JP4862576B2 - Aggregation apparatus and aggregation method - Google Patents
Aggregation apparatus and aggregation method Download PDFInfo
- Publication number
- JP4862576B2 JP4862576B2 JP2006249057A JP2006249057A JP4862576B2 JP 4862576 B2 JP4862576 B2 JP 4862576B2 JP 2006249057 A JP2006249057 A JP 2006249057A JP 2006249057 A JP2006249057 A JP 2006249057A JP 4862576 B2 JP4862576 B2 JP 4862576B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- raw water
- flocculant
- addition amount
- sugar concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002776 aggregation Effects 0.000 title claims description 46
- 238000004220 aggregation Methods 0.000 title claims description 36
- 238000000034 method Methods 0.000 title claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 66
- 235000000346 sugar Nutrition 0.000 claims description 55
- 238000002835 absorbance Methods 0.000 claims description 35
- 239000003112 inhibitor Substances 0.000 claims description 23
- 239000012528 membrane Substances 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 20
- 230000004931 aggregating effect Effects 0.000 claims description 16
- 230000015271 coagulation Effects 0.000 claims description 16
- 238000005345 coagulation Methods 0.000 claims description 16
- 239000000701 coagulant Substances 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 230000001112 coagulating effect Effects 0.000 claims description 3
- 238000005189 flocculation Methods 0.000 description 22
- 238000003756 stirring Methods 0.000 description 22
- 230000016615 flocculation Effects 0.000 description 21
- 238000013019 agitation Methods 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 238000005054 agglomeration Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 150000001720 carbohydrates Chemical class 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- 238000005374 membrane filtration Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000008239 natural water Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 102000003886 Glycoproteins Human genes 0.000 description 4
- 108090000288 Glycoproteins Proteins 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 150000002337 glycosamines Chemical class 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- PUKLDDOGISCFCP-JSQCKWNTSA-N 21-Deoxycortisone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2=O PUKLDDOGISCFCP-JSQCKWNTSA-N 0.000 description 1
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- AEMOLEFTQBMNLQ-YMDCURPLSA-N D-galactopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-YMDCURPLSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- FCYKAQOGGFGCMD-UHFFFAOYSA-N Fulvic acid Natural products O1C2=CC(O)=C(O)C(C(O)=O)=C2C(=O)C2=C1CC(C)(O)OC2 FCYKAQOGGFGCMD-UHFFFAOYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-HNFCZKTMSA-N L-idopyranuronic acid Chemical compound OC1O[C@@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-HNFCZKTMSA-N 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 229920001284 acidic polysaccharide Polymers 0.000 description 1
- 150000004805 acidic polysaccharides Chemical class 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- -1 charged saccharides Chemical class 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000002509 fulvic acid Substances 0.000 description 1
- 229940095100 fulvic acid Drugs 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- OQUKIQWCVTZJAF-UHFFFAOYSA-N phenol;sulfuric acid Chemical compound OS(O)(=O)=O.OC1=CC=CC=C1 OQUKIQWCVTZJAF-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000009287 sand filtration Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、天然水を原料とする用水処理や、工場排水又は下水等を処理する廃水処理において、原水に凝集剤を添加して凝集処理を行う凝集装置及び凝集方法に関する。 The present invention relates to a flocculation apparatus and a flocculation method for performing a flocculation process by adding a flocculant to raw water in a water treatment using natural water as a raw material or a wastewater treatment for treating factory wastewater or sewage.
天然水を原料とする用水処理や、工場排水又は下水等を処理する廃水処理においては、原水に凝集剤を添加して、原水中の懸濁物質、コロイダル成分や有機物質を凝結かつ粗大化させた後、沈殿、浮上、濾過、膜濾過等により固液分離することが行われている。 In water treatment using natural water as raw material and wastewater treatment for treating industrial wastewater or sewage, a flocculant is added to the raw water to condense and coarsen suspended substances, colloidal components and organic substances in the raw water. After that, solid-liquid separation is performed by precipitation, flotation, filtration, membrane filtration or the like.
凝集処理は、後段に位置する沈殿、浮上、濾過、膜濾過等の固液分離効率を高めるためのものであり、凝集剤としては、一般にアルミニウム塩や鉄塩等の無機凝集剤が用いられる。また、無機凝集剤で凝結した粒子を更に粗大化させるための凝集補助剤として高分子凝集剤が併用される場合も多い。 The agglomeration treatment is for increasing the solid-liquid separation efficiency such as precipitation, flotation, filtration, membrane filtration and the like located in the latter stage, and as the aggregating agent, generally an inorganic aggregating agent such as aluminum salt or iron salt is used. In many cases, a polymer flocculant is used in combination as an agglomeration aid for further coarsening the particles coagulated with the inorganic flocculant.
このような無機凝集剤による凝集ないし凝結作用は、原水中に存在するフミン・フルボ質や、藻類が生産する細胞内外の代謝産物等の天然有機物や界面活性剤等の合成化学物質等により阻害を受け、凝集ないし凝結速度が遅くなったり、凝集不良に到ったりする。このような凝集不良が生じると、凝集処理工程の後段に設けられることがある濾過装置に目詰り等の悪影響が生じる。 Aggregation or coagulation by such inorganic flocculants is inhibited by synthetic organic substances such as humic and fulvic substances in raw water, natural organic substances such as intracellular and extracellular metabolites produced by algae, and surfactants. It may cause agglomeration or agglomeration speed to be slow or agglomeration failure. When such an agglomeration failure occurs, an adverse effect such as clogging occurs in a filtration device that may be provided at a subsequent stage of the agglomeration treatment step.
従来、用水や廃水処理では、最適な凝集条件を設定するために、別途ジャーテスターを用いて凝集剤の添加濃度やpHを決定する操作が行われているが、このような操作は一般に煩雑な操作と長い時間を要し、このために、原水の水質変動に対応し得ず、決定した凝集剤添加量やpH調整値を即時的に反映することができない結果、凝集不良を招くことが多い。 Conventionally, in irrigation water and wastewater treatment, an operation for determining the addition concentration and pH of a flocculant using a separate jar tester has been carried out in order to set optimal coagulation conditions, but such operations are generally complicated. It takes a long time to operate, and therefore, it cannot cope with fluctuations in the quality of raw water, and the determined amount of flocculant added and pH adjustment value cannot be immediately reflected, resulting in poor aggregation. .
特公平6−103296号公報には、原水への凝集剤添加率や撹拌時間、撹拌速度の組み合せにおいて、最適条件を設定するためのジャーテストを自動的に行うための試験装置が提案されているが、この装置はジャーテスターであり、試験結果を実際の撹拌槽に反映して凝集処理を行うためのものではない。 Japanese Examined Patent Publication No. 6-103296 proposes a test apparatus for automatically performing a jar test for setting optimum conditions in a combination of a flocculant addition rate to raw water, a stirring time, and a stirring speed. However, this apparatus is a jar tester, and is not for performing the agglomeration treatment by reflecting the test result in an actual stirring tank.
特許第3205450号公報には、撹拌槽内の凝集フロックの粒径と溶解性有機物の紫外吸光度を測定し、これらの結果に基いて凝集剤添加量を制御し、また、凝集フロックの粒径から撹拌槽の撹拌機の回転数を決定する薬注装置が提案されている。この装置では、撹拌槽内の溶解性有機物濃度、即ち、凝集剤が添加され撹拌されている凝集液の溶解性有機物濃度を検出し、これを凝集フロックの粒径の検出値と共に、凝集剤添加量の制御の指標とし、一方、撹拌強度は、凝集フロックの粒径に基いて設定しているが、十分に満足し得る凝集処理結果が得られているとは言えず、より一層の改善が望まれている。
上記の通り、原水中にフミン質等の天然有機物や、界面活性剤等の合成有機化学物質、あるいはコロイド成分などの濁度成分が存在する場合、凝集作用が阻害される。 As described above, when natural raw materials such as humic substances, synthetic organic chemicals such as surfactants, or turbidity components such as colloidal components are present in the raw water, the aggregating action is inhibited.
また、本発明者が種々検討を重ねた結果、糖類、特に荷電した糖類が原水中に存在すると、凝集や膜分離に悪影響が生じることが知見された。また、荷電した糖類がイオン交換樹脂などで濃縮されることが知見された。 Further, as a result of various studies by the present inventors, it has been found that if saccharides, particularly charged saccharides, are present in the raw water, aggregation and membrane separation are adversely affected. It has also been found that charged saccharides are concentrated with ion exchange resins and the like.
本発明は、原水中の糖濃度、特に荷電糖濃度と、フミン・フルボ酸系有機物などの阻害物質の濃度とを検出して凝集剤添加量を的確に制御する凝集装置及び凝集方法を提供することを目的とする。 The present invention provides a flocculation apparatus and a flocculation method for accurately controlling the amount of flocculant added by detecting the saccharide concentration in raw water, particularly the charged saccharide concentration, and the concentration of an inhibitor such as a humic / fulvic acid organic substance. For the purpose.
本発明(請求項1)の凝集装置は、原水に凝集剤を添加する凝集剤添加手段と、原水中の糖濃度を測定する糖濃度測定器と、原水中の凝集阻害物質濃度を検出する吸光度測定器と、該糖濃度測定器及び該吸光度測定器の検出値に基いて、該糖濃度の検出値に応じて決定される凝集剤添加量と、該阻害物質濃度の検出値に応じて決定される凝集剤添加量との和となるように、前記凝集剤添加手段の凝集剤添加量を制御する凝集剤添加量制御手段とを備えてなることを特徴とするものである。 The flocculation apparatus of the present invention (Claim 1) includes a flocculant addition means for adding a flocculant to raw water, a sugar concentration measuring device for measuring a sugar concentration in raw water, and an absorbance for detecting the concentration of an aggregation inhibitor in the raw water. Based on the detection value of the measuring device, the sugar concentration measuring device and the absorbance measuring device, the amount of flocculant added determined according to the detected value of the sugar concentration and determined according to the detected value of the inhibitor concentration And a flocculant addition amount control means for controlling the flocculant addition amount of the flocculant addition means so as to be the sum of the flocculant addition amounts.
請求項2の凝集装置は、請求項1において、前記糖濃度測定器に供給される原水を濃縮する濃縮手段を備えたことを特徴とするものである。 According to a second aspect of the present invention, there is provided the coagulating apparatus according to the first aspect, further comprising a concentrating means for concentrating the raw water supplied to the sugar concentration measuring device.
請求項3の凝集装置は、請求項1又は2において、さらに、凝集処理後の処理水を処理する選択性透過膜処理装置を備えたことを特徴とするものである。 According to a third aspect of the present invention, there is provided the coagulation apparatus according to the first or second aspect, further comprising a selective permeable membrane treatment apparatus for treating the treated water after the coagulation treatment.
請求項4の凝集装置は、請求項3において、前記選択性透過膜処理装置の透過性能の検出手段が設けられており、前記凝集剤添加量制御手段は、さらにこの検出手段の検出値に基いて凝集剤添加量を制御することを特徴とするものである。 According to a fourth aspect of the present invention, there is provided the aggregating apparatus according to the third aspect, further comprising means for detecting the permeation performance of the selective permeable membrane treatment apparatus, and the flocculant addition amount control means is further based on a detection value of the detecting means. And controlling the addition amount of the flocculant.
本発明(請求項5)の凝集方法は、原水に凝集剤を添加することにより凝集処理する凝集方法において、原水中の糖濃度及び凝集阻害物質濃度を検出し、これらの検出値に基いて、該糖濃度の検出値に応じて決定される凝集剤添加量と、該阻害物質濃度の検出値に応じて決定される凝集剤添加量との和となるように、原水への凝集剤添加量を制御することを特徴とする。 The method of agglomeration present invention (Claim 5), in the aggregation method for aggregating treatment by adding a coagulant to the raw water, to detect the sugar concentration and aggregation inhibitor concentration in the raw water, based on these detected values, The amount of flocculant added to the raw water so that the sum of the amount of flocculant added determined according to the detected value of the sugar concentration and the amount of flocculant added determined according to the detected value of the inhibitor concentration It is characterized by controlling.
本発明では、凝集阻害を発生させる原水中の糖濃度、特に荷電糖濃度を測定すると共に、濁度成分や有機物等の凝集阻害物質濃度を吸光度測定器で検出し、これらの検出値に基いて凝集剤の添加量を制御することにより、凝集剤を過剰添加することなく、良好な凝集処理を行うことができる。 In the present invention, the concentration of sugar in raw water that causes aggregation inhibition, in particular, the concentration of charged sugar, is measured, and the concentration of aggregation inhibiting substances such as turbidity components and organic substances is detected with an absorbance meter, and based on these detected values. By controlling the addition amount of the flocculant, a good flocculant treatment can be performed without excessive addition of the flocculant.
また、これにより、凝集処理工程の後段にMF膜、UF膜、NF膜或いはRO膜などの膜分離装置がある場合、これらの膜の汚染を防止ないし抑制することができる。なお、凝集処理した処理水をさらに選択性透過膜処理装置で処理することにより、良好な水質の処理水が得られる。 This also prevents or suppresses contamination of these membranes when there is a membrane separation device such as an MF membrane, UF membrane, NF membrane, or RO membrane in the subsequent stage of the aggregation treatment step. It should be noted that treated water having a good quality can be obtained by further treating the treated water after the aggregation treatment with a selective permeable membrane treatment apparatus.
なお、荷電糖濃度を測定する場合、原水を濃縮してから測定することにより精度の良い測定結果を得ることができる。 In addition, when measuring a charged sugar concentration, a highly accurate measurement result can be obtained by measuring after concentrating raw | natural water.
本発明では、上記のように凝集阻害を発生させる原水中の糖濃度及び有機物や濁度成分等の阻害物質濃度を検出するだけでなく、さらに上記選択性透過膜処理装置の透過性能を検出し、上記阻害物質濃度の検出値とこの透過性能の検出値とに基いて凝集剤の添加量を制御することにより、きわめて良好な凝集分離処理を行うことができる。 In the present invention, not only the concentration of sugar in raw water and the concentration of inhibitors such as organic substances and turbidity components that cause aggregation inhibition as described above are detected, but also the permeation performance of the selective permeable membrane treatment apparatus is detected. By controlling the addition amount of the flocculant based on the detected value of the inhibitor concentration and the detected value of the permeation performance, a very good flocculation / separation process can be performed.
以下に図面を参照して本発明の凝集装置及び凝集方法の実施の形態を詳細に説明する。 Embodiments of the aggregating apparatus and the aggregating method of the present invention will be described below in detail with reference to the drawings.
図1は、本発明の凝集装置を備える凝集沈殿装置の実施の形態を示す系統図である。 FIG. 1 is a system diagram showing an embodiment of a coagulation sedimentation apparatus provided with the coagulation apparatus of the present invention.
図1において、1は原水槽であり、吸光度測定器11を備える。2Aは急速凝集撹拌槽であり、撹拌機2aとpHセンサ13を備える。この凝集攪拌槽2Aに凝集剤貯槽4から凝集剤が薬注ポンプ14を介して供給されると共に、pH調整用の酸、アルカリが各々の貯槽6,7から薬注ポンプ15,16を介して供給される。2Bは緩速撹拌槽であり、撹拌機2bと凝集状態検知センサ17を備える。3は沈殿槽である。
In FIG. 1, reference numeral 1 denotes a raw water tank, which includes an absorbance measuring device 11. 2A is a rapid flocculation agitation tank, which includes an agitator 2a and a
沈殿槽3の後段に砂濾過器8と膜濾過装置9が設置されている。膜濾過装置9の膜としては、MF膜、UF膜、NF膜、RO膜が例示される。
A
なお、前記原水槽1から原水の一部が分取され、糖濃縮装置21にて濃縮された後、糖濃度計22に供給されるよう構成されている。ただし、原水は原水槽以外の箇所から分取されてもよい。
A part of the raw water is collected from the raw water tank 1, concentrated by the
糖類は中性多糖、酸性多糖、アミノ糖などに分類され、この中で特に荷電糖としては、N−アセチルグルコサミン、N−アセチルガラクトサミンなどのアミノ糖、ウロン糖(ガラクツロン酸、イズロン酸、グルクロン酸)などの酸性多糖が例示されるが、これに限定されない。 Saccharides are classified into neutral polysaccharides, acidic polysaccharides, amino sugars, etc. Among them, particularly charged sugars include amino sugars such as N-acetylglucosamine and N-acetylgalactosamine, uron sugars (galacturonic acid, iduronic acid, glucuronic acid). ), But is not limited to this.
荷電糖を含む原水を濃縮する糖濃縮装置21としては、イオン交換樹脂によって荷電糖を濃縮する装置が好適である。
As the
糖濃度計22としては、フェノール硫酸法などで発色させた試料の吸光度を分析する装置が好適である。糖の分析は連続的に行ってもよいし、定期的に分析し代表値を制御に用いてもよい。
As the
20は制御装置であり、吸光度測定器11、糖濃度計22、pHセンサ13及び凝集状態検出センサ17の各検出値が入力され、凝集剤薬注ポンプ14、酸薬注ポンプ15及びアルカリ薬注ポンプ16の回転数制御信号が出力される。
原水は、原水槽1に導入され、吸光度測定器11により、原水中の凝集阻害物質濃度、例えば有機物濃度が検出され、検出結果が制御装置20に入力される。吸光度測定器11は、浸漬型のものであってもサンプリング型のものであってもよい。この吸光度測定器11としては、波長200〜490nmの紫外部短波長の吸光度計が好適であるが、この紫外部吸光度計に加えて波長500nmから700nmの可視光の吸光度計を備えたものが好適である。
The raw water is introduced into the raw water tank 1, and the agglutination-inhibiting substance concentration, for example, the organic substance concentration in the raw water is detected by the absorbance measuring device 11, and the detection result is input to the
即ち、天然水の凝集特性を精査したところ、天然水の波長200nm〜490nm好ましくは230〜300nmの紫外部吸光度と波長500nm〜700nm好ましくは500〜600nmの可視部吸光度をそれぞれ1波長以上測定した結果から演算された阻害物質濃度と、0.45μmメンブレンフィルターを用いて一定量の試料水を濾過するのに要する時間(以下KMF値という。)から判断した最適凝集剤添加量との間には相関関係があること、また、阻害物質濃度と上記紫外部及び可視部の吸光度との間には次式のように相関があることが見出された。従って、紫外部及び可視部吸光度をそれぞれ1波長以上測定することにより、阻害物質濃度を推算できる。
(阻害物質濃度)=[(全有機物)−(濁度物質)]
=A×[(紫外部吸光度)−(可視部吸光度)]
That is, as a result of close examination of the aggregation characteristics of natural water, a result of measuring one or more wavelengths each of the ultraviolet absorbance at a wavelength of 200 nm to 490 nm, preferably 230 to 300 nm and the visible absorbance at a wavelength of 500 nm to 700 nm, preferably 500 to 600 nm. There is a correlation between the inhibitor concentration calculated from the above and the optimum amount of flocculant added determined from the time required to filter a certain amount of sample water using a 0.45 μm membrane filter (hereinafter referred to as KMF value). It has been found that there is a relationship, and there is a correlation between the inhibitor concentration and the absorbance in the ultraviolet and visible regions as shown in the following equation. Therefore, the inhibitor concentration can be estimated by measuring the absorbance in the ultraviolet region and the visible region by one wavelength or more.
(Inhibitor concentration) = [(Total organic matter)-(Turbidity substance)]
= A × [(UV absorbance)-(visible absorbance)]
原水槽1内の原水は次いで急速凝集撹拌槽2Aに導入される。この急速凝集撹拌槽2Aにおいて、原水は、凝集剤貯槽4の凝集剤が薬注ポンプ14により添加されると共に、酸、アルカリの添加によりpH調整され、撹拌機2aにより撹拌されて凝集処理される。この急速凝集撹拌槽2A内のpHがpHセンサ13により検出され、検出結果が制御装置20に入力される。急速凝集撹拌槽2Aから流出した水は、緩速凝集撹拌槽2Bに導入され、ゆっくりと撹拌されてフロックが成長する。この緩速撹拌槽2B内の凝集状態がセンサ17によって検出される。
The raw water in the raw water tank 1 is then introduced into the rapid flocculation stirring tank 2A. In this rapid flocculation agitation tank 2A, the raw water is agglomerated by adding the flocculant in the flocculant storage tank 4 by the chemical injection pump 14, adjusting the pH by adding acid and alkali, and stirring by the agitator 2a. . The pH in the rapid flocculation agitation tank 2 </ b> A is detected by the
凝集撹拌槽2Aへの凝集剤添加量は、この実施の形態では、吸光度測定器11、糖濃度計22及び凝集状態検出センサ17の検出値に基いて制御される。即ち、例えば、制御装置20において、入力された各々の検出値を予め設定した凝集剤添加量の決定式に代入し、その算出結果に基いて薬注ポンプ14の回転数が制御され、適正量の凝集剤が添加される。この薬注ポンプ14としては、市販の可変式定量ポンプ等が用いられる。
In this embodiment, the amount of the flocculant added to the aggregation stirring tank 2A is controlled based on the detection values of the absorbance measuring device 11, the
糖濃度及び阻害物質濃度に応じて凝集剤の添加量を制御するには、糖濃度に応じて決定される添加量と、阻害物質濃度に応じて決定される添加量との和とするのが好ましい。一般的には、糖濃度のm乗に係数を乗じ、また阻害物質濃度のn乗に係数を乗じて凝集剤添加量を演算することとなる。即ち、
凝集剤添加量=a・(糖濃度)m+b・(阻害物質濃度)n+c
である。a,b,cは定数である。
なお、m,nは糖濃度及び阻害物質濃度と最適凝集剤添加量との関係から求められる関数の次元であり、通常は1としてよい。即ち、前述の通り、阻害物質濃度は紫外部吸光度と可視部吸光度との差に比例するので、阻害物質濃度に応じた薬注量(ただし、cについては略)は次式のように、紫外部吸光度と可視部吸光度に係数bを乗じて演算するのが好適である。
阻害物質濃度に応じた凝集剤添加量=b×[(紫外部吸光度)−(可視部吸光度)]
各係数、定数を決定する方法の具体例については後述する。
なお、糖類のなかで糖蛋白は僅かながら紫外光に吸収を持つ。従って、原水に糖蛋白が含まれる場合、阻害物質濃度に僅かながら糖蛋白濃度が影響する。その場合、阻害物質濃度から糖蛋白濃度を引くような調整を行えば良い。
In order to control the addition amount of the flocculant according to the sugar concentration and the inhibitor concentration, the sum of the addition amount determined according to the sugar concentration and the addition amount determined according to the inhibitor concentration is used. preferable. In general, the amount of flocculant added is calculated by multiplying the m-th power of the sugar concentration by a coefficient and multiplying the n-th power of the inhibitor concentration by a coefficient. That is,
Addition amount of flocculant = a · (sugar concentration) m + b · (inhibitor concentration) n + c
It is. a, b, and c are constants.
In addition, m and n are the dimensions of the function calculated | required from the relationship between sugar concentration and inhibitory substance concentration, and the optimal addition amount of coagulant | flocculants. That is, as described above, the inhibitor concentration is proportional to the difference between the absorbance in the ultraviolet region and the visible region, and therefore, the dose of medicine according to the concentration of the inhibitor (however, c is omitted) is expressed by the following formula: It is preferable to calculate by multiplying the external absorbance and the visible absorbance by the coefficient b.
Addition amount of flocculant according to inhibitor concentration = b × [(UV absorbance) − (visible absorbance)]
A specific example of a method for determining each coefficient and constant will be described later.
Among saccharides, glycoproteins have a slight absorption in ultraviolet light. Therefore, when the raw water contains glycoprotein, the glycoprotein concentration slightly affects the inhibitor concentration. In that case, an adjustment may be made to subtract the glycoprotein concentration from the inhibitor concentration.
紫外部吸光度は、200〜490nm特に230〜300nm例えば260nmの吸光度(E260)とされ、可視部吸光度は、500〜700nm特に600〜700nm例えば660nmの吸光度(E660)とされる。 The UV absorbance is 200 to 490 nm, particularly 230 to 300 nm, for example 260 nm (E260), and the visible absorbance is 500 to 700 nm, particularly 600 to 700 nm, for example, 660 nm (E660).
a,b,cは、予め糖濃度測定及び吸光度測定した原水を用いてジャーテストにより測定したKMF値から決定した定数である。 a, b, and c are constants determined from KMF values measured by jar test using raw water previously measured for sugar concentration and absorbance.
演算式決定例を次に示す。
糖濃度、(E260−E660)値が異なる原水を使って凝集試験を行い、KMF値が低い値で安定する最小PAC添加量を最適PAC添加濃度とする。なお、ここでのKMF値とは、直径47mmのメンブレンフィルターを用い、真空吸引圧力500mmHgで濾過した時の最初の500mL濾過時間及びその後の500mL濾過時間を足したものとする。
An example of determining an arithmetic expression is shown below.
The aggregation test is performed using raw waters having different sugar concentrations and (E260-E660) values, and the minimum PAC addition amount that is stable at a low KMF value is determined as the optimum PAC addition concentration. Note that the KMF value here is the sum of the first 500 mL filtration time and the subsequent 500 mL filtration time when filtering with a vacuum suction pressure of 500 mmHg using a membrane filter with a diameter of 47 mm.
第2図に最適PAC添加濃度とE260−E660の関係を示し、第3図に最適PAC添加濃度と糖濃度の関係を示す。 FIG. 2 shows the relationship between the optimum PAC addition concentration and E260-E660, and FIG. 3 shows the relationship between the optimum PAC addition concentration and the sugar concentration.
第2図の通り、糖を含まない場合は、最適PAC添加濃度(凝集剤添加濃度)は、
最適PAC添加濃度=204.63×
(紫外部吸光度E260−可視部吸光度E660)−5.3
で表すことができる。糖濃度が増加するに従って、最適PAC添加濃度は上昇する。
As shown in FIG. 2, when no sugar is contained, the optimum PAC addition concentration (flocculant addition concentration) is
Optimal PAC addition concentration = 204.63 ×
(UV absorbance E260-visible absorbance E660) -5.3
Can be expressed as As the sugar concentration increases, the optimal PAC addition concentration increases.
第3図の通り、最適PAC添加濃度は比例定数0.14で糖濃度に比例する。従って、
最適PAC添加濃度=0.14×(糖濃度[μg/L])+
204.63×(E260−E660[abs./50mm])−5.3
と表すことができる。
As shown in FIG. 3, the optimal PAC addition concentration is proportional to the sugar concentration with a proportionality constant of 0.14. Therefore,
Optimal PAC addition concentration = 0.14 × (sugar concentration [μg / L]) +
204.63 × (E260-E660 [abs./50 mm]) − 5.3
It can be expressed as.
酸、アルカリの薬注ポンプ15,16は、凝集攪拌槽2内のpHが5.0〜8.0となるように制御装置20によって制御される。
上記の緩速凝集撹拌槽2Bに設置された凝集状態検出センサ17としては、緩速凝集撹拌槽2Bの液体を別の沈殿槽に移設して、一定時間沈降させた上澄みの濁度を検出する装置とセンサや、凝結ないし凝集した粒子のゼータ電位や流動電位を検出する装置とセンサ等も用いることもできるが、緩速凝集撹拌槽2B内にて凝結ないし凝集した粒子間の清澄度を検出する光遮断式微粒子センサや光散乱式微粒子センサが好適に用いられる。
The acid and alkali chemical injection pumps 15 and 16 are controlled by the
As the aggregation state detection sensor 17 installed in the slow
緩速凝集撹拌槽2B内でゆっくりと撹拌されることによりフロックが成長した凝集処理水は、沈殿槽3に導入されて凝結、凝集粒子が沈降分離され、上澄水が砂濾過器8及び膜濾過装置9で順次に処理される。
The agglomerated water in which flocs have grown by being slowly stirred in the slow
なお、図1は本発明の実施の形態の一例を示すものであり、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。 FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as the gist of the present invention is not exceeded.
例えば、図1では、凝集剤を凝集撹拌槽2Aに添加しているが、凝集剤は、凝集撹拌槽2Aへの原水導入配管に注入しても良い。更に、図1では、凝集処理水の固液分離手段として沈殿槽3を示したが、浮上槽などであってもよい。
また、膜濾過装置9の透過性能の検出手段を設け、さらにこの検出手段の検出値に基いて凝集剤添加量を制御するようにしてもよい。この透過性能の検出手段としては、透過差圧計や、透過流束測定装置などを用いることができる。
For example, in FIG. 1, the flocculant is added to the aggregation stirring tank 2A, but the flocculant may be injected into the raw water introduction pipe to the aggregation stirring tank 2A. Furthermore, in FIG. 1, although the
Further, a means for detecting the permeation performance of the membrane filtration device 9 may be provided, and the addition amount of the flocculant may be controlled based on the detection value of the detection means. As the means for detecting the permeation performance, a permeation differential pressure gauge, a permeation flux measuring device, or the like can be used.
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
実施例1
有機物汚染の進んだA湖水を水源とする凝集・沈殿・砂濾過・UF膜濾過施設において、図1に示す凝集沈殿装置を用いて、本発明による凝集沈澱処理を行った。A湖水の場合全糖類のうち80%が荷電糖類であった。砂濾過器8は有効径0.45mmの濾過砂を600mm積層したカラムを用いた。凝集撹拌槽2A,2Bは有効容量300m3のパドル式撹拌機付きの角型撹拌槽であり、原水量は30m3/h、急速凝集撹拌槽の滞留時間は6分とした。急速凝集撹拌槽2Aでは60rpm、緩速凝集撹拌槽2Bでは30rpmで撹拌した。
Example 1
In the flocculation / precipitation / sand filtration / UF membrane filtration facility using Lake A with advanced organic matter contamination as the water source, the flocculation / precipitation treatment according to the present invention was performed using the flocculation / precipitation apparatus shown in FIG. In the case of Lake A, 80% of all saccharides were charged saccharides. The
凝集剤としてはポリ塩化アルミニウム(PAC)を用いた。なお、PAC添加量を制御する演算式は、予め、A湖水を用いたジャーテストの結果から求め、次の通りとした。
PAC添加濃度=0.14×(糖濃度)+208.93×E260+2.3
また、急速凝集撹拌槽2AのpHは6.5となるように酸、アルカリの薬注制御を行った。
Polyaluminum chloride (PAC) was used as the flocculant. The arithmetic expression for controlling the PAC addition amount was obtained in advance from the result of jar test using Lake A and was as follows.
PAC addition concentration = 0.14 × (sugar concentration) + 208.93 × E260 + 2.3
Moreover, the chemical injection control of acid and alkali was performed so that the pH of the rapid aggregation stirring tank 2A was 6.5.
吸光度測定器としては、波長200nm〜700nm近傍の紫外〜可視光領域を走査できるHACH社製吸光光度計を用い、紫外部吸光度を260nmで測定した。 As an absorptivity measuring instrument, an absorptiometer manufactured by HACH, which can scan an ultraviolet to visible light region in the vicinity of a wavelength of 200 nm to 700 nm, was used, and an ultraviolet absorbance was measured at 260 nm.
糖濃縮装置21は省略し、原水中の糖濃度をアクタック社製吸光式連続流れ分析装置により測定した。
通水試験結果を表1に示す。
The
The water flow test results are shown in Table 1.
実施例2
実施例1において、吸光度測定器11でさらに波長660nmの可視部吸光度を測定し、PAC添加量演算式を次の通りとした他は同様にして試験を行った。
PAC添加濃度=0.14×(糖濃度)+204.63
×(E260−E660)−5.3
通水試験結果を表1に示す。
Example 2
In Example 1, the visible light absorbance at a wavelength of 660 nm was further measured with the absorbance meter 11, and the test was performed in the same manner except that the PAC addition amount calculation formula was as follows.
PAC addition concentration = 0.14 × (sugar concentration) +204.63
× (E260-E660) -5.3
The water flow test results are shown in Table 1.
実施例3
実施例2において、原水を糖濃縮装置21に導いて5倍濃縮して糖濃度計22に供給するようにした他は同様にして試験を行った。糖濃縮装置21としてはイオン交換樹脂内蔵カラムを用いた。
通水試験結果を表1に示す。
Example 3
In Example 2, the test was performed in the same manner except that the raw water was led to the
The water flow test results are shown in Table 1.
実施例4
実施例3において、凝集状態検出センサ17の検出値を加味してPAC添加量を補正した。凝集状態検出センサとしては栗田工業株式会社製の凝集センサ(クリピタリ)を用いた。添加量補正は具体的には、凝集状態を検出するセンサで測定した上澄水濁度が1度を越えた場合にPAC添加量を演算式で導いた値の1.2倍添加するように補正した。
通水試験結果を表1に示す。
Example 4
In Example 3, the PAC addition amount was corrected in consideration of the detection value of the aggregation state detection sensor 17. As the aggregation state detection sensor, an aggregation sensor (Kripitari) manufactured by Kurita Kogyo Co., Ltd. was used. Specifically, when the supernatant water turbidity measured by the sensor that detects the aggregation state exceeds 1 degree, the PAC addition amount is corrected to add 1.2 times the value derived from the calculation formula. did.
The water flow test results are shown in Table 1.
比較例1
吸光度の測定によるPAC添加量制御を行わず、PAC添加量を60mg/Lと一定としたこと以外は実施例1と同様にして凝集沈殿処理を行った。
Comparative Example 1
The aggregation precipitation treatment was performed in the same manner as in Example 1 except that the PAC addition amount was not controlled by measuring the absorbance, and the PAC addition amount was kept constant at 60 mg / L.
比較例2
PAC添加濃度をE260とE660にのみ基づいて制御した。即ち、糖濃度はPAC添加制御に採用せず、PAC添加濃度を次式で制御した。
PAC添加濃度=517×(E260−E660)−10.6
Comparative Example 2
The PAC addition concentration was controlled based on E260 and E660 only. That is, the sugar concentration was not adopted for PAC addition control, and the PAC addition concentration was controlled by the following equation.
PAC addition concentration = 517 × (E260−E660) −10.6
[実施例1〜4と比較例1〜2との比較]
4月の晴天、降雨により水質変動が生じた時期にそれぞれ1ヶ月の通水を行った。なお、同じ原水を使用するため、実施例1〜4と比較例1〜2を並列して行った。通水試験期間中の原水のE260と、PAC添加濃度、凝集沈殿処理水KMF値、UF膜の濾過差圧ΔP上昇速度を表1に示した。
[Comparison between Examples 1-4 and Comparative Examples 1-2]
Water flow was conducted for one month each when the water quality changed due to fine weather and rain in April. In addition, in order to use the same raw | natural water, Examples 1-4 and Comparative Examples 1-2 were performed in parallel. Table 1 shows E260 of the raw water during the water flow test period, the PAC addition concentration, the KMF value of the coagulated sediment treated water, and the rate of increase in the filtration differential pressure ΔP of the UF membrane.
なお、ここでのKMF値とは、直径47μmのメンブレンフィルターを用い、真空吸引圧力500mmHgで濾過した時の最初の500mL濾過時間及びその後の500mL濾過時間を足したものとする。 The KMF value used here is the sum of the first 500 mL filtration time and the subsequent 500 mL filtration time when filtration was performed at a vacuum suction pressure of 500 mmHg using a membrane filter having a diameter of 47 μm.
実施例1では、糖濃度と吸光度E260に基づいてPAC添加量を制御したことにより、KMF値及びΔP上昇速度が低い値で推移した。
実施例2では、糖濃度とE260及びE660(原水濁度指標)によりPAC添加量を制御したことで、実施例1よりもΔP上昇速度が低かった。
実施例3では、荷電糖を濃縮し糖の分析精度を高めたことで、実施例2よりもΔP上昇速度が低かった。
実施例4では、凝集状態からPAC添加量を補正したことで、実施例3よりもΔP上昇速度が低かった。
比較例1,2では、いずれもΔPが急激に上昇した。
In Example 1, by controlling the PAC addition amount based on the sugar concentration and the absorbance E260, the KMF value and the ΔP increase rate changed at low values.
In Example 2, the rate of increase in ΔP was lower than that in Example 1 by controlling the amount of PAC added by the sugar concentration and E260 and E660 (raw water turbidity index).
In Example 3, the rate of increase in ΔP was lower than that in Example 2 by concentrating charged sugars and increasing the sugar analysis accuracy.
In Example 4, the rate of increase in ΔP was lower than that in Example 3 by correcting the PAC addition amount from the aggregation state.
In Comparative Examples 1 and 2, ΔP increased rapidly.
1 原水槽
2A 急速凝集撹拌槽
2B 緩速凝集撹拌槽
3 沈殿槽
4 凝集剤貯槽
8 砂濾過器
9 膜濾過装置
11 吸光度測定器
13 pHセンサ
14,15,16 薬注ポンプ
17 凝集状態検出センサ
20 制御装置
21 糖濃縮装置
22 糖濃度計
DESCRIPTION OF SYMBOLS 1 Raw water tank 2A Rapid
Claims (5)
原水中の糖濃度を測定する糖濃度測定器と、
原水中の凝集阻害物質濃度を検出する吸光度測定器と、
該糖濃度測定器及び該吸光度測定器の検出値に基いて、該糖濃度の検出値に応じて決定される凝集剤添加量と、該阻害物質濃度の検出値に応じて決定される凝集剤添加量との和となるように、前記凝集剤添加手段の凝集剤添加量を制御する凝集剤添加量制御手段とを備えてなることを特徴とする凝集装置。 A flocculant addition means for adding the flocculant to the raw water;
A sugar concentration measuring device for measuring the sugar concentration in raw water;
An absorbance meter that detects the concentration of aggregation-inhibiting substances in the raw water;
An aggregating agent addition amount determined according to the detected value of the sugar concentration and an aggregating agent determined according to the detected value of the inhibitor concentration based on the detected values of the sugar concentration measuring device and the absorbance measuring device An aggregating apparatus comprising: an aggregating agent addition amount control unit that controls the aggregating agent addition amount of the aggregating agent addition unit so as to be the sum of the addition amount.
原水中の糖濃度及び凝集阻害物質濃度を検出し、これらの検出値に基いて、該糖濃度の検出値に応じて決定される凝集剤添加量と、該阻害物質濃度の検出値に応じて決定される凝集剤添加量との和となるように、原水への凝集剤添加量を制御することを特徴とする凝集方法。 In the coagulation method of coagulating by adding a coagulant to the raw water,
Detecting the sugar concentration and aggregation inhibitor concentration in the raw water, based on these detected values, a flocculant amount determined in accordance with the detected value of the sugar concentration, in accordance with the detected value of the inhibitor concentration A coagulation method characterized by controlling the amount of coagulant added to raw water so as to be the sum of the coagulant addition amount determined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006249057A JP4862576B2 (en) | 2006-09-14 | 2006-09-14 | Aggregation apparatus and aggregation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006249057A JP4862576B2 (en) | 2006-09-14 | 2006-09-14 | Aggregation apparatus and aggregation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008068199A JP2008068199A (en) | 2008-03-27 |
JP4862576B2 true JP4862576B2 (en) | 2012-01-25 |
Family
ID=39290266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006249057A Active JP4862576B2 (en) | 2006-09-14 | 2006-09-14 | Aggregation apparatus and aggregation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4862576B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5935967B2 (en) * | 2011-03-31 | 2016-06-15 | 栗田工業株式会社 | Flocculant addition amount determination method, water treatment method, and water treatment apparatus |
JP5587240B2 (en) * | 2011-04-21 | 2014-09-10 | 株式会社日立製作所 | Control device and control method for seawater desalination system |
JP5326055B2 (en) * | 2011-07-12 | 2013-10-30 | 積水アクアシステム株式会社 | Precipitation evaluation device and optimum addition amount calculation device |
JP5616863B2 (en) * | 2011-09-07 | 2014-10-29 | 株式会社日立製作所 | Seawater desalination system |
CA2867779C (en) * | 2012-03-19 | 2021-06-15 | Banu ORMECI BECKERS | Measurement of treatment agent in a process stream using ultraviolet-visible (uv-vis) spectroscopy, and related systems and processes |
CN106277437A (en) * | 2016-08-18 | 2017-01-04 | 成都振中电气有限公司 | It is applicable to the water treatment system of remote districts |
JP2020157284A (en) * | 2019-03-28 | 2020-10-01 | 住友重機械エンバイロメント株式会社 | Coagulation/precipitation treatment apparatus, coagulation/precipitation treatment system and operational method for coagulation/precipitation treatment apparatus |
CN110342677A (en) * | 2019-07-03 | 2019-10-18 | 浙江安吉江森自控机电科技有限公司 | Sewage disposal device |
CN113720804B (en) * | 2021-07-29 | 2024-03-26 | 成都宏基建材股份有限公司 | Method for rapidly detecting residual quantity of flocculant in sand for concrete |
CN113582422B (en) * | 2021-08-05 | 2022-06-28 | 福建省福能龙安热电有限公司 | Handle synthetic leather industry district sewage factory normal water recycling processing system |
CN117706055B (en) * | 2024-02-06 | 2024-07-02 | 天津创业环保集团股份有限公司 | Integrated method and device for analyzing organic matter full-component characteristics of municipal sewage |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5929073A (en) * | 1982-08-09 | 1984-02-16 | Hitachi Plant Eng & Constr Co Ltd | Automatic control method for treatment of waste water containing humic acid |
JPH03123607A (en) * | 1989-10-05 | 1991-05-27 | Munakata Chiku Suido Kigiyoudan | Device for feeding flocculant |
JP3205450B2 (en) * | 1994-01-17 | 2001-09-04 | 富士電機株式会社 | Automatic injection rate determination device and automatic determination method |
JP3312507B2 (en) * | 1994-10-20 | 2002-08-12 | 栗田工業株式会社 | Water treatment equipment |
JP4244769B2 (en) * | 2003-09-30 | 2009-03-25 | 栗田工業株式会社 | Aggregation apparatus and aggregation method |
JP4412657B2 (en) * | 2004-08-20 | 2010-02-10 | 三菱レイヨン株式会社 | Organic wastewater treatment method |
JP2006055804A (en) * | 2004-08-23 | 2006-03-02 | Kurita Water Ind Ltd | Coagulation device, coagulation method and controller for charging chemical |
JP4270174B2 (en) * | 2005-03-02 | 2009-05-27 | 栗田工業株式会社 | Aggregation apparatus and aggregation method |
JP4277831B2 (en) * | 2005-03-02 | 2009-06-10 | 栗田工業株式会社 | Aggregation apparatus and aggregation method |
JP5172082B2 (en) * | 2005-09-15 | 2013-03-27 | 三菱レイヨン株式会社 | Treatment method of treated water |
JP2007245078A (en) * | 2006-03-17 | 2007-09-27 | Kurita Water Ind Ltd | Water treatment system and water treatment process |
JP4793193B2 (en) * | 2006-09-14 | 2011-10-12 | 栗田工業株式会社 | Aggregation apparatus and aggregation method |
-
2006
- 2006-09-14 JP JP2006249057A patent/JP4862576B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008068199A (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4862576B2 (en) | Aggregation apparatus and aggregation method | |
JP4793193B2 (en) | Aggregation apparatus and aggregation method | |
JP4277831B2 (en) | Aggregation apparatus and aggregation method | |
US8491794B2 (en) | Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance | |
JP2007245078A (en) | Water treatment system and water treatment process | |
JP2004177122A (en) | Water quality detection method and operation method of water purifying apparatus | |
JP5401087B2 (en) | Flocculant injection control method | |
JP5103747B2 (en) | Water treatment apparatus and water treatment method | |
JP2016131937A (en) | Seawater desalination system and method | |
JP5935967B2 (en) | Flocculant addition amount determination method, water treatment method, and water treatment apparatus | |
JP2008264723A (en) | Method and apparatus for coagulating impurity | |
JP2006055804A (en) | Coagulation device, coagulation method and controller for charging chemical | |
JP6441712B2 (en) | Method for evaluating membrane clogging of treated water | |
JP5210948B2 (en) | Chemical injection control method for water purification plant | |
CN118414315A (en) | Method and device for monitoring the quality of biological sludge in wastewater treatment | |
EP3192577A1 (en) | Water treatment apparatus and water treatment method | |
JP6486799B2 (en) | MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX | |
Bray et al. | Sizes of iron hydroxide particles formed during ferric coagulation processes | |
ES2761679T3 (en) | Procedure to reduce fouling in microfiltration systems | |
JP2012223690A (en) | Contaminant treatment method for water purification plant | |
JP4270174B2 (en) | Aggregation apparatus and aggregation method | |
JP2011115738A (en) | Flocculant injection control method of purification plant | |
JPH10118411A (en) | Method and device for controlling injection of flocculant in water purification plant | |
JP5382355B2 (en) | Industrial water filtration method and filtration device | |
Hankins et al. | Process intensification during treatment of NOM-laden raw upland waters: Control and impact of the pre-coagulation regime during ultra-filtration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111011 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4862576 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |