JP2002336871A - Method for controlling injection of flocculant in membrane filtration - Google Patents

Method for controlling injection of flocculant in membrane filtration

Info

Publication number
JP2002336871A
JP2002336871A JP2001144871A JP2001144871A JP2002336871A JP 2002336871 A JP2002336871 A JP 2002336871A JP 2001144871 A JP2001144871 A JP 2001144871A JP 2001144871 A JP2001144871 A JP 2001144871A JP 2002336871 A JP2002336871 A JP 2002336871A
Authority
JP
Japan
Prior art keywords
turbidity
chromaticity
raw water
flocculant
membrane filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001144871A
Other languages
Japanese (ja)
Other versions
JP3830085B2 (en
Inventor
Miho Shigefuji
美保 重藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2001144871A priority Critical patent/JP3830085B2/en
Publication of JP2002336871A publication Critical patent/JP2002336871A/en
Application granted granted Critical
Publication of JP3830085B2 publication Critical patent/JP3830085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling the injection amount of a flocculant in membrane filtration by which a membrane filtration operation can be performed stably regardless of whether the turbidity of raw water is low or high and the stable quality of the membrane-filtered water can be secured. SOLUTION: The injection amount of the flocculant is controlled according to the value of the chromaticity/turbidity ratio of raw water that is obtained by measuring the turbidity and the chromaticity of the raw water to be membrane-filtered and calculating the value. It is particularly preferable to control the injection amount of the flocculant in proportion to the value of the apparent chromaticity/turbidity ratio of the raw water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、河川水や湖沼水の
ような色度と濁度とを持つ原水を膜ろ過する際におけ
る、原水への凝集剤の注入制御方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the injection of a flocculant into raw water having a chromaticity and turbidity, such as river water or lake water, when performing membrane filtration.

【0002】[0002]

【従来の技術】河川水や湖沼水などを原水とする上水処
理場では、急速砂ろ過法が長年にわたり用いられてきた
が、近年ではセラミック膜などを用いた膜ろ過法が普及
しつつある。いずれの方法でも、取水した原水にPAC
(ポリ塩化アルミニウム)等の凝集剤を添加して原水中
の有機物(色度、濁度等)を凝集フロック内に取り込ま
せたうえろ過することにより、ろ過水質の向上を図ると
ともに、ろ過差圧の上昇を抑制している。
2. Description of the Related Art A rapid sand filtration method has been used for many years in a water treatment plant that uses river water, lake water, or the like as raw water. In recent years, a membrane filtration method using a ceramic membrane or the like has become widespread. . In either method, PAC is added to the raw water
(Polyaluminum chloride) and other coagulants to add organic matter (color, turbidity, etc.) in the raw water into the flocculent floc and filter it, thereby improving the quality of the filtered water and the filtration pressure difference. Is restrained from rising.

【0003】特に膜ろ過法では凝集剤の注入量を適切に
制御することが重要であり、もし凝集剤の注入量が不足
すると凝集フロック内への有機物(色度、濁度等)の取
り込みが十分に行われないために膜ろ過水質の低下とろ
過差圧の上昇が起こる。逆に凝集剤の注入量が多すぎる
と過剰にフロックが形成されて膜の閉塞が急速に進行
し、短時間に膜差圧が上昇して処理不能に陥る。しかも
河川水や湖沼水は季節や天候によって水質が変動するた
め、水質変化に応じて凝集剤の注入量を制御すること
は、重要な管理項目となっている。
In the membrane filtration method in particular, it is important to appropriately control the amount of coagulant to be injected. If the amount of coagulant is insufficient, organic substances (such as chromaticity and turbidity) are taken into the floc. Since the filtration is not performed sufficiently, the quality of the membrane filtration water decreases and the filtration pressure difference increases. Conversely, if the injection amount of the coagulant is too large, flocs are formed excessively, the membrane is rapidly closed, and the differential pressure of the membrane increases in a short time, so that processing becomes impossible. Moreover, since the water quality of river water and lake water fluctuates depending on the season and weather, controlling the injection amount of the coagulant according to the change in water quality is an important management item.

【0004】そこで従来から、取水した原水の濁度を濁
度計で測定し、濁度に比例した量の凝集剤を注入する濁
度比例注入制御が採用されてきた。この制御方法を採用
した凝集剤の自動注入システムは、特に急速砂ろ過法に
おける前処理としての凝集沈殿でと組み合わされて長い
使用実績がある。
Therefore, conventionally, turbidity proportional injection control has been adopted in which the turbidity of a raw water sampled is measured by a turbidity meter and a coagulant in an amount proportional to the turbidity is injected. The automatic coagulant injection system employing this control method has long been used in combination with coagulation sedimentation as a pretreatment particularly in rapid sand filtration.

【0005】しかし急速砂ろ過法における前処理での実
績がある濁度比例注入制御をそのまま膜ろ過における前
処理に適用すると、原水の濁度が低い場合や、降雨の影
響を受けて原水の濁度が上昇した場合に、問題があるこ
とが判明した。すなわち原水の濁度が低い場合には、凝
集剤の注入量が減少するために水質によっては膜ろ過水
質の悪化と膜の目詰まりが発生しやすくなり、逆に降雨
等の影響による原水の高濁時には、大量の凝集剤が注入
されるために過剰にフロックが形成されて膜の閉塞が発
生することがあることが判明した。
However, if the turbidity proportional injection control, which has been used in the pretreatment in the rapid sand filtration method, is directly applied to the pretreatment in the membrane filtration, the turbidity of the raw water may be low or the turbidity of the raw water may be affected by rainfall. When the degree rose, it turned out to be a problem. In other words, when the turbidity of the raw water is low, the amount of coagulant injected decreases, and depending on the water quality, the quality of the membrane filtration water deteriorates and the membrane is easily clogged. It has been found that during turbidity, a large amount of flocculant is injected, so that flocs are formed excessively and blockage of the membrane may occur.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、原水の濁度が低い場合にも高い場合
にも、膜ろ過差圧上昇が少ない安定した状態で膜ろ過運
転を行うことができ、また安定した膜ろ過水質を確保で
きる膜ろ過における凝集剤の注入制御方法を提供するた
めになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and performs a membrane filtration operation in a stable state with a small increase in the membrane filtration differential pressure even when the turbidity of raw water is low or high. The present invention has been made to provide a method for controlling the injection of a flocculant in membrane filtration that can ensure stable membrane filtration water quality.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の膜ろ過における凝集剤の注入制御
方法は、膜ろ過される原水への凝集剤の注入量を、原水
の色度/濁度の値に基づいて制御することを特徴とする
ものである。特に凝集剤の注入量を、原水の見掛けの色
度/濁度の値に比例させて制御することが好ましい。
The method of controlling the injection of a flocculant in membrane filtration according to the present invention, which has been made to solve the above-mentioned problems, comprises the steps of: The control is based on the value of degree / turbidity. In particular, it is preferable to control the injection amount of the coagulant in proportion to the apparent chromaticity / turbidity value of the raw water.

【0008】このように本発明では、原水の色度と濁度
の比という従来にない変数を用い、凝集剤の注入制御を
行う。前記したように色度と濁度はともに原水中の有機
物に関連するが、濁度は原水中の濁質粒子数を表すのに
対して、色度は吸光度分析法により波長390nm付近
で吸光度を測定することにより得られる値であり、原水
中に含まれる溶解性物質及びコロイド性物質が呈する類
黄色ないし黄褐色の程度を表す。このため濁度成分に比
較して、色度成分ははるかに微細なものである。
As described above, in the present invention, the injection control of the coagulant is performed by using an unconventional variable such as the ratio of chromaticity to turbidity of raw water. As described above, chromaticity and turbidity are both related to the organic matter in raw water, whereas turbidity represents the number of suspended particles in raw water, whereas chromaticity is the absorbance at a wavelength of about 390 nm by an absorbance analysis method. It is a value obtained by measurement and represents the degree of yellowish to yellowish brown exhibited by soluble substances and colloidal substances contained in raw water. Therefore, the chromaticity component is much finer than the turbidity component.

【0009】したがって、濁度に比例して凝集剤を添加
する従来法では色度成分が無視されており、低濁時に凝
集剤の注入量を減少させると色度成分がフロック内に十
分に取り込まれず、膜を目詰まりさせるものと考えられ
る。また、凝集には核となる物質が必要であり、凝集剤
の存在下では濁質粒子も核形成材としての機能を発揮す
るものであるが、低濁時には凝集剤も濁質物質もともに
不足するために、色度成分による膜の目詰まりが発生す
るものと想定される。
Therefore, the chromaticity component is neglected in the conventional method in which the flocculant is added in proportion to the turbidity. If the amount of the flocculant injected is reduced during low turbidity, the chromaticity component is sufficiently taken into the floc. It is considered that the film is not clogged. In addition, coagulation requires a core substance, and in the presence of a coagulant, turbid particles also function as a nucleating material. Therefore, it is assumed that clogging of the film due to the chromaticity component occurs.

【0010】以上のように、本発明者は濁度だけではな
く色度をも考慮して凝集剤の注入量を制御すべきである
と考え、さまざまな条件下での実験を繰り返した結果、
膜ろ過される原水への凝集剤の注入量を、原水の色度/
濁度の値に基づいて制御した場合にもっとも安定した膜
ろ過が可能であるとの結論に達した。以下に本発明を実
施形態とともにさらに詳細に説明する。
As described above, the present inventor believed that the injection amount of the flocculant should be controlled in consideration of not only turbidity but also chromaticity, and as a result of repeating experiments under various conditions,
The amount of coagulant injected into the raw water to be subjected to membrane filtration is determined by the chromaticity of the raw water /
It was concluded that the most stable membrane filtration was possible when controlled based on the turbidity value. Hereinafter, the present invention will be described in further detail with embodiments.

【0011】[0011]

【発明の実施の形態】図1において、1は河川水や湖沼
水が流入する原水流入槽であり、この原水流入槽1から
取り出された原水に混和槽2において凝集剤が添加さ
れ、フロック形成槽3で凝集フロック内への有機物の取
り込みを行わせた後に膜ろ過装置4で膜ろ過を行うこと
は従来と同様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 denotes a raw water inflow tank into which river water or lake water flows, and a flocculant is added to raw water taken out of the raw water inflow tank 1 in a mixing tank 2 to form floc. It is the same as the conventional method that the organic matter is taken into the flocculated floc in the tank 3 and then the membrane filtration is performed by the membrane filtration device 4.

【0012】凝集剤としてはPACを使用するのが普通
であるが、本発明はこれに限定されるものではない。凝
集剤は凝集剤貯留槽5から凝集剤注入ポンプ6によって
原水に添加される。またこの実施形態では、膜ろ過装置
4として孔径が0.1μmのモノリス型のセラミック膜を
用いたが、高分子膜などの他の膜を使用しても差し支え
ない。
As the flocculant, PAC is usually used, but the present invention is not limited to this. The flocculant is added to raw water from a flocculant storage tank 5 by a flocculant injection pump 6. In this embodiment, a monolithic ceramic membrane having a pore diameter of 0.1 μm is used as the membrane filtration device 4, but another membrane such as a polymer membrane may be used.

【0013】本発明では、原水の濁度を濁度計7により
測定するとともに、原水の色度を色度計8により測定す
る。それらの測定値は演算器9に入力され、演算器9は
原水の色度/濁度の値に基づいて凝集剤注入ポンプ6を
制御し、原水への凝集剤注入量を制御する。なお、濁度
計7は従来と同様のものを使用することができ、色度計
8は前記したように波長390nm付近で吸光度を測定
する装置を使用することができる。
In the present invention, the turbidity of raw water is measured by a turbidimeter 7 and the chromaticity of raw water is measured by a chromaticity meter 8. The measured values are input to a calculator 9 which controls the coagulant injection pump 6 based on the chromaticity / turbidity values of the raw water to control the coagulant injection amount into the raw water. The turbidimeter 7 may be the same as the conventional one, and the chromaticity meter 8 may be a device that measures the absorbance at a wavelength of about 390 nm as described above.

【0014】図2は、本発明で用いた原水の色度/濁度
の値と凝集剤注入量との関係を示すグラフである。なお
横軸に示された見掛けの色度とは、原水の色度をそのま
ま測定した値を意味している。このほか色度には真色度
があり、これは原水が混濁している場合に遠心分離上澄
液またはろ液を採取して測定した色度を意味する。本発
明では色度の値としていずれを用いてもよいが、ここで
は見掛けの色度を用いた。
FIG. 2 is a graph showing the relationship between the chromaticity / turbidity value of the raw water used in the present invention and the coagulant injection amount. The apparent chromaticity shown on the horizontal axis means a value obtained by directly measuring the chromaticity of raw water. In addition, the chromaticity has a chromaticity, which means the chromaticity measured by collecting a centrifuged supernatant or a filtrate when the raw water is turbid. In the present invention, any value may be used as the chromaticity value, but the apparent chromaticity is used here.

【0015】この図2のグラフでは、凝集剤注入量は見
掛けの色度/濁度の値に比例しており、それに応じて凝
集剤注入ポンプ6により凝集剤が注入される。原水中の
色度及び濁度成分は凝集フロック内に十分に取り込ま
れ、凝集フロックは膜ろ過装置4により分離される。こ
のように凝集剤の注入量を制御することにより、膜ろ過
装置4の差圧上昇は抑制されるとともに、長期間にわた
り安定した膜ろ過水質を確保することができる。
In the graph of FIG. 2, the coagulant injection amount is proportional to the apparent chromaticity / turbidity value, and the coagulant is injected by the coagulant injection pump 6 accordingly. The chromaticity and turbidity components in the raw water are sufficiently taken into the flocculated flocs, and the flocculated flocs are separated by the membrane filtration device 4. By controlling the injection amount of the coagulant in this manner, the increase in the differential pressure of the membrane filtration device 4 is suppressed, and stable membrane filtration water quality can be secured for a long period of time.

【0016】上記した本発明の効果は、以下に示す実験
事実に裏づけられたものである。本発明者は、愛知県内
のある上水処理場に同一仕様の膜ろ過装置を複数台持ち
込み、各膜ろ過装置ごとに原水への凝集剤(PAC)の
注入量を変えて並列的に膜ろ過運転を行った。たとえば
1台目は注入率を10mg/L,2台目は注入率を20
mg/L,3台目は注入率を30mg/Lとした。実験
は約4ヶ月間にわたり、その間に原水の性状(色度、濁
度)は大きく変化したが、複数台の膜ろ過装置に供給さ
れる原水はいつも共通とした。
The effects of the present invention described above are supported by the following experimental facts. The present inventor brought a plurality of membrane filtration devices of the same specification to a certain water treatment plant in Aichi Prefecture, and changed the amount of coagulant (PAC) injected into raw water for each membrane filtration device in parallel to perform membrane filtration. I drove. For example, the first unit has an injection rate of 10 mg / L, and the second unit has an injection rate of 20 mg / L.
mg / L, and the third unit had an injection rate of 30 mg / L. The experiment was carried out for about 4 months, during which the properties (color, turbidity) of the raw water changed significantly, but the raw water supplied to the plurality of membrane filtration devices was always common.

【0017】各条件下において膜差圧の上昇を測定し、
温度補正を加えた差圧上昇係数(kPa/日)を求め
た。そして複数台の膜ろ過装置のうちの差圧上昇係数が
もっとも小さいものを選択し、その凝集剤注入率をその
ときの原水の水質にもっとも適した最適凝集剤注入率と
した。
Under each condition, the rise of the transmembrane pressure is measured,
The differential pressure rise coefficient (kPa / day) to which the temperature was corrected was determined. Then, one of the plurality of membrane filtration devices having the smallest differential pressure increase coefficient was selected, and the coagulant injection rate was determined as the optimum coagulant injection rate most suitable for the raw water quality at that time.

【0018】図3は、この実験における濁度と最適凝集
剤注入率との関係を示すグラフである。従来の濁度比例
注入制御では濁度に比例して凝集剤注入率を増加させる
のであるから、濁度と最適凝集剤注入率との間に相関性
が成立するはずであるが、この実験では濁度の低い場合
に凝集剤注入率を増加させるべきであるとの逆の傾向が
認められる。この実験結果によっても、低濁度の場合に
膜の目詰まりが生じ易いという従来の問題点が裏付けら
れている。
FIG. 3 is a graph showing the relationship between the turbidity and the optimum coagulant injection rate in this experiment. In the conventional turbidity proportional injection control, the coagulant injection rate is increased in proportion to the turbidity.Therefore, a correlation should be established between the turbidity and the optimum coagulant injection rate. The opposite trend is to be observed when the turbidity is low and the coagulant injection rate should be increased. These experimental results also support the conventional problem that membrane clogging is likely to occur when the turbidity is low.

【0019】また、図4と図5は真色度と見掛けの色度
を横軸にとり、縦軸を最適凝集剤注入率としたグラフで
ある。これらのグラフにおいても、真色度または見掛け
の色度と最適凝集剤注入率との間に相関性は認められな
い。すなわち、単に色度を尺度として凝集剤の注入量を
制御しても効果がないことがわかる。
FIGS. 4 and 5 are graphs in which the true chromaticity and the apparent chromaticity are plotted on the horizontal axis, and the vertical axis is set to the optimum coagulant injection rate. Also in these graphs, there is no correlation between the true or apparent chromaticity and the optimal coagulant injection rate. That is, it can be seen that simply controlling the injection amount of the flocculant using the chromaticity as a scale has no effect.

【0020】しかし図6のように、見掛けの色度/濁度
の値を横軸に取れば、最適凝集剤注入率との間に明確な
相関性が現れる。前記した図2のグラフはこの実験結果
に基づくものである。なお図7は真色度/濁度の値を横
軸にとったグラフであり、図6ほどではないが最適凝集
剤注入率との間に相関性が認められる。
However, as shown in FIG. 6, if the apparent chromaticity / turbidity value is plotted on the horizontal axis, a clear correlation appears between the value and the optimum coagulant injection rate. The graph of FIG. 2 described above is based on the results of this experiment. FIG. 7 is a graph in which the value of true chromaticity / turbidity is plotted on the horizontal axis, and although not as large as in FIG. 6, a correlation is observed between the optimum coagulant injection rate.

【0021】このように、本発明は膜ろ過される原水へ
の凝集剤の注入量を、原水の色度/濁度の値に基づいて
制御することにより、原水の性状が大きく変化したとき
にも常に膜ろ過装置の差圧上昇係数を最低に保つことが
できる。これは膜ろ過が最適条件で行われていることを
意味するものであり、原水の性状が大きく変化したとき
にも膜ろ過水質が安定に保たれていることはいうまでも
ない。なお、色度/濁度の値に基づいて最適凝集剤注入
率を演算する際の比例定数は河川表流水、地下水、貯水
池水、湖沼水、湧水および伏流水の水道水源の種類等に
よる原水水質の特性により変化するため、必ずしも図2
の勾配に限定されるものではない。
As described above, the present invention controls the amount of the coagulant to be injected into the raw water to be subjected to membrane filtration based on the chromaticity / turbidity value of the raw water, so that the properties of the raw water can be significantly changed. However, the coefficient of pressure rise of the membrane filtration device can always be kept at a minimum. This means that the membrane filtration is performed under optimum conditions, and it goes without saying that the quality of the membrane filtration water is kept stable even when the properties of the raw water greatly change. The proportionality constant for calculating the optimal coagulant injection rate based on the chromaticity / turbidity value is based on the type of tap water source such as river surface water, groundwater, reservoir water, lake water, spring water, and underground water. Because it varies depending on the characteristics of water quality,
It is not limited to the gradient of.

【0022】[0022]

【実施例】実施例1(低濁時) 原水の濁度が3.2、見掛けの色度が8.3のとき、従
来の濁度比例注入制御法によれば凝集剤の注入量はたと
えば10mg/Lと低く抑えられる。これに対して本発
明によれば、見掛けの色度/濁度=2.59であるから
凝集剤の注入量は25mg/Lと多く設定した。その結
果、従来法では差圧上昇係数が20kPa/日と大きく
なり、短時間に急速に膜差圧が上昇したが、本発明では
差圧上昇係数が0.70kPa/日と非常に小さくなっ
た。
EXAMPLES Example 1 (Low turbidity) When the turbidity of raw water is 3.2 and the apparent chromaticity is 8.3, according to the conventional turbidity proportional injection control method, the injection amount of the flocculant is, for example, It can be kept as low as 10 mg / L. On the other hand, according to the present invention, since the apparent chromaticity / turbidity = 2.59, the injection amount of the flocculant was set as large as 25 mg / L. As a result, in the conventional method, the differential pressure increase coefficient was as large as 20 kPa / day, and the membrane differential pressure was rapidly increased in a short time. However, in the present invention, the differential pressure increase coefficient was as extremely small as 0.70 kPa / day. .

【0023】実施例2(高濁時) 原水の濁度が16.5、見掛けの色度が24.4のと
き、従来の濁度比例注入制御法によれば凝集剤の注入量
はたとえば30mg/Lと多くなる。これに対して本発
明によれば、見掛けの色度/濁度=1.48であるから
凝集剤の注入量は10mg/Lと少なくなる。その結
果、従来法では差圧上昇係数が1.40kPa/日であ
ったが、本発明では差圧上昇係数は0.10kPa/日
と非常に小さくなった。
Example 2 (High turbidity) When the turbidity of the raw water is 16.5 and the apparent chromaticity is 24.4, the amount of the coagulant injected is, for example, 30 mg according to the conventional turbidity proportional injection control method. / L. On the other hand, according to the present invention, since the apparent chromaticity / turbidity is 1.48, the injection amount of the coagulant is as small as 10 mg / L. As a result, the differential pressure increase coefficient was 1.40 kPa / day in the conventional method, but was extremely small as 0.10 kPa / day in the present invention.

【0024】実施例3(中濁時) 原水の濁度が7.6、見掛けの色度が11.3のとき、
従来の濁度比例注入制御法によれば凝集剤の注入量はた
とえば20mg/Lとなる。これに対して本発明によれ
ば、見掛けの色度/濁度=1.49であるから凝集剤の
注入量は10mg/Lとなる。その結果、従来法では差
圧上昇係数が0.70kPa/日であったが、本発明で
は差圧上昇係数は0.00kPa/日であった。
Example 3 (During turbidity) When the turbidity of the raw water is 7.6 and the apparent chromaticity is 11.3,
According to the conventional turbidity proportional injection control method, the injection amount of the flocculant is, for example, 20 mg / L. On the other hand, according to the present invention, the apparent chromaticity / turbidity is 1.49, so the injection amount of the flocculant is 10 mg / L. As a result, the differential pressure increase coefficient was 0.70 kPa / day in the conventional method, but was 0.00 kPa / day in the present invention.

【0025】[0025]

【発明の効果】以上に説明したように、本発明によれば
原水の色度と濁度の比という従来にない変数を用いて凝
集剤の注入制御を行うことにより、原水の濁度や色度が
大きく変化した場合にも、常に安定した膜ろ過を行うこ
とができる。このため膜の目詰まりや閉塞を回避しつ
つ、安定した膜ろ過水質を確保することができる。また
従来の濁度比例注入制御法による制御よりも凝集剤の使
用量を削減することもでき、ランニングコストの低減に
も寄与することができる。
As described above, according to the present invention, the turbidity and color of the raw water are controlled by controlling the injection of the flocculant using the unconventional variable of the chromaticity and the turbidity ratio of the raw water. Even when the degree changes greatly, stable membrane filtration can always be performed. Therefore, stable membrane filtration water quality can be secured while avoiding clogging and blockage of the membrane. Further, the amount of the coagulant used can be reduced as compared with the control by the conventional turbidity proportional injection control method, which can contribute to a reduction in running cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す装置構成図である。FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention.

【図2】本発明における凝集剤注入量と見掛けの色度/
濁度の値との関係を示すグラフである。
FIG. 2 shows the coagulant injection amount and apparent chromaticity /
It is a graph which shows the relationship with the value of turbidity.

【図3】実験における濁度と最適凝集剤注入率との関係
を示すグラフである。
FIG. 3 is a graph showing a relationship between turbidity and an optimum coagulant injection rate in an experiment.

【図4】実験における真色度と最適凝集剤注入率との関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the true chromaticity and the optimal coagulant injection rate in an experiment.

【図5】実験における見掛けの色度と最適凝集剤注入率
との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between an apparent chromaticity and an optimum coagulant injection rate in an experiment.

【図6】実験における見掛けの色度/濁度と最適凝集剤
注入率との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between apparent chromaticity / turbidity and an optimum coagulant injection rate in an experiment.

【図7】実験における真色度/濁度と最適凝集剤注入率
との関係を示すグラフである。
FIG. 7 is a graph showing a relationship between true chromaticity / turbidity and an optimum coagulant injection rate in an experiment.

【符号の説明】[Explanation of symbols]

1 原水流入槽、2 混和槽、3 フロック形成槽、4
膜ろ過装置、5 凝集剤貯留槽、6 凝集剤注入ポン
プ、7 濁度計、8 色度計、9 演算器
1 Raw water inflow tank, 2 mixing tank, 3 floc forming tank, 4
Membrane filtration device, 5 flocculant storage tank, 6 flocculant injection pump, 7 turbidity meter, 8 chromaticity meter, 9 arithmetic unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA02 KA01 KA64 KB13 KD08 KE12P KE12Q KE12R MA03 MA22 MB02 MC03 MC03X PA01 PB04 PB05 PB22 PB34 PC80 4D015 BA19 BA21 BB05 CA14 DA04 EA37  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA02 KA01 KA64 KB13 KD08 KE12P KE12Q KE12R MA03 MA22 MB02 MC03 MC03X PA01 PB04 PB05 PB22 PB34 PC80 4D015 BA19 BA21 BB05 CA14 DA04 EA37

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 膜ろ過される原水への凝集剤の注入量
を、原水の色度/濁度の値に基づいて制御することを特
徴とする膜ろ過における凝集剤の注入制御方法。
1. A method for controlling the injection of a flocculant in membrane filtration, comprising controlling the amount of the flocculant to be injected into the raw water to be subjected to membrane filtration based on the chromaticity / turbidity value of the raw water.
【請求項2】 凝集剤の注入量を、原水の見掛けの色度
/濁度の値に比例させて制御する請求項1記載の膜ろ過
における凝集剤の注入制御方法。
2. The method according to claim 1, wherein the injection amount of the coagulant is controlled in proportion to the apparent chromaticity / turbidity value of the raw water.
JP2001144871A 2001-05-15 2001-05-15 Flocculant injection control method in membrane filtration. Expired - Lifetime JP3830085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144871A JP3830085B2 (en) 2001-05-15 2001-05-15 Flocculant injection control method in membrane filtration.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144871A JP3830085B2 (en) 2001-05-15 2001-05-15 Flocculant injection control method in membrane filtration.

Publications (2)

Publication Number Publication Date
JP2002336871A true JP2002336871A (en) 2002-11-26
JP3830085B2 JP3830085B2 (en) 2006-10-04

Family

ID=18990765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144871A Expired - Lifetime JP3830085B2 (en) 2001-05-15 2001-05-15 Flocculant injection control method in membrane filtration.

Country Status (1)

Country Link
JP (1) JP3830085B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136851A (en) * 2004-11-15 2006-06-01 Ngk Insulators Ltd Coagulation membrane filtration method
JP2007203249A (en) * 2006-02-03 2007-08-16 Kurita Water Ind Ltd Water treating apparatus and method
JP2008126223A (en) * 2006-11-27 2008-06-05 Meidensha Corp Membrane treatment system
JP2008221194A (en) * 2007-03-16 2008-09-25 Metawater Co Ltd Operation method of film filter system
JP2008221168A (en) * 2007-03-14 2008-09-25 Fuji Electric Water Environmental Systems Co Ltd Membrane filtration method and membrane filtration apparatus
JP2011200802A (en) * 2010-03-25 2011-10-13 Miura Co Ltd Filtration system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135596B1 (en) * 2009-04-28 2012-04-17 국민대학교산학협력단 Method and apparatus for automatic control of injection of coagulation agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136851A (en) * 2004-11-15 2006-06-01 Ngk Insulators Ltd Coagulation membrane filtration method
JP4517165B2 (en) * 2004-11-15 2010-08-04 メタウォーター株式会社 Aggregation membrane filtration method
JP2007203249A (en) * 2006-02-03 2007-08-16 Kurita Water Ind Ltd Water treating apparatus and method
JP2008126223A (en) * 2006-11-27 2008-06-05 Meidensha Corp Membrane treatment system
JP2008221168A (en) * 2007-03-14 2008-09-25 Fuji Electric Water Environmental Systems Co Ltd Membrane filtration method and membrane filtration apparatus
JP2008221194A (en) * 2007-03-16 2008-09-25 Metawater Co Ltd Operation method of film filter system
JP2011200802A (en) * 2010-03-25 2011-10-13 Miura Co Ltd Filtration system

Also Published As

Publication number Publication date
JP3830085B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
Liu et al. Application of polyacrylamide flocculation with and without alum coagulation for mitigating ultrafiltration membrane fouling: Role of floc structure and bacterial activity
JP4793193B2 (en) Aggregation apparatus and aggregation method
JP5208061B2 (en) Flocculant injection control system
JP4862576B2 (en) Aggregation apparatus and aggregation method
JP3205450B2 (en) Automatic injection rate determination device and automatic determination method
JP2007245078A (en) Water treatment system and water treatment process
JP4277831B2 (en) Aggregation apparatus and aggregation method
WO2014103860A1 (en) Water treatment method
US11534709B2 (en) Water purifier and flow rate control method therefor
JP2002336871A (en) Method for controlling injection of flocculant in membrane filtration
JP4505772B2 (en) Coagulant injection control method for water purification plant
KR20120001845A (en) Apparatus for treating water
JP2008264723A (en) Method and apparatus for coagulating impurity
JP5103747B2 (en) Water treatment apparatus and water treatment method
JP2006055804A (en) Coagulation device, coagulation method and controller for charging chemical
JP2007098287A (en) Method for controlling operation of water purifying process
JP5258714B2 (en) Water treatment method and water treatment apparatus
KR20020062957A (en) Improved membrane filtration
KR100736513B1 (en) A suction pressure/time detector by batch type for water supply and a treating method of water using the same
KR100736514B1 (en) A suction pressure/time detector by continuous type for water supply and a treating method of water using the same
JP2019162583A (en) Water treatment system and water treatment method
KR20140059557A (en) Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant
JP4037615B2 (en) Aggregation condition determination method
JP2002066568A (en) Water treating method and apparatus
JP2007007601A (en) Purified water treatment method and system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent or registration of utility model

Ref document number: 3830085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term