JP2008126223A - Membrane treatment system - Google Patents

Membrane treatment system Download PDF

Info

Publication number
JP2008126223A
JP2008126223A JP2006318066A JP2006318066A JP2008126223A JP 2008126223 A JP2008126223 A JP 2008126223A JP 2006318066 A JP2006318066 A JP 2006318066A JP 2006318066 A JP2006318066 A JP 2006318066A JP 2008126223 A JP2008126223 A JP 2008126223A
Authority
JP
Japan
Prior art keywords
membrane
membrane treatment
flocculant
water
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006318066A
Other languages
Japanese (ja)
Inventor
Shoichi Samejima
正一 鮫島
Hiroshi Shimazaki
弘志 島崎
Kumiko Imai
久美子 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006318066A priority Critical patent/JP2008126223A/en
Publication of JP2008126223A publication Critical patent/JP2008126223A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the load of a separation membrane by monitoring and removing humic substances dissolved in raw water. <P>SOLUTION: This membrane treatment system 1 is equipped with a flocculant injection device 13 for injecting a flocculant in the raw water supplied to a membrane treatment device 10. The flocculant injection device 13 injects the flocculant in the raw water on the basis of the concentration of humic substances of the raw water. This flocculant injection device 13 may inject the flocculant in the raw water on the basis of the concentration of humic substances of the water filtrate discharged from the membrane treatment device 10. The absorbance or chromaticity of ultraviolet rays is designated as the concentration index of humic substances. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は上水道向けの膜モジュールを利用した水処理技術に関する。   The present invention relates to a water treatment technique using a membrane module for waterworks.

有機材料や無機材料からなる分離膜を利用した上水道向けの膜処理システムは多くの浄水場で採用されている。膜処理の本来の目的は水中の懸濁物質(例えば砂、シルト、藻類、菌、原虫等)を除去することにあるので、多くの浄水場では前記懸濁物質の検出する計測装置によって浄水工程の監視が行なわれている。   Membrane treatment systems for waterworks using separation membranes made of organic or inorganic materials are used in many water purification plants. Since the original purpose of membrane treatment is to remove suspended substances in water (such as sand, silt, algae, fungi, protozoa, etc.), many water purification plants use a measuring device to detect suspended substances. Is being monitored.

一方、溶解性マンガンやフミン質のような自然水の溶存物質は物理化学的形態によっては分離膜を閉塞させる可能性がある。分離膜が閉塞すると、洗浄により閉塞原因物質を除去する必要があり、水の回収率の低下、工数の上昇によりコストが増加し、経済的でない。溶解性物質を含んだ原水を膜処理システムで処理するには膜処理に至るまでに前処理プロセスで処理対象物質を除去するのが一般的である(例えば特許文献1及び非特許文献1)。   On the other hand, dissolved substances of natural water such as soluble manganese and humic substances may block the separation membrane depending on the physicochemical form. When the separation membrane is clogged, it is necessary to remove clogging-causing substances by washing, and the cost increases due to a decrease in water recovery rate and an increase in man-hours, which is not economical. In order to treat raw water containing a soluble substance with a membrane treatment system, it is common to remove the substance to be treated by a pretreatment process before the membrane treatment (for example, Patent Document 1 and Non-Patent Document 1).

また、膜処理では膜の機能性を維持するために洗浄を行なう必要があり、1日数回の逆流洗浄と年数回の薬品洗浄とが行なわれている。逆流洗浄では低濃度の次亜塩素を含んだ酸化剤が添加されることがある(例えば特許文献2及び特許文献3)。洗浄周期はタイマーで管理されており、頻繁な逆流洗浄工程が存在しても膜処理システムは自動運転が可能とされている。
特開平06−031272 「環境技術・装置大辞典」編集委員会編,「環境技術・装置大辞典I」,2003年2月17日,pp.726 特開平10−296060 特開2003−251370
Further, in the membrane treatment, it is necessary to perform washing in order to maintain the functionality of the membrane, and backflow washing several times a day and chemical washing several times a year are performed. In the backwashing, an oxidizing agent containing a low concentration of hypochlorite may be added (for example, Patent Document 2 and Patent Document 3). The cleaning cycle is managed by a timer, and the membrane processing system can be automatically operated even if there are frequent back-flow cleaning steps.
JP 06-031272 “Environmental Technology / Equipment Dictionary” Editorial Committee, “Environmental Technology / Equipment Dictionary I”, February 17, 2003, pp. 726 JP-A-10-296060 JP2003-251370

フミン質は分離膜を閉塞する原因物質であるが、一般的に原水中のフミン質は直接監視されていない。そのため、分離膜のファウリング抑制とは関係のない運転をしている可能性がある。また、分離膜の洗浄排水はフミン質が直接監視されていないので、洗浄効果を確認できない。   Although humic substances are causative substances that block the separation membrane, generally humic substances in raw water are not directly monitored. Therefore, there is a possibility that the operation is not related to suppression of fouling of the separation membrane. Moreover, since the humic substance is not directly monitored in the cleaning waste water from the separation membrane, the cleaning effect cannot be confirmed.

請求項1の膜処理システムは、膜処理装置に供給される原水に凝集剤を注入する凝集剤注入装置を備え、この凝集剤注入装置は前記原水のフミン質濃度に基づき凝集剤を前記原水に注入する。   The membrane treatment system according to claim 1 includes a flocculant injecting device that injects a flocculant into the raw water supplied to the membrane processing device, and the flocculant injecting device converts the flocculant into the raw water based on the humic substance concentration of the raw water. inject.

請求項2の膜処理システムは、請求項1の膜処理システムにおいて、前記凝集剤注入装置は前記膜処理装置から排出されるろ過水のフミン質濃度に基づき前記凝集剤を前記原水に注入する。   A membrane treatment system according to a second aspect is the membrane treatment system according to the first aspect, wherein the flocculant injecting device injects the flocculant into the raw water based on a humic substance concentration of filtered water discharged from the membrane processing device.

請求項3の膜処理システムは、請求項1または2の膜処理システムにおいて、膜処理装置に洗浄水を供給する洗浄水供給装置を備え、この洗浄水供給装置は前記膜処理装置から排出される洗浄排水のフミン質濃度に基づき前記洗浄水の供給の継続とその停止を行なう。   A membrane treatment system according to a third aspect is the membrane treatment system according to the first or second aspect, further comprising a washing water supply device that supplies washing water to the membrane treatment device, and the washing water supply device is discharged from the membrane treatment device. The supply of the washing water is continued and stopped based on the humic substance concentration of the washing waste water.

請求項4の膜処理システムは、請求項3の膜処理システムにおいて、前記膜処理装置に供給される洗浄水に次亜水を注入する次亜水注入装置を備え、この次亜水注入装置は前記膜処理装置から排出される洗浄排水の残留塩素濃度に基づき前記次亜水を前記洗浄水に注入する。   A membrane treatment system according to a fourth aspect of the present invention is the membrane treatment system according to the third aspect, further comprising a hyponitrous acid injection device for injecting hyponitrous acid into the cleaning water supplied to the membrane treatment device, The hyponitrous acid is injected into the cleaning water based on the residual chlorine concentration of the cleaning effluent discharged from the membrane treatment apparatus.

請求項5の膜処理システムは、請求項4の膜処理システムにおいて、前記次亜水注入装置は前記膜処理装置に供給される洗浄水の圧力と前記膜処理装置から排出される洗浄排水の圧力との差圧に基づき次亜水を洗浄水に注入する。   The membrane treatment system according to claim 5 is the membrane treatment system according to claim 4, wherein the hyponitrous injecting device is a pressure of cleaning water supplied to the membrane processing device and a pressure of cleaning wastewater discharged from the membrane processing device. Hydrous acid is injected into the wash water based on the pressure difference between

請求項6の膜処理システムは、請求項1の膜処理システムにおいて、前記フミン濃度の指標は紫外線吸光度または色度である。   The film processing system according to claim 6 is the film processing system according to claim 1, wherein the index of the humin concentration is ultraviolet absorbance or chromaticity.

以上の発明によれば分離膜の負荷になるフミン質が監視されると共にフミン物質が除去された状態で原水が分離膜に供されるので分離膜の洗浄までの寿命が延びる。   According to the above-described invention, the humic substance serving as a load on the separation membrane is monitored and the raw water is supplied to the separation membrane in a state where the humic substance is removed, so that the life until the separation membrane is washed is extended.

特に、請求項3〜5の発明によれば分離膜に詰まった原水のフミン質が除去されるので分離膜の洗浄不足が解消される。また、分離膜の洗浄排水のフミン質濃度が監視されるので分離膜の洗浄効果を確認できる。さらに、請求項4及び請求項5の発明によれば分離膜の洗浄に供される次亜水の注入量が最適化される。   In particular, according to the inventions of claims 3 to 5, since the humic substances of the raw water clogged in the separation membrane are removed, the lack of cleaning of the separation membrane is solved. Moreover, since the concentration of humic substances in the cleaning waste water of the separation membrane is monitored, the cleaning effect of the separation membrane can be confirmed. Furthermore, according to the invention of claim 4 and claim 5, the injection quantity of hyponitrous acid used for cleaning the separation membrane is optimized.

図1は発明の第一の実施形態に係る膜処理システム1の概要図である。   FIG. 1 is a schematic diagram of a film processing system 1 according to a first embodiment of the invention.

膜処理システム1は膜処理装置10を有する。膜処理装置10は上向流式の膜分離装置である。膜処理装置10の分離膜としては例えば孔径0.1μm程度のMF膜が挙げられる。膜処理装置10には原水を供給する供給管11が接続されている。供給管11には凝集剤注入装置13から供給された凝集剤を前記原水に注入するための注入管14が接続されている。   The film processing system 1 includes a film processing apparatus 10. The membrane treatment apparatus 10 is an upward flow type membrane separation apparatus. Examples of the separation membrane of the membrane processing apparatus 10 include an MF membrane having a pore diameter of about 0.1 μm. A supply pipe 11 for supplying raw water is connected to the membrane treatment apparatus 10. The supply pipe 11 is connected with an injection pipe 14 for injecting the flocculant supplied from the flocculant injection device 13 into the raw water.

また、供給管11には前記凝集剤が注入された後の原水の溶存物質であるフミン質の濃度の指標である紫外線吸光度を測定する手段としてUV計15が設置されている。UV計15は膜処理装置10と注入管14との間に配置されている。UV計15は紫外線吸光度の計測値を制御部16に供給する。   In addition, a UV meter 15 is installed in the supply pipe 11 as a means for measuring ultraviolet absorbance, which is an indicator of the concentration of humic substances that are dissolved substances of raw water after the flocculant is injected. The UV meter 15 is disposed between the film processing apparatus 10 and the injection tube 14. The UV meter 15 supplies the measurement value of the ultraviolet absorbance to the control unit 16.

制御部16は予め設定された原水の紫外線吸光度の設定値と前記供給された紫外線吸光度の計側値とに基づき前記凝集剤の注入を制御する。例えば前記計測値>前記設定値である場合、凝集剤の流量値は前回の流量値+αに設定される。すなわち、制御部16は前記計測値が前記設定値よりも高い場合に前記凝集剤の注入量が増大するような凝集剤の流量の指示を凝集剤注入装置13に送信する。   The controller 16 controls the injection of the flocculant based on a preset value of the UV absorbance of the raw water set in advance and the measured value of the UV absorbance supplied. For example, when the measured value> the set value, the flow rate value of the flocculant is set to the previous flow rate value + α. That is, the control unit 16 transmits an instruction for the flow rate of the flocculant to increase the flocculant injection amount to the flocculant injection device 13 when the measured value is higher than the set value.

原水の溶存物質である例えばフミン質はUV計(測定波長253.7nm)15での吸光度の計測値と相関関係があるため、原水の紫外線吸光度の計側値を制御すれば、膜処理装置10に流入する前記溶存物質を制御することができる。凝集剤としては例えばPACを用いれば、UVによる吸光度成分を40〜60%、80%除去することができる。以上のようにフミン質に例示されるような原水中の溶存物質が前記凝集剤によって除去される。原水が膜処理装置10に供されると膜ろ過水として排出管12から排出される。原水は膜処理装置1の分離膜の負荷になる前記溶存物質が除去された状態で膜処理装置1に供されるので前記分離膜の薬品洗浄までの寿命が延びる。尚、溶存物質の濃度の指標は紫外線吸光度の代わりに色度としてもほぼ同様の結果となる。   For example, humic substances which are dissolved substances of raw water have a correlation with the measured value of the absorbance at the UV meter (measurement wavelength 253.7 nm) 15. Therefore, if the measured value of the ultraviolet absorbance of the raw water is controlled, the membrane processing apparatus 10 It is possible to control the dissolved substance flowing into the gas. For example, if PAC is used as the flocculant, 40 to 60% and 80% of the UV absorbance component can be removed. As described above, dissolved substances in raw water as exemplified by humic substances are removed by the flocculant. When raw water is supplied to the membrane treatment apparatus 10, it is discharged from the discharge pipe 12 as membrane filtered water. Since the raw water is supplied to the membrane treatment apparatus 1 in a state in which the dissolved substances that become a load on the separation membrane of the membrane treatment apparatus 1 are removed, the life of the separation membrane until chemical cleaning is extended. It should be noted that the index of the dissolved substance concentration is almost the same in terms of chromaticity instead of ultraviolet absorbance.

図2は発明の第二の実施形態に係る膜処理システム2の概要図である。   FIG. 2 is a schematic diagram of a film processing system 2 according to the second embodiment of the invention.

膜処理システム2は膜処理システム1の膜処理装置10から排出された膜ろ過水の溶存物質濃度の指標である紫外線吸光度をUV計21で測定している。UV計21は膜処理装置10の排出管12に設置されている。UV計21は紫外線吸光度の計側値を制御部16に供給する。   The membrane treatment system 2 measures the ultraviolet absorbance, which is an index of the dissolved substance concentration of the membrane filtrate discharged from the membrane treatment apparatus 10 of the membrane treatment system 1, with a UV meter 21. The UV meter 21 is installed in the discharge pipe 12 of the film processing apparatus 10. The UV meter 21 supplies the measured value of the ultraviolet absorbance to the control unit 16.

制御部16は予め設定された膜ろ過水の紫外線吸光度の設定値と前記供給された紫外線吸光度の計側値とに基づき前記凝集剤の注入を制御する。例えば前記計測値>前記設定値である場合、凝集剤の流量値は前回の流量値+αに設定される。すなわち、制御部16は前記計測値が前記設定値よりも高い場合に前記凝集剤の注入量が増大するような凝集剤の流量の指示を凝集剤注入装置13に送信する。   The control unit 16 controls the injection of the flocculant based on a preset value of the ultraviolet absorbance of the membrane filtration water set in advance and the measured value of the supplied ultraviolet absorbance. For example, when the measured value> the set value, the flow rate value of the flocculant is set to the previous flow rate value + α. That is, the control unit 16 transmits an instruction for the flow rate of the flocculant to increase the flocculant injection amount to the flocculant injection device 13 when the measured value is higher than the set value.

膜ろ過水の溶存物質である例えばフミン質はUV計(測定波長253.7nm)21での吸光度の計測値と相関関係があるため、膜ろ過水の紫外線吸光度の計側値を制御すれば、膜処理装置10に流入する前記溶存物質を制御することができる。凝集剤は膜処理システム1のように例えばPACを用いれば、UVによる吸光度成分を40〜60%、80%除去することができる。以上のようにフミン質に例示されるような原水中の溶存物質が前記凝集剤によって除去される。   For example, humic substances that are dissolved substances in the membrane filtration water have a correlation with the measured value of the absorbance at the UV meter (measurement wavelength 253.7 nm) 21, so if the meter side value of the ultraviolet absorbance of the membrane filtrate is controlled, The dissolved substance flowing into the membrane processing apparatus 10 can be controlled. If the flocculating agent is PAC, for example, as in the membrane processing system 1, it is possible to remove 40 to 60% and 80% of the UV absorbance component. As described above, dissolved substances in raw water as exemplified by humic substances are removed by the flocculant.

膜処理システム1では膜処理装置10に供給される原水の紫外線吸光度の計側値を制御したが、膜処理装置10の分離膜に例えば分画分子量が10000程度のUF膜を適用すれば前記溶存物質は前記分離膜によって除去されるので、膜ろ過水の溶存物質の濃度が監視されることで凝集剤の注入量を減少できる。   In the membrane treatment system 1, the measured value of the ultraviolet absorbance of the raw water supplied to the membrane treatment device 10 is controlled. However, if a UF membrane having a molecular weight cut off of about 10,000 is applied to the separation membrane of the membrane treatment device 10, the dissolved water is dissolved. Since substances are removed by the separation membrane, the amount of flocculant injected can be reduced by monitoring the concentration of dissolved substances in the membrane filtration water.

原水は膜処理装置10に供されると膜ろ過水として排出管12から排出される。最終的に原水は膜処理装置10の分離膜の負荷になる前記溶存物質が除去された状態で膜処理装置10に供されるので前記分離膜の薬品洗浄までの寿命が延びる。尚、溶存物質の濃度の指標は紫外線吸光度の代わりに色度としてもほぼ同様の結果となる。   When the raw water is supplied to the membrane treatment device 10, it is discharged from the discharge pipe 12 as membrane filtered water. Finally, the raw water is supplied to the membrane treatment apparatus 10 in a state in which the dissolved substance that becomes a load on the separation membrane of the membrane treatment apparatus 10 is removed, so that the life until the chemical separation of the separation membrane is extended. It should be noted that the index of the dissolved substance concentration is almost the same in terms of chromaticity instead of ultraviolet absorbance.

図3は発明の第三の実施形態に係る膜処理システム3の概要図である。   FIG. 3 is a schematic diagram of a film processing system 3 according to the third embodiment of the invention.

膜処理システム3の膜処理装置10は洗浄水供給管32と洗浄排水管33とを備える。洗浄水供給管32には洗浄水供給装置31から洗浄水が供される。洗浄排水管33からは洗浄水供給装置31の分離膜の洗浄に供された洗浄水が排出される。尚、膜処理装置10の分離膜としては例えばMF膜やUF膜が適用されている。   The membrane treatment apparatus 10 of the membrane treatment system 3 includes a washing water supply pipe 32 and a washing drain pipe 33. The cleaning water supply pipe 32 is supplied with cleaning water from the cleaning water supply device 31. From the cleaning drain pipe 33, the cleaning water used for cleaning the separation membrane of the cleaning water supply device 31 is discharged. For example, an MF membrane or a UF membrane is applied as the separation membrane of the membrane processing apparatus 10.

また、洗浄排水管33には前記分離膜の洗浄排水の溶存物質であるフミン質の濃度の指標として紫外線吸光度を測定する手段としてUV計34が設置されている。UV計34は紫外線吸光度の計測値を制御部16に供給する。   Further, the cleaning drain pipe 33 is provided with a UV meter 34 as means for measuring the ultraviolet absorbance as an index of the concentration of humic substance which is a dissolved substance in the cleaning drain of the separation membrane. The UV meter 34 supplies the measurement value of the ultraviolet absorbance to the control unit 16.

制御部16は予め設定された洗浄排水の紫外線吸光度の設定値と前記供給された紫外線吸光度の計側値とに基づき洗浄の継続及び終了を判断する。例えば、前記計測値>前記設定値である場合に洗浄を継続させる。すなわち、制御部16はUV計測値が前記設定値よりも高い場合に洗浄を継続させる指示を洗浄水供給装置31に送信する。そして、前記計測値≦前記設定値となった場合に洗浄を停止させる指示を洗浄水供給装置31に送信する。   The control unit 16 determines the continuation and end of the cleaning based on the preset set value of the UV absorbance of the cleaning waste water and the measured value of the UV absorbance supplied. For example, cleaning is continued when the measured value> the set value. That is, the control unit 16 transmits an instruction to continue the cleaning to the cleaning water supply device 31 when the UV measurement value is higher than the set value. Then, an instruction to stop cleaning when the measured value ≦ the set value is satisfied is transmitted to the cleaning water supply device 31.

洗浄排水の溶存物質である例えばフミン質はUV計(測定波長253.7nm)34での吸光度の計測値と相関関係があるため、洗浄排水の紫外線吸光度の計側値を制御すれば、膜処理装置10の分離膜から押し出すことができる前記溶存物質を制御することができる。   For example, humic substances, which are dissolved substances in washing wastewater, have a correlation with the measured value of the absorbance at the UV meter (measurement wavelength 253.7 nm) 34. Therefore, if the measured value of the ultraviolet absorbance of the washing wastewater is controlled, membrane treatment The dissolved material that can be pushed out of the separation membrane of the device 10 can be controlled.

そして、最終的には前記分離膜に閉塞された前記溶存物質が除去されるので、前記分離膜の洗浄不足を解消できる。尚、溶存物質の濃度の指標は紫外線吸光度の代わりに色度としてもほぼ同様の結果となる。   And finally, since the dissolved substance clogged by the separation membrane is removed, insufficient cleaning of the separation membrane can be solved. It should be noted that the index of the dissolved substance concentration is almost the same in terms of chromaticity instead of ultraviolet absorbance.

図4は発明の第四の実施形態に係る膜処理システム4の概要図である。   FIG. 4 is a schematic diagram of a film processing system 4 according to the fourth embodiment of the invention.

膜処理システム4は膜処理装置10の洗浄排水の残留塩素濃度に基づき膜処理装置10に供給される洗浄水への次亜水の注入を行なう。膜処理システム3では洗浄水量が多くなる可能性があるので、膜処理システム4は洗浄水に次亜水を注入している。次亜水の注入を制御する因子として膜処理装置10の洗浄排水の残留塩素濃度が利用されている。   The membrane treatment system 4 injects hyponitrous water into the wash water supplied to the membrane treatment device 10 based on the residual chlorine concentration in the washing wastewater of the membrane treatment device 10. Since there is a possibility that the amount of cleaning water increases in the membrane treatment system 3, the membrane treatment system 4 injects hyponitrous water into the washing water. The residual chlorine concentration in the cleaning waste water of the membrane treatment apparatus 10 is used as a factor for controlling the injection of hyponitrous acid.

膜処理システム4では次亜水注入装置41から供された次亜水を洗浄水に注入する次亜水供給管42が洗浄水供給管32に接続されている。前記次亜水としては次亜塩素酸水や次亜塩素酸ナトリウム水溶液が例示される。一方、洗浄排水管33には前記分離膜の洗浄排水の残留塩素濃度を測定する残留塩素計43が設置されている。残留塩素計43は残留塩素濃度の計測値を制御部44に供給する。制御部44は前記供給された残留塩素濃度の計側値と予め設定された残留塩素濃度の設定値とに基づき前記次亜水の注入を制御する。例えば残留塩素濃度計測値>残留塩素濃度設定値である場合、次亜水の流量値は前回の流量値+αに設定される。すなわち、制御部16は残留塩素濃度計測値が残留塩素濃度設定値よりも高い場合に前記次亜水の注入量が増大するような次亜水の流量の指示を次亜水注入装置41に送信する。   In the membrane treatment system 4, a hyponitrous water supply pipe 42 that injects hyponitrous acid supplied from the hyponitrous acid injection device 41 into the cleaning water is connected to the cleaning water supply pipe 32. Examples of the hypochlorous water include hypochlorous acid water and sodium hypochlorite aqueous solution. On the other hand, the cleaning drain pipe 33 is provided with a residual chlorine meter 43 for measuring the residual chlorine concentration of the cleaning drainage of the separation membrane. The residual chlorine meter 43 supplies the measured value of the residual chlorine concentration to the control unit 44. The control unit 44 controls the injection of the hyponitrous acid based on the measured value of the supplied residual chlorine concentration and the preset value of the residual chlorine concentration. For example, when the residual chlorine concentration measurement value> residual chlorine concentration set value, the flow rate value of hypochlorous water is set to the previous flow rate value + α. In other words, the control unit 16 transmits an instruction for the flow rate of hyponitrous water to increase the injection amount of the hypochlorous water when the measured value of residual chlorine concentration is higher than the set value of residual chlorine concentration, to the hypochlorous water injection device 41. To do.

また、膜処理システム4でも制御部16は予め設定された膜ろ過水の紫外線吸光度の設定値と前記供給された紫外線吸光度の計側値とに基づき前記凝集剤の注入を制御する。例えば、前記計測値>前記設定値である場合に洗浄を継続させる。そして、前記計測値≦前記設定値となった場合に洗浄を停止させる指示を洗浄水供給装置31に送信する。   Also in the membrane treatment system 4, the control unit 16 controls the injection of the flocculant based on a preset value of the ultraviolet absorbance of the membrane filtrate and the measured value of the supplied ultraviolet absorbance. For example, cleaning is continued when the measured value> the set value. Then, an instruction to stop cleaning when the measured value ≦ the set value is satisfied is transmitted to the cleaning water supply device 31.

洗浄排水の溶存物質である例えばフミン質はUV計(測定波長253.7nm)34での吸光度の計測値と相関関係があるため、洗浄排水の紫外線吸光度の計側値を制御すれば、膜処理装置10の分離膜から押し出すことができる前記溶存物質を制御することができる。また、原水からのフミン質の負荷により分離膜の汚れ具合も変化するので、次亜水の注入量を制御することで、洗浄水に注入する次亜水の量を最適化できる。   For example, humic substances, which are dissolved substances in washing wastewater, have a correlation with the measured value of the absorbance at the UV meter (measurement wavelength 253.7 nm) 34. Therefore, if the measured value of the ultraviolet absorbance of the washing wastewater is controlled, membrane treatment The dissolved material that can be pushed out of the separation membrane of the device 10 can be controlled. In addition, since the degree of soiling of the separation membrane also changes due to the load of humic substances from the raw water, the amount of hyponitrogen injected into the wash water can be optimized by controlling the amount of hyponitrous injected.

以上のように膜処理システム4によれば最終的には前記分離膜に閉塞された前記溶存物質が除去されて、前記分離膜の洗浄不足が解消される。尚、溶存物質の濃度の指標は紫外線吸光度の代わりに色度としてもほぼ同様の結果となる。   As described above, according to the membrane processing system 4, the dissolved substance clogged by the separation membrane is finally removed, and the lack of cleaning of the separation membrane is solved. It should be noted that the index of the dissolved substance concentration is almost the same in terms of chromaticity instead of ultraviolet absorbance.

図5は発明の第五の実施形態に係る膜処理システム5の概要図である。   FIG. 5 is a schematic diagram of a film processing system 5 according to the fifth embodiment of the invention.

膜処理システム5は膜処理システム4の洗浄排水管33に洗浄排水の圧力を測定する圧力計51を設けると共に洗浄水の圧力を測定する圧力計52を洗浄水供給管32に設けている。圧力計51,52によって測定された圧力値は制御部44に供給される。   In the membrane treatment system 5, a pressure gauge 51 for measuring the pressure of the washing waste water is provided in the washing drain pipe 33 of the membrane treatment system 4, and a pressure gauge 52 for measuring the pressure of the washing water is provided in the washing water supply pipe 32. The pressure values measured by the pressure gauges 51 and 52 are supplied to the control unit 44.

制御部44は前記供給された圧力値と予め設定された膜処理装置10の膜差圧の設定値とに基づき次亜水の注入を制御する。すなわち、圧力計51から供給された圧力値と圧力計52から供給された圧力値との差である膜差圧が洗浄効果判定の因子となる。制御部44は前記計測された膜差圧と予め設定された膜差圧とに基づき次亜水の注入量の増加及び減少を判断する。例えば、膜差圧計測値>膜差圧設定値である場合、次亜水の流量値は前回の流量値+αに設定される。このようにして制御部44は膜差圧計測値が膜差圧設定値よりも高い場合に前記次亜水の注入量が増加するように次亜水の流量の指示を次亜水注入装置41に送信する。但し、経年的な汚れにより膜差圧が低下しない場合があるのでタイマーによって次亜水の添加を停止するようにしてもよい。   The controller 44 controls injection of hyponitrous acid based on the supplied pressure value and a preset value of the membrane differential pressure of the membrane treatment apparatus 10. That is, the membrane differential pressure, which is the difference between the pressure value supplied from the pressure gauge 51 and the pressure value supplied from the pressure gauge 52, is a factor for determining the cleaning effect. The controller 44 determines an increase or a decrease in the injection amount of hyposulfite based on the measured membrane differential pressure and a preset membrane differential pressure. For example, when the measured membrane differential pressure value is greater than the set value of the membrane differential pressure, the flow rate value of hyponitrous water is set to the previous flow rate value + α. In this way, the control unit 44 instructs the flow rate of the hyponitrous water so as to increase the injection amount of the hyponitrous water when the measured value of the transmembrane pressure is higher than the set value of the transmembrane pressure. Send to. However, since the membrane differential pressure may not decrease due to aging contamination, the addition of hyponitrous acid may be stopped by a timer.

また、膜処理システム5でも制御部16は予め設定された膜ろ過水の紫外線吸光度の設定値と前記供給された紫外線吸光度の計側値とに基づき前記凝集剤の注入を制御する。例えば、前記計測値>前記設定値である場合に洗浄を継続させる。そして、前記計測値≦前記設定値となった場合に洗浄を停止させる指示を洗浄水供給装置31に送信する。   In the membrane treatment system 5, the control unit 16 also controls the injection of the flocculant based on the preset value of the UV absorbance of the membrane filtrate and the measured value of the supplied UV absorbance. For example, cleaning is continued when the measured value> the set value. Then, an instruction to stop cleaning when the measured value ≦ the set value is satisfied is transmitted to the cleaning water supply device 31.

洗浄排水の溶存物質である例えばフミン質はUV計(測定波長253.7nm)34での吸光度の計測値と相関関係があるため、洗浄排水の紫外線吸光度の計測値を制御すれば、膜処理装置10の分離膜から押し出すことができる前記溶存物質を制御することができる。また、原水からのフミン質の負荷により分離膜の汚れ具合も変化するので、次亜水の注入量を制御することで、洗浄水に注入する次亜水の量を最適化できる。溶存物質の濃度の指標は紫外線吸光度の代わりに色度としてもほぼ同様の結果となる。   For example, humic substances that are dissolved substances in the cleaning wastewater have a correlation with the measured value of the absorbance at the UV meter (measurement wavelength 253.7 nm) 34. Therefore, if the measured value of the ultraviolet absorbance of the cleaning wastewater is controlled, the membrane treatment apparatus The dissolved substances that can be extruded from 10 separation membranes can be controlled. In addition, since the degree of soiling of the separation membrane also changes due to the load of humic substances from the raw water, the amount of hyponitrogen injected into the wash water can be optimized by controlling the amount of hyponitrous injected. The indicator of the concentration of the dissolved substance gives almost the same result when the chromaticity is used instead of the ultraviolet absorbance.

以上のように膜処理システム5によれば最終的には前記分離膜に閉塞された前記溶存物質が除去されて、前記分離膜の洗浄不足が解消される。尚、溶存物質の濃度の指標は紫外線吸光度の代わりに色度としてもほぼ同様の結果となる。   As described above, according to the membrane treatment system 5, the dissolved substance clogged by the separation membrane is finally removed, and the lack of cleaning of the separation membrane is solved. It should be noted that the index of the dissolved substance concentration is almost the same in terms of chromaticity instead of ultraviolet absorbance.

発明の第一の実施形態に係る膜処理システムの概要図。1 is a schematic diagram of a film processing system according to a first embodiment of the invention. 発明の第二の実施形態に係る膜処理システムの概要図。The schematic diagram of the film processing system concerning a second embodiment of the invention. 発明の第三の実施形態に係る膜処理システムの概要図。The schematic diagram of the film processing system concerning a third embodiment of the invention. 発明の第四の実施形態に係る膜処理システムの概要図。The schematic diagram of the film processing system concerning a fourth embodiment of the invention. 発明の第五の実施形態に係る膜処理システムの概要図。The schematic diagram of the film | membrane processing system which concerns on 5th embodiment of invention.

符号の説明Explanation of symbols

1,2,3,4,5…膜処理システム
10…膜処理装置、11…供給管、12…排出管
13…凝集剤注入装置、14…注入菅
15,16,21、34…UV計
16,44…制御部
31…洗浄水供給装置、32…洗浄水供給管、33…洗浄排水管
41…次亜水注入装置、42…次亜水供給管、43…残留塩素計
51,52…圧力計
DESCRIPTION OF SYMBOLS 1, 2, 3, 4, 5 ... Membrane processing system 10 ... Membrane processing apparatus, 11 ... Supply pipe, 12 ... Discharge pipe 13 ... Flocculant injection apparatus, 14 ... Injection tank 15, 16, 21, 34 ... UV meter 16 , 44 ... Control unit 31 ... Washing water supply device, 32 ... Washing water supply pipe, 33 ... Washing drain pipe 41 ... Hypochlorite injection device, 42 ... Hypochlorite supply pipe, 43 ... Residual chlorine meter 51, 52 ... Pressure Total

Claims (6)

膜処理装置に供給される原水に凝集剤を注入する凝集剤注入装置を備え、
この凝集剤注入装置は前記原水のフミン質濃度に基づき凝集剤を前記原水に注入すること
を特徴とする膜処理システム。
A flocculant injecting device for injecting the flocculant into the raw water supplied to the membrane treatment device is provided,
The flocculant injection device injects the flocculant into the raw water based on the humic substance concentration of the raw water.
前記凝集剤注入装置は前記膜処理装置から排出されるろ過水のフミン質濃度に基づき前記凝集剤を前記原水に注入すること
を特徴とする請求項に1記載の膜処理システム。
The membrane treatment system according to claim 1, wherein the flocculant injecting device injects the flocculant into the raw water based on a humic concentration of filtrate water discharged from the membrane treatment device.
膜処理装置に洗浄水を供給する洗浄水供給装置を備え、
この洗浄水供給装置は前記膜処理装置から排出される洗浄排水のフミン質濃度に基づき前記洗浄水の供給の継続とその停止を行なうこと
を特徴とする請求項1または2に記載の膜処理システム。
A cleaning water supply device for supplying cleaning water to the membrane treatment device is provided.
3. The membrane treatment system according to claim 1, wherein the washing water supply device continues and stops the supply of the washing water based on a humic substance concentration of washing wastewater discharged from the membrane treatment device. .
前記膜処理装置に供給される洗浄水に次亜水を注入する次亜水注入装置を備え、
この次亜水注入装置は前記膜処理装置から排出される洗浄排水の残留塩素濃度に基づき前記次亜水を前記洗浄水に注入すること
を特徴とする請求項3に記載の膜処理システム。
A hyponitrous injection device for injecting hyponitrous water into the wash water supplied to the membrane treatment device;
4. The membrane treatment system according to claim 3, wherein the hyponitrous acid injecting device injects the hyponitrous acid into the washing water based on a residual chlorine concentration of washing wastewater discharged from the membrane treating device. 5.
前記次亜水注入装置は前記膜処理装置に供給される洗浄水の圧力と前記膜処理装置から排出される洗浄排水の圧力との差圧に基づき次亜水を洗浄水に注入すること
を特徴とする請求項4に記載の膜処理システム。
The hyponitrous acid injection device injects hyponitrous acid into the cleaning water based on a differential pressure between the pressure of the cleaning water supplied to the membrane processing device and the pressure of the cleaning wastewater discharged from the membrane processing device. The film processing system according to claim 4.
前記フミン濃度の指標は紫外線吸光度または色度であることを特徴とする請求項1に記載の膜処理システム。   The film processing system according to claim 1, wherein the humin concentration index is ultraviolet absorbance or chromaticity.
JP2006318066A 2006-11-27 2006-11-27 Membrane treatment system Pending JP2008126223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318066A JP2008126223A (en) 2006-11-27 2006-11-27 Membrane treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318066A JP2008126223A (en) 2006-11-27 2006-11-27 Membrane treatment system

Publications (1)

Publication Number Publication Date
JP2008126223A true JP2008126223A (en) 2008-06-05

Family

ID=39552592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318066A Pending JP2008126223A (en) 2006-11-27 2006-11-27 Membrane treatment system

Country Status (1)

Country Link
JP (1) JP2008126223A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150424A1 (en) * 2009-06-26 2010-12-29 三菱重工業株式会社 Flue-gas desulfurization system using river water and method of removing humus
JP2013223846A (en) * 2012-04-23 2013-10-31 Swing Corp Evaluation method of treated water, membrane treatment apparatus, and operation method of the same
JP2014004504A (en) * 2012-06-22 2014-01-16 Kubota Corp Monitoring device of irreversible membrane fouling substance
JPWO2016038726A1 (en) * 2014-09-11 2017-06-15 三菱重工業株式会社 Water treatment apparatus and water treatment method
CN109292896A (en) * 2018-09-30 2019-02-01 同济大学 A kind of method of humic acid in control drinking water
US20220050051A1 (en) * 2020-08-13 2022-02-17 Applied Materials, Inc. Methods for detecting end-points for cleaning processes of aerospace components

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182338A (en) * 1992-12-16 1994-07-05 Kurita Water Ind Ltd Membrane separating device
JPH08117747A (en) * 1994-10-20 1996-05-14 Kurita Water Ind Ltd Water treatment apparatus
JPH09292336A (en) * 1996-04-25 1997-11-11 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof
JP2001232160A (en) * 2000-02-21 2001-08-28 Hitachi Plant Eng & Constr Co Ltd Membrane filter
JP2002336871A (en) * 2001-05-15 2002-11-26 Ngk Insulators Ltd Method for controlling injection of flocculant in membrane filtration
JP2004249168A (en) * 2003-02-18 2004-09-09 Fuji Electric Systems Co Ltd Operation method for water treatment device
JP2005169238A (en) * 2003-12-10 2005-06-30 Fuji Electric Systems Co Ltd Reversal washing method for membrane filtrate treatment equipment
JP2006272256A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Membrane separation apparatus and membrane separation method
JP2006272255A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Membrane separation apparatus and membrane separation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182338A (en) * 1992-12-16 1994-07-05 Kurita Water Ind Ltd Membrane separating device
JPH08117747A (en) * 1994-10-20 1996-05-14 Kurita Water Ind Ltd Water treatment apparatus
JPH09292336A (en) * 1996-04-25 1997-11-11 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof
JP2001232160A (en) * 2000-02-21 2001-08-28 Hitachi Plant Eng & Constr Co Ltd Membrane filter
JP2002336871A (en) * 2001-05-15 2002-11-26 Ngk Insulators Ltd Method for controlling injection of flocculant in membrane filtration
JP2004249168A (en) * 2003-02-18 2004-09-09 Fuji Electric Systems Co Ltd Operation method for water treatment device
JP2005169238A (en) * 2003-12-10 2005-06-30 Fuji Electric Systems Co Ltd Reversal washing method for membrane filtrate treatment equipment
JP2006272256A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Membrane separation apparatus and membrane separation method
JP2006272255A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Membrane separation apparatus and membrane separation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150424A1 (en) * 2009-06-26 2010-12-29 三菱重工業株式会社 Flue-gas desulfurization system using river water and method of removing humus
US8298321B2 (en) 2009-06-26 2012-10-30 Mitsubishi Heavy Industries, Ltd. River water utilizing flue gas desulfurization system and humic substance removing method
JP2013223846A (en) * 2012-04-23 2013-10-31 Swing Corp Evaluation method of treated water, membrane treatment apparatus, and operation method of the same
JP2014004504A (en) * 2012-06-22 2014-01-16 Kubota Corp Monitoring device of irreversible membrane fouling substance
JPWO2016038726A1 (en) * 2014-09-11 2017-06-15 三菱重工業株式会社 Water treatment apparatus and water treatment method
CN109292896A (en) * 2018-09-30 2019-02-01 同济大学 A kind of method of humic acid in control drinking water
US20220050051A1 (en) * 2020-08-13 2022-02-17 Applied Materials, Inc. Methods for detecting end-points for cleaning processes of aerospace components

Similar Documents

Publication Publication Date Title
JP6832710B2 (en) System for treating water
Zsirai et al. Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor
Bourgeous et al. Ultrafiltration of wastewater: effects of particles, mode of operation, and backwash effectiveness
JP2008126223A (en) Membrane treatment system
Zupančič et al. An evaluation of industrial ultrafiltration systems for surface water using fouling indices as a performance indicator
JP6210063B2 (en) Fresh water generation method and fresh water generation apparatus
JP2006263501A (en) System and method for cleaning membrane
JP5151009B2 (en) Membrane separation device and membrane separation method
JP4885512B2 (en) Water purification equipment and operation method thereof
JP3841735B2 (en) Filtration membrane cleaning method
KR101693100B1 (en) Smart Membrane-Filteration Water Treating System
JP4894316B2 (en) Membrane damage detection method for membrane filtration process
JP2010201335A (en) Water treatment system and water treatment method
JPH11169851A (en) Water filter and its operation
JP2007289899A (en) Membrane washing method for membrane separation means, and water treatment apparatus
JP2007289899A5 (en)
WO2000027510A1 (en) Method for filtration with membrane
JPH11179173A (en) Operation method of membrane separator and membrane separator
JP4829045B2 (en) Operation support system for water treatment plant
JPH06170365A (en) Method for purifying water in tap water system
KR20150087159A (en) Wastewater effluent reuse system and method of enhanced membrane life and the efficiency
JP7354983B2 (en) Support device, support method, and support program
JP4872391B2 (en) Membrane separation device and membrane separation method
CN205575789U (en) Integrated automatic industrial waste water reuse of reclaimed water device
JP4341003B2 (en) Water quality control method for supplied purified water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Effective date: 20110217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025