JP5103747B2 - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP5103747B2
JP5103747B2 JP2006027291A JP2006027291A JP5103747B2 JP 5103747 B2 JP5103747 B2 JP 5103747B2 JP 2006027291 A JP2006027291 A JP 2006027291A JP 2006027291 A JP2006027291 A JP 2006027291A JP 5103747 B2 JP5103747 B2 JP 5103747B2
Authority
JP
Japan
Prior art keywords
membrane
cleaning
water
absorbance
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006027291A
Other languages
Japanese (ja)
Other versions
JP2007203249A (en
Inventor
繁樹 澤田
景二郎 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006027291A priority Critical patent/JP5103747B2/en
Publication of JP2007203249A publication Critical patent/JP2007203249A/en
Application granted granted Critical
Publication of JP5103747B2 publication Critical patent/JP5103747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly maintain a permeation flux of a membrane without reducing a water recovering ratio in a water treating apparatus by a membrane separation after flocculating raw water. <P>SOLUTION: In treating water by flocculation through adding a flocculant to raw water and by membrane-separating the flocculated water, the concentration of organic materials in raw water is measured and the flocculation condition and the cleaning condition of the separating membrane are controlled from the measured value. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、天然水を原料とする用水処理や、工場排水又は下水等を処理する廃水処理において、原水に凝集剤を添加することにより、原水中の懸濁物質、コロイダル成分や有機物質等を凝結かつ粗大化させた後、精密濾過膜(MF膜)、限外濾過膜(UF膜)、ナノ濾過膜(NF膜)などの分離膜によって膜分離処理する水処理装置及び水処理方法に係り、特に、凝集処理における凝集剤処理条件を適正化することにより、安定かつ効率的な凝集処理を行うと共に、分離膜の洗浄条件を適正化することにより、水回収率を低減することなく、膜の透過流束を高く維持する水処理装置及び水処理方法に関する。   In the present invention, wastewater treatment using natural water as a raw material or wastewater treatment for treating industrial wastewater or sewage, etc., by adding a flocculant to the raw water, suspended matter, colloidal components, organic substances, etc. in the raw water TECHNICAL FIELD The present invention relates to a water treatment apparatus and a water treatment method for performing membrane separation treatment with a separation membrane such as a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), and a nanofiltration membrane (NF membrane) after condensation and coarsening. In particular, the coagulant treatment conditions in the coagulation process are optimized to perform stable and efficient coagulation treatment, and the separation membrane cleaning conditions are optimized to reduce the water recovery rate without reducing the water recovery rate. The present invention relates to a water treatment apparatus and a water treatment method that maintain a high permeation flux of water.

天然水を原料とする用水処理や、工場排水又は下水等を処理する廃水処理においては、原水に凝集剤を添加して、原水中の懸濁物質、コロイダル成分や有機物質等を凝結かつ粗大化させた後、沈殿、浮上、濾過、膜濾過等により固液分離する方法や、膜濾過単独で除濁・除菌して処理水を回収することが行われている。   In water treatment using natural water as raw material and wastewater treatment for treating industrial wastewater or sewage, a flocculant is added to the raw water to condense and coarsen suspended substances, colloidal components, organic substances, etc. in the raw water Thereafter, a method of solid-liquid separation by precipitation, flotation, filtration, membrane filtration, or the like, or turbidity / sterilization by membrane filtration alone to recover treated water are performed.

この除濁・除菌用途に使われる膜分離装置では、処理を継続することにより、膜面に汚れが付着して膜差圧が上昇するため、定期的に処理水(膜透過水)を膜の二次側から一次側に逆流させる逆洗操作により、膜面に捕捉した汚染物を排出して膜性能を維持することが行われている。   In this membrane separation device used for turbidity and sterilization, since the treatment continues, dirt adheres to the membrane surface and the membrane differential pressure increases, so the treated water (membrane permeated water) is periodically passed through the membrane. In order to maintain the membrane performance, the contaminants trapped on the membrane surface are discharged by a backwashing operation in which the secondary side is caused to flow backward from the secondary side to the primary side.

しかしながら、天然水や廃水は、多くの場合は、無機粘土鉱物を主体とする濁度成分だけでなく、フミン質や多糖類に代表される生物代謝産物といった有機物が共存するため、これらの有機物により膜が汚染された場合は、処理水を用いる逆洗操作のみでは膜性能を十分に回復し得ない。   However, natural water and wastewater often contain not only turbidity components mainly composed of inorganic clay minerals, but also organic substances such as humic substances and biological metabolites such as polysaccharides. When the membrane is contaminated, the membrane performance cannot be sufficiently recovered only by the back washing operation using the treated water.

これらの有機物汚染に関して、本出願人は、逆洗水に希薄な洗浄薬品を添加し、薬液により逆洗を行う方式を先に提案した(特開平8−243361号公報)。しかしながら、この方法であっても、膜透過流束を大きく設定した場合において、原水中の有機物濃度が上昇すると、急激に膜差圧が増加する問題があった。膜差圧の増加を抑制するために、逆洗頻度を増加させることも考えられるが、逆洗頻度の増加は水回収率の低下につながり、好ましいことではない。   Regarding such organic contamination, the present applicant has previously proposed a method in which dilute cleaning chemicals are added to backwash water and backwashing is performed with a chemical solution (Japanese Patent Laid-Open No. 8-243361). However, even with this method, when the membrane permeation flux is set large, there is a problem that the membrane differential pressure increases rapidly when the organic matter concentration in the raw water increases. Although it is conceivable to increase the frequency of backwashing in order to suppress the increase in the membrane differential pressure, an increase in the frequency of backwashing leads to a decrease in the water recovery rate, which is not preferable.

また、有機物による膜汚染を抑制するために、膜分離処理に先立ち凝集処理を行い、凝集処理水を膜分離処理することが知られており、例えば特許第3312507号公報には、このような水処理にあたり、凝集剤の添加量を処理水(膜透過水)の有機物濃度に基いて制御することが記載されている。しかし、このような処理を実施しても、有機物による膜汚染を十分に防止することはできず、原水の有機物濃度が上昇した際には急激に膜差圧が上昇するという問題があった。   Further, in order to suppress membrane contamination due to organic substances, it is known to perform an agglomeration process prior to the membrane separation process and to perform the membrane separation process on the agglomerated water. For example, Japanese Patent No. 3312507 discloses such water. In the treatment, it is described that the addition amount of the flocculant is controlled based on the organic substance concentration of the treated water (membrane permeated water). However, even if such treatment is performed, membrane contamination due to organic substances cannot be sufficiently prevented, and there is a problem that when the concentration of organic matter in the raw water increases, the membrane differential pressure rapidly increases.

ところで、凝集処理は、後段の膜分離効率を高めるためのものであり、凝集剤としては、一般にアルミニウム塩や鉄塩等の無機凝集剤が用いられる。また、無機凝集剤で凝結した粒子を更に粗大化させるための凝集補助剤として高分子凝集剤が併用される場合も多い。   By the way, the agglomeration treatment is for enhancing the membrane separation efficiency in the subsequent stage, and as the aggregating agent, generally an inorganic aggregating agent such as an aluminum salt or an iron salt is used. In many cases, a polymer flocculant is used in combination as an agglomeration aid for further coarsening the particles coagulated with the inorganic flocculant.

凝集処理における凝集効率の向上のためには、添加した凝集剤や凝集補助剤を原水中に円滑に拡散移動させて、凝集対象物と接触、衝突させる頻度を増加させることが重要であり、このため、一般的には撹拌手段を備える凝集槽(以下「撹拌槽」と称す場合がある。)が用いられ、凝集剤を添加した原水を撹拌下に凝集処理することが行われている。撹拌槽には、一般に原水中の凝集対象物と凝集剤とを接触、衝突させるための撹拌を行う急速撹拌槽と、凝集ないし凝結した粒子を粗大化させるための撹拌を行う緩速撹拌槽とに区分される。撹拌手段としては、撹拌翼を用いるものや水路を迂回させて原水を撹拌する構造のものが一般的である。また、ポンプやスタティックミキサーを用いて配管移送中に撹拌する方法も用いられており、これを撹拌槽と併用する例もある。   In order to improve the agglomeration efficiency in the agglomeration treatment, it is important to smoothly diffuse and move the added aggregating agent and aggregating auxiliary agent into the raw water to increase the frequency of contact and collision with the agglomeration object. For this reason, a coagulation tank (hereinafter sometimes referred to as “stirring tank”) provided with a stirring means is generally used, and the raw water added with the coagulant is coagulated with stirring. The agitation tank generally includes a rapid agitation tank for agitation for contacting and colliding the agglomeration object and the aggregating agent in the raw water, and a slow agitation agitation tank for agitation for coarsening aggregated or agglomerated particles. It is divided into. As the stirring means, those using a stirring blade and those having a structure for stirring the raw water by bypassing the water channel are generally used. Moreover, the method of stirring during piping transfer using a pump and a static mixer is also used, and there is also an example using this together with a stirring tank.

無機凝集剤による凝集ないし凝結作用は、原水中に存在するフミン質や、藻類が生産する細胞内外の代謝産物等の天然有機物や界面活性剤等の合成化学物質等により阻害を受け、凝集ないし凝結速度が遅くなったり、凝集不良に到ったりする。   Aggregation or coagulation by inorganic flocculants is inhibited by humic substances present in the raw water, natural organic substances such as intracellular and extracellular metabolites produced by algae, and synthetic chemicals such as surfactants. The speed becomes slow or the agglomeration is poor.

従来、この凝集阻害を防止する方法としてpHの最適化が行われており、pH計と酸やアルカリ剤のpH調整剤の添加ポンプとを連動させて自動的にpH調整することが行われている。しかしながら、pH調整のみでは、安定な凝集処理を行うことはできない。   Conventionally, optimization of pH has been performed as a method for preventing this aggregation inhibition, and automatic pH adjustment is performed by linking a pH meter and an addition pump of an acid or alkaline pH adjuster. Yes. However, stable aggregation treatment cannot be performed only by pH adjustment.

従来においては、天然水や排水中に含まれるフミン質等の天然有機物や界面活性剤等の合成化学物質が凝集阻害を引き起こす機構は十分には解明されていない上に、これらの阻害物質の同定もなされていない。このため、用水や廃水処理では、最適な凝集条件を設定するために、別途ジャーテスターを用いて凝集剤の添加濃度やpHを決定する操作が必須となるが、このような操作は一般に煩雑な操作と長い時間を要し、このために、原水の水質変動に対応し得ず、決定した凝集剤添加量やpH調整値を即時的に反映することができない結果、凝集不良を招くことが多い。   In the past, the mechanism by which natural organic substances such as humic substances contained in natural water and wastewater and synthetic chemicals such as surfactants cause aggregation inhibition has not been fully elucidated, and identification of these inhibitors It has not been done. For this reason, in the treatment of irrigation water and wastewater, in order to set the optimum flocculation conditions, an operation of determining the addition concentration and pH of the flocculating agent using a separate jar tester is essential, but such operation is generally complicated. It takes a long time to operate, and therefore, it cannot cope with fluctuations in the quality of raw water, and the determined amount of flocculant added and pH adjustment value cannot be immediately reflected, resulting in poor aggregation. .

このようなことから、現状においては、凝集剤添加量を予想される必要添加量の上限値よりも予め高く設定して凝集剤を過剰添加することにより、凝集不良を防止する方法が採用されている。しかしながら、このように凝集剤を過剰に添加することは、薬剤コストを高くすると共に、汚泥発生量を増加させる。   For this reason, at present, a method for preventing poor aggregation by setting the amount of the flocculant to be higher than the upper limit of the expected required amount in advance and adding the flocculant excessively is adopted. Yes. However, excessive addition of the flocculant in this way increases the chemical cost and increases the amount of sludge generated.

また、凝集剤としてアルミニウム塩を用いる場合、過剰添加して残留アルミニウムが増加すると、凝集処理後の膜分離において、未凝集のアルミニウムが膜汚染を引き起こす一因になる。また、残留アルミニウムの増加によって、濾過分離処理水中に未凝集のアルミニウムが大量に流出してしまう。なお、処理水中の残留アルミニウム濃度は、100μg/L以下とされることが望まれている。
特開平8−243361号公報 特許第3312507号公報
In addition, when an aluminum salt is used as a flocculant, if the amount of residual aluminum increases due to excessive addition, unaggregated aluminum causes a membrane contamination in membrane separation after the agglomeration treatment. In addition, due to the increase in residual aluminum, a large amount of unaggregated aluminum flows out in the filtered separation treated water. The residual aluminum concentration in the treated water is desired to be 100 μg / L or less.
JP-A-8-243361 Japanese Patent No. 3312507

本発明は、原水に凝集処理した後、膜分離処理する水処理において、水回収率を低減することなく、膜の透過流束を高く維持する水処理装置及び水処理方法を提供することを目的とする。   It is an object of the present invention to provide a water treatment apparatus and a water treatment method that maintain a high membrane permeation flux without reducing the water recovery rate in water treatment in which membrane separation treatment is performed after flocculation treatment in raw water. And

本発明(請求項1)の水処理装置は、原水に凝集剤を添加して凝集処理する凝集処理手段と、該凝集処理手段からの凝集処理水を一次側から供給し、分離膜を透過した透過水を二次側から排出する膜分離手段と、洗浄流体を供給することで該分離膜を洗浄する分離膜洗浄手段と、前記原水中の有機物濃度を、波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差から測定する有機物濃度測定手段と、該波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差に基づいて、前記凝集処理手段における凝集処理条件と前記分離膜洗浄手段における洗浄条件を直接制御する制御手段とを有する、波長260nmの吸光度と波長660nmの吸光度との差が0.3abs以上の原水を、膜の透過流束5.0m/d以上で処理する水処理装置であって、前記制御する凝集処理条件が原水への凝集剤添加量であり、前記制御する洗浄条件が洗浄間隔であり、前記洗浄手段は前記膜分離手段の二次側から前記洗浄流体としての洗浄薬液を供給し、前記分離膜を透過した洗浄薬液を一次側から排出して該分離膜を薬液逆洗するものであり、波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差が所定値以上となった時点で薬液逆洗を行う閾値設定制御を行うことを特徴とする。 The water treatment apparatus of the present invention (Claim 1) is a flocculation treatment means for adding a flocculating agent to raw water and performing a flocculation treatment, and supplying the flocculation treatment water from the flocculation treatment means from the primary side and permeating the separation membrane. Membrane separation means for discharging permeated water from the secondary side, separation membrane washing means for washing the separation membrane by supplying a washing fluid, and an organic substance concentration in the raw water within a wavelength range of 230 to 300 nm. Organic substance concentration measuring means for measuring from the difference between the absorbance of light and the absorbance of visible light in the wavelength range of 600 to 700 nm, the absorbance of ultraviolet light in the range of 230 to 300 nm and the wavelength in the range of 600 to 700 nm based on the difference between the absorbance of visible light, and a control means for controlling the washing conditions in aggregation treatment conditions and the separation membrane cleaning means in the flocculation treatment unit directly, absorbance at a wavelength 260nm and the wavelength 660n Of raw water difference is more than 0.3abs between the absorbance, a water treatment apparatus for treating a membrane permeation flux 5.0 m / d or more, in coagulant addition amount of the aggregating process conditions wherein the controlling the raw water The cleaning condition to be controlled is a cleaning interval, the cleaning unit supplies the cleaning chemical as the cleaning fluid from the secondary side of the membrane separation unit, and discharges the cleaning chemical that has permeated through the separation membrane from the primary side When the separation membrane is back-washed with a chemical solution, the difference between the absorbance of ultraviolet light within a wavelength range of 230 to 300 nm and the absorbance of visible light within a wavelength range of 600 to 700 nm becomes a predetermined value or more. And threshold setting control for performing chemical backwashing.

本発明(請求項)の水処理方法は、原水に凝集剤を添加して凝集処理する凝集処理工程と、該凝集処理工程からの凝集処理水を膜分離手段の一次側から供給し、分離膜を透過した透過水を膜分離手段の二次側から排出する膜分離工程と、洗浄流体を供給することで該分離膜を洗浄する分離膜洗浄工程とを有する水処理方法において、前記原水中の有機物濃度を、波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差から測定し、該波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差に基づいて前記凝集処理工程における凝集処理条件と前記分離膜洗浄工程における洗浄条件を直接制御する、波長260nmの吸光度と波長660nmの吸光度との差が0.3abs以上の原水を、膜の透過流束5.0m/d以上で処理する水処理方法であって、前記制御する凝集処理条件が原水への凝集剤添加量であり、前記制御する洗浄条件が洗浄間隔であり、前記洗浄工程は前記膜分離手段の二次側から前記洗浄流体としての洗浄薬液を供給し、前記分離膜を透過した洗浄薬液を一次側から排出して該分離膜を薬液逆洗するものであり、波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差が所定値以上となった時点で薬液逆洗を行う閾値設定制御を行うことを特徴とする。 The water treatment method of the present invention (Claim 2 ) comprises a flocculation process step of adding a flocculating agent to raw water and performing a flocculation process, and supplying flocculated water from the flocculation process step from the primary side of the membrane separation means for separation. A water treatment method comprising: a membrane separation step of discharging permeated water that has passed through a membrane from a secondary side of the membrane separation means; and a separation membrane cleaning step of cleaning the separation membrane by supplying a cleaning fluid. Is measured from the difference between the absorbance of ultraviolet light within a wavelength range of 230 to 300 nm and the absorbance of visible light within a wavelength range of 600 to 700 nm, and the absorbance of ultraviolet light within the wavelength range of 230 to 300 nm. The absorbance at 260 nm and the wavelength for directly controlling the agglomeration treatment conditions in the agglomeration treatment step and the washing conditions in the separation membrane washing step based on the difference between the absorbance of visible light in the wavelength range of 600 to 700 nm. A water treatment method for treating raw water having a difference from the absorbance at 660 nm of 0.3 abs or more with a membrane permeation flux of 5.0 m / d or more , wherein the controlled coagulation treatment condition is the amount of flocculant added to the raw water The cleaning condition to be controlled is a cleaning interval, and the cleaning step supplies a cleaning chemical as the cleaning fluid from the secondary side of the membrane separation means, and the cleaning chemical that has permeated the separation membrane from the primary side. The separation membrane is discharged and the chemical solution is back-washed. The difference between the absorbance of ultraviolet light in the wavelength range of 230 to 300 nm and the absorbance of visible light in the wavelength range of 600 to 700 nm is equal to or greater than a predetermined value. Threshold setting control for performing chemical backwashing at a time is performed.

発明によれば、原水の有機物濃度に基いて、凝集処理条件と分離膜の洗浄条件を制御することにより、水回収率を低減することなく、膜の透過流束を高く維持することができる。 According to the present invention, the permeation flux of the membrane can be maintained high without reducing the water recovery rate by controlling the aggregation treatment conditions and the separation membrane cleaning conditions based on the organic matter concentration of the raw water. .

即ち、原水の有機物濃度に基いて凝集処理条件を制御することにより、凝集剤添加量の過不足等を防止して、従って、凝集剤の過剰添加による薬剤コストの高騰や汚泥発生量の増大を防止すると共に凝集不足による処理水水質の悪化を防止して、良好な凝集処理を行うことができ、これにより膜分離の給水として好適な膜汚染性の低い良好な凝集処理水を得ることができる。そして、この良好な水質の凝集処理水を膜分離するため、膜汚染を低減することができる上に、分離膜の洗浄条件についても、原水の有機物濃度に基いて制御を行うことにより、洗浄頻度や洗浄薬液濃度等に原水水質に対応した適正な洗浄条件を採用することができ、この結果、水回収率を高く維持した上で膜の透過流束を高い値で安定化させることができる。   That is, by controlling the coagulation treatment conditions based on the concentration of organic matter in the raw water, it is possible to prevent excessive or insufficient coagulant addition amount, and therefore increase the chemical cost and increase sludge generation due to excessive coagulant addition. In addition to preventing deterioration of treated water quality due to insufficient aggregation, it is possible to perform good aggregation treatment, thereby obtaining good agglomerated water with low membrane contamination suitable as feed water for membrane separation. . In addition, since this good-quality agglomerated treated water is membrane-separated, membrane contamination can be reduced, and the washing conditions of the separation membrane can also be controlled based on the organic matter concentration of the raw water, thereby cleaning frequency. In addition, it is possible to employ appropriate cleaning conditions corresponding to the quality of raw water for the concentration of cleaning chemicals and the like, and as a result, the permeation flux of the membrane can be stabilized at a high value while maintaining a high water recovery rate.

本発明において、制御する凝集処理条件は、原水への凝集剤添加量であるIn the present invention, the aggregation treatment conditions to control is a coagulant addition amount of the raw water.

お、原水の有機物濃度は、波長200〜400nmの範囲内の紫外光の吸光度と波長400〜800nmの範囲内の可視光の吸光度との差から容易に測定することができる。即ち、波長200〜400nmの範囲内の紫外光の吸光度は有機物の吸光度と主として無機粘土鉱物よりなる濁度成分の吸光度との合計値である。また、波長400〜800nmの範囲内の可視光の吸光度は主として無機粘土鉱物よりなる濁度成分による吸光度である。従って、両吸光度の差から原水中の有機物濃度を求めることができる。原水中の有機物濃度はTOC計やCOD計によっても測定することはできるが、上述のように紫外光および可視光の吸光度差であれば、簡便かつ迅速に有機物濃度を求めることができ、好適である。 Contact name organics concentration of the raw water, Ru can be easily measured from the difference between the absorbance of visible light in the range of absorbance and wavelength 400~800nm ultraviolet light in the wavelength range of 200 to 400 nm. That is, the absorbance of ultraviolet light within a wavelength range of 200 to 400 nm is the sum of the absorbance of organic matter and the absorbance of turbidity components mainly composed of inorganic clay minerals. Further, the absorbance of visible light within the wavelength range of 400 to 800 nm is the absorbance of turbidity components mainly composed of inorganic clay minerals. Therefore, the organic matter concentration in the raw water can be determined from the difference between both absorbances. The organic matter concentration in the raw water can be measured with a TOC meter or a COD meter. However, as described above, the organic matter concentration can be obtained easily and quickly if the difference in absorbance between ultraviolet light and visible light is suitable. is there.

以下に本発明の水処理装置及び水処理方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the water treatment apparatus and the water treatment method of the present invention will be described in detail.

本発明が処理対象とする原水は、有機物を含むものであり、河川水、地下水などの天然水の他、各種工場排水や農業排水、下水などが例示される。この原水に含まれる有機物は、特に限定されるものではない。なお、天然水中にはフミン酸が含まれることが多いが、当然ながらこのフミン酸も本発明の有機物の一種に当る。   The raw water to be treated by the present invention contains organic matter, and examples include natural water such as river water and groundwater, as well as various factory wastewater, agricultural wastewater, and sewage. The organic matter contained in the raw water is not particularly limited. Natural water often contains humic acid, but naturally this humic acid is also a kind of organic matter of the present invention.

本発明においては、原水を凝集処理した後、膜分離して処理水を得るに当たり、原水中の有機物濃度を測定し、この測定値に基いて凝集処理条件と分離膜の洗浄条件を制御する。   In the present invention, after the raw water is coagulated, membrane separation is performed to obtain treated water, the organic matter concentration in the raw water is measured, and the coagulation treatment conditions and the separation membrane cleaning conditions are controlled based on the measured values.

原水中の有機物濃度を、原水の紫外光の吸光度と可視光の吸光度との差から求める場合、紫外光吸光度は、波長230〜300nm、例えば260nmの吸光度とされ、可視光吸光度は、波長600〜700nm、例えば660nmの吸光度とされる。吸光度の測定は、連続的に行っても良く、1〜10分間に1回の間欠的な測定であっても良い。また、30秒〜1日の吸光度測定値の平均値を求め、この値を制御の指標値としても良い。 The concentration of organic substances in the raw water, when determined from the difference between the absorbance and visible light absorbance of ultraviolet light of the raw water, ultraviolet light absorbance, wavelength 2 30 to 300 nm, for example, is the 260nm absorbance, visible light absorbance, waves The absorbance is set to a length of 600 to 700 nm, for example, 660 nm. The absorbance may be measured continuously or intermittently once every 1 to 10 minutes. Further, an average value of absorbance measurement values for 30 seconds to 1 day may be obtained, and this value may be used as an index value for control.

原水の凝集処理で原水に添加する凝集剤としては、ポリ塩化アルミニウム(PAC)等のアルミニウム塩や、塩化第二鉄等の鉄塩等の無機凝集剤を用いることができ、これらは1種を単独で用いても良く、2種以上を併用しても良い。   As the flocculant added to the raw water in the raw water flocculation treatment, an aluminum flocculant such as polyaluminum chloride (PAC) or an iron salt such as ferric chloride can be used. You may use independently and may use 2 or more types together.

なお、一般的に凝集処理は、pH7.5〜8.0程度で行われるが、凝集剤として特にアルミニウム塩を用いる場合、pHを5.0〜7.0、特に5.5〜6.5に低下させると、KMF値(0.45μmメンブレンフィルターを用いて一定量の試料水を濾過するのに要する時間)を良好にできることができる。これは、pHを5.0〜7.0、特に5.5〜6.5に下げることにより、アルミニウムの電荷が高くなり、凝結作用が上がるためと考えられる。ただし、pH5.0未満に低下させると残留アルミニウム濃度が増加してしまう。そこでpH5.0以上好ましくは5.5以上に調整することで残留アルミニウム濃度の増加を抑制する。残留アルミニウム濃度が高くなる原因として、pHを下げすぎると、Alは、電荷は高くなるが、水酸化物をあまり持たないイオンのような極小のサイズになるため、中和が終了しても、架橋が進まず膜を通過してしまう大きさにしか成長できないためと考えられる。   In general, the aggregation treatment is performed at a pH of about 7.5 to 8.0. However, when an aluminum salt is particularly used as the aggregating agent, the pH is 5.0 to 7.0, particularly 5.5 to 6.5. When the value is lowered, the KMF value (time required for filtering a certain amount of sample water using a 0.45 μm membrane filter) can be improved. This is thought to be due to the fact that by lowering the pH to 5.0 to 7.0, particularly 5.5 to 6.5, the charge of aluminum increases and the coagulation action increases. However, when the pH is lowered to less than 5.0, the residual aluminum concentration increases. Therefore, an increase in the residual aluminum concentration is suppressed by adjusting the pH to 5.0 or more, preferably 5.5 or more. As a cause of increasing the residual aluminum concentration, if the pH is lowered too much, Al will have a high charge, but it will be a minimal size like ions that do not have much hydroxide, so even if neutralization is completed, This is probably because the cross-linking does not proceed and the film can only grow to a size that passes through the membrane.

このような凝集処理において、原水の有機物濃度の測定値に基いて制御する凝集処理条件の制御項目としては、
(1) 凝集剤の添加量
(2) (撹拌機を備える凝集処理装置の場合)撹拌機の撹拌速度
などがあり、上記(1),(2)の一方のみを制御しても良く、両方を制御しても良い。好ましくは、凝集剤添加量を制御することが望ましい。
In such agglomeration treatment, as a control item of the agglomeration treatment conditions to be controlled based on the measured value of the organic matter concentration of raw water,
(1) Amount of flocculant added
(2) (In the case of an aggregating apparatus equipped with a stirrer) There is a stirring speed of the stirrer, and only one of (1) and (2) may be controlled, or both may be controlled. Preferably, it is desirable to control the addition amount of the flocculant.

また、原水中の有機物濃度だけでなく、さらに凝集処理水の凝集状態を検出し、有機物濃度の測定値とこの凝集状態の検出値とに基いて凝集剤の添加量や撹拌機の撹拌速度等の凝集処理条件を制御しても良く、これにより、極めて良好な凝集処理を行うことができる。この場合、凝集状態検出センサとしては、凝集槽内液の凝集粒子間の清澄度を検出する光遮断式微粒子センサ又は光散乱式微粒子センサ等を用いることができる。   Moreover, not only the organic matter concentration in the raw water, but also the agglomeration state of the agglomerated water is detected. The agglomeration treatment conditions may be controlled, whereby extremely good agglomeration treatment can be performed. In this case, as the aggregation state detection sensor, a light blocking fine particle sensor or a light scattering fine particle sensor that detects the clarity between the aggregate particles of the liquid in the aggregation tank can be used.

本発明において、凝集処理水は次いで膜分離に供されるが、凝集処理水は、沈殿槽、加圧浮上槽や、砂、その他の充填材を用いた濾過装置等で、含有される固形物を除去した後、膜分離に供しても良い。   In the present invention, the agglomerated water is then subjected to membrane separation. The agglomerated water is a solid substance contained in a sedimentation tank, a pressure levitation tank, a sand or other filtration device using a filler, and the like. After removal, the membrane may be subjected to membrane separation.

凝集処理水を膜分離する分離膜としては、MF膜、UF膜、NF膜などが例示される。膜分離装置は、クロスフロー方式のものであっても全量濾過方式のものであってもよい。   Examples of the separation membrane for separating the flocculated water from the membrane include an MF membrane, a UF membrane, and an NF membrane. The membrane separation device may be of a cross flow type or a whole amount filtration type.

凝集処理水を膜分離する分離膜の洗浄方式としては、
(1) 通常の逆洗(薬品を添加しない洗浄水(処理水(脱透過水)や市水、工水等)を膜の二次側から供給し、分離膜を透過させて一次側から排出させるもの)
(2) 薬液による逆洗(洗浄薬液を膜の二次側から供給し、分離膜を透過させて一次側から排出させるもの)
(3) 通常の薬品洗浄(洗浄薬液を膜の一次側に循環させるもの)
(4) フラッシング洗浄(膜の一次側及び/又は二次側に気体をフラッシングするもの)
などが挙げられ、これらの2以上を併用しても良い。
As a separation membrane cleaning method for membrane separation of flocculated water,
(1) Ordinary backwashing (washing water without chemicals (treated water (depermeable water), city water, industrial water, etc.) is supplied from the secondary side of the membrane, permeated through the separation membrane, and discharged from the primary side. What)
(2) Backwashing with chemicals (supplying chemicals from the secondary side of the membrane, permeating through the separation membrane and discharging from the primary side)
(3) Ordinary chemical cleaning (circulating cleaning chemicals to the primary side of the membrane)
(4) Flushing cleaning (gas flushing to the primary side and / or secondary side of the membrane)
And two or more of these may be used in combination.

このうち、特に(2)の薬液による逆洗の場合、当規定濃度近傍の酸とアルカリを交互に逆洗水に添加する方式が好適に用いられる。この場合、酸及びアルカリの一方の洗浄薬液で逆洗した後、一定時間静置し、その後、洗浄薬品を添加しない水(処理水や市水、工水等)で逆洗し、次いで、酸及びアルカリの他方の洗浄薬液で逆洗した後一定時間静置し、最後に薬液を添加しない水(処理水や市水、工水等)で逆洗するようにしても良い。また、後述の実施例に示すように、通常逆洗と薬液逆洗とを交互に行うようにすることもできる。   Among these, in particular, in the case of backwashing with the chemical solution of (2), a method of alternately adding acid and alkali in the vicinity of the specified concentration to the backwashing water is preferably used. In this case, after backwashing with one of the acid and alkali cleaning chemicals, it is allowed to stand for a certain period of time, and then backwashed with water to which no cleaning chemicals are added (treated water, city water, industrial water, etc.), then acid And after washing back with the other cleaning chemical solution of alkali, it may be allowed to stand for a certain period of time, and finally backwashed with water to which no chemical solution is added (treated water, city water, industrial water, etc.). Moreover, as shown in the below-mentioned Example, normal backwashing and chemical | medical solution backwashing can also be performed alternately.

洗浄薬液のアルカリとしては、次亜塩素酸ナトリウムや水酸化ナトリウムが好適であり、酸としては、硫酸、塩酸、硝酸、クエン酸、シュウ酸、アスコルビン酸、重亜硫酸ナトリウム等が例示されるが、これらに限定されない。アルカリ、酸は、1種を単独で用いても良く、2種以上を併用しても良い。   As the alkali of the cleaning chemical, sodium hypochlorite and sodium hydroxide are suitable, and examples of the acid include sulfuric acid, hydrochloric acid, nitric acid, citric acid, oxalic acid, ascorbic acid, sodium bisulfite and the like. It is not limited to these. An alkali and an acid may be used individually by 1 type, and may use 2 or more types together.

なお、酸とアルカリを併用する場合、各濃度はほぼ同一の規定(N)であることが好ましい。通常、酸、アルカリの濃度は1×10−3〜0.5N程度が好ましい。 In addition, when using an acid and an alkali together, it is preferable that each density | concentration is the substantially same prescription | regulation (N). Usually, the acid and alkali concentrations are preferably about 1 × 10 −3 to 0.5N.

このような分離膜の洗浄処理において、制御する洗浄条件の制御項目としては、
(1) 洗浄頻度(洗浄時間、洗浄回数、洗浄間隔等)
(2) 洗浄流体の供給速度
(3) 洗浄薬液の薬品濃度
等が挙げられ、これらの2以上を制御しても良い。
In such a separation membrane cleaning process, as a control item of the cleaning conditions to be controlled,
(1) Cleaning frequency (cleaning time, number of cleanings, cleaning interval, etc.)
(2) Cleaning fluid supply speed
(3) The chemical concentration of the cleaning chemical solution may be mentioned, and two or more of these may be controlled.

より具体的な洗浄条件の制御方法のうち、洗浄頻度(洗浄間隔)の洗浄方法は次の通りである。   Among the more specific cleaning condition control methods, the cleaning method of the cleaning frequency (cleaning interval) is as follows.

(1)通常の逆洗の場合
薬品を添加しない単なる水逆洗は、通常、30秒から6時間、好ましくは5分〜3時間、特に好ましくは10分〜3時間に1回の割合で実施される。この洗浄間隔を、原水の有機物濃度の変動によって制御する。具体的には、制御の基準となる有機物濃度の閾値を1〜10個程度設定し、それぞれに対して水逆洗の洗浄間隔を設定するのが好ましい。
(1) In the case of normal backwashing Simple water backwashing without adding chemicals is usually performed at a rate of once every 30 seconds to 6 hours, preferably 5 minutes to 3 hours, particularly preferably 10 minutes to 3 hours. Is done. This washing interval is controlled by fluctuations in the concentration of organic matter in the raw water. Specifically, it is preferable to set about 1 to 10 threshold values of the organic substance concentration as a reference for control, and set the water backwashing cleaning interval for each.

(2)薬液による逆洗
薬液逆洗は、上記の通常の逆洗と併用して行うことが好ましい。この場合、通常の逆洗は上述の洗浄間隔で実施し、更に0.5〜10日に1回程度の頻度で薬液逆洗を実施する。この薬液逆洗の洗浄間隔を原水の有機物濃度の変動によって制御する。具体的には、制御の基準となる有機物濃度の閾値を1〜3個設定し、それぞれに対して洗浄間隔を設定する。
(2) Backwashing with a chemical solution The chemical solution backwashing is preferably performed in combination with the above-described normal backwashing. In this case, normal backwashing is performed at the above-described cleaning intervals, and further, chemical backwashing is performed once every 0.5 to 10 days. The cleaning interval of this chemical backwashing is controlled by fluctuations in the organic matter concentration of the raw water. Specifically, one to three organic substance concentration thresholds serving as control criteria are set, and a cleaning interval is set for each.

なお、原水の有機物濃度に基いて、薬液逆洗の洗浄間隔を制御するとともに上記通常の逆洗の洗浄間隔も制御してもよいが、後述の実施例に示すように、通常の水逆洗は一定の洗浄間隔とし、薬液逆洗の洗浄間隔を原水の有機物濃度に基いて制御することが好ましい。これは、薬液逆洗のほうが有機物汚染に対して有効に作用するためである。   The chemical backwashing cleaning interval may be controlled based on the organic matter concentration of the raw water and the normal backwashing washing interval may be controlled. However, as shown in the examples described later, Is preferably a constant cleaning interval, and the cleaning interval of the chemical backwashing is preferably controlled based on the organic matter concentration of the raw water. This is because the chemical backwashing works more effectively against organic contamination.

また、原水の有機物濃度を積算してゆき、この積算値が所定値以上になった際に薬液逆洗を実施するようにしてもよい。   Alternatively, the organic matter concentration of the raw water may be integrated, and the chemical solution backwashing may be performed when the integrated value exceeds a predetermined value.

なお、薬液として次亜塩素酸ナトリウムを用いた場合には、上述した「通常の逆洗」と同じように用いられる場合がある。すなわち、次亜塩素酸ナトリウムを薬液として用いた場合には、その洗浄間隔は30秒から6時間、好ましくは5分〜3時間、特に好ましくは10分〜3時間に1回の割合で実施されたり、或いは他の薬液又は高濃度の次亜塩素酸ナトリウムを用いた薬液逆洗と併用されたりする場合がある。   In addition, when sodium hypochlorite is used as a chemical solution, it may be used in the same manner as the above-described “normal backwashing”. That is, when sodium hypochlorite is used as a chemical solution, the washing interval is 30 seconds to 6 hours, preferably 5 minutes to 3 hours, particularly preferably once every 10 minutes to 3 hours. Or may be used in combination with other chemical solutions or chemical solution backwashing using high-concentration sodium hypochlorite.

(3)通常の薬品洗浄
薬品洗浄は基本的には、膜差圧が設定値以上になった時点、或いは、換算膜透過流束(温度、圧力を所定値に設定した場合の膜透過流束)が設定値以下になった時点で実施されるが、本発明では、例えば上述の原水の有機物濃度の積算値が所定値以上になった場合に薬品洗浄を実施するようにしても良い。
(3) Ordinary chemical cleaning Basically, chemical cleaning is performed when the membrane differential pressure exceeds a set value or when the converted membrane permeation flux (the membrane permeation flux when the temperature and pressure are set to predetermined values). However, in the present invention, chemical cleaning may be performed, for example, when the integrated value of the organic matter concentration of the raw water is equal to or higher than a predetermined value.

(4)フラッシング洗浄
フラッシング洗浄についても上述の通常の逆洗の場合と同様に洗浄間隔を制御すれば良い。
(4) Flushing cleaning With regard to the flushing cleaning, the cleaning interval may be controlled in the same manner as in the case of the normal backwashing described above.

また、(2)薬液逆洗や(3)薬品洗浄において、原水中の有機物濃度に応じて、薬品濃度を制御することもできる。この場合、原水の有機物濃度に比例して薬品濃度を高くしても良く、また、洗浄間隔の制御の場合のように閾値制御としても良い。   In (2) chemical backwashing and (3) chemical cleaning, the chemical concentration can be controlled according to the organic matter concentration in the raw water. In this case, the chemical concentration may be increased in proportion to the organic matter concentration of the raw water, and threshold control may be performed as in the case of controlling the cleaning interval.

また、上述した4種類の洗浄において、洗浄流体を供給して分離膜を洗浄する際に、原水中の有機物濃度に基づいて供給する洗浄流体の供給速度を制御しても良い。この方法は、特に、二次側から洗浄流体を供給するとともに分離膜を透過した洗浄流体を一次側から排出する洗浄手法の場合に有用である。   In the four types of cleaning described above, when supplying the cleaning fluid and cleaning the separation membrane, the supply speed of the cleaning fluid supplied based on the concentration of organic matter in the raw water may be controlled. This method is particularly useful in the case of a cleaning technique in which the cleaning fluid is supplied from the secondary side and the cleaning fluid that has passed through the separation membrane is discharged from the primary side.

この場合においても、原水の有機物濃度に比例して洗浄流体の供給速度を上げても良く、閾値制御であっても良い。   Also in this case, the supply speed of the cleaning fluid may be increased in proportion to the organic matter concentration of the raw water, or threshold control may be performed.

本発明において、原水中の有機物濃度が高くなる程、洗浄条件を高い条件に、即ち、例えば、洗浄頻度を高く、洗浄時間を長く、洗浄薬液の薬品濃度を高く、洗浄流体の供給速度を高くなるように制御するが、この場合、原水の有機物濃度と洗浄条件、例えば、薬液濃度や洗浄頻度とを直線的に比例させてもよく、有機物濃度が高くなるのに従って、洗浄条件、例えば薬液濃度や洗浄頻度を段階的に増加させてもよい。例えば、被処理水中の有機物濃度と、濾過性能を十分に回復させる必要最小限の洗浄条件との関係を予め実験により求めておき、この関係を数式化したり、そのままコンピュータのメモリに格納しておき、これに基づいて洗浄条件を決定してもよい。   In the present invention, the higher the organic matter concentration in the raw water, the higher the cleaning conditions, that is, for example, the higher the cleaning frequency, the longer the cleaning time, the higher the chemical concentration of the cleaning chemical solution, and the higher the supply rate of the cleaning fluid. In this case, the concentration of organic matter in the raw water and the washing conditions, for example, the concentration of the chemical solution and the frequency of washing may be linearly proportional to each other. The cleaning frequency may be increased stepwise. For example, the relationship between the concentration of organic matter in the water to be treated and the minimum necessary cleaning conditions that can sufficiently recover the filtration performance is obtained in advance by experiments, and this relationship is expressed in formulas or stored in the computer memory as it is. Based on this, the cleaning conditions may be determined.

なお、図2は本発明者が原水中のフミン酸濃度と、膜差圧を十分に回復させるのに必要な洗浄条件(例えば洗浄頻度)との関係について研究して得た結果を模式的に示すグラフである。   FIG. 2 schematically shows the results obtained by the present inventor's research on the relationship between the humic acid concentration in the raw water and the cleaning conditions (for example, the cleaning frequency) necessary to sufficiently recover the membrane differential pressure. It is a graph to show.

図2の透過流束Jcは、原水の有機物濃度が同じ濃度の場合に、それ以上の膜透過流束に設定した時に、膜差圧ΔPの増加速度が急激に増大し、膜分離の運転が不可能になる限界値を示す。   The permeation flux Jc in FIG. 2 shows that when the organic matter concentration of the raw water is the same, when the membrane permeation flux is set to a higher value, the rate of increase of the membrane differential pressure ΔP increases rapidly, and the membrane separation operation is performed. Indicates the limit value that becomes impossible.

,f,fは例えば薬液洗浄の頻度であり、f<f<fである。透過流束がA[m/d]にまで回復してこの透過流束にて濾過運転を行うように膜洗浄を制御する場合、フミン酸濃度が0.8a以下では薬液洗浄の頻度をfとし、0.8a〜0.8bでは薬液洗浄の頻度をfとし、0.8b〜0.8cでは薬液洗浄の頻度をfとする。0.8を安全係数として掛けるのは、フミン酸濃度Cがaであるときに薬液洗浄の頻度をfとすると、逆方向の透過流束が限界膜透過流束となり、急激に差圧が上昇するおそれがあるからである。 f 1 , f 2 , and f 3 are, for example, the frequency of chemical cleaning, and f 1 <f 2 <f 3 . When the membrane cleaning is controlled so that the permeation flux recovers to A [m / d] and the filtration operation is performed with this permeation flux, the frequency of chemical cleaning is f 1 when the humic acid concentration is 0.8 a or less. and then, the frequency of 0.8a~0.8b the chemical cleaning and f 2, and f 3 the frequency of chemical cleaning at 0.8B~0.8C. When the humic acid concentration C 0 is a and the frequency of chemical cleaning is f 1 when the humic acid concentration C 0 is a, the reverse permeation flux becomes the limiting membrane permeation flux, and the pressure difference is rapidly increased. This is because there is a risk of the rise.

図示はしないが、原水中の有機物濃度と、薬液濃度、洗浄流体の供給速度、洗浄時間等の洗浄条件との間にも図2に示す関係があることが認められた。   Although not shown, it was recognized that there is a relationship shown in FIG. 2 between the organic substance concentration in the raw water and the cleaning conditions such as the chemical solution concentration, the supply speed of the cleaning fluid, and the cleaning time.

このように原水中の有機物濃度が高くなるほど洗浄薬液の濃度や洗浄頻度等の洗浄条件を高くすることにより、有機物濃度が高い場合でも分離膜の膜性能を確実かつ十分に回復させることができる。また、原水中の有機物濃度が低い場合には、それに応じて薬液濃度を低くしたり薬液洗浄頻度を低下させたり、洗浄流体の供給速度を小さくするため、洗浄薬液等の洗浄流体の消費量が少なく、洗浄薬液等の洗浄流体を節約することができると共に、膜の劣化を防止できる。なお、薬液洗浄後のリンス用水や洗浄流体として膜透過水を用いるときには、薬液洗浄頻度や洗浄流体の供給速度の低減により水回収率を高くすることができる。   Thus, by increasing the cleaning conditions such as the concentration of the cleaning chemical and the cleaning frequency as the concentration of organic matter in the raw water increases, the membrane performance of the separation membrane can be reliably and sufficiently recovered even when the concentration of organic matter is high. In addition, when the organic matter concentration in the raw water is low, the consumption of cleaning fluid such as cleaning chemicals is reduced to reduce the chemical concentration, reduce the frequency of chemical cleaning, or reduce the supply rate of cleaning fluid accordingly. Less, it is possible to save cleaning fluid such as cleaning chemicals, and to prevent film deterioration. When membrane permeated water is used as rinsing water or cleaning fluid after chemical cleaning, the water recovery rate can be increased by reducing the frequency of cleaning the chemical and the supply rate of the cleaning fluid.

なお、後述の実施例1,2に示す如く、原水中の有機物濃度が高くなることに応じて薬液洗浄の頻度を高くする場合、薬液の濃度を低下させても十分な薬液洗浄効果が得られることが認められた。   As shown in Examples 1 and 2 to be described later, when the frequency of chemical cleaning is increased in accordance with the increase in the concentration of organic substances in the raw water, a sufficient chemical cleaning effect can be obtained even if the concentration of the chemical is decreased. It was recognized that

以下に図面を参照して本発明の水処理装置及び水処理方法の実施の形態をより詳細に説明する。
図1は、本発明の水処理装置の実施の形態を示す系統図である。
図1において、Iは凝集処理部であり、IIは膜分離部である。
Embodiments of a water treatment apparatus and a water treatment method of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a system diagram showing an embodiment of a water treatment apparatus of the present invention.
In FIG. 1, I is an agglomeration processing part, and II is a membrane separation part.

1は原水槽であり、吸光度測定器21を備える。2は凝集撹拌槽であり、撹拌機22とpHセンサ23と凝集状態検出センサ24を備える。11は凝集剤貯槽であり、貯槽11内の凝集剤は、凝集剤薬注ポンプ33Pより配管33を経て凝集撹拌槽2に供給される。12,13は各々酸貯槽、アルカリ貯槽であり、貯槽12内の酸は、酸薬注ポンプ34Pにより配管34,36を経て凝集撹拌槽2に供給される。また、貯槽13内のアルカリは、アルカリ薬注ポンプ35Pにより配管35,36を経て凝集撹拌槽2に供給される。6は凝集処理条件制御装置であり、吸光度測定器21の検出値とpHセンサ23の検出値と凝集状態検出センサ24の検出値が入力され、凝集剤薬注ポンプ33P、酸薬注ポンプ34P及びアルカリ薬注ポンプ35Pの回転数制御信号が出力される。また、この制御装置6に入力された吸光度測定器21の検出値は、後述の薬液逆洗条件制御装置7に出力される。   Reference numeral 1 denotes a raw water tank, which includes an absorbance measuring device 21. Reference numeral 2 denotes a coagulation agitation tank, which includes an agitator 22, a pH sensor 23, and an aggregation state detection sensor 24. 11 is a flocculant storage tank, and the flocculant in the storage tank 11 is supplied to the flocculent stirring tank 2 through the piping 33 from the flocculant chemical injection pump 33P. Reference numerals 12 and 13 denote an acid storage tank and an alkali storage tank, respectively, and the acid in the storage tank 12 is supplied to the agglomeration stirring tank 2 via the pipes 34 and 36 by an acid chemical injection pump 34P. Moreover, the alkali in the storage tank 13 is supplied to the aggregation stirring tank 2 through the pipes 35 and 36 by the alkali chemical injection pump 35P. 6 is an agglomeration treatment condition control device, to which the detection value of the absorbance measuring device 21, the detection value of the pH sensor 23, and the detection value of the aggregation state detection sensor 24 are inputted, and the flocculant chemical injection pump 33P, the acid chemical injection pump 34P and A rotation speed control signal of the alkaline chemical injection pump 35P is output. Further, the detection value of the absorbance measuring device 21 input to the control device 6 is output to a chemical solution backwash condition control device 7 described later.

凝集処理部Iにおいて、原水は、配管31より原水槽1に導入され、吸光度測定器21により、原水中の有機物濃度が検出され、検出結果が制御装置6に入力される。この吸光度測定器21としては、前述の如く、波長200〜400nmの紫外光の吸光度計と、波長400〜800nmの可視光の吸光度計を備えたものが好適である。吸光度測定器21は、浸漬型のものであってもバッヂ型のものであってもよい。   In the agglomeration processing unit I, the raw water is introduced into the raw water tank 1 through the pipe 31, the organic substance concentration in the raw water is detected by the absorbance measuring device 21, and the detection result is input to the control device 6. As described above, the absorbance measuring device 21 is preferably equipped with an ultraviolet light absorbance meter having a wavelength of 200 to 400 nm and a visible light absorbance meter having a wavelength of 400 to 800 nm. The absorbance measuring device 21 may be an immersion type or a badge type.

原水槽1内の原水は配管32より凝集撹拌槽2に導入される。凝集撹拌槽2において、原水は、凝集剤貯槽11の凝集剤が薬注ポンプ33Pにより添加されると共に、酸、アルカリの添加によりpH調整され、撹拌機22により撹拌されて凝集処理される。この凝集撹拌槽2内のpHがpHセンサ23により検出され、検出結果が制御装置6に入力される。また、凝集状態検出センサ24の検出値も制御装置6に入力される。   The raw water in the raw water tank 1 is introduced into the aggregation stirring tank 2 through the pipe 32. In the flocculation agitation tank 2, the raw water is agglomerated by adding the flocculant in the flocculant storage tank 11 by the chemical injection pump 33 </ b> P, adjusting the pH by addition of acid and alkali, and stirring by the stirrer 22. The pH in the agglomeration stirring tank 2 is detected by the pH sensor 23, and the detection result is input to the control device 6. The detection value of the aggregation state detection sensor 24 is also input to the control device 6.

凝集撹拌槽2への凝集剤添加量は、吸光度測定器21の検出値に基いて制御される。即ち、例えば、制御装置6において、入力された吸光度測定器21の検出値を予め設定した凝集剤添加量の決定式に代入し、その算出結果に基いて薬注ポンプ33Pの回転数が制御され、適正量の凝集剤が添加される。この薬注ポンプ33Pとしては、市販の可変式定量ポンプ等が用いられる。   The amount of the flocculant added to the aggregation stirring tank 2 is controlled based on the detection value of the absorbance measuring device 21. That is, for example, in the control device 6, the input detection value of the absorbance measuring device 21 is substituted into a preset determination formula for the amount of flocculant added, and the rotation speed of the drug injection pump 33P is controlled based on the calculation result. An appropriate amount of flocculant is added. A commercially available variable metering pump or the like is used as the chemical injection pump 33P.

原水の有機物濃度に応じて凝集剤の添加量を制御するには、吸光度測定器21で求められた有機物濃度に係数を乗じて凝集剤添加量を演算してもよいが、有機物濃度は、紫外光吸光度と可視光吸光度との差に比例するので、次式のように、紫外光吸光度と可視光吸光度の差に係数Mを乗じて凝集剤添加量を演算するのが好適である。   In order to control the addition amount of the flocculant according to the organic substance concentration of the raw water, the organic substance concentration obtained by the absorbance measuring device 21 may be multiplied by a coefficient to calculate the flocculant addition amount. Since it is proportional to the difference between the light absorbance and the visible light absorbance, it is preferable to calculate the addition amount of the flocculant by multiplying the difference between the ultraviolet light absorbance and the visible light absorbance by the coefficient M as shown in the following equation.

凝集剤添加量=M×[(紫外部吸光度)−(可視部吸光度)]
係数Mは、予め原水を用いたジャーテストにより測定したKMF値から決定した係数であり、必ずしも原水毎にMを調整する必要はない。
Addition amount of flocculant = M × [(ultraviolet part absorbance) − (visible part absorbance)]
The coefficient M is a coefficient determined in advance from the KMF value measured by a jar test using raw water, and it is not always necessary to adjust M for each raw water.

なお、このように吸光度差に比例した凝集剤添加量制御の代わりに閾値制御としてもよい。閾値制御としては、吸光度差が所定値a未満のときには凝集剤添加量をbとし、吸光度差が所定値a〜aのときには凝集剤添加量をbとし、吸光度差が所定値a超のときには凝集剤添加量をbとするものなどが例示されるが、これに限定されない。 In addition, it is good also as threshold value control instead of the flocculant addition amount control proportional to an absorbance difference in this way. The threshold control, the absorbance difference is a weight flocculant when less than a predetermined value a 1 and b 1, the amount of flocculant added when the absorbance difference is a predetermined value a 1 ~a 2 and b 2, the absorbance difference is a predetermined value When it exceeds a 2, for example, the addition amount of the flocculant is b 3 , but it is not limited thereto.

酸、アルカリの薬注ポンプ34P,35Pは、凝集攪拌槽2内のpHが5.0〜7.0好ましくは5.0〜6.5となるように制御装置6によって制御される。なお、残留アルミニウム濃度を低減する場合は、前述の如く、pHを5.5〜7.0特に6.0〜7.0とりわけ6.0〜6.5となるように制御するのが好ましい。   The acid and alkali chemical injection pumps 34 </ b> P and 35 </ b> P are controlled by the control device 6 so that the pH in the aggregation stirring tank 2 is 5.0 to 7.0, preferably 5.0 to 6.5. In the case of reducing the residual aluminum concentration, it is preferable to control the pH to be 5.5 to 7.0, particularly 6.0 to 7.0, particularly 6.0 to 6.5 as described above.

なお、凝集状態検出センサ24は、凝集剤添加量を補正したり、凝集不良が発生した際に警報信号を発信するために用いることができる。また、凝集状態検出センサ24の検出値に基いて攪拌機22の撹拌速度を制御するようにしても良い。薬注ポンプ33Pによる凝集撹拌槽2への凝集剤添加量を、吸光度測定器21の検出値と凝集状態検出センサ24の検出値とに基いて制御するには、例えば、制御装置6において、入力された吸光度測定器21の検出値を予め設定した凝集剤添加量の決定式に代入し、その算出結果に基いて薬注ポンプ33Pの回転数を制御すると共に、凝集状態検出センサ24の検出値に基づいて薬注ポンプ33Pの回転数を補正する。   The aggregation state detection sensor 24 can be used to correct the addition amount of the aggregating agent or to send an alarm signal when an aggregation failure occurs. Further, the stirring speed of the stirrer 22 may be controlled based on the detection value of the aggregation state detection sensor 24. In order to control the amount of the flocculant added to the aggregation stirring tank 2 by the chemical injection pump 33P based on the detection value of the absorbance measuring device 21 and the detection value of the aggregation state detection sensor 24, for example, in the control device 6 Then, the detected value of the absorbance measuring device 21 is substituted into a predetermined formula for determining the addition amount of the flocculant, and based on the calculation result, the rotational speed of the drug injection pump 33P is controlled, and the detection value of the aggregation state detection sensor 24 is detected. Based on the above, the rotational speed of the medicine pump 33P is corrected.

この凝集状態検出センサ24としては、凝集撹拌槽2の液体を別の沈殿槽に移設して、一定時間沈降させた上澄みの濁度を検出する装置とセンサや、凝結ないし凝集した粒子のゼータ電位や流動電位を検出する装置とセンサ等も用いることもできるが、凝集撹拌槽2内にて凝結ないし凝集した粒子間の精澄度を検出する光遮断式微粒子センサや光散乱式微粒子センサが好適に用いられる。   As this agglomeration state detection sensor 24, a device and a sensor for detecting the turbidity of the supernatant obtained by transferring the liquid in the agitation agitation tank 2 to another precipitation tank and settling for a certain time, or the zeta potential of the aggregated or agglomerated particles. Although a device and a sensor for detecting the flow potential can be used, a light-blocking fine particle sensor or a light scattering fine particle sensor for detecting the fineness between particles condensed or aggregated in the aggregation stirring tank 2 is preferable. Used for.

このようにして凝集撹拌槽2内で凝集剤が添加されて撹拌されることにより凝集処理された凝集処理水は、膜分離部IIに送給される。   The agglomerated water thus agglomerated by adding and aggregating the aggregating agent in the agitation agitation tank 2 is fed to the membrane separation unit II.

この膜分離部IIにおいて、3は膜給水槽、4は膜モジュール、5は処理水槽、7は薬液逆洗条件制御装置、14はアルカリ貯槽、15は酸貯槽である。膜給水槽3内の凝集処理水を膜モジュール4に供給する配管38は給水ポンプ38Pとバブル38Vを備える。膜モジュール4の膜透過水を処理水槽5に送給する配管39にはバブル39Vが設けられ、また、この配管39には、アルカリ貯槽14内のアルカリがアルカリ薬注ポンプ43Pより配管43を経て供給され、酸貯槽15内の酸が、酸薬注ポンプ44Pにより配管44を経て供給され、また、処理水槽5内の処理水が逆洗ポンプ42Pにより配管42を経て供給されるように配置されている。   In this membrane separation part II, 3 is a membrane water supply tank, 4 is a membrane module, 5 is a treated water tank, 7 is a chemical backwash condition control device, 14 is an alkali storage tank, and 15 is an acid storage tank. The pipe 38 that supplies the agglomerated treated water in the membrane water tank 3 to the membrane module 4 includes a water supply pump 38P and a bubble 38V. A bubble 39V is provided in the pipe 39 for supplying the membrane permeated water of the membrane module 4 to the treated water tank 5, and the alkali in the alkali storage tank 14 passes through the pipe 43 from the alkali chemical injection pump 43P. The acid in the acid storage tank 15 is supplied via the pipe 44 by the acid injection pump 44P, and the treatment water in the treatment water tank 5 is supplied via the pipe 42 by the backwash pump 42P. ing.

41は逆洗排水の排出配管であり、40は処理水(膜透過水)の排出配管である。各配管39,41,42,43,44には各々バルブ39V,41V,42V,43V,44Vが設けられ、制御装置7からの制御信号が各ポンプ38P,42P,43P,44P、及び各バルブ38V,39V,41V,42V,43V,44Vに出力される。   41 is a discharge pipe for backwash drainage, and 40 is a discharge pipe for treated water (membrane permeated water). Each piping 39, 41, 42, 43, 44 is provided with valves 39V, 41V, 42V, 43V, 44V, respectively, and a control signal from the control device 7 is sent to each pump 38P, 42P, 43P, 44P, and each valve 38V. , 39V, 41V, 42V, 43V, 44V.

膜給水槽3内の凝集処理水は、給水ポンプ38Pと、バルブ38Vを介して膜モジュール4の1次側4aへ送られる。この実施の形態では、膜モジュール4は全量濾過方式であるが、クロスフロー方式でもよい。膜を透過して2次側4bに入った膜透過水は、配管39より処理水槽5に導入され、配管40より系外へ排出される。前記膜モジュール4の1次側4aには逆洗排水取出用の配管41が接続されている。   The agglomerated treated water in the membrane water tank 3 is sent to the primary side 4a of the membrane module 4 through the water supply pump 38P and the valve 38V. In this embodiment, the membrane module 4 is a total filtration method, but may be a cross flow method. The membrane permeated water that has permeated the membrane and entered the secondary side 4b is introduced into the treated water tank 5 through the pipe 39 and is discharged out of the system through the pipe 40. A pipe 41 for taking out backwash drainage is connected to the primary side 4 a of the membrane module 4.

膜モジュール4を水で逆洗したり薬液逆洗後にリンスするために、処理水槽5内の水が配管42を介して、バルブ39Vよりも上流側の配管39へ供給可能とされている。また、膜モジュール4を薬液洗浄するために、バルブ39Vよりも上流側の配管39へ、酸貯槽15内の酸溶液が配管44を介して供給可能とされ、また、アルカリ貯槽14内のアルカリ溶液が配管43を介して供給可能とされている。   In order to backwash the membrane module 4 with water or to rinse after the chemical liquid backwashing, the water in the treated water tank 5 can be supplied to the pipe 39 upstream of the valve 39V via the pipe 42. Further, in order to perform chemical cleaning of the membrane module 4, the acid solution in the acid storage tank 15 can be supplied to the pipe 39 upstream of the valve 39V via the pipe 44, and the alkali solution in the alkali storage tank 14 can be supplied. Can be supplied through the pipe 43.

膜モジュール4を水で逆洗したり、薬液逆洗後にリンスするときには、ポンプ38Pを停止し、バルブ38V,39V,43V,44Vを閉、バルブ42V,41Vを開とし、ポンプ42Pを作動させる。これにより、処理水槽5内の処理水が配管42,39を介して膜モジュール4の2次側4bに供給され、膜を逆方向に1次側4aへ透過し、配管41から逆洗排水として排出される。   When the membrane module 4 is backwashed with water or rinsed after the chemical backwashing, the pump 38P is stopped, the valves 38V, 39V, 43V, 44V are closed, the valves 42V, 41V are opened, and the pump 42P is operated. As a result, the treated water in the treated water tank 5 is supplied to the secondary side 4b of the membrane module 4 through the pipes 42 and 39, and the membrane permeates in the reverse direction to the primary side 4a. Discharged.

アルカリ又は酸で膜モジュール4を薬液逆洗するときには、ポンプ38Pを停止し、バルブ38V,39Vを閉とし、バルブ43V又は44Vを開とすると共にバルブ41Vを開とし、ポンプ43P又は44Pを作動させ、バルブ42Vを開としてポンプ42Pを作動させ、所定量の水を処理水槽5から配管39へ送り、アルカリ又は酸を希釈しつつ膜モジュール4へ送る。   When the membrane module 4 is backwashed with alkali or acid, the pump 38P is stopped, the valves 38V and 39V are closed, the valve 43V or 44V is opened, the valve 41V is opened, and the pump 43P or 44P is operated. Then, the valve 42V is opened, the pump 42P is operated, a predetermined amount of water is sent from the treated water tank 5 to the pipe 39, and sent to the membrane module 4 while diluting alkali or acid.

なお、膜モジュール4に供給するアルカリ又は酸の濃度を変化させるときには、ポンプ43P又は44Pをインバーター又はパルス制御することにより、アルカリ又は酸の注入量を変化させる。   When the concentration of alkali or acid supplied to the membrane module 4 is changed, the injection amount of alkali or acid is changed by inverter or pulse control of the pump 43P or 44P.

前述の原水槽1内の吸光度測定器21の検出値が制御装置6を介して制御装置7に入力されている。この制御装置7は、吸光度測定器21の検出値に応じ、薬液逆洗の頻度及び/又は膜モジュール4へ供給する薬液濃度(槽14又は15からのアルカリ又は酸の注入量)を制御する。   The detection value of the absorbance measuring device 21 in the raw water tank 1 is input to the control device 7 via the control device 6. The control device 7 controls the frequency of chemical backwashing and / or the concentration of chemical supplied to the membrane module 4 (injection amount of alkali or acid from the tank 14 or 15) according to the detection value of the absorbance measuring device 21.

なお、水逆洗又は薬液逆洗の際の逆洗流体の供給速度を制御しても良く、その場合には所定の供給速度となるように各ポンプ42P,43P,44Pの回転速度を制御装置7によって制御する。   The supply rate of the backwash fluid during water backwashing or chemical solution backwashing may be controlled. In that case, the rotational speed of each pump 42P, 43P, 44P is controlled so as to be a predetermined feed rate. 7 to control.

なお、図1は本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、図1の態様に何ら限定されるものではない。   FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the embodiment of FIG. 1 as long as the gist thereof is not exceeded.

例えば、凝集撹拌槽は急速撹拌槽と、この急速撹拌槽からのの流出水が導入される緩速撹拌槽との2槽構成であっても良く、この場合において、前段の急速撹拌槽に無機凝集剤を添加して後段の緩速撹拌槽に有機高分子凝集剤を添加しても良い。また、前述の如く、凝集処理水は、沈殿槽、加圧浮上槽や、砂、その他の充填材を用いた濾過装置等で、含有される固形物を除去した後、膜分離に供しても良く、この場合には、図1の凝集撹拌槽2の後段に沈殿槽や濾過装置が設けられる。   For example, the flocculation agitation tank may have a two-tank configuration including a rapid agitation tank and a slow agitation tank into which the effluent water from the rapid agitation tank is introduced. A flocculant may be added and an organic polymer flocculant may be added to the subsequent slow stirring tank. In addition, as described above, the agglomerated water may be subjected to membrane separation after removing solids contained in a sedimentation tank, a pressurized flotation tank, a filtration device using sand, or other fillers. In this case, a sedimentation tank and a filtration device are provided in the subsequent stage of the aggregation stirring tank 2 in FIG.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
原水槽、急速撹拌槽及び緩速撹拌槽、沈殿槽、砂濾過槽、並びにUF膜モジュールから構成される実験装置を用い、本発明に従って、原水を原水槽→急速撹拌槽→緩速撹拌槽→沈殿槽→砂濾過槽→膜モジュールの順で通水して処理を行った。
Example 1
In accordance with the present invention, using raw water tanks, rapid stirring tanks and slow stirring tanks, sedimentation tanks, sand filtration tanks, and UF membrane modules, raw water is converted into raw water tanks → rapid stirring tanks → slow stirring tanks → Water was passed in the order of precipitation tank → sand filtration tank → membrane module for treatment.

砂濾過槽には有効径0.45mmの濾過砂を600mm積層したカラムを用いた。急速撹拌槽は、有効容量30Lのパドル式撹拌機(200r.p.m.,40W)付きの角型急速撹拌槽であり、緩速撹拌槽は、有効容量100Lのパドル式攪拌機(15r.p.m.,40W)付きの緩速撹拌槽を直列に2槽連結したものである。膜モジュールとしては、クラレ社製の内圧中空糸限外濾過膜(親水化ポリスルフォン、分画分子量150,000)の小型ラボモジュール(膜面積:0.14m)を用いた。 As the sand filtration tank, a column in which 600 mm of filtration sand having an effective diameter of 0.45 mm was stacked was used. The rapid stirring tank is a square rapid stirring tank with a paddle type stirrer (200 rpm, 40 W) having an effective capacity of 30 L, and the slow stirring tank is a paddle type stirring machine (15 r.p with an effective capacity of 100 L). M., 40 W), two slow agitation tanks connected in series. As the membrane module, a small laboratory module (membrane area: 0.14 m 2 ) of an internal pressure hollow fiber ultrafiltration membrane (hydrophilic polysulfone, molecular weight cut off 150,000) manufactured by Kuraray Co., Ltd. was used.

原水としては、水道水にフミン酸を0.5、3.2および4.5mg/Lとなるように各々溶解させたものを用い、それぞれのフミン酸添加濃度は1週間ごとに変化させた。原水は600L/hで処理し、急速撹拌槽には凝集剤としてポリ塩化アルミニウム(PAC)を添加し、また、急速撹拌槽のpHが6.5となるように酸又はアルカリを添加してpH調整を行った。   As raw water, humic acid dissolved in tap water was adjusted to 0.5, 3.2 and 4.5 mg / L, respectively, and each humic acid addition concentration was changed every week. Raw water is treated at 600 L / h, polyaluminum chloride (PAC) is added as a flocculant to the rapid stirring tank, and acid or alkali is added so that the pH of the rapid stirring tank is 6.5. Adjustments were made.

原水槽には吸光度測定器として、波長200nm〜700nm近傍の紫外〜可視光領域を走査できるS::CANセンサ(S::CAN MESSTECHNIK GMBH(オーストリア)製、セル幅50mm)を浸漬し、紫外光の吸光度は波長260nmで測定し、可視光の吸光度は波長660nmで測定した。   In the raw water tank, an S :: CAN sensor (S :: CAN MESSTECHNIK GMBH (Austria), cell width 50 mm), which can scan the ultraviolet to visible light region with a wavelength of 200 nm to 700 nm, is immersed in the raw water tank. Was measured at a wavelength of 260 nm, and the absorbance of visible light was measured at a wavelength of 660 nm.

急速撹拌槽へのPAC添加量は、吸光度測定器で測定された紫外光の吸光度E260と可視光の吸光度E660との差(E260−E660)に基いて制御し、PAC添加量(mg/L)=100×(E260−E660)(abs)とした。なお、砂濾過水についても同様にして吸光度差(E260−E660)を調べた。 The amount of PAC added to the rapid stirring tank is controlled based on the difference between the absorbance E 260 of ultraviolet light and the absorbance E 660 of visible light (E 260 −E 660 ) measured by an absorbance meter. mg / L) = 100 × (E 260 −E 660 ) (abs). The absorbance difference (E 260 -E 660 ) was similarly examined for sand filtrate.

また、膜モジュールにおける膜透過流束は各フミン酸濃度で通水する前半の3.5日を4.5m/dで、後半の3.5日を5.5m/dで一定とし、通水29分毎に通常の水逆洗を1分間行う運転を行うと共に、薬液逆洗を1週間毎に定期的に実施する他に、前記吸光度差(E260−E660)が0.3abs以上となった時点で行う閾値設定制御として、1日1回(薬液逆洗間隔24時間)実施するように設定した。 The membrane permeation flux in the membrane module is constant at 4.5 m / d for the first 3.5 days of water flow at each humic acid concentration and at 5.5 m / d for the second half of the day. In addition to performing normal water backwashing every 29 minutes for 1 minute and performing chemical backwashing regularly every week, the difference in absorbance (E 260 -E 660 ) is 0.3 abs or more. As the threshold setting control performed at that time, it was set to be performed once a day (medical solution backwash interval 24 hours).

薬液逆洗の工程は下記表1の通りとした。なお、アルカリとしては水酸化ナトリウムを用い、酸としては硫酸を用いた。   The chemical liquid back washing process was as shown in Table 1 below. In addition, sodium hydroxide was used as the alkali and sulfuric acid was used as the acid.

Figure 0005103747
Figure 0005103747

各々の原水及び膜透過流束条件における分離膜の膜差圧の増加速度を調べ、結果をPAC添加量、砂濾過水の吸光度差、薬液逆洗の有無と共に表4に示した。なお、表中の膜差圧増加速度は平均値である。   The rate of increase of the membrane differential pressure of the separation membrane under each raw water and membrane permeation flux conditions was examined, and the results are shown in Table 4 together with the amount of PAC added, the difference in absorbance of sand filtration water, and the presence or absence of chemical backwashing. In addition, the membrane differential pressure increasing speed in the table is an average value.

実施例2
実施例1において、前記吸光度差(E260−E660)が0.3abs以上となった時点で行う薬液逆洗の工程を下記表2の通りとし、実施例1の場合よりも薬液濃度を半減する一方で、薬液逆洗頻度を2倍とし、12時間間隔で薬液逆洗を行ったこと以外は同様に水処理を行い、結果を表4に示した。
Example 2
In Example 1, the chemical solution backwashing step performed when the absorbance difference (E 260 -E 660 ) becomes 0.3 abs or more is as shown in Table 2 below, and the chemical solution concentration is halved as compared with Example 1. On the other hand, water treatment was performed in the same manner except that the chemical liquid backwash frequency was doubled and chemical liquid backwashing was performed at 12-hour intervals, and the results are shown in Table 4.

Figure 0005103747
Figure 0005103747

実施例3
実施例1において、前記吸光度差(E260−E660)が0.3abs以上となった時点で行う薬液逆洗の工程を下記表3の通りとし、実施例1の場合よりも薬液濃度を半減する一方で、洗浄液の供給速度を2倍の10m/dにした以外は同様に水処理を行い、結果を表4に示した。
Example 3
In Example 1, the chemical solution backwashing step performed when the absorbance difference (E 260 -E 660 ) becomes 0.3 abs or more is as shown in Table 3 below, and the chemical solution concentration is halved as compared with Example 1. On the other hand, the water treatment was performed in the same manner except that the supply rate of the cleaning liquid was doubled to 10 m / d, and the results are shown in Table 4.

Figure 0005103747
Figure 0005103747

比較例1
実施例1において、閾値設定制御での薬液逆洗を行わなかったこと以外は同様に水処理を行い、結果を表4に示した。
Comparative Example 1
In Example 1, water treatment was performed in the same manner except that the chemical solution backwashing was not performed in the threshold setting control, and the results are shown in Table 4.

Figure 0005103747
Figure 0005103747

表4より次のことが分かる。
実施例1ないし実施例3では、フミン酸添加濃度を4.5mg/Lに設定した場合に、原水の有機物濃度(E260−E660)が0.3absを超えた時点で閾値設定制御による薬液逆洗が実施されたため、膜透過流束を5.5m/dと高く設定した場合にも膜差圧の増加速度の上昇は観察されなかった。
Table 4 shows the following.
In Examples 1 to 3, when the humic acid addition concentration is set to 4.5 mg / L, the chemical solution by the threshold setting control when the organic matter concentration of raw water (E 260 -E 660 ) exceeds 0.3 abs. Since backwashing was performed, no increase in the rate of increase in the membrane differential pressure was observed even when the membrane permeation flux was set as high as 5.5 m / d.

薬液逆洗を行わなかった比較例1でも、フミン酸を4.5mg/L添加して砂濾過水の有機物濃度(E260−E660)が0.044absとなった場合にも、膜透過流束を4.5m/dに設定した場合は、膜差圧の増加速度は1.0kPa以下で安定であった。しかし、膜透過流束を5.5m/dに設定すると共に、原水にフミン酸を4.5mg/L添加した場合には、膜差圧の増加速度は2kPa/d以上となり安定運転の継続が不可能となった。ただし、原水のフミン酸添加濃度を0.5mg/Lおよび3.2mg/Lと低くした場合には、膜差圧は自然に回復し、膜差圧の増加速度の上昇は認められなかった。 Even in Comparative Example 1 in which the chemical solution was not backwashed, even when 4.5 mg / L of humic acid was added and the organic matter concentration (E 260 -E 660 ) of the sand filtration water was 0.044 abs, the membrane permeation flow When the bundle was set to 4.5 m / d, the increase rate of the membrane differential pressure was stable at 1.0 kPa or less. However, when the membrane permeation flux is set to 5.5 m / d and humic acid is added to the raw water at 4.5 mg / L, the increase rate of the membrane differential pressure is 2 kPa / d or more, and the stable operation is continued. It became impossible. However, when the humic acid addition concentration of the raw water was lowered to 0.5 mg / L and 3.2 mg / L, the membrane differential pressure recovered spontaneously, and no increase in the rate of increase in the membrane differential pressure was observed.

これらの結果から、原水の有機物濃度を測定し、その結果に基いて凝集条件(凝集剤の添加量)を制御すると同時に、分離膜の洗浄条件(薬液逆洗の頻度、薬液の薬品濃度及び洗浄流体の供給速度)を制御することにより、高い膜透過流束で安定して運転を継続することができることが分かる。   From these results, the organic matter concentration of the raw water is measured, and the coagulation conditions (addition amount of coagulant) are controlled based on the results. At the same time, the separation membrane washing conditions (frequency of chemical backwashing, chemical concentration of chemicals and washing) It can be seen that the operation can be stably continued with a high membrane permeation flux by controlling the fluid supply speed.

また、このような本発明による効果は、特に原水の有機物濃度(E260−E660)が0.3abs以上で、膜の透過流束を5.0m/d以上と高く設定する場合に有効であることが分かる。 Such an effect of the present invention is particularly effective when the concentration of organic matter in raw water (E 260 -E 660 ) is 0.3 abs or more and the permeation flux of the membrane is set as high as 5.0 m / d or more. I understand that there is.

本発明の水処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the water treatment apparatus of this invention. フミン酸濃度と洗浄条件(逆洗頻度)との関係を模式的に示すグラフである。It is a graph which shows typically the relation between humic acid concentration and washing conditions (backwash frequency).

I 凝集処理部
II 膜分離部
1 原水槽
2 凝集撹拌槽
3 膜給水槽
4 膜モジュール
5 処理水槽
6 凝集処理条件制御装置
7 薬液逆洗条件制御装置
11 凝集剤貯槽
12,15 酸貯槽
13,14 アルカリ貯槽
21 吸光度測定器
22 撹拌機
23 pHセンサ
24 凝集状態検出センサ
I Aggregation processing section
II Membrane Separation Unit 1 Raw Water Tank 2 Coagulation Stirring Tank 3 Membrane Water Supply Tank 4 Membrane Module 5 Treatment Water Tank 6 Coagulation Treatment Condition Control Device 7 Chemical Liquid Backwash Condition Control Device 11 Coagulant Storage Tank 12, 15 Acid Storage Tank 13, 14 Alkali Storage Tank 21 Absorbance Measuring device 22 Stirrer 23 pH sensor 24 Aggregation state detection sensor

Claims (2)

原水に凝集剤を添加して凝集処理する凝集処理手段と、
該凝集処理手段からの凝集処理水を一次側から供給し、分離膜を透過した透過水を二次側から排出する膜分離手段と、
洗浄流体を供給することで該分離膜を洗浄する分離膜洗浄手段と、
前記原水中の有機物濃度を、波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差から測定する有機物濃度測定手段と、
該波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差に基づいて、前記凝集処理手段における凝集処理条件と前記分離膜洗浄手段における洗浄条件を直接制御する制御手段と
を有する、波長260nmの吸光度と波長660nmの吸光度との差が0.3abs以上の原水を、膜の透過流束5.0m/d以上で処理する水処理装置であって、
前記制御する凝集処理条件が原水への凝集剤添加量であり、
前記制御する洗浄条件が洗浄間隔であり、
前記洗浄手段は前記膜分離手段の二次側から前記洗浄流体としての洗浄薬液を供給し、前記分離膜を透過した洗浄薬液を一次側から排出して該分離膜を薬液逆洗するものであり、
波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差が所定値以上となった時点で薬液逆洗を行う閾値設定制御を行うことを特徴とする水処理装置。
A coagulation treatment means for adding a coagulant to the raw water and coagulating it;
A membrane separation means for supplying agglomerated treated water from the agglomeration treatment means from the primary side and discharging permeated water that has permeated the separation membrane from the secondary side;
A separation membrane cleaning means for cleaning the separation membrane by supplying a cleaning fluid;
Organic matter concentration measuring means for measuring the organic matter concentration in the raw water from the difference between the absorbance of ultraviolet light within a wavelength range of 230 to 300 nm and the absorbance of visible light within a wavelength range of 600 to 700 nm;
Based on the difference between the absorbance of ultraviolet light within the wavelength range of 230 to 300 nm and the absorbance of visible light within the wavelength range of 600 to 700 nm, the aggregation treatment condition in the aggregation treatment means and the washing condition in the separation membrane washing means A water treatment apparatus for treating raw water having a difference between the absorbance at a wavelength of 260 nm and the absorbance at a wavelength of 660 nm of 0.3 abs or more at a permeation flux of 5.0 m / d or more. And
The coagulation treatment condition to be controlled is the amount of coagulant added to the raw water,
The cleaning condition to be controlled is a cleaning interval,
The cleaning means supplies a cleaning chemical solution as the cleaning fluid from the secondary side of the membrane separation means, discharges the cleaning chemical solution that has permeated the separation membrane from the primary side, and backwashes the separation membrane with the chemical solution. ,
Threshold setting control for performing chemical liquid backwashing is performed when the difference between the absorbance of ultraviolet light within a wavelength range of 230 to 300 nm and the absorbance of visible light within a wavelength range of 600 to 700 nm exceeds a predetermined value. Water treatment equipment.
原水に凝集剤を添加して凝集処理する凝集処理工程と、
該凝集処理工程からの凝集処理水を膜分離手段の一次側から供給し、分離膜を透過した透過水を膜分離手段の二次側から排出する膜分離工程と、
洗浄流体を供給することで該分離膜を洗浄する分離膜洗浄工程とを有する水処理方法において、
前記原水中の有機物濃度を、波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差から測定し、該波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差に基づいて前記凝集処理工程における凝集処理条件と前記分離膜洗浄工程における洗浄条件を直接制御する、波長260nmの吸光度と波長660nmの吸光度との差が0.3abs以上の原水を、膜の透過流束5.0m/d以上で処理する水処理方法であって、
前記制御する凝集処理条件が原水への凝集剤添加量であり、
前記制御する洗浄条件が洗浄間隔であり、
前記洗浄工程は前記膜分離手段の二次側から前記洗浄流体としての洗浄薬液を供給し、前記分離膜を透過した洗浄薬液を一次側から排出して該分離膜を薬液逆洗するものであり、
波長230〜300nmの範囲内の紫外光の吸光度と波長600〜700nmの範囲内の可視光の吸光度との差が所定値以上となった時点で薬液逆洗を行う閾値設定制御を行うことを特徴とする水処理方法。
A coagulation treatment step of adding coagulant to the raw water and coagulating,
A membrane separation step of supplying the agglomerated water from the agglomeration treatment step from the primary side of the membrane separation means, and discharging the permeated water that has permeated the separation membrane from the secondary side of the membrane separation means;
In a water treatment method having a separation membrane cleaning step of cleaning the separation membrane by supplying a cleaning fluid,
The organic substance concentration in the raw water is measured from the difference between the absorbance of ultraviolet light within a wavelength range of 230 to 300 nm and the absorbance of visible light within a wavelength range of 600 to 700 nm, and the ultraviolet concentration within the wavelength range of 230 to 300 nm is measured. An absorbance and a wavelength of 260 nm that directly control the aggregation treatment conditions in the aggregation treatment step and the washing conditions in the separation membrane washing step based on the difference between the light absorbance and the absorbance of visible light in the wavelength range of 600 to 700 nm. A water treatment method for treating raw water having a difference from the absorbance at 660 nm of 0.3 abs or more with a membrane permeation flux of 5.0 m / d or more ,
The coagulation treatment condition to be controlled is the amount of coagulant added to the raw water,
The cleaning condition to be controlled is a cleaning interval,
In the cleaning step, a cleaning chemical solution as the cleaning fluid is supplied from the secondary side of the membrane separation means, and the cleaning chemical solution that has permeated the separation membrane is discharged from the primary side to back-clean the separation membrane. ,
Threshold setting control for performing chemical liquid backwashing is performed when the difference between the absorbance of ultraviolet light within a wavelength range of 230 to 300 nm and the absorbance of visible light within a wavelength range of 600 to 700 nm exceeds a predetermined value. Water treatment method.
JP2006027291A 2006-02-03 2006-02-03 Water treatment apparatus and water treatment method Expired - Fee Related JP5103747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027291A JP5103747B2 (en) 2006-02-03 2006-02-03 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027291A JP5103747B2 (en) 2006-02-03 2006-02-03 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2007203249A JP2007203249A (en) 2007-08-16
JP5103747B2 true JP5103747B2 (en) 2012-12-19

Family

ID=38483177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027291A Expired - Fee Related JP5103747B2 (en) 2006-02-03 2006-02-03 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP5103747B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343655B2 (en) * 2009-03-27 2013-11-13 東レ株式会社 Operation method of membrane module
KR100964895B1 (en) * 2009-11-26 2010-06-23 삼보과학 주식회사 System and method to measure feeding rate of coagulant for water purification process
JP2014094351A (en) * 2012-11-09 2014-05-22 Gunbiru:Kk Effluent treatment apparatus
JP6777130B2 (en) * 2018-10-05 2020-10-28 栗田工業株式会社 Membrane water treatment chemicals and membrane treatment methods
JP6967037B2 (en) * 2019-06-21 2021-11-17 東京都 Water treatment system and water treatment method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166029A (en) * 1979-06-12 1980-12-24 Horiba Ltd Two-wavelength photometric analysis meter
JPS56106143A (en) * 1980-01-26 1981-08-24 Denki Kagaku Keiki Co Ltd Absorbance measuring apparatus
JPS5929073A (en) * 1982-08-09 1984-02-16 Hitachi Plant Eng & Constr Co Ltd Automatic control method for treatment of waste water containing humic acid
JP2876978B2 (en) * 1994-02-02 1999-03-31 日立プラント建設株式会社 Water purification method
JP3312507B2 (en) * 1994-10-20 2002-08-12 栗田工業株式会社 Water treatment equipment
JPH09292336A (en) * 1996-04-25 1997-11-11 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof
JPH10118411A (en) * 1996-10-25 1998-05-12 Hitachi Ltd Method and device for controlling injection of flocculant in water purification plant
JP3773337B2 (en) * 1997-10-30 2006-05-10 株式会社クボタ Operation method of organic sewage treatment equipment
JP2001191086A (en) * 2000-01-07 2001-07-17 Kurita Water Ind Ltd Water treating apparatus
JP3830085B2 (en) * 2001-05-15 2006-10-04 日本碍子株式会社 Flocculant injection control method in membrane filtration.
JP2003236349A (en) * 2002-02-14 2003-08-26 Hitachi Plant Eng & Constr Co Ltd Method of operating membrane separator

Also Published As

Publication number Publication date
JP2007203249A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP2007245078A (en) Water treatment system and water treatment process
JP6832710B2 (en) System for treating water
JP4874231B2 (en) Water treatment system
Choo et al. Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system
US6464877B1 (en) Water treating method
WO2009119300A1 (en) Method of pretreatment for separation with reverse osmosis membrane of water to be treated
JP5103747B2 (en) Water treatment apparatus and water treatment method
JP6210063B2 (en) Fresh water generation method and fresh water generation apparatus
Lozier et al. Using a membrane bioreactor/reverse osmosis system for indirect potable reuse
JP5151009B2 (en) Membrane separation device and membrane separation method
JP2001276844A (en) Water producing method and water producing system
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP3473309B2 (en) Operation control device for membrane separation device
KR101693100B1 (en) Smart Membrane-Filteration Water Treating System
JP2006055804A (en) Coagulation device, coagulation method and controller for charging chemical
KR20170075085A (en) Membrane Filtration System for Drinking Water and Method for Reducing Manganese Using That Membrane Filtration System
Ericsson et al. Membrane applications in raw water treatment with and without reverse osmosis desalination
JP2011056411A (en) System and method for desalination of water to be treated
KR101306790B1 (en) Controlling Method of Membrane Filtering System
Geraldes et al. Dissolved air flotation of surface water for spiral-wound module nanofiltration pre-treatment
JP2016043279A (en) Membrane separation device using internal pressure type hollow yarn membrane and operational method
JP2016093789A (en) Water treatment method and water treatment system
JP4872391B2 (en) Membrane separation device and membrane separation method
Dietze et al. Phosphorus removal with membrane filtration for surface water treatment
JP2005334777A (en) Water purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5103747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees