JPH09292336A - Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof - Google Patents

Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof

Info

Publication number
JPH09292336A
JPH09292336A JP10502896A JP10502896A JPH09292336A JP H09292336 A JPH09292336 A JP H09292336A JP 10502896 A JP10502896 A JP 10502896A JP 10502896 A JP10502896 A JP 10502896A JP H09292336 A JPH09292336 A JP H09292336A
Authority
JP
Japan
Prior art keywords
chromaticity
wavelength
measured
absorbance
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10502896A
Other languages
Japanese (ja)
Inventor
Masato Onishi
真人 大西
Shinichi Yoshikawa
慎一 吉川
Naoki Okuma
直紀 大熊
Yutaka Okuno
裕 奥野
Masahiro Midorikawa
正博 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP10502896A priority Critical patent/JPH09292336A/en
Publication of JPH09292336A publication Critical patent/JPH09292336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method and the apparatus for measuring turbidity and the water-treatment control method using the method and the apparatus thereof, which are not affected by the turbidity of liquid to be measured, can cope with the change in performance of the apparatus itself, can display a high performance as the turbidity chromaticity monitor for water-treatment control and can contribute to the unmanned operation of a film-type water purifying system. SOLUTION: In the measuring method for measuring chromaticity of liquid to be measured, the light rays of two wavelengths, one of wavelength of 400nm having a large chromaticity absorption and the other of wavelength of 620nm having almost no chromaticity absorption, are used. For the light rays of respective wavelengths, the absorbencies when the light rays are made to pass through the inside and the outside of an absorbing cell 16 filled with the liquid to be measured are measured. The chromaticity of the liquid to be measured is computed from each of the obtained absorbencies and the relationship between the absorbance obtained beforehand and the chromaticity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は色度測定方法及び装
置並びにその装置を用いた水処理制御方法に係り、特
に、水道水等の浄水を得るための水処理分野で用いられ
る色度測定方法及び装置並びにその装置を用いた水処理
制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromaticity measuring method and apparatus and a water treatment controlling method using the apparatus, and more particularly to a chromaticity measuring method used in the water treatment field for obtaining purified water such as tap water. And a device, and a water treatment control method using the device.

【0002】[0002]

【従来の技術】水道水の水質基準において、水道水の色
度を5度以下にするように規定されている。河川水や地
下水などの水道原水中に含まれる色度起因物質は、主に
フミン質や金属(Fe,Mn等)であり、これらが混在
した状態で、色度は測定される。そして、水道公定法で
定められた色度測定方法としては、比色法と透過光測定
法の2つの測定方法がある。
2. Description of the Related Art In the quality standard of tap water, it is prescribed that the chromaticity of tap water be 5 degrees or less. The chromaticity-causing substances contained in raw water of tap water such as river water and groundwater are mainly humic substances and metals (Fe, Mn, etc.), and the chromaticity is measured in the state where these substances are mixed. As the chromaticity measuring method defined by the official water supply method, there are two measuring methods, a colorimetric method and a transmitted light measuring method.

【0003】色度測定方法のうち比色法は肉眼による比
色であるため、人為的な誤差を生じやすく、また連続的
な測定は不可能である。一方、透過光測定法は、波長3
90nmでの吸光度を測定して色度を求める方法であり
連続測定が可能である。このことから、透過光測定法を
利用した色度測定装置を、浄水製造における浄水システ
ムの色度モニタとして用い、この色度モニタから送られ
る色度情報に基づいて凝集剤や塩素剤等の薬品の注入量
を制御する試みがなされている。
Among the chromaticity measuring methods, the colorimetric method is a colorimetric method with the naked eye, so that an artificial error is likely to occur and continuous measurement is impossible. On the other hand, the transmitted light measurement method uses a wavelength of 3
This is a method of obtaining chromaticity by measuring the absorbance at 90 nm, and continuous measurement is possible. Therefore, the chromaticity measurement device using the transmitted light measurement method is used as a chromaticity monitor of a water purification system in water purification, and chemicals such as coagulants and chlorine agents are based on the chromaticity information sent from this chromaticity monitor. Attempts have been made to control the injection rate of

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
色度測定装置は、濁質成分や吸収セルの汚れの影響に
よる誤差が生じ易い。光源の劣化による光度の変動
や、受光部の光検出素子やその増幅器の劣化による光度
の変動により測定値がばらつき易いという欠点があり、
安定した測定を行うことができない。
However, in the conventional chromaticity measuring device, an error is likely to occur due to the influence of the turbid component and the dirt of the absorption cell. There is a drawback that the measured values are likely to fluctuate due to fluctuations in luminous intensity due to deterioration of the light source, and fluctuations in luminous intensity due to deterioration of the photodetector element of the light receiving section and its amplifier,
Stable measurement cannot be performed.

【0005】この為、浄水システムに、従来の色度測定
装置を用いて水処理制御を行う場合、処理水の水質の安
定化の点から、色度測定装置からの色度値がある程度の
バラツキを考慮して過剰量の薬品を注入せざるを得ない
為、不経済であった。更に、近年開発された膜型浄水シ
ステムは、無人化が可能であることが大きな特徴となっ
ている。しかし、膜型浄水システムには水質の変化や装
置自体の性能変化に影響されない、所謂メンテナンスを
殆ど必要としない無人連続色度装置が必要とされ、これ
に対応する色度測定装置が要望されている。
For this reason, when water treatment control is performed in a water purification system using a conventional chromaticity measuring device, the chromaticity value from the chromaticity measuring device varies to some extent from the viewpoint of stabilizing the quality of the treated water. In consideration of this, it was uneconomical to inject an excessive amount of chemicals. Further, the membrane type water purification system developed in recent years has a great feature that it can be unmanned. However, the membrane-type water purification system requires an unmanned continuous chromaticity device that is not affected by changes in water quality or performance changes of the device itself, so-called maintenance-free continuous chromaticity device is required, and a chromaticity measurement device corresponding to this is required. There is.

【0006】本発明は、このような事情に鑑みてなされ
たもので、被測定液の濁質に影響されず、且つ、装置自
体の性能変化にも対応でき、水処理制御用の色度モニタ
として高性能を発揮することができ、更には膜型浄水シ
ステムの無人化にも寄与することのできる色度測定方法
及び装置並びにその装置を用いた水処理制御方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances and is not affected by the turbidity of the liquid to be measured and can cope with a change in the performance of the apparatus itself. Therefore, the chromaticity monitor for water treatment control is provided. It is an object of the present invention to provide a chromaticity measurement method and device that can exhibit high performance as a product, and can also contribute to unmanned membrane water purification systems, and a water treatment control method using the device. .

【0007】[0007]

【課題を解決する為の手段】本発明は前記目的を達成す
るために、被測定液の色度を測定する測定方法におい
て、色度吸収を有する第1の波長と該第1の波長より色
度吸収の小さな第2の波長の2波長の光線を用い、それ
ぞれの波長の光線について前記被測定液が満たされた吸
収セルの内部と外部を通した時の吸光度を測定し、得ら
れた各吸光度と、予め求めた吸光度と色度の関係から前
記被測定液の色度を算出することを特徴とする。
In order to achieve the above object, the present invention provides a method for measuring the chromaticity of a liquid to be measured, wherein a first wavelength having a chromaticity absorption and a color from the first wavelength are used. Each of the obtained light rays of two wavelengths of the second wavelength having a small degree of absorption is measured when the light rays of each wavelength are passed through the inside and outside of the absorption cell filled with the liquid to be measured. It is characterized in that the chromaticity of the liquid to be measured is calculated from the absorbance and the relationship between the absorbance and the chromaticity obtained in advance.

【0008】また、本発明は前記目的を達成するため
に、被測定液の色度を測定する測定装置において、光源
と、前記光源から発せられた光線を、色度吸収を有する
第1の波長と該第1の波長より色度吸収の小さな第2の
波長の2波長を選択すると共に、どちらか1方の波長に
切り換える選択・切替手段と、前記選択・切替手段で得
られた波長の光線を前記被測定液が満たされた吸収セル
の内部と外部を通る2つの光路に分ける分岐手段と、前
記選択・切替手段で得られる2波長の光線について前記
分岐手段で2光路に分岐して得られる各光線の各吸光度
を測定する吸光度測定手段と、前記測定された各吸光度
と、予め求めた吸光度と色度の関係から前記被測定液の
色度を算出する算出手段と、を備えていることを特徴と
する。
In order to achieve the above-mentioned object, the present invention provides a measuring device for measuring the chromaticity of a liquid to be measured, wherein the light source and the light beam emitted from the light source have a first wavelength having chromaticity absorption. And a selection / switching means for selecting two wavelengths, a second wavelength having a smaller chromaticity absorption than the first wavelength, and switching to either one of the wavelengths, and a light ray having a wavelength obtained by the selection / switching means. Is divided into two optical paths that pass through the inside and outside of the absorption cell filled with the liquid to be measured, and the two-wavelength light beam obtained by the selection / switching means is branched into two optical paths by the branching means. It comprises an absorbance measuring means for measuring each absorbance of each light ray, each measured absorbance, and a calculating means for calculating the chromaticity of the liquid to be measured from the relationship between the absorbance and the chromaticity determined in advance. It is characterized by

【0009】本発明によれば、色度吸収を有する第1の
波長と、第1の波長より色度吸収の小さな第2の波長の
2波長の光線を、被測定液が満たされた吸収セルを通し
て得られた各吸光度の差から色度を算出するため、濁質
成分による誤差や吸収セルの汚れによる誤差が生じず安
定した色度測定ができる。更に、第1及び第2の波長の
光を、吸収セルの内部と外部を通すようにしたので、光
源の光度、吸光度測定手段の光検出素子やその増幅器等
の劣化や変動のように装置性能に起因する測定値のバラ
ツキも常時補正することができる。従って、色度を精度
良く、且つ安定して測定することができる。
According to the present invention, an absorption cell filled with a liquid to be measured is filled with a light beam having two wavelengths, a first wavelength having chromaticity absorption and a second wavelength having smaller chromaticity absorption than the first wavelength. Since the chromaticity is calculated from the difference in each absorbance obtained through the above, stable chromaticity measurement can be performed without causing an error due to a turbid component or an error due to stain on the absorption cell. Further, since the light of the first and second wavelengths is made to pass through the inside and the outside of the absorption cell, the device performance such as deterioration or fluctuation of the light intensity of the light source, the photodetection element of the absorbance measuring means and its amplifier, etc. It is possible to constantly correct the variation in the measured value due to. Therefore, the chromaticity can be measured accurately and stably.

【0010】[0010]

【発明の実施の形態】以下添付図面に従って本発明に係
る色度測定方法及び装置並びにその装置を用いた水処理
制御方法の好ましい実施の形態を詳説する。図1は本発
明の色度測定装置の実施の形態の全体構成の一例を示す
構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a chromaticity measuring method and apparatus and a water treatment control method using the apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a configuration diagram showing an example of the overall configuration of an embodiment of a chromaticity measuring device of the present invention.

【0011】図1に示すように、色度を測定する地下
水、下水、工場廃水等の被測定液は、送液ポンプ12に
より気液分離器14に導かれて脱気された後、色度測定
装置10の吸収セル16の一方端から入って吸収セル1
6内を満たし、吸収セル16の他方端から装置10の系
外に排出される。色度測定装置10は、色度吸収の大き
な第1の波長と色度吸収の小さな第2の波長の2波長の
光線の吸光度を測定でき、且つ吸収セル16の内部と外
部を通る2つの光路を有するダブルビーム方式になるよ
うに構成される。また、2度と5度の色度標準液の吸収
スペクトルにおける吸光度と波長との関係を示した図2
から分かるように、波長が400nmで大きな色度吸収
を得ることができ、波長が600nm以上になるとほと
んど吸収が無いことが分かる。よって、第1の波長とし
て400nmを用い、第2の波長として620nmを用
いた場合の例で説明する。尚、第1及び第2の波長は、
400nm及び620nmに限定されるものではなく、
その近傍の波長を選択することができる。また、第1の
波長と第2の波長の吸光度差が大きくなるように2波長
を設定することが精度の点で良い。
As shown in FIG. 1, the liquid to be measured such as ground water, sewage, and factory wastewater whose chromaticity is to be measured is introduced into a gas-liquid separator 14 by a liquid feed pump 12 to be deaerated, and then the chromaticity is measured. The absorption cell 1 enters from one end of the absorption cell 16 of the measuring device 10.
6 is filled and discharged from the other end of the absorption cell 16 to the outside of the system of the apparatus 10. The chromaticity measuring device 10 is capable of measuring the absorbance of light of two wavelengths, a first wavelength having a large chromaticity absorption and a second wavelength having a small chromaticity absorption, and two optical paths passing through the inside and outside of the absorption cell 16. It is configured so as to have a double beam system. In addition, FIG. 2 showing the relationship between the absorbance and the wavelength in the absorption spectrum of the chromaticity standard solution at 2 and 5 degrees.
As can be seen from the above, a large chromaticity absorption can be obtained at a wavelength of 400 nm, and there is almost no absorption at a wavelength of 600 nm or more. Therefore, an example will be described in which 400 nm is used as the first wavelength and 620 nm is used as the second wavelength. The first and second wavelengths are
It is not limited to 400 nm and 620 nm,
The wavelength in the vicinity can be selected. Further, it is preferable in terms of accuracy to set the two wavelengths so that the difference in absorbance between the first wavelength and the second wavelength becomes large.

【0012】色度測定装置10の構成を光源18から受
光部20までの光路に沿って説明すると、光源18から
の白色光は集光レンズ22を通って、光源ボックス24
から発せられる。この光源ボックス24に隣接して光源
ボックス24の内部温度上昇を防止するための送風ファ
ン26が配設される。光源ボックス24を出た白色光は
波長選択・切替器28の波長選択部30において400
nm若しくは620nmの波長の光が選択される。波長
選択部30はそれ自体が回転し、400nm若しくは6
20nmの回折格子32が光路に位置することにより何
れか一方の波長が選択される。また、波長選択部30の
近傍には、回折格子32が光路上に正しく位置している
か否かを検出するための位置検出部34が配設され、正
しく位置していない場合には、図示しない補正装置によ
り補正される。この波長選択・切替器28を通過して単
色光となった光線は、ミラー36により90°光路を変
えてハーフミラー38に至る。ハーフミラー38では、
ハーフミラー38の反射と透過の作用により、光線は2
つの光路に分岐される。この分岐した光線のうち、ハー
フミラー38を透過した光線はミラー40を介して集光
レンズ42に集められ、被測定液が満たされた吸収セル
16を通過する。尚、吸収セル16は、色度の微小な被
測定液の場合には、光路長が通常の吸収セル(10〜5
0mm)よりも長い500mmのものを使用すると感度
を高めることができる。吸収セル16を通った透過光は
ミラー44により90°光路を変えて集光レンズ46に
集められ、光路切替器48に至る。
The structure of the chromaticity measuring device 10 will be described along the optical path from the light source 18 to the light receiving portion 20. White light from the light source 18 passes through a condenser lens 22 and a light source box 24.
Emanated from. A blower fan 26 is disposed adjacent to the light source box 24 to prevent the internal temperature of the light source box 24 from rising. The white light emitted from the light source box 24 is 400 at the wavelength selector 30 of the wavelength selector / switcher 28.
nm or 620 nm wavelength light is selected. The wavelength selection unit 30 rotates by itself, and the wavelength of 400 nm or 6
One of the wavelengths is selected by positioning the 20 nm diffraction grating 32 in the optical path. Further, a position detector 34 for detecting whether or not the diffraction grating 32 is correctly positioned on the optical path is provided near the wavelength selection unit 30, and is not shown when the position is not correctly positioned. It is corrected by the correction device. The light beam that has passed through the wavelength selector / switch 28 and becomes monochromatic light changes its optical path by 90 ° by the mirror 36 and reaches the half mirror 38. With the half mirror 38,
Due to the effect of reflection and transmission of the half mirror 38, the light beam is 2
It is split into two optical paths. Of the branched light rays, the light rays that have passed through the half mirror 38 are collected by the condenser lens 42 via the mirror 40 and pass through the absorption cell 16 filled with the liquid to be measured. In the case of the liquid to be measured having a small chromaticity, the absorption cell 16 has an optical path length of a normal absorption cell (10 to 5).
The sensitivity can be increased by using a film having a length of 500 mm longer than 0 mm). The transmitted light that has passed through the absorption cell 16 changes its optical path by 90 ° by the mirror 44, is collected by the condenser lens 46, and reaches the optical path switch 48.

【0013】一方、ハーフミラー38で反射した光線
は、集光レンズ50を通過し、ミラー52により90°
光路が変えられて光路切替器48に至る経路を形成する
ことにより、吸収セル16の外部(空気中)を通過す
る。光路切替器48にはスリットを有した回転板54が
装着されており、ハーフミラー38で分岐された各光路
にスリットが合うように回転する。光路切替器48の近
傍には、スリットが光路上に位置しているか否かを検出
するための位置検出部56が配設され、正しく位置して
いない場合には、図示しない補正装置により補正され
る。
On the other hand, the light beam reflected by the half mirror 38 passes through the condenser lens 50 and is turned by 90 ° by the mirror 52.
The light path is changed to form a path to the light path switch 48, so that the light passes through the outside (in the air) of the absorption cell 16. A rotary plate 54 having a slit is attached to the optical path switching device 48, and the optical path switch 48 rotates so that the slit fits in each optical path branched by the half mirror 38. A position detection unit 56 for detecting whether or not the slit is positioned on the optical path is provided near the optical path switch 48, and when the slit is not positioned correctly, it is corrected by a correction device (not shown). It

【0014】光路切替器48のスリットを通過した光線
のうち、吸収セル16の内部を通過した光線はミラー5
5により受光器20に導かれると共に、吸収セル16の
外部を通過した光線はミラー58により受光器20に導
かれ、受光器20で各吸光度が測定される。即ち、受光
器20では、400nmの波長で吸収セル16の内部と
外部を通った2点、及び620nmの波長で吸収セル1
6の内部と外部を通った2点の合計4点の吸光度が測定
される。そして、受光器20では、受光器20で測定さ
れた各吸光度の測定情報及び、波長切替器で選択した波
長、光路切替器で設定したスリット等の設定情報が演算
器60に送られる。
Of the light rays passing through the slit of the optical path switch 48, the light rays passing through the inside of the absorption cell 16 are the mirrors 5.
The light beam that has been guided to the light receiver 20 by 5 and has passed through the outside of the absorption cell 16 is guided to the light receiver 20 by the mirror 58, and each light absorbance is measured by the light receiver 20. That is, in the light receiver 20, two points passing through the inside and outside of the absorption cell 16 at a wavelength of 400 nm and the absorption cell 1 at a wavelength of 620 nm.
Absorbance is measured at a total of 4 points, 2 points passing through the inside and outside of 6. Then, in the light receiver 20, the measurement information of each absorbance measured by the light receiver 20 and the setting information such as the wavelength selected by the wavelength switching device and the slit set by the optical path switching device are sent to the calculator 60.

【0015】演算器60では、色度吸収の大きい400
nmの波長と色度吸収のほとんど無い620nmの波長
の2波長における吸光度差を求め、被測定液の濁質成分
による誤差や吸収セル16の汚れによる誤差をキャンセ
ルする。更に、演算器60では、400nmと620n
mのそれぞれについて吸収セル16の内部と外部のダブ
ルビームの吸光度差を求め、光源18の光度の劣化や変
動、受光器20の光検出素子やその増幅器の劣化や変動
等の装置性能に起因する誤差をキャンセルする。そし
て、これらの誤差をキャンセルした後の400nmにお
ける吸光度と、演算器60に予め入力されている吸光度
と色度との検量線に基づいた関係式から被測定液の色度
が算出される。演算器60としては通常のコンピュータ
を使用することができる。
In the computing unit 60, 400 having a large chromaticity absorption is used.
The difference in absorbance between two wavelengths, ie, the wavelength of nm and the wavelength of 620 nm at which there is almost no chromaticity absorption, is determined, and the error due to the turbid component of the liquid to be measured and the error due to the contamination of the absorption cell 16 are canceled. Furthermore, in the computing unit 60, 400 nm and 620 n
The difference in absorbance between the double beams inside and outside the absorption cell 16 is obtained for each m, and this is caused by device performance such as deterioration or fluctuation of the light intensity of the light source 18, deterioration or fluctuation of the photodetector element of the light receiver 20 or its amplifier. Cancel the error. Then, the chromaticity of the liquid to be measured is calculated from the relational expression based on the absorbance at 400 nm after canceling these errors and the calibration curve of the absorbance and the chromaticity that is input in advance to the calculator 60. A normal computer can be used as the computing unit 60.

【0016】このように構成された本発明の色度測定装
置10によれば、吸収の大きい波長と吸収のほとんど無
い波長の吸光度を測定し、その差から色度を計算で求め
るため、濁質成分による誤差や吸収セルの汚れによる誤
差が生じず、安定した色度測定が可能である。また、吸
収セル16の内部と外部の2か所に光線を通すダブルビ
ーム方式とすることで、光源の光度、受光器20の光検
出素子やその増幅器の変動等の装置性能に起因する測定
値のばらつきを常時補正できる。
According to the chromaticity measuring device 10 of the present invention thus constructed, the turbidity is measured because the chromaticity is calculated from the difference between the wavelengths having large absorption and the wavelengths having almost no absorption. Stable chromaticity measurement is possible without causing errors due to components or due to stains on the absorption cell. Further, by adopting a double beam system in which light rays are passed through two points inside and outside the absorption cell 16, measurement values resulting from device performance such as luminous intensity of the light source, fluctuation of the photodetector element of the light receiver 20 and its amplifier, etc. Can be constantly corrected.

【0017】ここで、演算器60に予め入力される検量
線データの作成及び色度の算出方法について詳細を説明
する。 (1)検量線作成 純水を用いてブランク測定、色度2の標準液を用いてキ
ャリブレーション測定を行う。このときの測定結果から
色度2の吸光度差を計算しCALRATE とする。
Here, the method of creating the calibration curve data and the calculation of the chromaticity which are input in advance to the calculator 60 will be described in detail. (1) Preparation of calibration curve A blank measurement is performed using pure water, and a calibration measurement is performed using a standard solution having a chromaticity of 2. Calculate the difference in absorbance at chromaticity 2 from the measurement results at this time and use it as CALRATE.

【0018】 400nm における Ref(リファレンス)側の透過率 R0 ={CPD(1,1)−CPD(0,1)}/ {BPD(1,1)−BPD(0,
1)} 400nm における Sample (サンプル)側の透過率 R1 ={CPD(1,2)−CPD(0,2)}/ {BPD(1,2)−BPD(0,
2)} 400nm における Sample の吸光度 A1 = Log (R1/R0) 620nm における Ref側の透過率 R0 ={CPD(2,1)−CPD(0,1)}/ {BPD(2,1)−BPD(0,
1)} 620nm における Sample 側の透過率 R1 ={CPD(2,2)−CPD(0,2)}/ {BPD(2,2)−BPD(0,
2)} 620nm における Sample の吸光度 A2 = Log (R1/R0) 400nm と620nm の吸光度の差 dA=A1 −A2 CALRATE = 2/dA(2:標準試料の色度) (2)被測定液の吸光度及び色度の計算 400nm におけるRef 側の透過率 R0 ={PD(1,1) − PD(0,1)}/ {BPD(1,1)−BPD(0,
1)} 400nm における Sample 側の透過率 R1 ={PD(1,2) − PD(0,2)}/ {BPD(1,2)−BPD(0,
2)} 400nm における Sample の吸光度 B1 = Log (R1/R0) 620nm における Ref側の透過率 R0 ={PD(2,1) − PD(0,1)}/ {BPD(2,1)−BPD(0,
1)} 620nm における Sample 側の透過率 R1 ={PD(2,2) − PD(0,2)}/ {BPD(2,2)−BPD(0,
2)} 620nm における Sample の吸光度 B2 = Log (R1/R0) 400nm と620nm の吸光度差 dB=B1 −B2 色度=CAL
RATE×dB 図3は、波長400nm及び620nmの2波長、吸収
セルの光路長500mm、光路径12mmφ、吸収セル
への送液量75ml/minにおける色度と2波長の吸
光度差(B400nm−B620nm)を示したもので
ある。尚、この吸光度差は、ダブルビーム方式による補
正を施した後のものである。図3から分かるように、色
度と吸光度差はきれいな直線関係となり、本発明の色度
測定方法により、色度が精度良く測定できることがわか
る。
[0018] Ref side transmittance at 400 nm R0 = {CPD (1,1) -CPD (0,1)} / {BPD (1,1) -BPD (0,
1)} Sample-side transmittance at 400 nm R1 = {CPD (1,2) -CPD (0,2)} / {BPD (1,2) -BPD (0,
2)} Sample absorbance at 400 nm A1 = Log (R1 / R0) Ref side transmittance at 620 nm R0 = {CPD (2,1) -CPD (0,1)} / {BPD (2,1) -BPD (0,
1)} Sample-side transmittance at 620 nm R1 = {CPD (2,2) -CPD (0,2)} / {BPD (2,2) -BPD (0,
2)} Absorbance of Sample at 620 nm A2 = Log (R1 / R0) Difference between absorbance at 400 nm and 620 nm dA = A1 -A2 CALRATE = 2 / dA (2: Chromaticity of standard sample) (2) Absorbance of measured solution And chromaticity calculation Ref side transmittance at 400 nm R0 = {PD (1,1) -PD (0,1)} / {BPD (1,1) -BPD (0,
1)} Sample side transmittance at 400 nm R1 = {PD (1,2) − PD (0,2)} / {BPD (1,2) −BPD (0,
2)} Sample absorbance at 400nm B1 = Log (R1 / R0) Ref side transmittance at 620nm R0 = {PD (2,1) -PD (0,1)} / {BPD (2,1) -BPD (0,
1)} Sample side transmittance at 620 nm R1 = {PD (2,2) -PD (0,2)} / {BPD (2,2) -BPD (0,
2)} Absorbance of Sample at 620nm B2 = Log (R1 / R0) Absorbance difference between 400nm and 620nm dB = B1-B2 Chromaticity = CAL
RATE × dB FIG. 3 shows two wavelengths of 400 nm and 620 nm, an optical path length of the absorption cell of 500 mm, an optical path diameter of 12 mmφ, a chromaticity and a difference of absorbance at two wavelengths (B400 nm-B620 nm) at a liquid transfer amount of 75 ml / min. Is shown. Note that this difference in absorbance is after correction by the double beam method. As can be seen from FIG. 3, the difference between the chromaticity and the absorbance has a clear linear relationship, and it can be seen that the chromaticity can be accurately measured by the chromaticity measuring method of the present invention.

【0019】図4は、本発明の色度測定装置10を用い
て、2度の色度標準液について24時間連続して測定し
た結果であり、図5は、本発明の色度測定装置を用い
て、水道水(市水)について24時間連続して測定した
結果である。この測定中は、吸収セル16の洗浄等のメ
ンテナンスは一切行わなかったが、図4及び図5から分
かるように、非常に安定した測定結果が得られた。
FIG. 4 shows the results of continuous measurement of the chromaticity standard liquid of 2 times for 24 hours using the chromaticity measuring device 10 of the present invention, and FIG. 5 shows the chromaticity measuring device of the present invention. It is the result of continuously measuring tap water (city water) for 24 hours. During this measurement, maintenance such as cleaning of the absorption cell 16 was not performed at all, but as shown in FIGS. 4 and 5, very stable measurement results were obtained.

【0020】次に、被測定液の濁質成分濃度が大きく、
吸光度のベースライン(吸光度がゼロの位置)が全体に
上方にシフトする場合について説明する。即ち、図6に
示すように、被測定液の濁質成分濃度が小さい場合に
は、曲線Aの吸収スペクトルに示すように、ベースライ
ンはシフトしないが、濁質成分濃度が大きい場合には、
曲線Bの吸収スペクトルのようにベースラインは上方に
シフトして吸光度が濁質成分の分だけ上乗せされた状態
になる。これは、濁質成分濃度が増大すると、波長の違
いにより濁度の吸収スペクトルが変わってくるためであ
る。しかし、濁度の吸収スペクトルの変化が波長依存
性、即ち、濁度による吸光度と波長との間に一定の直線
関係があるという知見に基づいて次のように補正するよ
うにした。
Next, the turbidity component concentration of the measured liquid is large,
A case where the baseline of absorbance (the position where the absorbance is zero) shifts upwards as a whole will be described. That is, as shown in FIG. 6, when the turbidity component concentration of the liquid to be measured is low, the baseline does not shift as shown in the absorption spectrum of curve A, but when the turbidity component concentration is high,
As in the absorption spectrum of curve B, the baseline shifts upward, and the absorbance is in the state of being added by the amount of the turbid component. This is because when the turbidity component concentration increases, the absorption spectrum of turbidity changes due to the difference in wavelength. However, the following correction was made based on the knowledge that the change in the absorption spectrum of turbidity is wavelength dependent, that is, there is a certain linear relationship between the absorbance due to turbidity and the wavelength.

【0021】被測定液の濁質成分濃度が大きく吸光度の
ベースラインがシフトする場合、前述した波長選択・切
替器28において、色度吸収の大きな第1の波長である
400nmと、色度吸収のほとんど無い第2の波長であ
る620nmとの間に第3の波長、例えば500nmの
波長を選択する。そして、500nmの光線を被測定液
が満たされた吸収セル16の内部と外部を通した時の吸
光度を測定し、演算器60に出力する。演算器60で
は、得られた500nmの吸光度と620nmを結ぶ直
線C(図6参照)を求め、この直線Cにおける400n
mでの濁度影響分を算出し、被測定液の色度を算出する
際に濁度影響分を差し引く。これにより、被測定液の濁
質成分濃度が大きく吸光度のベースラインがシフトする
場合にも、被測定液の色度を精度良く測定することがで
きる。
When the turbidity component concentration of the liquid to be measured is large and the baseline of the absorbance is shifted, the wavelength selection / switch 28 described above has the first wavelength of 400 nm at which the chromaticity absorption is large and the chromaticity absorption A third wavelength, for example, a wavelength of 500 nm is selected between the second wavelength of 620 nm and the almost nonexistent second wavelength. Then, the absorbance at the time of passing the light of 500 nm through the inside and outside of the absorption cell 16 filled with the liquid to be measured is measured and output to the calculator 60. In the calculator 60, a straight line C (see FIG. 6) connecting the obtained absorbance at 500 nm and 620 nm is obtained, and 400 n on this straight line C is obtained.
The turbidity influence in m is calculated, and the turbidity influence is subtracted when calculating the chromaticity of the measured liquid. Accordingly, even when the concentration of suspended matter in the liquid to be measured is large and the baseline of the absorbance is shifted, the chromaticity of the liquid to be measured can be accurately measured.

【0022】次に、本発明の色度測定装置10を水処理
システムの色度モニタとして使用した場合について説明
する。図7は、本発明の色度測定装置10を、フミン質
やFe,Mnを含有して黄色に着色している原水を処理
するための水処理システムの薬注制御に適用した一例で
ある。
Next, the case where the chromaticity measuring device 10 of the present invention is used as a chromaticity monitor of a water treatment system will be described. FIG. 7 shows an example in which the chromaticity measuring device 10 of the present invention is applied to chemical injection control of a water treatment system for treating raw water containing humic substances, Fe, and Mn and colored in yellow.

【0023】水処理システムの装置構成をフロー順に説
明すると、原水を先ず、塩素反応槽62で次亜塩素酸ソ
ーダ(NaOCl)を添加し、原水に溶解している着色
成分を不溶化する。次に、PH調整槽64で硫酸(H2
SO4 )を添加してPH調整した後、凝集反応槽66で
凝集剤(PAC)を添加してマイクロフロックを形成さ
せる。次に、マイクロフロック化した原水を、膜分離装
置68で固液分離し、処理水(浄水)を得る。膜分離装
置68で使用する膜は、精密濾過膜、限外濾過膜いずれ
でもよい。また、各反応槽の容量は、酸化や凝集が十分
に行える接触及び滞留時間がとれるようにする。そし
て、各槽62、64、66に注入する薬剤の注入量の制
御は、本発明の色度測定装置10により測定された処理
水の色度情報に基づいてそれぞれの制御ポンプ70、7
2、74を制御するフィードバック制御により行う。
The apparatus configuration of the water treatment system will be described in the order of flow. First, raw water is first added with sodium hypochlorite (NaOCl) in the chlorine reaction tank 62 to insolubilize the coloring component dissolved in the raw water. Next, the sulfuric acid (H 2
After adjusting the pH by adding SO 4 ), a flocculant (PAC) is added in the flocculation reaction tank 66 to form microflocs. Next, the microflocified raw water is subjected to solid-liquid separation by the membrane separation device 68 to obtain treated water (purified water). The membrane used in the membrane separation device 68 may be either a microfiltration membrane or an ultrafiltration membrane. Further, the capacity of each reaction tank should be set so that the contact and residence time may be sufficient for sufficient oxidation and aggregation. The control of the injection amount of the medicine to be injected into each tank 62, 64, 66 is based on the chromaticity information of the treated water measured by the chromaticity measuring device 10 of the present invention.
This is performed by feedback control that controls 2, 74.

【0024】この薬剤の注入量の制御において、原水の
着色成分がフミン質の場合はPACの注入量を特に精度
良く制御することが必要であり、着色成分がFe,Mn
であればNaOClの注入量を特に精度良く制御するこ
とが好ましい。この理由は、NaOClの注入量が過剰
になると、残留塩素の影響で凝集反応が不充分となる一
方、PACの注入が適切でないと、凝集不良や未反応の
水酸化アルミニウム〔Al(OH)3 〕が増加し、後段
の膜分離装置の濾過抵抗が上昇して濾過圧力の上昇を生
じるためである。
In controlling the injection amount of this chemical, when the coloring component of the raw water is a humic substance, it is necessary to control the injection amount of PAC particularly accurately.
In that case, it is preferable to control the injection amount of NaOCl with particularly high precision. The reason for this is that if the injection amount of NaOCl becomes excessive, the agglutination reaction becomes insufficient due to the influence of residual chlorine, while if the injection of PAC is not appropriate, poor agglomeration or unreacted aluminum hydroxide [Al (OH) 3 ] Is increased, the filtration resistance of the membrane separation device at the subsequent stage is increased, and the filtration pressure is increased.

【0025】本発明の色度測定装置10を用いた水処理
制御方法によれば、原水の濁質成分や吸収セルの汚れに
よる誤差、更には装置性能に起因する誤差をなくすこと
ができるので、各槽62、64、66に注入する薬剤の
注入量の制御を精度良く行うことができる。従って、薬
剤の注入量を適切に制御することができるので、濾過圧
力の上昇を抑制でき、膜の薬品洗浄間隔の長期化も可能
となる。更には、従来の色度測定装置のように、安全を
みて薬剤を過剰に注入する必要がないので、ランニング
コストが削減され経済性も向上する。更には、処理水の
色度を目標値以下に安定して維持させることができるの
で、処理水の水質を向上させることができる。
According to the water treatment control method using the chromaticity measuring device 10 of the present invention, it is possible to eliminate errors due to turbid components of raw water and dirt on the absorption cell, and further errors due to device performance. It is possible to accurately control the injection amount of the medicine injected into each tank 62, 64, 66. Therefore, since the injection amount of the chemical can be controlled appropriately, the rise of the filtration pressure can be suppressed, and the chemical cleaning interval of the membrane can be prolonged. Further, unlike the conventional chromaticity measuring device, it is not necessary to inject the drug excessively for safety, so that the running cost is reduced and the economical efficiency is improved. Furthermore, since the chromaticity of the treated water can be stably maintained below the target value, the quality of the treated water can be improved.

【0026】尚、図7では、色度測定装置10で処理水
の色度を測定するようにしたが、図8のように、原水の
色度を色度測定装置10で測定して、この色度情報に基
づいて次亜塩素酸ソーダ、硫酸、PACの注入量をフィ
ードフォーワード制御してもよい。また、図には示さな
かったが、原水と処理水の両方の色度を、それぞれ色度
測定装置10で測定して薬剤の注入量を制御すると一層
良い。
In FIG. 7, the chromaticity of the treated water is measured by the chromaticity measuring device 10. However, as shown in FIG. 8, the chromaticity of the raw water is measured by the chromaticity measuring device 10. The amount of sodium hypochlorite, sulfuric acid, and PAC injected may be feed-forward controlled based on the chromaticity information. Although not shown in the figure, it is more preferable to control the injection amount of the drug by measuring the chromaticity of both the raw water and the treated water with the chromaticity measuring device 10.

【0027】また、本発明の色度測定装置10は、色度
の測定のみならず、吸光度を測定して値を求める水質項
目、例えば、硝酸性窒素等のモニタとして適用可能であ
る。
The chromaticity measuring device 10 of the present invention is applicable not only to chromaticity measurement, but also as a monitor for water quality items for which absorbance is measured to obtain a value, such as nitrate nitrogen.

【0028】[0028]

【発明の効果】以上説明したように、本発明の色度測定
方法及び装置並びにその装置を用いた水処理制御方法に
よれば、被測定液の濁質成分による誤差や吸収セルの汚
れによる誤差が生じず、また、光源や吸光度測定手段の
装置性能の性能変化をも常時補正することができるの
で、水処理制御用の色度モニタとして高性能を発揮する
ことができる。
As described above, according to the chromaticity measuring method and apparatus of the present invention and the water treatment controlling method using the apparatus, the error due to the turbid component of the liquid to be measured and the error due to the contamination of the absorption cell. In addition, since the performance change of the device performance of the light source and the absorbance measuring means can be constantly corrected, high performance can be exhibited as a chromaticity monitor for water treatment control.

【0029】更には、本発明の色度測定装置を、例えば
水処理の薬剤注入量の制御用の色度モニタとして使用し
た場合、注入量を適切に制御することができるので、過
剰な注入がなくなりランニングコストを削減できる。更
に、本発明の色度測定装置は、メンテナンスが殆ど必要
ないので、水処理システム、例えば膜型浄水システムの
無人化にも寄与することができる
Further, when the chromaticity measuring device of the present invention is used as a chromaticity monitor for controlling the injection amount of a drug for water treatment, for example, the injection amount can be appropriately controlled, so that excessive injection can be prevented. Running costs can be reduced. Further, since the chromaticity measuring device of the present invention requires almost no maintenance, it can contribute to the unmanned water treatment system, for example, a membrane water purification system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の色度測定装置の全体構成を説明する構
成図
FIG. 1 is a configuration diagram illustrating an overall configuration of a chromaticity measuring device of the present invention.

【図2】2度と5度の色度標準液の吸収スペクトルにお
ける吸光度と波長との関係を示すグラフ
FIG. 2 is a graph showing the relationship between the absorbance and the wavelength in the absorption spectra of chromaticity standard solutions of 2 ° and 5 °.

【図3】本発明の色度測定装置における色度と吸光度差
(B400nm−B620nm)の相関関係を示すグラ
フ。
FIG. 3 is a graph showing a correlation between chromaticity and an absorbance difference (B400 nm-B620 nm) in the chromaticity measuring device of the present invention.

【図4】本発明の色度測定装置で2度と5度の色度標準
液を連続測定したグラフ
FIG. 4 is a graph in which chromaticity standard solutions of 2 ° and 5 ° are continuously measured by the chromaticity measuring device of the present invention.

【図5】本発明の色度測定装置で水道水(市水)を連続
測定したグラフ
FIG. 5 is a graph in which tap water (city water) is continuously measured with the chromaticity measuring device of the present invention.

【図6】被測定液の濁質成分濃度が大きく、吸光度のベ
ースラインが全体に上方にシフトする場合の波長と吸光
度の関係を示したグラフ
FIG. 6 is a graph showing the relationship between the wavelength and the absorbance when the concentration of the turbid component of the liquid to be measured is large and the baseline of the absorbance shifts upward.

【図7】本発明の色度測定装置を用いた水処理制御方法
を適用する装置構成の一例を示した構成図
FIG. 7 is a configuration diagram showing an example of a device configuration to which a water treatment control method using a chromaticity measuring device of the present invention is applied.

【図8】本発明の色度測定装置を用いた水処理制御方法
を適用する装置構成の別の例を示した構成図
FIG. 8 is a configuration diagram showing another example of the configuration of an apparatus to which the water treatment control method using the chromaticity measuring apparatus of the present invention is applied.

【符号の説明】[Explanation of symbols]

10…色度測定装置 16…吸収セル 18…光源 20…受光器 22、42、46、50…集光レンズ 26…送風ファン 28…波長選択・切替器 30…波長選択部 32…回折格子 34、56…位置検出部 36、40、44、52、55、58…ミラー 38…ハーフミラー 54…回転板 60…演算器 62…塩素反応槽 64…PH調整槽 66…凝集反応槽 68…膜分離装置 70、72、74…制御ポンプ 10 ... Chromaticity measuring device 16 ... Absorption cell 18 ... Light source 20 ... Photoreceiver 22, 42, 46, 50 ... Condensing lens 26 ... Blower fan 28 ... Wavelength selector / switcher 30 ... Wavelength selector 32 ... Diffraction grating 34, 56 ... Position detection unit 36, 40, 44, 52, 55, 58 ... Mirror 38 ... Half mirror 54 ... Rotating plate 60 ... Computing unit 62 ... Chlorine reaction tank 64 ... PH adjusting tank 66 ... Aggregation reaction tank 68 ... Membrane separation device 70, 72, 74 ... Control pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 裕 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 緑川 正博 埼玉県坂戸市溝端9番地 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Yutaka Okuno 1-1-14, Kanda, Uchida, Chiyoda-ku, Tokyo Inside Hirit Plant Construction Co., Ltd. (72) Masahiro Midorikawa, 9 Mizobata, Sakado, Saitama Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被測定液の色度を測定する測定方法におい
て、 色度吸収を有する第1の波長と該第1の波長より色度吸
収の小さな第2の波長の2波長の光線を用い、それぞれ
の波長の光線について前記被測定液が満たされた吸収セ
ルの内部と外部を通した時の吸光度を測定し、得られた
各吸光度と、予め求めた吸光度と色度の関係から前記被
測定液の色度を算出することを特徴とする色度測定方
法。
1. A measuring method for measuring the chromaticity of a liquid to be measured, using a light beam having two wavelengths, a first wavelength having chromaticity absorption and a second wavelength having smaller chromaticity absorption than the first wavelength. , Measuring the absorbance of the light of each wavelength when passing through the inside and outside of the absorption cell filled with the liquid to be measured, each absorbance obtained, the absorbance from the relationship between the previously obtained absorbance and chromaticity A chromaticity measuring method, which comprises calculating the chromaticity of a measurement liquid.
【請求項2】前記第1及び第2の波長の吸光度が前記被
測定液の濁質成分の影響を受けてシフトする場合には、 前記第1と第2の波長の間の第3の波長の光線を前記被
測定液が満たされた吸収セルの内部と外部を通した時の
吸光度を測定し、得られた第3の波長の吸光度と前記第
2の波長の吸光度から前記第1の波長の吸光度の濁度影
響分を算出し、前記被測定液の色度を算出する際に前記
濁度影響分を差し引くことを特徴とする請求項1の色度
測定方法。
2. A third wavelength between the first and second wavelengths when the absorbances of the first and second wavelengths shift under the influence of the turbidity component of the liquid to be measured. Of the first wavelength from the absorbance of the third wavelength and the absorbance of the second wavelength obtained by measuring the absorbance when the light ray of is passed through the inside and the outside of the absorption cell filled with the liquid to be measured. The chromaticity measuring method according to claim 1, wherein the turbidity affecting amount of the absorbance is calculated, and the turbidity affecting amount is subtracted when calculating the chromaticity of the liquid to be measured.
【請求項3】被測定液の色度を測定する測定装置におい
て、 光源と、 前記光源から発せられた光線を、色度吸収を有する第1
の波長と該第1の波長より色度吸収の小さな第2の波長
の2波長を選択すると共に、どちらか1方の波長に切り
換える選択・切替手段と、 前記選択・切替手段で得られた波長の光線を前記被測定
液が満たされた吸収セルの内部と外部を通る2つの光路
に分ける分岐手段と、 前記選択・切替手段で得られる2波長の光線について前
記分岐手段で2光路に分岐して得られる各光線の各吸光
度を測定する吸光度測定手段と、 前記測定された各吸光度と、予め求めた吸光度と色度の
関係から前記被測定液の色度を算出する算出手段と、 を備えていることを特徴とする色度測定装置。
3. A measuring device for measuring chromaticity of a liquid to be measured, comprising: a light source; and a light beam emitted from the light source, which has chromaticity absorption.
And a second wavelength having a smaller chromaticity absorption than the first wavelength and selecting / switching means for switching to either one of the wavelengths, and the wavelength obtained by the selecting / switching means. Branching means for splitting the ray of light into two optical paths that pass through the inside and the outside of the absorption cell filled with the liquid to be measured, and the two-wavelength rays obtained by the selecting / switching means are split into two optical paths by the branching means. Absorptiometry means for measuring the absorptance of each of the light rays obtained, and a calculating means for calculating the chromaticity of the liquid to be measured from the absorptance and the chromaticity relationship obtained in advance and the absorptance measured in advance. A chromaticity measuring device characterized in that
【請求項4】前記第1及び第2の波長の吸光度が前記被
測定液の濁質成分の影響を受けてシフトする場合には、 前記選択・切替手段により前記第1と第2の波長の間の
波長として、第3の波長の光線を選択し、その第3の波
長について前記分岐手段で前記被測定液が満たされた吸
収セルの内部と外部を通した時の吸光度を測定し、得ら
れた第3の波長の吸光度と前記第2の波長の吸光度から
前記第1の波長の吸光度の濁度影響分を算出し、前記被
測定液の色度を算出する際に前記濁度影響分を差し引く
ことを特徴とする請求項3の色度測定装置。
4. When the absorbance at the first and second wavelengths shifts under the influence of the turbidity component of the liquid to be measured, the selection / switching means switches between the first and second wavelengths. As a wavelength in between, a light beam of a third wavelength is selected, and the absorbance at the third wavelength is measured when the light is passed through the absorption cell filled with the liquid to be measured by the branching means and the outside thereof. The turbidity influence component of the absorbance of the first wavelength is calculated from the absorbance of the third wavelength and the absorbance of the second wavelength, and the turbidity influence component is calculated when calculating the chromaticity of the measured liquid. The chromaticity measuring device according to claim 3, wherein
【請求項5】請求項3又は4記載の色度測定装置で測定
した水の色度に基づいて水処理条件を制御することを特
徴とする色度測定装置を用いた水処理制御方法。
5. A water treatment control method using a chromaticity measuring device, wherein water treatment conditions are controlled based on the chromaticity of water measured by the chromaticity measuring device according to claim 3.
【請求項6】前記色度測定装置に基づいて前記水に添加
する薬品注入量を制御することを特徴とする請求項5の
色度測定装置を用いた水処理制御方法。
6. A water treatment control method using a chromaticity measuring device according to claim 5, wherein the amount of chemicals added to the water is controlled based on the chromaticity measuring device.
JP10502896A 1996-04-25 1996-04-25 Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof Pending JPH09292336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10502896A JPH09292336A (en) 1996-04-25 1996-04-25 Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10502896A JPH09292336A (en) 1996-04-25 1996-04-25 Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof

Publications (1)

Publication Number Publication Date
JPH09292336A true JPH09292336A (en) 1997-11-11

Family

ID=14396586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10502896A Pending JPH09292336A (en) 1996-04-25 1996-04-25 Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof

Country Status (1)

Country Link
JP (1) JPH09292336A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290614A (en) * 1998-04-14 1999-10-26 Meidensha Corp Measuring instrument
JP2007203249A (en) * 2006-02-03 2007-08-16 Kurita Water Ind Ltd Water treating apparatus and method
JP2008126223A (en) * 2006-11-27 2008-06-05 Meidensha Corp Membrane treatment system
JP2008284469A (en) * 2007-05-18 2008-11-27 Hitachi Plant Technologies Ltd Pretreatment method for reverse osmosis membrane treatment
JP2008286659A (en) * 2007-05-18 2008-11-27 Yokogawa Electric Corp Turbidity/color meter
WO2013088761A1 (en) * 2011-12-16 2013-06-20 富士フイルムグローバルグラフィックシステムズ株式会社 Reclaimed water use device, reclaimed water generation device, and waste liquid treatment system
CN115684039A (en) * 2022-12-29 2023-02-03 湖南省计量检测研究院 Water quality monitoring system and method based on error control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290614A (en) * 1998-04-14 1999-10-26 Meidensha Corp Measuring instrument
JP2007203249A (en) * 2006-02-03 2007-08-16 Kurita Water Ind Ltd Water treating apparatus and method
JP2008126223A (en) * 2006-11-27 2008-06-05 Meidensha Corp Membrane treatment system
JP2008284469A (en) * 2007-05-18 2008-11-27 Hitachi Plant Technologies Ltd Pretreatment method for reverse osmosis membrane treatment
JP2008286659A (en) * 2007-05-18 2008-11-27 Yokogawa Electric Corp Turbidity/color meter
WO2013088761A1 (en) * 2011-12-16 2013-06-20 富士フイルムグローバルグラフィックシステムズ株式会社 Reclaimed water use device, reclaimed water generation device, and waste liquid treatment system
JP5559942B2 (en) * 2011-12-16 2014-07-23 富士フイルムグローバルグラフィックシステムズ株式会社 Reclaimed water utilization device, reclaimed water generating device, and waste liquid treatment system
CN115684039A (en) * 2022-12-29 2023-02-03 湖南省计量检测研究院 Water quality monitoring system and method based on error control

Similar Documents

Publication Publication Date Title
US5125747A (en) Optical analytical instrument and method having improved calibration
WO2017199511A1 (en) Water quality analyzer
JP5229806B2 (en) Apparatus and method for measuring carbon dioxide concentration in water
CN106574895A (en) Sensor and system for measuring a concentration
JP2017536542A (en) Determination of water treatment parameters based on absorbance and fluorescence
JP2017538112A (en) Determination of water treatment parameters based on absorbance and fluorescence
JP2520212B2 (en) Concentration measuring device
WO2003106981A1 (en) "an improved optical sensor and method for measuring concentration of a chemical constituent using its intrinsic optical absorbance"
JP2007093398A (en) Measuring method of concentration of residual chlorine and measuring instrument therefor
JPH09292336A (en) Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof
FR2509467A1 (en) APPARATUS FOR MEASURING THE CONCENTRATION OF OZONE IN A LIQUID
KR100728600B1 (en) Organic analysis apparatus and method for pure/ultra pure water treatment system
AU782106B2 (en) Device and method for optically measuring the concentration of a substance
JP4487197B2 (en) Turbidity / colorimeter
JPH01244341A (en) Light absorbing type ozone concentration measuring device
JP3269196B2 (en) Analyzer for nitrogen compounds and phosphorus compounds in water
JP2007085881A (en) Method and instrument for measuring concentration of component
CA2299881C (en) Method and apparatus for photometric analysis of chlorine dioxide solutions
JP4075664B2 (en) Arsenic concentration measurement method and apparatus
KR102393658B1 (en) Apparatus and method for measuring concentration using absorption photometry
US20070110632A1 (en) Light measurement automated zeroing and referencing system
JPH0777492A (en) Absorption photometer and self-diagnostic method for the absorption photometer
JP2953904B2 (en) Analyzer for silica component in water
JPH0493638A (en) Continuous measurement device of low density absorbance
US3706497A (en) Method and apparatus for determining colorimetric concentrations