flocculant is considered to increase. Therefore, when the above range is satisfied, the fouling of the film can be effectively suppressed as compared with the case where the above range is not satisfied.

本実施形態では、有機系凝集剤を用いた凝集沈殿処理により得られる処理水を例に説明したが、有機系凝集剤を用いた凝集加圧浮上処理により得られる処理水でも同様の効果が得られる。凝集加圧浮上処理は、例えば、従来公知の加圧浮上処理等である(例えば、特許5239653参照)。 In the present embodiment, the treated water obtained by the coagulating sedimentation treatment using the organic coagulant has been described as an example, but the same effect can be obtained even by the treated water obtained by the coagulating pressure flotation treatment using the organic coagulant. To be The aggregation pressure floating process is, for example, a conventionally known pressure floating process (see, for example, Japanese Patent No. 5239653).

有機系凝集剤と無機系凝集剤との接触率を高める点では、凝集反応槽(図1に示す第2凝集反応槽18)を設けることが望ましいが、設置スペースの削減等の点から、図2に示す処理システム2のように、凝集反応槽を設置せず、接続配管24bに無機系凝集剤添加ライン16を設置して、無機系凝集剤がライン注入されるように構成してもよい。 From the viewpoint of increasing the contact rate between the organic coagulant and the inorganic coagulant, it is desirable to provide a coagulation reaction tank (second coagulation reaction tank 18 shown in FIG. 1), but from the viewpoint of reducing the installation space, etc. As in the processing system 2 shown in FIG. 2, the aggregation reaction tank may not be installed, and the inorganic coagulant addition line 16 may be installed in the connection pipe 24b so that the inorganic coagulant is line-injected. ..

図3は、他の実施形態に係る処理システムの構成の一例を示す模式図である。図3に示す処理システム3において、図1に示す処理システム1と同様の構成については同一の符号を付しその説明を省略する。図3に示す処理システム3では、膜ろ過処理する際に、凝集沈殿処理(又は凝集加圧浮上処理)した処理水に酸化剤が添加されるように構成されている。具体的には、図3に示す処理システム3は、酸化剤添加手段としての酸化剤添加装置29及び酸化剤添加ライン30を備え、酸化剤が、酸化剤添加装置29から酸化剤添加ライン30を通して、第2凝集反応槽18に添加される。なお、酸化剤の添加は、図2に示すライン注入でもよい。 FIG. 3 is a schematic diagram showing an example of the configuration of a processing system according to another embodiment. In the processing system 3 shown in FIG. 3, the same components as those in the processing system 1 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The treatment system 3 shown in FIG. 3 is configured such that an oxidant is added to the treated water that has been subjected to the coagulation sedimentation treatment (or the coagulation pressurization floating treatment) during the membrane filtration treatment. Specifically, the processing system 3 shown in FIG. 3 includes an oxidant addition device 29 as an oxidant addition means and an oxidant addition line 30, and the oxidant passes from the oxidant addition device 29 through the oxidant addition line 30. , To the second agglutination reaction tank 18. The oxidant may be added by the line injection shown in FIG.

有機系凝集剤として、例えばポリアクリルアミド系凝集剤等の高分子凝集剤が使用される場合、当該有機系凝集剤の平均分子量(重量平均分子量或いは数平均分子量)は、通常、後段の限外ろ過膜や精密ろ過膜の分画分子量より大きい。したがって、膜の分画分子量より大きい分子量を有する有機系凝集剤が処理水中に残存していると、膜のファウリングに影響を与えることとなる。なお、分画分子量は、既知の分子量を有する標準物質を透過させて阻止率90%に相当する分子量から定めるものであり、例えば分画分子量5,000の限外ろ過膜や精密ろ過膜に対して、分子量5,000を超える高分子凝集剤を含む処理水を通水すれば、高分子凝集剤の90%以上が捕捉される。 When a polymer flocculant such as a polyacrylamide flocculant is used as the organic flocculant, the average molecular weight (weight average molecular weight or number average molecular weight) of the organic flocculant is usually the ultrafiltration in the latter stage. It is larger than the molecular weight cut-off of the membrane or microfiltration membrane. Therefore, if the organic coagulant having a molecular weight larger than the cut-off molecular weight of the membrane remains in the treated water, it will affect the fouling of the membrane. The molecular weight cutoff is determined from the molecular weight corresponding to a rejection of 90% by allowing a standard substance having a known molecular weight to permeate. For example, for an ultrafiltration membrane or a microfiltration membrane with a molecular weight cutoff of 5,000. Then, if treated water containing a polymer coagulant having a molecular weight of more than 5,000 is passed, 90% or more of the polymer coagulant is captured.

そこで、図3に示す処理システム3では、膜ろ過処理の際、処理水に酸化剤を添加することで、有機系凝集剤の分子の鎖を切断し、有機系凝集剤の分子量を限外ろ過膜や精密ろ過膜の分画分子量以下、好ましくは分画分子量より小さくする。その結果、有機系凝集剤の一部は膜に捕捉されず、処理水と共に膜を通過するため、無機系凝集剤のみの添加と比較して、膜のファウリングをより抑えることが可能となる。 Therefore, in the treatment system 3 shown in FIG. 3, during the membrane filtration treatment, an oxidizing agent is added to the treated water to break the molecular chains of the organic coagulant, and the molecular weight of the organic coagulant is ultrafiltered. The molecular weight is less than or equal to the molecular weight cut-off of the membrane or microfiltration membrane, preferably smaller than the molecular weight cut-off. As a result, a part of the organic coagulant is not captured by the membrane and passes through the membrane together with the treated water, so that it is possible to further suppress the fouling of the membrane as compared with the addition of only the inorganic coagulant. ..

酸化剤は、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸リチウム、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸カルシウム、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム等の塩素酸アルカリ土類金属塩等が挙げられる。 The oxidizing agent is, for example, sodium hypochlorite, an alkali metal hypochlorite such as potassium hypochlorite, calcium hypochlorite, an alkaline earth metal hypochlorite such as barium hypochlorite, Other lithium chlorite, sodium chlorite, potassium chlorite, etc., alkali metal chlorite, calcium chlorite, barium chlorite, etc., alkaline earth metal chlorite, nickel chlorite, etc. And chlorite alkali metal salts such as ammonium chlorate and sodium chlorate, and alkaline earth metal chlorates such as calcium chlorate.

酸化剤の添加量は、有機系凝集剤の分子量を膜の分画分子量以下にすることができる量であれば特に制限されるものではないが、例えば、凝集沈殿前の被処理水中の有機系凝集剤の濃度(mg/L)に対して0.5倍〜75倍とすることが好ましく、0.5倍〜2.5とすることがより好ましい。 The addition amount of the oxidizing agent is not particularly limited as long as the molecular weight of the organic coagulant can be made equal to or less than the molecular weight cutoff of the membrane, for example, the organic system in the water to be treated before coagulation and precipitation. The concentration (mg/L) of the aggregating agent is preferably 0.5 to 75 times, more preferably 0.5 to 2.5 times.

また、無機凝集剤の添加量を、前記凝集沈殿処理又は凝集加圧浮上処理した処理水において、LC−OCDにより検出される高分子有機物の濃度に応じて制御することが好ましい。LC−OCDとは、有機物を分子量で分画し、リテンションタイムごとに高分子有機物、フミン質、フミン分解生成物、低分子有機酸、低分子有機物等のピークが表示され、それぞれの濃度を定量できるものである。 Moreover, it is preferable to control the addition amount of the inorganic coagulant according to the concentration of the high molecular weight organic substance detected by LC-OCD in the treated water subjected to the coagulation sedimentation treatment or the coagulation pressurization floatation treatment. With LC-OCD, organic substances are fractionated by molecular weight, and peaks of high molecular weight organic substances, humic substances, humic decomposition products, low molecular weight organic acids, low molecular weight organic substances, etc. are displayed for each retention time, and the respective concentrations are quantified. It is possible.

膜の閉塞には高分子有機物が寄与していると考えられるから、前記凝集沈殿処理又は凝集加圧浮上処理した処理水中の有機物から高分子有機物の濃度を詳細に知ることで、添加する無機凝集剤の添加量をより適切な量に決定することができる。そして、LC−OCDにより検出される高分子有機物のピークの高低により、無機凝集剤の添加量を増減できるため、ランニングコストを低減することができる。 Since it is considered that the high molecular weight organic matter contributes to the clogging of the membrane, by knowing the concentration of the high molecular weight organic matter in detail from the organic matter in the treated water that has been subjected to the coagulation sedimentation treatment or the coagulation pressurization floatation process, the inorganic coagulation added The addition amount of the agent can be determined to be a more appropriate amount. Then, the running amount can be reduced because the addition amount of the inorganic coagulant can be increased or decreased depending on the height of the peak of the high molecular weight organic substance detected by LC-OCD.

有機系凝集剤の分子量を小さくする方法は、酸化剤の添加以外に、処理水にせん断力を付与する方法も挙げられる。せん断力付与手段として、例えば、第2凝集反応槽18に設置した撹拌機28bを用い、処理水を撹拌してせん断力を付与することで、有機系凝集剤の分子の鎖を切断し、有機系凝集剤の分子量を限外ろ過膜や精密ろ過膜の分画分子量以下にする。例えば、撹拌速度や撹拌時間等を調整することで、有機系凝集剤の分子量を限外ろ過膜や精密ろ過膜の分画分子量以下にすることが可能となる。有機系凝集剤の分子量を小さくするために設定される撹拌速度は、例えば、200rpm〜1,000rpmの範囲であり、700rpm〜1,000rpmの範囲が好ましい。また、有機系凝集剤の分子量を小さくするために設定される撹拌時間は、例えば、5分〜1時間の範囲であり、30分〜1時間の範囲が好ましい。 As a method of reducing the molecular weight of the organic coagulant, a method of imparting a shearing force to the treated water may be mentioned in addition to the addition of the oxidizing agent. As the shearing force imparting means, for example, a stirrer 28b installed in the second aggregating reaction tank 18 is used to stir the treated water to impart a shearing force to break the chains of the molecules of the organic coagulant. The molecular weight of the coagulant is set to be equal to or lower than the molecular weight cut-off of the ultrafiltration membrane or the microfiltration membrane. For example, the molecular weight of the organic coagulant can be made equal to or lower than the molecular weight cut-off of the ultrafiltration membrane or the microfiltration membrane by adjusting the stirring speed, stirring time, and the like. The stirring speed set to reduce the molecular weight of the organic flocculant is, for example, in the range of 200 rpm to 1,000 rpm, and preferably in the range of 700 rpm to 1,000 rpm. The stirring time set to reduce the molecular weight of the organic coagulant is, for example, in the range of 5 minutes to 1 hour, preferably 30 minutes to 1 hour.

図4は、他の実施形態に係る処理システムの構成の一例を示す模式図である。図4の処理システム4において、図1に示す処理システム1と同様の構成については同一の符号を付しその説明を省略する。図4に示す処理システム4は、膜ろ過装置20の後段に、活性炭が充填された活性炭装置32、及び逆浸透膜を備える逆浸透膜装置34を備えている。処理水配管26aの一端は、膜ろ過装置20の出口に接続され、他端は、活性炭装置32の入口に接続されている。また、処理水配管26bの一端は、活性炭装置32の出口に接続され、他端は、逆浸透膜装置34の入口に接続されている。逆浸透膜装置34の透過水出口には、透過水配管36が接続され、濃縮水出口には濃縮水配管38が接続されている。 FIG. 4 is a schematic diagram showing an example of the configuration of a processing system according to another embodiment. In the processing system 4 of FIG. 4, the same components as those of the processing system 1 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The treatment system 4 shown in FIG. 4 is provided with an activated carbon device 32 filled with activated carbon and a reverse osmosis membrane device 34 including a reverse osmosis membrane in a subsequent stage of the membrane filtration device 20. One end of the treated water pipe 26a is connected to the outlet of the membrane filtration device 20, and the other end is connected to the inlet of the activated carbon device 32. Further, one end of the treated water pipe 26b is connected to the outlet of the activated carbon device 32, and the other end is connected to the inlet of the reverse osmosis membrane device 34. A permeated water pipe 36 is connected to the permeated water outlet of the reverse osmosis membrane device 34, and a concentrated water pipe 38 is connected to the concentrated water outlet.

本実施形態で用いられる逆浸透膜は、例えば、処理水中のイオン成分を除去できる膜であり、ナノろ過膜(NF膜)も含まれる。逆浸透膜の形状は特に制限されるものではなく、例えば、中空糸膜、管状膜、平膜、スパイラル等が挙げられる。逆浸透膜の材質は、例えば、ポリアミド系、ピペラジンアミド系、酢酸セルロース系などが挙げられる。 The reverse osmosis membrane used in the present embodiment is, for example, a membrane capable of removing ionic components in treated water, and also includes a nanofiltration membrane (NF membrane). The shape of the reverse osmosis membrane is not particularly limited, and examples thereof include hollow fiber membranes, tubular membranes, flat membranes and spirals. Examples of the material of the reverse osmosis membrane include polyamide type, piperazine amide type, and cellulose acetate type.

図4に示す処理システム4では、膜ろ過装置20から排出される処理水が、処理水配管26aを通り、活性炭装置32に供給される。活性炭装置32により処理水中の不純物が除去された後、処理水配管26bから、逆浸透膜装置34に供給され、透過水と濃縮水とに分離される。逆浸透膜装置34により得られる透過水(処理水)は、透過水配管36から排出される。得られた透過水は、食品加工工場、化学工場、半導体工場、機械工場等の洗浄水としてだけでなく、例えば、希釈水、飲料水、中水、空調用水、純水用原水、リンサー原水、蒸気用水等として使用することも可能である。逆浸透膜装置34により得られる濃縮水は、濃縮水配管38から排出され、例えば不図示の貯留槽に貯留される。 In the treatment system 4 shown in FIG. 4, the treated water discharged from the membrane filtration device 20 is supplied to the activated carbon device 32 through the treated water pipe 26a. After the impurities in the treated water are removed by the activated carbon device 32, they are supplied to the reverse osmosis membrane device 34 from the treated water pipe 26b and separated into permeated water and concentrated water. The permeated water (treated water) obtained by the reverse osmosis membrane device 34 is discharged from the permeated water pipe 36. The obtained permeated water is not only used as washing water for food processing plants, chemical plants, semiconductor factories, machine factories, etc., but also, for example, dilution water, drinking water, intermediate water, air conditioning water, pure water, pure water, rinser raw water, It can also be used as steam water. The concentrated water obtained by the reverse osmosis membrane device 34 is discharged from the concentrated water pipe 38 and stored in, for example, a storage tank (not shown).

図4に示す処理システム4は、活性炭装置32及び逆浸透膜装置34の両方を備えるものであるが、例えば最終的に得られる処理水の目標水質等に応じて、活性炭装置32のみの設置、逆浸透膜装置34のみの設置、或いは活性炭装置32及び逆浸透膜装置34の両方の設置が選択されればよい。なお、図での説明は省略するが、図2や図3に示す処理システムに、活性炭装置32や逆浸透膜装置34を設置してもよい。 The treatment system 4 shown in FIG. 4 includes both the activated carbon device 32 and the reverse osmosis membrane device 34, but for example, depending on the target water quality of the treated water finally obtained, etc., only the activated carbon device 32 is installed, Installation of only the reverse osmosis membrane device 34 or installation of both the activated carbon device 32 and the reverse osmosis membrane device 34 may be selected. Although not described in the drawings, the activated carbon device 32 and the reverse osmosis membrane device 34 may be installed in the treatment system shown in FIGS. 2 and 3.

図5は、他の実施形態に係る処理システムの構成の一例を示す模式図である。図5の処理システム5において、図1に示す処理システム1と同様の構成については同一の符号を付しその説明を省略する。図5に示す処理システム5は、pH調整手段の一例としてのpH調整システムを備えている。pH調整システムは、pH調整剤添加装置40、pH調整剤添加配管42、水質検出装置44、制御部46を備えている。 FIG. 5 is a schematic diagram showing an example of the configuration of a processing system according to another embodiment. In the processing system 5 of FIG. 5, the same components as those of the processing system 1 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The processing system 5 shown in FIG. 5 includes a pH adjusting system as an example of pH adjusting means. The pH adjusting system includes a pH adjusting agent adding device 40, a pH adjusting agent adding pipe 42, a water quality detecting device 44, and a control unit 46.

pH調整剤添加装置40は、例えば、pH調整剤を収容するタンク、pH調整剤を吐出するポンプ、バルブ等から構成されている。pH調整剤添加配管42の一端は、pH調整剤添加装置40に接続され、他端は第2凝集反応槽18に接続されている。 The pH adjusting agent adding device 40 includes, for example, a tank that stores the pH adjusting agent, a pump that discharges the pH adjusting agent, a valve, and the like. One end of the pH adjusting agent adding pipe 42 is connected to the pH adjusting agent adding device 40, and the other end is connected to the second aggregation reaction tank 18.

水質検出装置44は、pH値センサ、温度センサ、電気伝導率センサ、カルシウム硬度センサ、総アルカリ度センサを有し、第2凝集反応槽18内の処理水のpH値、水温、電気伝導率、カルシウム硬度、総アルカリ度を検出する。 The water quality detection device 44 has a pH value sensor, a temperature sensor, an electric conductivity sensor, a calcium hardness sensor, and a total alkalinity sensor, and has a pH value, a water temperature, and an electric conductivity of the treated water in the second coagulation reaction tank 18. Detects calcium hardness and total alkalinity.

制御部46は、プロセッサ及びメモリを備え、機能ブロックとしてランゲリア指数算出部48、pH調整剤量制御部50を有する。ランゲリア指数算出部48には、水質検出装置44により検出された各検出値が入力される。pH調整剤量制御部50は、ランゲリア指数算出部48により算出されたランゲリア指数に基づいて、pH調整剤の添加量を算出し、pH調整剤添加装置40によるpH調整剤の添加量を制御する。 The control unit 46 includes a processor and a memory, and includes a Langerian index calculation unit 48 and a pH adjusting agent amount control unit 50 as functional blocks. Each detection value detected by the water quality detection device 44 is input to the Langerian index calculation unit 48. The pH adjusting agent amount control unit 50 calculates the addition amount of the pH adjusting agent on the basis of the Langeria index calculated by the Langeria index calculating unit 48, and controls the addition amount of the pH adjusting agent by the pH adjusting agent adding device 40. ..

制御部46のプロセッサは、例えば、メモリに記憶された処理プログラムに従い、ランゲリア指数を算出する処理、pH調整剤の添加量を制御する処理等の各処理を実行する。以下に制御部46の動作の一例について説明する。 The processor of the control unit 46 executes various processes such as a process for calculating the Langerian index and a process for controlling the addition amount of the pH adjusting agent, for example, according to the processing program stored in the memory. An example of the operation of the control unit 46 will be described below.

ランゲリア指数算出部48は、水質検出装置44により検出された検出値に基づいて、処理水のランゲリア指数を算出する。ランゲリア指数(LSI)は、通常、次の式(1)により求められる。
LSI=pH−pHs (1)
The Langeria index calculating unit 48 calculates the Langeria index of the treated water based on the detection value detected by the water quality detection device 44. The Langeria index (LSI) is usually obtained by the following equation (1).
LSI=pH-pHs (1)

式(1)において、pHは処理水のpH値である。また、pHsは、処理水において炭酸カルシウムが溶解も析出もしない平衡状態にあるときの理論上のpH値であり、次の式(2)により求められる。
pHs=9.3+A値+B値−C値−D値 (2)
In Formula (1), pH is a pH value of treated water. Further, pHs is a theoretical pH value when the treated water is in an equilibrium state in which calcium carbonate is neither dissolved nor precipitated, and is calculated by the following equation (2).
pHs=9.3+A value+B value-C value-D value (2)

式(2)において、A値は、蒸発残留物濃度により定まる補正値である。蒸発残留物濃度は、電気伝導率と相関があるため、所定の換算式を用いて電気伝導率から蒸発残留物濃度を求めることができる。B値は、水温により定まる補正値である。C値は、カルシウム硬度により定まる補正値である。D値は、総アルカリ度により定まる補正値である。A〜D値は、水質検出装置44の検出値から関係式を用いて、或いは数値テーブルを参照して求めることができる。 In Expression (2), the A value is a correction value determined by the concentration of the evaporation residue. Since the concentration of the evaporation residue has a correlation with the electric conductivity, the concentration of the evaporation residue can be obtained from the electric conductivity using a predetermined conversion formula. The B value is a correction value determined by the water temperature. The C value is a correction value determined by the calcium hardness. The D value is a correction value determined by the total alkalinity. The A to D values can be obtained from the detection values of the water quality detection device 44 using a relational expression or by referring to a numerical table.

ランゲリア指数は、水系におけるスケール発生傾向を評価するための一般的な指標であり、正の値で絶対値が大きいほど炭酸カルシウムが析出しやすいことを示し、また、負の値で絶対値が大きいほど炭酸カルシウムが析出しにくいことを示す。また、ランゲリア指数が0のときは、炭酸カルシウムが析出も溶解もしない平衡状態にある。このことから、処理水のランゲリア指数が0未満の場合は、限外ろ過膜や精密ろ過膜の膜面において炭酸カルシウムによるスケールが生成しにくい状態にあり、逆に、0を超える場合は、膜面において炭酸カルシウムによるスケールが生成しやすいことになる。 The Langeria index is a general index for evaluating the tendency of scale generation in water systems, and a positive value indicates that calcium carbonate is more likely to precipitate, and a negative value indicates a larger absolute value. It indicates that calcium carbonate is less likely to precipitate. When the Langeria index is 0, calcium carbonate is in an equilibrium state in which neither precipitation nor dissolution occurs. From this, when the Lageria index of the treated water is less than 0, it is difficult to generate scales due to calcium carbonate on the membrane surface of the ultrafiltration membrane or microfiltration membrane, and conversely, when it exceeds 0, the membrane is On the surface, scales due to calcium carbonate are easily generated.

そこで、pH調整剤量制御部50は、算出された処理水のランゲリア指数が0以上の場合、処理水のランゲリア指数が0未満となるように、pH調整剤の添加量を設定する。そして、pH調整剤添加装置40は、設定されたpH調整剤の添加量に基づいて、処理水にpH調整剤を添加し、処理水のランゲリア指数を0未満にする。処理水のランゲリア指数は、式(1)から明らかなように、処理水のpHの低下とともに小さくなり、pHの上昇とともに大きくなる。したがって、処理水のランゲリア指数は、処理水のpHを調整することで制御可能である。 Therefore, the pH adjusting agent amount control unit 50 sets the addition amount of the pH adjusting agent such that the Langereria index of the treated water becomes less than 0 when the calculated Langerian index of the treated water is 0 or more. Then, the pH adjusting agent adding device 40 adds the pH adjusting agent to the treated water based on the set addition amount of the pH adjusting agent, and makes the Langeria index of the treated water less than 0. As is clear from the formula (1), the Langeria index of the treated water decreases as the pH of the treated water decreases and increases as the pH increases. Therefore, the Langeria index of the treated water can be controlled by adjusting the pH of the treated water.

本実施形態の処理システム5は、例えば、フッ素を含有する排水を処理するシステムとして有効である。フッ素を含有する排水(被処理水)に対する凝集沈殿処理又は加圧浮上処理においては、フッ素を回収するために、当該被処理水に有機系凝集剤と共に、カルシウム剤を添加する場合がある。このような凝集沈殿処理又は加圧浮上処理により得られる処理水には、カルシウムが含まれる場合があり、処理水のランゲリア指数が0以上となり易い。その結果、限外ろ過膜や精密ろ過膜の表面にスケールが生成する場合がある。しかし、本実施形態では、前述したように、処理水のランゲリア指数が0未満となるように(マイナスの値となるように)処理水のpHを調整するため、スケールの生成が抑制される。したがって、膜のファウリングをより抑制することが可能となり、より安定的な運転が可能となる。なお、図での説明は省略するが、図2〜図4に示す処理システムに、pH調整システムを設置してもよい。 The treatment system 5 of the present embodiment is effective, for example, as a system for treating wastewater containing fluorine. In the coagulation sedimentation treatment or the pressure floating treatment for the wastewater containing fluorine (water to be treated), a calcium agent may be added to the water to be treated together with the organic flocculant in order to recover the fluorine. The treated water obtained by such coagulating sedimentation treatment or pressure floating treatment may contain calcium, and the Langerian index of the treated water tends to be 0 or more. As a result, scale may be generated on the surface of the ultrafiltration membrane or the microfiltration membrane. However, in the present embodiment, as described above, the pH of the treated water is adjusted so that the Langeria index of the treated water is less than 0 (so that it has a negative value), so that generation of scale is suppressed. Therefore, fouling of the membrane can be further suppressed, and more stable operation can be performed. Although not shown in the drawings, a pH adjusting system may be installed in the processing system shown in FIGS.

(参考例)
図6は、参考例における処理システムの構成を示す模式図である。図6に示す処理システム6において、図1に示す処理システム1と同様の構成については同一の符号を付し、その説明を省略する。図6に示す処理システム6では、膜ろ過処理する際に、凝集沈殿処理(又は凝集加圧浮上処理)した処理水に、無機系凝集剤は添加されず、酸化剤が酸化剤添加装置29から酸化剤添加ライン30を通して第2凝集反応槽18内に添加されるように構成されている。なお、酸化剤の添加は、図2に示すライン注入でもよい。
(Reference example)
FIG. 6 is a schematic diagram showing the configuration of the processing system in the reference example. In the processing system 6 shown in FIG. 6, the same components as those of the processing system 1 shown in FIG. 1 are designated by the same reference numerals, and their description will be omitted. In the treatment system 6 shown in FIG. 6, during the membrane filtration treatment, the inorganic flocculant is not added to the treated water subjected to the flocculation sedimentation treatment (or the flocculation pressurization floating treatment), and the oxidizing agent is added from the oxidizing agent adding device 29. It is configured to be added into the second aggregation reaction tank 18 through the oxidant addition line 30. The oxidant may be added by the line injection shown in FIG.

図6に示す処理システム6では、膜ろ過処理の際、処理水に酸化剤を添加することで、有機系凝集剤の分子の鎖を切断し、有機系凝集剤の分子量を限外ろ過膜や精密ろ過膜の分画分子量以下、好ましくは分画分子量より小さくする。その結果、有機系凝集剤の一部は膜に捕捉されず、処理水と共に膜を通過するため、無機系凝集剤のみの添加と比較して、膜のファウリングをより抑えることが可能となる。 In the treatment system 6 shown in FIG. 6, during the membrane filtration treatment, an oxidizing agent is added to the treated water to break the chains of the molecules of the organic flocculant, thereby reducing the molecular weight of the organic flocculant to an ultrafiltration membrane or The molecular weight is less than or equal to the molecular weight cut-off of the microfiltration membrane, preferably smaller than the molecular weight cut-off. As a result, a part of the organic coagulant is not captured by the membrane and passes through the membrane together with the treated water, so that it is possible to further suppress the fouling of the membrane as compared with the addition of only the inorganic coagulant. ..

酸化剤の添加量は、有機系凝集剤の分子量を膜の分画分子量以下にすることができる量であれば特に制限されるものではないが、例えば、被処理水中の有機系凝集剤の濃度(mg/L)に対して2.5倍〜100倍とすることが好ましく、20倍〜50とすることがより好ましい。 The addition amount of the oxidant is not particularly limited as long as the molecular weight of the organic coagulant can be equal to or less than the molecular weight cutoff of the membrane, for example, the concentration of the organic coagulant in the water to be treated It is preferably 2.5 times to 100 times, more preferably 20 times to 50 times (mg/L).

有機系凝集剤の分子量を小さくする方法は、酸化剤の添加以外に、処理水にせん断力を付与する方法も挙げられる。せん断力付与手段として、例えば、第2凝集反応槽18に設置した撹拌機28bを用い、処理水を撹拌してせん断力を付与することで、有機系凝集剤の分子の鎖を切断し、有機系凝集剤の分子量を限外ろ過膜や精密ろ過膜の分画分子量以下にする。有機系凝集剤の分子量を小さくするために設定される撹拌速度は、例えば、200rpm〜1,000rpmの範囲であり、700rpm〜1,000rpmの範囲が好ましい。また、有機系凝集剤の分子量を小さくするために設定される撹拌時間は、例えば、5分〜1時間の範囲であり、30分〜1時間の範囲が好ましい。なお、図での説明は省略するが、図6に示す処理システムを図2〜5に示す処理システムに適用することも可能である。 As a method of reducing the molecular weight of the organic coagulant, a method of imparting a shearing force to the treated water may be mentioned in addition to the addition of the oxidizing agent. As the shearing force imparting means, for example, a stirrer 28b installed in the second aggregating reaction tank 18 is used to stir the treated water to impart a shearing force to break the chains of the molecules of the organic coagulant. The molecular weight of the coagulant is set to be equal to or lower than the molecular weight cut-off of the ultrafiltration membrane or the microfiltration membrane. The stirring speed set to reduce the molecular weight of the organic flocculant is, for example, in the range of 200 rpm to 1,000 rpm, and preferably in the range of 700 rpm to 1,000 rpm. The stirring time set to reduce the molecular weight of the organic coagulant is, for example, in the range of 5 minutes to 1 hour, preferably 30 minutes to 1 hour. Although not described in the figure, the processing system shown in FIG. 6 can be applied to the processing systems shown in FIGS.

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例1)
図1に示す処理システムを用いて、表1に示す水質のめっき系排水を処理した。
(Example 1)
The treatment system shown in FIG. 1 was used to treat the plating-based wastewater having the water quality shown in Table 1.

Figure 0006735830
Figure 0006735830

実施例1の膜ろ過装置として、UF膜装置を用いた。UF膜装置の詳細は以下に示す通りである。
寸法:外径230mm×高さ2400mm
ろ過面積(膜面積):77m
限外ろ過膜:中空糸膜、PVDF製、公称孔径0.01μm(公称分画分子量360,000Da)
ろ過方式:外圧式デッドエンドろ過
処理流量:9.6m/h
A UF membrane device was used as the membrane filtration device of Example 1. Details of the UF membrane device are as follows.
Dimensions: 230 mm outer diameter x 2400 mm height
Filtration area (membrane area): 77 m 2
Ultrafiltration membrane: Hollow fiber membrane, PVDF, nominal pore size 0.01 μm (nominal molecular weight cutoff 360,000 Da)
Filtration method: External pressure type dead end filtration Treatment flow rate: 9.6 m 3 /h

表1に示す水質のめっき系排水に、有機系凝集剤としてポリアクリルアミド系ポリマーを1.0ppm添加し、凝集沈殿処理を行った後、上澄み水を第2凝集反応槽に供給した。第2凝集反応槽に無機系凝集剤として塩化鉄を75ppm添加した後、膜ろ過装置(UF膜装置)に通水し、膜ろ過処理を行った。 After adding 1.0 ppm of a polyacrylamide polymer as an organic flocculant to the water-based plating wastewater having the water quality shown in Table 1 and performing a flocculation-precipitation treatment, supernatant water was supplied to the second flocculation reaction tank. After adding 75 ppm of iron chloride as an inorganic flocculant to the second flocculation reaction tank, water was passed through a membrane filtration device (UF membrane device) for membrane filtration treatment.

(実施例2)
無機系凝集剤(塩化鉄)を75ppmから10ppmに変更したこと以外は、実施例1と同様の処理を行った。
(Example 2)
The same process as in Example 1 was performed except that the inorganic flocculant (iron chloride) was changed from 75 ppm to 10 ppm.

(比較例1)
無機系凝集剤(塩化鉄)を添加しなかったこと以外は、実施例1と同様の処理を行った。
(Comparative Example 1)
The same treatment as in Example 1 was performed except that the inorganic flocculant (iron chloride) was not added.

(比較例2)
有機系凝集剤(ポリアクリルアミド系ポリマー)を1.0ppmから0.5ppmに変更し、無機系凝集剤(塩化鉄)を添加しなかったこと以外は、実施例1と同様の処理を行った。
(Comparative example 2)
The same treatment as in Example 1 was performed except that the organic flocculant (polyacrylamide polymer) was changed from 1.0 ppm to 0.5 ppm and the inorganic flocculant (iron chloride) was not added.

表2に、実施例1〜2、及び比較例1〜2の膜ろ過処理により得られた処理水の水質結果を示す。また、図7に、実施例1〜2、及び比較例1〜2における膜ろ過装置のろ過量(m/m)に対するろ過抵抗(1/m)の結果を示す。Table 2 shows the water quality results of the treated water obtained by the membrane filtration treatments of Examples 1 and 2 and Comparative Examples 1 and 2. Further, FIG. 7 shows the results of the filtration resistance to filtration rate of the membrane filtration apparatus in Examples 1-2, and Comparative Examples 1~2 (m 3 / m 2) (1 / m).

Figure 0006735830
Figure 0006735830

図7に示すように、有機系凝集剤を用いた凝集沈殿処理により得られる処理水に無機系凝集剤を添加して膜ろ過処理を実施した実施例1及び2は、上記処理水に無機系凝集剤を添加しないでそのまま膜ろ過処理を実施した比較例1及び2と比較して、ろ過量が増加してもろ過抵抗の上昇が抑えられた。ろ過量の増加に対するろ過抵抗の上昇率は、膜のファウリングによるろ過性能の低下を示している。したがって、実施例1及び2の処理方法は、膜のファウリングが抑えられ、安定的な運転が可能であることを示している。なお、比較例2より有機系凝集剤の添加量の多い比較例1の方が、比較例2よりろ過抵抗の上昇率が高いことを鑑みると、膜のファウリングには、処理水に残存する有機系凝集剤が寄与していると言える。一方、実施例1及び2は、比較例1と同量の有機系凝集剤が添加されているが、ろ過量が増加してもろ過抵抗はほとんど上昇せず、膜のファウリングが抑えられている。これは無機系凝集剤を添加することで、処理水中の有機系凝集剤が膜表面に付着しにくい形態に変化したためであると考えられる。 As shown in FIG. 7, in Examples 1 and 2 in which an inorganic coagulant was added to the treated water obtained by the coagulation sedimentation treatment using an organic coagulant, the inorganic water was added to the treated water. Compared to Comparative Examples 1 and 2 in which the membrane filtration treatment was carried out without adding a coagulant, the increase in filtration resistance was suppressed even if the filtration amount increased. The rate of increase in filtration resistance with respect to the increase in filtration amount indicates a decrease in filtration performance due to fouling of the membrane. Therefore, the treatment methods of Examples 1 and 2 show that fouling of the membrane is suppressed and stable operation is possible. Considering that Comparative Example 1 in which the addition amount of the organic coagulant is larger than Comparative Example 2 has a higher rate of increase in filtration resistance than Comparative Example 2, the fouling of the membrane remains in the treated water. It can be said that the organic coagulant contributes. On the other hand, in Examples 1 and 2, the same amount of the organic coagulant as in Comparative Example 1 was added, but the filtration resistance hardly increased even when the filtration amount increased, and the fouling of the membrane was suppressed. There is. It is considered that this is because the addition of the inorganic coagulant changed the organic coagulant in the treated water into a form in which the organic coagulant was less likely to adhere to the film surface.

また、表2に示すように、実施例1及び2では、処理水のTOCが低減しており、残留していた有機系凝集剤が処理されていることを確認した。 Further, as shown in Table 2, in Examples 1 and 2, the TOC of the treated water was reduced, and it was confirmed that the residual organic coagulant was treated.

(実施例3)
有機系凝集剤(ポリアクリルアミド系ポリマー)を1.0ppmから5.0ppmに変更し、無機系凝集剤(塩化鉄)を75ppmから2.5ppmに変更したこと以外は、実施例1と同様の処理を行った。
(Example 3)
The same treatment as in Example 1 except that the organic flocculant (polyacrylamide polymer) was changed from 1.0 ppm to 5.0 ppm and the inorganic flocculant (iron chloride) was changed from 75 ppm to 2.5 ppm. I went.

(比較例3)
表1に示す水質のめっき系排水に、有機系凝集剤として(ポリアクリルアミド系ポリマー)を5.0ppm添加すると共に、無機系凝集剤として塩化鉄を1ppm添加して、凝集沈殿処理を行った後、上澄み水をそのまま膜ろ過装置(前述のUF膜装置)に通水し、膜ろ過処理を行った。
(Comparative example 3)
After adding 5.0 ppm of (polyacrylamide polymer) as an organic flocculant and 1 ppm of iron chloride as an inorganic flocculant to the plating effluent of the water quality shown in Table 1, after performing coagulating sedimentation treatment The supernatant water was directly passed through the membrane filtration device (UF membrane device described above) for membrane filtration treatment.

表3に、実施例3及び比較例3の膜ろ過処理により得られた処理水の水質結果を示す。 Table 3 shows the water quality results of the treated water obtained by the membrane filtration treatment of Example 3 and Comparative Example 3.

Figure 0006735830
Figure 0006735830

図8に、実施例3及び比較例3における膜ろ過装置のろ過量(m/m)に対するろ過抵抗(1/m)の結果を示す。実施例3のろ過抵抗の上昇率は、実施例1及び2と同様であった。一方、比較例3の濾過抵抗の上昇率は、無機系凝集剤の添加量が同じ実施例3と比較して高い結果となったが、無機系凝集剤を添加していない比較例1,2と比べて低い結果となった。これらの結果から、膜のファウリングを抑制するには、有機系凝集剤を用いた凝集沈殿処理により得られる処理水に、無機系凝集剤を添加する必要があるといえる。FIG. 8 shows the results of filtration resistance (1/m) with respect to the filtration amount (m 3 /m 2 ) of the membrane filtration devices in Example 3 and Comparative Example 3. The rate of increase in filtration resistance in Example 3 was similar to those in Examples 1 and 2. On the other hand, the rate of increase in filtration resistance of Comparative Example 3 was higher than that of Example 3 in which the addition amount of the inorganic coagulant was the same, but Comparative Examples 1 and 2 in which the inorganic coagulant was not added. The result was lower than that of From these results, it can be said that in order to suppress the fouling of the membrane, it is necessary to add the inorganic coagulant to the treated water obtained by the coagulation sedimentation treatment using the organic coagulant.

(実施例4)
無機系凝集剤を塩化鉄からポリ塩化アルミニウム(PAC)に代え、添加量を75ppmから50ppmに変更したこと以外は、実施例1と同様の処理を行った。
(Example 4)
The same treatment as in Example 1 was performed except that the inorganic coagulant was changed from iron chloride to polyaluminum chloride (PAC) and the addition amount was changed from 75 ppm to 50 ppm.

(比較例4)
原水のサンプリング日時を変更したこと以外は、比較例1と同様の処理を行った。
(Comparative Example 4)
The same treatment as in Comparative Example 1 was performed except that the sampling date and time of the raw water was changed.

図9に、実施例4及び比較例4における膜ろ過装置のろ過量(m/m)に対するろ過抵抗(1/m)の結果を示す。無機系凝集剤としてPACを用いた実施例4は、実施例1〜3と同様に、ろ過量が増加してもろ過抵抗はほとんど上昇せず、膜のファウリングが抑えられた。一方、無機凝集剤を添加していない比較例4は、ろ過量の増加に伴いろ過抵抗が上昇した。FIG. 9 shows the results of filtration resistance (1/m) with respect to the filtration amount (m 3 /m 2 ) of the membrane filtration devices in Example 4 and Comparative Example 4. In Example 4, in which PAC was used as the inorganic flocculant, the filtration resistance hardly increased even when the filtration amount increased, and the fouling of the membrane was suppressed, as in Examples 1 to 3. On the other hand, in Comparative Example 4 in which the inorganic coagulant was not added, the filtration resistance increased as the filtration amount increased.

(実施例5〜10)
図1に示す処理システムを用いて、模擬排水を処理した。模擬排水は、水道水にベントナイト10mg/Lを分散させたものである。膜ろ過装置は、実施例1と同じUF膜装置である。
(Examples 5 to 10)
Simulated wastewater was treated using the treatment system shown in FIG. The simulated waste water is obtained by dispersing bentonite 10 mg/L in tap water. The membrane filtration device is the same UF membrane device as in the first embodiment.

実施例5では、上記模擬排水に、有機系凝集剤としてポリアクリル酸系ポリマー(オルガノ社製、OX−304(カチオン系ポリマー))を1.0ppm添加し、凝集沈殿処理を行った後、上澄み水を第2凝集反応槽に供給した。第2凝集反応槽に無機系凝集剤としてPACを10ppm添加した後、膜ろ過装置(UF膜装置)に通水し、膜ろ過処理を行った。 In Example 5, 1.0 ppm of a polyacrylic acid polymer (OX-304 (cationic polymer) manufactured by Organo Co.) as an organic flocculant was added to the simulated wastewater, and after performing coagulation sedimentation treatment, the supernatant was obtained. Water was supplied to the second flocculation reaction tank. After adding 10 ppm of PAC as an inorganic flocculant to the second flocculation reaction tank, water was passed through a membrane filtration device (UF membrane device) for membrane filtration treatment.

実施例6では、有機系凝集剤をポリアクリル酸系ポリマー(オルガノ社製、OX−304(カチオン系ポリマー))からアクリルアミド系ポリマー(オルガノ社製、AP−1(アニオン系ポリマー))に代えたこと以外は、実施例5と同様に膜ろ過処理を行った。 In Example 6, the organic coagulant was changed from a polyacrylic acid-based polymer (Organo, OX-304 (cationic polymer)) to an acrylamide-based polymer (Organo, AP-1 (anionic polymer)). Membrane filtration treatment was performed in the same manner as in Example 5 except for the above.

実施例7では、有機系凝集剤をポリアクリル酸系ポリマー(オルガノ社製、OX−304(カチオン系ポリマー))からポリアクリルアミド系ポリマー(オルガノ社製、ON−1H(ノニオン系ポリマー))に代えたこと以外は、実施例5と同様に膜ろ過処理を行った。 In Example 7, the organic coagulant was changed from a polyacrylic acid-based polymer (Organo, OX-304 (cationic polymer)) to a polyacrylamide-based polymer (Organo, ON-1H (nonionic polymer)). Membrane filtration treatment was performed in the same manner as in Example 5 except for the above.

実施例8では、無機凝集剤をPACから塩化鉄(FeCl)に代えたこと以外は、実施例5と同様に膜ろ過処理を行った。In Example 8, the membrane filtration treatment was performed in the same manner as in Example 5 except that the inorganic coagulant was changed from PAC to iron chloride (FeCl 3 ).

実施例9では、無機凝集剤をPACから塩化鉄(FeCl)に代えたこと以外は、実施例6と同様に膜ろ過処理を行った。In Example 9, the membrane filtration treatment was performed in the same manner as in Example 6 except that the inorganic coagulant was changed from PAC to iron chloride (FeCl 3 ).

実施例10では、無機凝集剤をPACから塩化鉄(FeCl)に代えたこと以外は、実施例7と同様に膜ろ過処理を行った。In Example 10, the membrane filtration treatment was performed in the same manner as in Example 7 except that the inorganic coagulant was changed from PAC to iron chloride (FeCl 3 ).

(比較例5〜7)
比較例5では、無機凝集剤を添加しなかったこと以外は、実施例5と同様に膜ろ過処理を行った。
(Comparative Examples 5-7)
In Comparative Example 5, the membrane filtration treatment was performed in the same manner as in Example 5 except that the inorganic coagulant was not added.

比較例6では、無機凝集剤を添加しなかったこと以外は、実施例6と同様に膜ろ過処理を行った。 In Comparative Example 6, the membrane filtration treatment was performed in the same manner as in Example 6 except that the inorganic coagulant was not added.

比較例7では、無機凝集剤を添加しなかったこと以外は、実施例7と同様に膜ろ過処理を行った。 In Comparative Example 7, the membrane filtration treatment was performed in the same manner as in Example 7 except that the inorganic coagulant was not added.

実施例5〜10及び比較例5〜7において、膜ろ過装置に通水してから200mlのろ液を得るまでの時間(ろ過時間)を計測した。その結果を表4に示す。ろ過時間が長いほどろ過抵抗の上昇が早いことを意味する。 In Examples 5 to 10 and Comparative Examples 5 to 7, the time (filtering time) from passing water through the membrane filtration device to obtaining 200 ml of filtrate was measured. The results are shown in Table 4. The longer the filtration time, the faster the filtration resistance increases.

Figure 0006735830
Figure 0006735830

有機系凝集剤及び無機系凝集剤を添加した実施例5〜10はいずれも、有機系凝集剤のみを添加した比較例5〜7と比べて、ろ過時間が短縮された。すなわち、実施例5〜10は、比較例5〜7より、ろ過抵抗の上昇が抑制されたと言える。 In each of Examples 5 to 10 in which the organic coagulant and the inorganic coagulant were added, the filtration time was shortened as compared with Comparative Examples 5 to 7 in which only the organic coagulant was added. That is, it can be said that Examples 5 to 10 suppressed the increase in filtration resistance as compared with Comparative Examples 5 to 7.

1〜6 処理システム、10 第1凝集反応槽、12 有機系凝集剤添加ライン、14凝集沈殿槽、15 無機系凝集剤添加装置、16 無機系凝集剤添加ライン、18 第2凝集反応槽、20 膜ろ過装置、22 被処理水配管、24a〜24c 接続配管、26,26a,26b 処理水配管、28a,28b 撹拌機、29 酸化剤添加装置、30 酸化剤添加ライン、32 活性炭装置、34 逆浸透膜装置、36 透過水配管、38 濃縮水配管、40 pH調整剤添加装置、42 pH調整剤添加配管、44 水質検出装置、46 制御部、48 ランゲリア指数算出部、50 pH調整剤量制御部。 1 to 6 treatment system, 10 first coagulation reaction tank, 12 organic coagulant addition line, 14 coagulation sedimentation tank, 15 inorganic coagulant addition device, 16 inorganic coagulant addition line, 18 second coagulation reaction tank, 20 Membrane filtration device, 22 treated water pipe, 24a to 24c connection pipe, 26, 26a, 26b treated water pipe, 28a, 28b stirrer, 29 oxidant addition device, 30 oxidant addition line, 32 activated carbon device, 34 reverse osmosis Membrane device, 36 permeate water pipe, 38 concentrated water pipe, 40 pH adjusting agent adding device, 42 pH adjusting agent adding pipe, 44 water quality detecting device, 46 control unit, 48 Langerian index calculating unit, 50 pH adjusting agent amount control unit.

Claims (9)

被処理水に有機系凝集剤を添加して凝集沈殿処理又は凝集加圧浮上処理した処理水に、無機系凝集剤を添加して、限外ろ過膜処理及び精密ろ過膜処理のうち少なくともいずれか一方の膜ろ過処理を行う膜ろ過方法であって、
前記有機系凝集剤は、ポリアクリルアミド系凝集剤、ポリスルホン酸系凝集剤、ポリアクリル酸系凝集剤、ポリアクリル酸エステル系凝集剤、ポリアミン系凝集剤、ポリメタクリル酸凝集剤のうちの少なくともいずれか1つであり、
前記膜ろ過処理の際に、前記処理水に対して撹拌機を用いて撹拌速度200〜1000rpmで撹拌して剪断力を付与するか、前記処理水に酸化剤を添加するかのうち少なくともいずれか一方を行い、前記処理水中の有機系凝集剤の平均分子量を前記膜ろ過処理で使用する膜の分画分子量以下にすることを特徴とする膜ろ過方法。
At least one of ultrafiltration membrane treatment and microfiltration membrane treatment by adding an inorganic flocculant to treated water obtained by adding an organic flocculant to treated water A membrane filtration method for performing one membrane filtration process,
The organic coagulant is at least one of a polyacrylamide coagulant, a polysulfonic acid coagulant, a polyacrylic acid coagulant, a polyacrylic acid ester coagulant, a polyamine coagulant, and a polymethacrylic acid coagulant. One,
At the time of the membrane filtration treatment, at least one of applying a shearing force to the treated water by stirring with a stirrer at a stirring speed of 200 to 1000 rpm, or adding an oxidant to the treated water. One is performed, and the average molecular weight of the organic coagulant in the treated water is set to be equal to or less than the molecular weight cutoff of the membrane used in the membrane filtration treatment.
前記無機系凝集剤の添加量は、前記被処理水中の有機系凝集剤の濃度(m)に対して、0.5倍〜75倍の範囲であることを特徴とする請求項1に記載の膜ろ過方法。 The amount of the inorganic flocculant added is in the range of 0.5 times to 75 times the concentration ( mg / L ) of the organic flocculant in the water to be treated. The membrane filtration method described in. 前記無機凝集剤の添加量を、前記凝集沈殿処理又は凝集加圧浮上処理した処理水において、LC−OCDにより検出される高分子有機物の濃度に応じて制御することを特徴とする請求項1〜2のいずれか1項に記載の膜ろ過方法。 The addition amount of the inorganic coagulant is controlled according to the concentration of a high molecular weight organic substance detected by LC-OCD in the treated water that has been subjected to the coagulation sedimentation treatment or the coagulation pressurization floatation treatment. The membrane filtration method according to any one of 2 above. 前記膜ろ過処理した処理水に対して、活性炭処理及び逆浸透膜処理のうち少なくともいずれか一方の後処理を行うことを特徴とする請求項1〜3のいずれか1項に記載の膜ろ過方法。 The membrane filtration method according to any one of claims 1 to 3, wherein at least one of activated carbon treatment and reverse osmosis membrane treatment is performed on the treated water subjected to the membrane filtration treatment. .. 前記膜ろ過処理の際に、前記処理水のランゲリア指数(LSI)が0未満となるように、前記処理水のpHを調整することを特徴とする請求項1〜4のいずれか1項に記載の膜ろ過方法。 The pH of the treated water is adjusted so that the Langerian index (LSI) of the treated water is less than 0 during the membrane filtration treatment. Membrane filtration method. 被処理水に有機系凝集剤を添加して凝集沈殿処理又は凝集加圧浮上処理した処理水に、無機系凝集剤を添加する無機凝集剤添加手段と、
限外ろ過膜及び精密ろ過膜のうち少なくともいずれか一方を有し、前記無機系凝集剤を添加した処理水を膜ろ過処理する膜ろ過処理手段と、
前記膜ろ過処理の際に、前記処理水に対して撹拌速度200〜1000rpmで撹拌してせん断力を付与するせん断力付与手段及び前記処理水に酸化剤を添加する酸化剤添加手段のうち少なくともいずれか一方と、を備え、
前記有機系凝集剤は、ポリアクリルアミド系凝集剤、ポリスルホン酸系凝集剤、ポリアクリル酸系凝集剤、ポリアクリル酸エステル系凝集剤、ポリアミン系凝集剤、ポリメタクリル酸凝集剤のうちの少なくともいずれか1つであり、
前記せん断力の付与及び前記酸化剤の添加のうち少なくともいずれか一方により、前記処理水中の有機系凝集剤の平均分子量を前記膜ろ過処理で使用する膜の分画分子量以下にすることを特徴とする膜ろ過システム。
An inorganic coagulant addition means for adding an inorganic coagulant to the treated water that has been subjected to coagulation sedimentation treatment or coagulation pressure floating treatment by adding an organic coagulant to the water to be treated,
Membrane filtration treatment means having at least one of an ultrafiltration membrane and a microfiltration membrane, performing membrane filtration treatment of the treated water to which the inorganic coagulant is added,
At least one of a shearing force applying means for applying a shearing force to the treated water by stirring at a stirring speed of 200 to 1000 rpm and an oxidizing agent adding means for adding an oxidizing agent to the treated water during the membrane filtration treatment. With one side,
The organic coagulant is at least one of a polyacrylamide coagulant, a polysulfonic acid coagulant, a polyacrylic acid coagulant, a polyacrylic acid ester coagulant, a polyamine coagulant, and a polymethacrylic acid coagulant. One,
By applying at least one of the application of the shearing force and the addition of the oxidizing agent, the average molecular weight of the organic coagulant in the treated water is set to be not more than the molecular weight cutoff of the membrane used in the membrane filtration treatment. Membrane filtration system.
前記無機系凝集剤の添加量は、前記被処理水中の有機系凝集剤の濃度(m)に対して、0.5倍〜75倍の範囲であることを特徴とする請求項6に記載の膜ろ過システム。 7. The amount of the inorganic flocculant added is in the range of 0.5 to 75 times the concentration ( mg / L ) of the organic flocculant in the water to be treated. The membrane filtration system according to. 前記膜ろ過処理した処理水に対して後処理を行う後処理手段を有し、
前記後処理手段は、活性炭処理手段及び逆浸透膜処理手段のうち少なくともいずれか一方を備えることを特徴とする請求項6〜7のいずれか1項に記載の膜ろ過システム。
Having a post-treatment means for performing a post-treatment on the treated water subjected to the membrane filtration treatment,
8. The membrane filtration system according to claim 6, wherein the post-treatment means includes at least one of activated carbon treatment means and reverse osmosis membrane treatment means.
前記膜ろ過処理の際に、前記処理水のランゲリア指数(LSI)が0未満となるように、前記処理水のpHを調整するpH調整手段を備えることを特徴とする請求項6〜8のいずれか1項に記載の膜ろ過システム。 9. A pH adjusting unit for adjusting the pH of the treated water so that the Langerian index (LSI) of the treated water becomes less than 0 during the membrane filtration treatment. The membrane filtration system according to item 1.
JP2018532907A 2016-08-08 2017-07-20 Membrane filtration method and membrane filtration system Active JP6735830B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016155442 2016-08-08
JP2016155442 2016-08-08
PCT/JP2017/026324 WO2018030109A1 (en) 2016-08-08 2017-07-20 Membrane filtration method and membrane filtration system

Publications (2)

Publication Number Publication Date
JPWO2018030109A1 JPWO2018030109A1 (en) 2019-01-10
JP6735830B2 true JP6735830B2 (en) 2020-08-05

Family

ID=61162913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018532907A Active JP6735830B2 (en) 2016-08-08 2017-07-20 Membrane filtration method and membrane filtration system

Country Status (5)

Country Link
JP (1) JP6735830B2 (en)
CN (1) CN109562962B (en)
SG (1) SG11201900176UA (en)
TW (1) TWI772317B (en)
WO (1) WO2018030109A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117542A1 (en) * 2019-12-12 2021-06-17 パナソニックIpマネジメント株式会社 Water softener
JP7074156B2 (en) 2020-06-01 2022-05-24 栗田工業株式会社 Water treatment method and water treatment equipment
CN112661328B (en) * 2020-11-27 2022-11-22 杭州正和纳米科技有限公司 Production press filtration water treatment process

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001120964A (en) * 1999-10-25 2001-05-08 Ishikawajima Harima Heavy Ind Co Ltd Method for preventing clogging of membrane filter and device for the same
JP2003260486A (en) * 2002-03-11 2003-09-16 Nippon Steel Corp Sewage treatment method
US20040065613A1 (en) * 2002-10-02 2004-04-08 Jason Cadera Use of polymer as flocculation aid in membrane filtration
JP2004351375A (en) * 2003-05-30 2004-12-16 Ebara Corp High-speed floatation separation method of waste water and apparatus therefor
FR2891540B1 (en) * 2005-09-30 2007-12-28 Otv Sa METHOD FOR TREATING WATER COMPRISING A RAPID DECANTATION STEP FOLLOWED BY A FILTRATION STEP DIRECTLY ON MEMBRANES OF MICRO OR ULTRA-FILTRATION, AND CORRESPONDING DEVICE
JP4862361B2 (en) * 2005-11-08 2012-01-25 栗田工業株式会社 Waste water treatment apparatus and waste water treatment method
JP2007245078A (en) * 2006-03-17 2007-09-27 Kurita Water Ind Ltd Water treatment system and water treatment process
JP5512068B2 (en) * 2006-03-24 2014-06-04 三菱レイヨン株式会社 Water treatment method
JP2011016100A (en) * 2009-07-10 2011-01-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
FR2958927B1 (en) * 2010-04-20 2012-05-25 Otv Sa METHOD FOR WATER TREATMENT BY FLOCCULATION USING A FLOCCULANT AGENT OF NATURAL ORIGIN
JP2013063372A (en) * 2011-09-15 2013-04-11 Toshiba Corp Desalination system
KR101153187B1 (en) * 2012-04-12 2012-07-02 블루그린링크(주) Apparatus for purifying wastewater and method thereof
JP5874925B2 (en) * 2012-08-01 2016-03-02 Jfeエンジニアリング株式会社 Incineration plant wastewater treatment method and treatment equipment
JP2014210232A (en) * 2013-04-18 2014-11-13 山陽特殊製鋼株式会社 Method for processing alkaline waste water including calcium-eluting particles
JP6421461B2 (en) * 2014-05-30 2018-11-14 栗田工業株式会社 Ion exchanger supply water evaluation method and operation management method
CN104071919B (en) * 2014-06-23 2017-02-15 江苏久吾高科技股份有限公司 Treatment method for oil field polymer-bearing wastewater
JP2016131937A (en) * 2015-01-20 2016-07-25 株式会社日立製作所 Seawater desalination system and method
JP2016144778A (en) * 2015-02-06 2016-08-12 栗田工業株式会社 Water treatment flocculant and water treatment method

Also Published As

Publication number Publication date
TWI772317B (en) 2022-08-01
CN109562962B (en) 2021-10-22
SG11201900176UA (en) 2019-02-27
TW201808819A (en) 2018-03-16
WO2018030109A1 (en) 2018-02-15
CN109562962A (en) 2019-04-02
JPWO2018030109A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP4241684B2 (en) Membrane module cleaning method
JP2007245078A (en) Water treatment system and water treatment process
JP2008229418A (en) Method and apparatus for industrial water treatment
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP2012196614A (en) Method and system for wastewater treatment
JP2020006332A (en) Water treatment apparatus and water treatment method
JP2011050843A (en) Method of and system for desalinating water to be treated
JP2001191086A (en) Water treating apparatus
JP5103747B2 (en) Water treatment apparatus and water treatment method
JP6565268B2 (en) Method and apparatus for treating inorganic carbon-containing water
JP2012200696A (en) Desalting method and desalting apparatus
JP6687056B2 (en) Water treatment method and water treatment device
JPWO2016111371A1 (en) Method of improving semi-permeable membrane blocking performance, semi-permeable membrane, semi-permeable membrane water generator
JP2012187467A (en) Membrane separation method and membrane separator
JP6657720B2 (en) Steam power plant wastewater recovery method and device
JP2011056411A (en) System and method for desalination of water to be treated
JP5054289B2 (en) Operation method of membrane separator
JP5237164B2 (en) Filtration membrane cleaning method
TWI771476B (en) Processing device and processing method for silica-containing water
JP7354744B2 (en) Wastewater utilization system
JP2004267830A (en) Method for treating biological treatment water-containing water
JP7168739B2 (en) Water treatment device and water treatment method
JP2014046235A (en) Fresh water generating method
Fan et al. Optimization of Integrated Ultrafiltration Processes Using Response Surface Methodology
JP2011025143A (en) Virus removal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R150 Certificate of patent or registration of utility model

Ref document number: 6735830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250