JP6441712B2 - Method for evaluating membrane clogging of treated water - Google Patents

Method for evaluating membrane clogging of treated water Download PDF

Info

Publication number
JP6441712B2
JP6441712B2 JP2015040968A JP2015040968A JP6441712B2 JP 6441712 B2 JP6441712 B2 JP 6441712B2 JP 2015040968 A JP2015040968 A JP 2015040968A JP 2015040968 A JP2015040968 A JP 2015040968A JP 6441712 B2 JP6441712 B2 JP 6441712B2
Authority
JP
Japan
Prior art keywords
membrane
water
treated
degree
fouling potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015040968A
Other languages
Japanese (ja)
Other versions
JP2016159240A (en
JP2016159240A5 (en
Inventor
吉英 貝谷
吉英 貝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2015040968A priority Critical patent/JP6441712B2/en
Publication of JP2016159240A publication Critical patent/JP2016159240A/en
Publication of JP2016159240A5 publication Critical patent/JP2016159240A5/ja
Application granted granted Critical
Publication of JP6441712B2 publication Critical patent/JP6441712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、被処理水の膜閉塞度評価方法に関する。   The present invention relates to a method for evaluating the degree of blockage of water to be treated.

限外ろ過膜や精密ろ過膜を用いた膜ろ過装置は、圧力容器内に分離膜を配設して、分離膜で容器内を原水側と透過水側(ろ過水側)に仕切り、原水側に原水をポンプで加圧導入するとともに、膜ろ過により透過水側から透過水を得るものである。   Membrane filtration devices using ultrafiltration membranes or microfiltration membranes are provided with a separation membrane in the pressure vessel, and the separation membrane separates the vessel into the raw water side and the permeate side (filtrated water side), and the raw water side The raw water is pressurized and introduced with a pump, and permeate is obtained from the permeate side by membrane filtration.

このような膜ろ過装置では、分離膜の原水側膜面や膜細孔内に原水中に含まれる成分の付着や析出が生じて分離膜が汚染し、ろ過性能が次第に低下する。
膜汚染の原因物質として、有機物は最も重要な膜汚染原因物質である。この水質指標としては全有機炭素(TOC)が使用されるが、TOCの値が同じ原水でも膜のろ過抵抗の上昇速度が異なる場合が度々見受けられ、実際の運転と設計時の予想が大きく異なったため薬品洗浄の頻度が増えたりするなどのトラブルは少なくない。
また、運転管理においても同様であり、TOC濃度に変化がないのに膜汚染が急激に進行する場合もある。この原因としては、膜汚染を引き起こす原因となる有機物がTOC成分の極々一部であり、その濃度が低いため、その変化がTOCを測定しても検出できないことにある。
In such a membrane filtration apparatus, the components contained in the raw water adhere to and deposit on the raw water side membrane surface and membrane pores of the separation membrane, the separation membrane is contaminated, and the filtration performance gradually decreases.
Organic substances are the most important causative substances for film contamination as causative substances for film contamination. Total organic carbon (TOC) is used as the water quality indicator, but even when the raw water has the same TOC value, the rate of increase in the filtration resistance of the membrane is often different, and the actual operation and design expectations differ greatly. Therefore, there are not a few troubles such as frequent chemical cleaning.
The same applies to the operation management, and there is a case where the film contamination rapidly progresses even though the TOC concentration does not change. This is because the organic matter that causes film contamination is an extremely small part of the TOC component, and its concentration is low, so that the change cannot be detected even if the TOC is measured.

TOC等の個々の水質ではなく、オーバーオールに分離膜供給水の膜閉塞性を評価する手法として、JIS K3802に定義されているファウリングインデックス(FI値)を使用した方法等があるが、これら従来の指標は、基本的に0.45μm以上の粒子の評価を想定した指標であり、膜汚染の原因物質である溶解性有機物の評価はできない。   As a method for evaluating the membrane blockage of the separation membrane supply water in the overall rather than the individual water quality such as TOC, there is a method using the fouling index (FI value) defined in JIS K3802, etc. This index is basically an index that assumes the evaluation of particles having a particle size of 0.45 μm or more, and the soluble organic substance that is a causative substance for film contamination cannot be evaluated.

また、関連する従来法として、例えば特許文献1には、膜供給水の濁質量と溶解性有機炭素(DOC)の測定値および膜透過流速の関数から、膜透過流速、物理洗浄間隔、薬品洗浄間隔、前処理条件等の最適化を図る方法が記載されている。しかしながら、この方法では、DOC、紫外線吸光度(E260)、濁度を分析する必要があり、また、比較的難解な理論式を用いるため煩雑であり、汎用的ではない。
また、この方法は有機成分由来の汚染原因をフミン質に限定し、膜汚染の進行割合をDOCとE260の比率から単に計算しているため、フミン質以外の有機成分が膜汚染に関与する場合には、その影響を正しく評価できない。
近年の研究では、膜汚染に関与する有機物で重要なものは、E260発現物質であるフミン質よりも、多糖類であることが明らかになっており、その意味でも特許文献1に記載の方法は妥当性に欠けるものである。
In addition, as a related conventional method, for example, Patent Document 1 discloses a membrane permeation flow rate, a physical washing interval, a chemical washing from a function of a turbid mass of membrane feed water, a measured value of dissolved organic carbon (DOC), and a membrane permeation flow rate. A method for optimizing the interval, preprocessing conditions and the like is described. However, in this method, it is necessary to analyze DOC, ultraviolet absorbance (E260), and turbidity, and since it uses a relatively difficult theoretical formula, it is complicated and not versatile.
In addition, this method limits the cause of contamination from organic components to humic substances, and simply calculates the rate of progress of membrane contamination from the ratio of DOC and E260, so that organic components other than humic substances are involved in membrane contamination. Cannot be evaluated correctly.
In recent studies, it has been clarified that an important organic substance involved in membrane contamination is a polysaccharide rather than a humic substance that expresses E260. In that sense, the method described in Patent Document 1 is It lacks validity.

また、特許文献2および特許文献3においても原水、膜供給水、膜ろ過水などのフミン質や紫外線吸光度(E260)に基づき凝集処理などの制御を行うことが記載されているが、これらは近年の研究報告から考えると合理性に欠く運転方法である。   Further, Patent Document 2 and Patent Document 3 also describe that the coagulation treatment and the like are controlled based on humic substances such as raw water, membrane supply water, and membrane filtered water, and ultraviolet absorbance (E260). This is a driving method that lacks rationality.

本発明者は鋭意研究を重ね、非特許文献1〜4に記載の水道原水等の膜供給水中の膜閉塞有機物質に関する新しい指標である「ファウリングポテンシャル(Fouling Potential:FP)」を開発した。
本指標は、水道原水やそれについて前処理を行った膜供給水中の膜閉塞有機物、すなわち、多糖類の存在量や分子量に関する有益な情報を与える指標である。
This inventor repeated earnest research and developed "Fouling Potential (FP)" which is a new parameter | index regarding the film | membrane obstruction | occlusion organic substance in film | membrane supply waters, such as raw water supply of a nonpatent literature 1-4.
This index is an index that gives useful information regarding the abundance and molecular weight of the membrane clogging organic matter in the raw water supply water or the membrane supply water that has been pretreated therefor, that is, polysaccharides.

特開2001−327967号公報JP 2001-327967 A 特開2001−170458号公報JP 2001-170458 A 特開2008−126223号公報JP 2008-126223 A

鹿島田浩二、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(I)」、第60回全国水道研究発表会講演集、社団法人日本水道協会、2009年5月、p.134−135Koji Kashimada and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (I)”, Proceedings of the 60th National Waterworks Research Conference, Japan Water Works Association, May 2009, p. 134-135 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(II)」、第60回全国水道研究発表会講演集、社団法人日本水道協会、2009年5月、p.136−137Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (II)”, Proceedings of the 60th National Waterworks Research Conference, Japan Waterworks Association, May 2009, p. 136-137 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(III)」、第61回全国水道研究発表会講演集、社団法人日本水道協会、2010年5月、p.252−253Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Purification and Its Characteristic Evaluation (III)”, 61st National Waterworks Research Conference Lecture, Japan Waterworks Association, May 2010, p. 252-253 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(IV)」、第62回全国水道研究発表会講演集、社団法人日本水道協会、2011年5月、p.352−353Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (IV)”, 62nd National Waterworks Research Presentation Lecture, Japan Waterworks Association, May 2011, p. 352-353

しかしながら、膜閉塞物質の濃度が極めて低い場合、または、その特性によっては、検出が困難となる場合があることを、本発明者は見出した。   However, the present inventor has found that detection may be difficult when the concentration of the membrane occluding substance is extremely low or depending on its characteristics.

すなわち本発明の目的は、水道原水等の被処理水に含まれる膜閉塞物質の濃度が低い場合等であっても、感度良く、その膜閉塞性を評価できる方法を提供することにある。   That is, an object of the present invention is to provide a method capable of evaluating the membrane occluding property with high sensitivity even when the concentration of the membrane occluding material contained in the water to be treated such as raw water for tap water is low.

本発明者は鋭意研究を重ね、E260発現物質よりも多糖様物質の方が膜閉塞においてはるかに重大な影響を与える物質群であること、上記ファウリングポテンシャル(FP)等、すなわち、原水や膜供給水の閉塞性と良好な相関関係があるのは、E260発現物質の存在量ではなく、多糖様物質の存在量であることを見出した。そして、さらに、膜閉塞物質の濃度が極めて低い場合や、FP等では検出し難い物質群に関しても良好に測定できる方法を見出し、本発明を完成させた。   The present inventor has conducted extensive research, and that the polysaccharide-like substance is a substance group that has a much more significant effect on membrane occlusion than the E260-expressing substance, the fouling potential (FP), etc., that is, raw water and membrane It has been found that there is a good correlation with the blockage of the feed water, not the abundance of the E260-expressing substance but the abundance of the polysaccharide-like substance. Further, the present invention has been completed by finding a method capable of satisfactorily measuring even when the concentration of a membrane occluding substance is extremely low, or for a substance group that is difficult to detect with FP or the like.

本発明は、分離膜を用いて被処理水をろ過した後、前記被処理水よりも塩類濃度および/またはpHが低い液体をさらにろ過する工程を備える、被処理水の膜閉塞度評価方法である。
このような膜閉塞度評価方法を、以下では「本発明の評価方法」ともいう。
The present invention is a method for evaluating the degree of clogging of water to be treated, comprising the step of further filtering a liquid having a lower salt concentration and / or pH than the water to be treated after filtering the water to be treated using a separation membrane. is there.
Hereinafter, such a method for evaluating the degree of membrane occlusion is also referred to as “the evaluation method of the present invention”.

本発明の評価方法では、前記塩類濃度および/またはpHが低い液体が純水であることが好ましい。   In the evaluation method of the present invention, the liquid having a low salt concentration and / or pH is preferably pure water.

本発明の評価方法では、前記被処理水が、海水、水道原水または生物処理水であることが好ましい。   In the evaluation method of this invention, it is preferable that the said to-be-processed water is seawater, a tap raw water, or biological treatment water.

本発明の評価方法では、前記分離膜が公称孔径0.22μmの疎水性PVDF膜であり、この分離膜を撹拌式加圧セルに装着して、セルの撹拌子の回転速度:1,450rpm、全量定速ろ過(膜透過流束20m/日)の条件で、前記被処理水について加圧ろ過を行い、膜差圧が上昇した後、前記分離膜をセルから取り外し、1%−シュウ酸洗浄(洗浄時間60分、洗浄温度20℃)を行い、その後、再度、前記シュウ酸洗浄後の前記分離膜を前記セルに装着した上で、前記被処理水よりも塩類濃度および/またはpHが低い液体(好ましくは純水、より好ましくは超純水)をさらにろ過し、そのときの膜差圧を測定し、この膜差圧とろ過開始時の膜差圧の差(m−Aq,at25℃)を総ろ過水量(m3/m2−膜)で除して、前記被処理水の膜閉塞度評価指標であるセカンドファウリングポテンシャル(FPS)を得ることが好ましい。 In the evaluation method of the present invention, the separation membrane is a hydrophobic PVDF membrane having a nominal pore size of 0.22 μm, and this separation membrane is attached to a stirring type pressure cell, and the rotational speed of the stirring bar of the cell is 1,450 rpm, Under the conditions of constant volume filtration (membrane permeation flux 20 m / day), pressure filtration is performed on the water to be treated, and after the membrane differential pressure has increased, the separation membrane is removed from the cell and washed with 1% oxalic acid. (Washing time 60 minutes, washing temperature 20 ° C.), and then again mounting the separation membrane after the oxalic acid washing on the cell, the salt concentration and / or pH is lower than the water to be treated The liquid (preferably pure water, more preferably ultrapure water) is further filtered, and the membrane differential pressure at that time is measured. The difference between this membrane differential pressure and the membrane differential pressure at the start of filtration (m-Aq, at 25 ° C. ) total water filtration (m 3 / m 2 - film) by dividing the object to be processed It is preferred to obtain a second fouling potential is a membrane closure evaluation index (FP S).

また、本発明は、分離膜を用いて被処理水をろ過した後、得られたろ過水をさらにろ過することで、被処理水の第1膜閉塞度(IDF)を得る工程と、前記分離膜を用いて前記被処理水をろ過した後、前記被処理水よりも塩類濃度および/またはpHが低い液体をさらにろ過することで、被処理水の第2膜閉塞度(IDS)を得る工程と、を備え、第1膜閉塞度(IDF)と第2膜閉塞度(IDS)との関係から、前記被処理水に含まれる膜汚染物質の態様を判断する、被処理水の膜汚染物質の態様判断方法である。
このような膜閉塞度評価方法を、以下では「本発明の判断方法」ともいう。
The present invention also includes a step of obtaining the first membrane blockage degree (ID F ) of the treated water by further filtering the obtained filtered water after filtering the treated water using the separation membrane; After filtering the water to be treated using a separation membrane, a liquid having a lower salt concentration and / or pH than the water to be treated is further filtered to obtain the second membrane blockage (ID S ) of the water to be treated. A water to be treated, which determines the mode of the membrane pollutant contained in the water to be treated from the relationship between the first membrane occlusion degree (ID F ) and the second membrane occlusion degree (ID S ). This is a method for determining the state of a film contaminant.
Hereinafter, such a method for evaluating the degree of membrane occlusion is also referred to as a “determination method of the present invention”.

本発明によれば、水道原水等の被処理水に含まれる膜閉塞物質の濃度が低い場合等であっても、感度良く、その膜閉塞性を評価できる方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where the density | concentration of the film | membrane obstruction | occlusion substance contained in to-be-processed water, such as raw water for taps, is low, the method which can evaluate the film | membrane obstruction | occlusion property with sufficient sensitivity can be provided.

実施例において得られたグラフである。It is the graph obtained in the Example. 実施例において得られた別のグラフである。It is another graph obtained in the Example. 実施例において得られたさらに別のグラフである。It is another graph obtained in the Example.

<本発明の評価方法>
本発明の評価方法について説明する。
本発明の評価方法は、従来の分離膜を用いた被処理水の膜閉塞度評価方法をベースとし、この方法の一部を、前記被処理水よりも塩類濃度および/またはpHが低い液体をさらにろ過する操作に変更したり、または、この方法に、さらに、前記被処理水よりも塩類濃度および/またはpHが低い液体をさらにろ過する操作を付け加えたりする方法であってよい。
<Evaluation method of the present invention>
The evaluation method of the present invention will be described.
The evaluation method of the present invention is based on a conventional method for evaluating the degree of clogging of water to be treated using a separation membrane. A part of this method is a liquid having a salt concentration and / or pH lower than that of the water to be treated. Further, the operation may be changed to an operation of filtering, or an operation of further filtering a liquid having a salt concentration and / or pH lower than that of the water to be treated may be added to this method.

例として、従来の分離膜を用いた被処理水の膜閉塞度評価方法の一つであるファウリングポテンシャル(FP)を挙げて、本発明の評価方法について説明する。   As an example, the evaluation method of the present invention will be described with reference to fouling potential (FP), which is one of the methods for evaluating the degree of blockage of water to be treated using a conventional separation membrane.

ファウリングポテンシャル(FP)の測定方法は次の通りである。
初めに、分離膜として公称孔径0.22μmの疎水性PVDF膜を用意し、この分離膜を撹拌式加圧セルに装着して、セルの撹拌子の回転速度:1,450rpm、全量定速ろ過(膜透過流束20m/日)の条件で、前記被処理水について加圧ろ過を行い、膜差圧が上昇した後、前記分離膜をセルから取り外し、1%−シュウ酸洗浄(洗浄時間60分、洗浄温度20℃)を行い(好ましくはさらにスポンジを用いた膜面洗浄を行い)、その後、再度、前記シュウ酸洗浄後の前記分離膜を前記セルに装着した上で、上記の加圧ろ過によって生じたろ液を用いてろ過を行い、再び膜差圧を測定する。そして、この膜差圧とろ過開始時の膜差圧の差(m−Aq,at25℃)を総ろ過水量(m3/m2−膜)で除した値を被処理水のファウリングポテンシャル(FP)とする。
The method for measuring the fouling potential (FP) is as follows.
First, a hydrophobic PVDF membrane having a nominal pore size of 0.22 μm is prepared as a separation membrane, and this separation membrane is attached to a stirring type pressure cell. The rotating speed of the stirring bar of the cell is 1,450 rpm, and the whole volume is constant rate filtration. Under the condition of (membrane permeation flux 20 m / day), the water to be treated was subjected to pressure filtration, and after the membrane differential pressure increased, the separation membrane was removed from the cell and washed with 1% -oxalic acid (washing time 60). (Preferably further cleaning of the membrane surface using a sponge), and then again mounting the separation membrane after the oxalic acid cleaning on the cell and then applying the pressure Filtration is performed using the filtrate produced by filtration, and the membrane pressure difference is measured again. The difference between the membrane pressure difference and the membrane pressure difference at the start of filtration (m-Aq, at 25 ° C.) divided by the total amount of filtered water (m 3 / m 2 -membrane) is the fouling potential of treated water ( FP).

本発明の評価方法では、上記のような従来のファウリングポテンシャル(FP)の測定方法における、加圧ろ過によって生じたろ液を用いたろ過の操作を、前記被処理水よりも塩類濃度および/またはpHが低い液体をろ過する操作に変更する。そして、同様に、この膜差圧とろ過開始時の膜差圧の差(m−Aq,at25℃)を総ろ過水量(m3/m2−膜)で除することで、被処理水のセカンドファウリングポテンシャル(FPS)を得る。 In the evaluation method of the present invention, the filtration operation using the filtrate generated by pressure filtration in the conventional fouling potential (FP) measurement method as described above is carried out by using a salt concentration and / or more than the water to be treated. Change to an operation that filters liquids with low pH. Similarly, the difference between the membrane differential pressure and the membrane differential pressure at the start of filtration (m-Aq, at 25 ° C.) is divided by the total amount of filtered water (m 3 / m 2 −membrane), thereby treating the water to be treated. Obtain a second fouling potential (FP S ).

このようなセカンドファウリングポテンシャル(FPS)は、従来のファウリングポテンシャル(FP)と比較して値が大きくなる。よって、被処理水に含まれる膜閉塞物質の濃度が低い場合等であっても、感度良く、その膜閉塞性を知見し、その評価を行うことができる。 Such a second fouling potential (FP S ) has a larger value than the conventional fouling potential (FP). Therefore, even when the concentration of the membrane occluding substance contained in the water to be treated is low, the membrane occluding property can be found and evaluated with high sensitivity.

また、被処理水の膜閉塞度評価方法として、上記のファウリングポテンシャル(FP)の他、例えば、MFI(MFI0.45)、MFI−UF、MFI−NF、CFS−MFIUF、UMFIが挙げられる。また、さらにその他の被処理水の膜閉塞度評価方法であってもよい。 In addition to the above-mentioned fouling potential (FP), for example, MFI (MFI 0.45 ), MFI-UF, MFI-NF, CFS-MFI UF , and UMFI can be used as a method for evaluating the degree of film blocking of treated water. Furthermore, other methods for evaluating the degree of blockage of water to be treated may be used.

上記のように本発明の評価方法では、塩類濃度および/またはpHが低い液体を用いるが、この液体は純水であることが好ましく、超純水であることがより好ましい。
ここで純水とは、脱イオン水を意味する。従来公知の脱イオン処理(例えば陽イオン交換樹脂および陰イオン交換樹脂を併用した処理)によって得られるものを意味する。
また、超純水とは、従来公知の浄化に関する要素技術を高度に組み合わせて得られる限りなくH2Oに近づいた高純度水をいい、例えば、比抵抗18MΩcm,粒子数20個/cm3(径0.1μm)以下,生菌数0.01個/cm3以下,TOC(全有機炭素)0.1mg/dm3の特性を有するものが挙げられる。
As described above, in the evaluation method of the present invention, a liquid having a low salt concentration and / or pH is used. This liquid is preferably pure water, and more preferably ultrapure water.
Here, pure water means deionized water. It means what is obtained by conventionally known deionization treatment (for example, treatment using a combination of a cation exchange resin and an anion exchange resin).
Ultrapure water refers to high-purity water that is as close as possible to H 2 O as obtained by combining elemental technologies related to purification that have been known so far. For example, specific resistance is 18 MΩcm, and the number of particles is 20 / cm 3 ( Examples thereof include those having the following characteristics: diameter 0.1 μm) or less, viable count 0.01 or less / cm 3 , and TOC (total organic carbon) 0.1 mg / dm 3 .

純水(好ましくは超純水)は、前記被処理水の種類にかかわらず、前記被処理水よりも塩類濃度およびpHが低い。純水(好ましくは超純水)を用いると、被処理水に含まれる膜閉塞物質の濃度が低い場合等であっても、より感度良く、その膜閉塞性を評価できるので好ましい。また、入手が容易である点からも好ましい。   Pure water (preferably ultrapure water) has a lower salt concentration and pH than the water to be treated regardless of the type of water to be treated. It is preferable to use pure water (preferably ultrapure water) because even if the concentration of the membrane occluding substance contained in the water to be treated is low, the membrane occluding property can be evaluated with higher sensitivity. Moreover, it is preferable also from a point with easy acquisition.

塩類濃度および/またはpHが低い液体における塩類は、特に限定されないが、例えばCa、Mg、Na、Cl等が挙げられる。   The salt in the liquid having a low salt concentration and / or pH is not particularly limited, and examples thereof include Ca, Mg, Na, and Cl.

本発明の評価方法では被処理水として、具体的には、水道原水(河川水、地下水など)、海水、生物処理水が挙げられる。   In the evaluation method of the present invention, the water to be treated specifically includes raw water (river water, groundwater, etc.), seawater, and biological treated water.

本発明の評価方法では分離膜として、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)、逆浸透膜(RO膜)、ナノろ過膜(NF膜)などを用いることができる。   In the evaluation method of the present invention, an ultrafiltration membrane (UF membrane), a microfiltration membrane (MF membrane), a reverse osmosis membrane (RO membrane), a nanofiltration membrane (NF membrane) or the like can be used as a separation membrane.

<本発明の判断方法>
次に、本発明の判断方法について説明する。
本発明の判断方法は、従来の分離膜を用いた被処理水の膜閉塞度評価方法と、その方法の一部を変更等した本発明の評価方法とを組み合わせることで、前者から得られる第1膜閉塞度(IDF)と、後者から得られる第2膜閉塞度(IDS)との関係から、前記被処理水に含まれる膜汚染物質の態様を判断する方法である。
<Determination method of the present invention>
Next, the determination method of the present invention will be described.
The determination method of the present invention is a first method obtained from the former by combining a conventional method for evaluating the degree of blockage of water to be treated using a separation membrane and the evaluation method of the present invention in which a part of the method is changed. This is a method for judging the mode of membrane contaminants contained in the water to be treated from the relationship between the degree of blockage of one membrane (ID F ) and the degree of blockage of the second membrane (ID S ) obtained from the latter.

例えば、従来の分離膜を用いた被処理水の膜閉塞度評価方法であるファウリングポテンシャル(FP)(第1膜閉塞度(IDF)に相当する)を得て、さらに本発明の評価方法によってセカンドファウリングポテンシャル(FPS)(第2膜閉塞度(IDS)に相当する)を得ると、FPとFPSとの関係から、前記被処理水に含まれる膜汚染物質の態様を判断することができる。
具体的には、被処理水に含まれる膜汚染物質の分子量の平均値が小さい(例えば分子量が100kDa以下)と、FPに対するFPSの値が大きくなる傾向がある(例えばFPS/FPの値が2〜6程度、より具体的には4程度となる)。そして、逆に、被処理水に含まれる膜汚染物質の分子量の平均値が大きい(例えば分子量が100kDa超)と、FPに対するFPSの値が小さくなる傾向がある(例えばFPS/FPの値が1.5〜5程度、より具体的には2程度となる)。
よって、このような傾向から、前記被処理水に含まれる膜汚染物質の態様(具体的には分子量)を判断することができる。
For example, a fouling potential (FP) (corresponding to the first membrane clogging degree (ID F )), which is a method for evaluating the degree of clogging of water to be treated using a conventional separation membrane, is obtained, and further the evaluation method of the present invention When the second fouling potential (FP S ) (corresponding to the second membrane blockage degree (ID S )) is obtained by, the mode of the membrane contaminant contained in the treated water is determined from the relationship between FP and FP S. can do.
Specifically, when the average value of the molecular weight of the membrane contaminant contained in the water to be treated is small (for example, the molecular weight is 100 kDa or less), the value of FP S with respect to FP tends to increase (for example, the value of FP S / FP). Is about 2 to 6, more specifically about 4). Conversely, when the average value of the molecular weight of the membrane pollutant contained in the water to be treated is large (for example, the molecular weight exceeds 100 kDa), the value of FP S for FP tends to be small (for example, the value of FP S / FP). Is about 1.5 to 5, more specifically about 2).
Therefore, from this tendency, it is possible to determine the mode (specifically, molecular weight) of the membrane contaminant contained in the water to be treated.

以下に本発明の実施例を記す。本発明は以下の実施例に限定されない。   Examples of the present invention will be described below. The present invention is not limited to the following examples.

1.供給水(被処理水)
原海水(以下「原水」ともいう)を用意し、一部をUF膜(東レ社製、PVDF、公称分画分子量150KDa)を用いてろ過してろ過水(以下「UFろ過水」ともいう)を得た。
以下では原水およびUFろ過水を被処理水として用いて実験を行った。
1. Supply water (treated water)
Raw seawater (hereinafter also referred to as “raw water”) is prepared, and a portion thereof is filtered using a UF membrane (PVDF, nominal molecular weight cut off 150 KDa, manufactured by Toray Industries, Inc.) and filtered water (hereinafter also referred to as “UF filtered water”). Got.
Below, it experimented using raw | natural water and UF filtered water as to-be-processed water.

2.ファウリングポテンシャルの測定
原水およびUFろ過水の各々について、ファウリングポテンシャル(FP)を測定した。
ファウリングポテンシャル(FP)の測定方法について説明する。
初めに、公称孔径0.22μmの疎水性PVDF膜(ミリポア社製、GVHP、直径25mm)を使用し、これを撹拌式加圧セルに装着し、HPLC用送液ポンプで加圧ろ過を行った。ろ過は、セルの撹拌子を1,450rpmで回転させながら全量定速ろ過(膜透過流束20m/日)で行い、膜差圧がある程度以上上昇した後、膜をセルから取り外し、1%−シュウ酸洗浄(洗浄時間60分、洗浄温度20℃程度)と膜面のスポンジ洗浄を行った。洗浄後、膜をセルに装着し、供試水のGVHP膜ろ過水でろ過を行い、再び膜差圧を測定した。この膜差圧とろ過開始時の膜差圧の差(m−Aq,at25℃)を総ろ過水量(m3/m2−膜)で除した値を供試水のファウリングポテンシャル(FP)とした。
2. Measurement of fouling potential The fouling potential (FP) was measured for each of the raw water and the UF filtrate.
A method for measuring the fouling potential (FP) will be described.
First, a hydrophobic PVDF membrane (Millipore, GVHP, diameter 25 mm) having a nominal pore size of 0.22 μm was used, and this was attached to a stirring type pressure cell, and pressure filtration was performed with a liquid feed pump for HPLC. . Filtration is performed by constant volume filtration (membrane permeation flux 20 m / day) while rotating the stirring bar of the cell at 1,450 rpm. After the membrane differential pressure has risen to some extent, the membrane is removed from the cell and 1%- Oxalic acid cleaning (cleaning time 60 minutes, cleaning temperature about 20 ° C.) and sponge cleaning of the membrane surface were performed. After washing, the membrane was attached to the cell, filtered with GVHP membrane filtered water of the test water, and the membrane differential pressure was measured again. The difference between the membrane pressure difference and the membrane pressure difference at the start of filtration (m-Aq, at 25 ° C.) divided by the total amount of filtered water (m 3 / m 2 -membrane) is the fouling potential (FP) of the test water. It was.

次に、上記手順でFPを求めた後、GVHP膜ろ過水の代わりに超純水を用いて、再びろ過を行い、同様に膜差圧を測定した。そして、この膜差圧と、ろ過開始時の膜差圧との差(m−Aq,at25℃)を総ろ過水量(m3/m2−膜)で除した値を、供試水のセカンドファウリングポテンシャル(FPS)とした。 Next, after calculating | requiring FP in the said procedure, it filtered again using the ultrapure water instead of GVHP membrane filtration water, and measured the membrane differential pressure similarly. And the value which remove | divided the difference (m-Aq, at25 degreeC) of this membrane differential pressure and the membrane differential pressure at the time of filtration start by the total amount of filtrate water (m < 3 > / m <2> -membrane) is 2nd of test water. The fouling potential (FP S ) was used.

図1に原水およびUF膜ろ過水におけるFPとFPSの関係図を示す。また、図2には、UFろ過水におけるFPとFPSの関係のみを示す図を示す。
図1および図2に示すように、FPとFPSとは相関係数が高く、ほぼ比例関係を示した。
また、実測ベースの膜差圧が大きくなるためにFPよりもFPSの方が値は大きくなり、みかけ上はFPがFPSに増幅されたことになる。その増幅比、すなわち、FPS/FPは、原水とUFろ過水とでは異なり、原水では1.80〜4.55(平均2.56)であるが、UFろ過水では2.03〜5.69(平均4.03)であり、分子量100kDa程度以上の高分子物質、すなわち、バイオポリマーの存在量やその特性に影響される様子を示した。
FIG. 1 shows the relationship between FP and FP S in raw water and UF membrane filtered water. Moreover, in FIG. 2, the figure which shows only the relationship between FP and FP S in UF filtered water is shown.
As shown in FIG. 1 and FIG. 2, FP and FP S have a high correlation coefficient, indicating a substantially proportional relationship.
Further, since the differential pressure on the basis of actual measurement is increased, the value of FP S is larger than that of FP, and apparently FP is amplified to FP S. The amplification ratio, that is, FP S / FP is different between raw water and UF filtered water, and is 1.80 to 4.55 (average 2.56) in raw water, but 2.03 to 5.5 in UF filtered water. It was 69 (average 4.03), and the polymer substance having a molecular weight of about 100 kDa or more, that is, a state influenced by the abundance and characteristics of the biopolymer was shown.

次に、図1における縦軸をFPS/FPに置き換えた、FPとFPS/FPとの関係を図3に示す。
バラツキはあるものの、全体傾向としては、FPが小さくなると、FPS/FPは大きくなる傾向にあり、逆に、FPが大きくなる、FPS/FPは2程度に収束していく様子が観察された。
この現象の詳細なメカニズムは不明であるが、本発明のFPSを用いることにより、比較的FPが低い領域(1程度未満)の測定ダイナミックレンジを向上させることができると共に、FPと併用することにより、膜汚染物質の特性(主に分子量分布と予想)を概略判断できる。
Next, the vertical axis in FIG. 1 is replaced in FP S / FP, Fig. 3 shows the relationship between FP and FP S / FP.
Although there is variation, the overall trend is that FP S / FP tends to increase as FP decreases, and conversely, FP S / FP converges to about 2 when FP increases. It was.
Although the detailed mechanism of this phenomenon is unknown, by using the FP S of the present invention, it is possible to improve the measurement dynamic range in a relatively low FP region (less than about 1) and to use it together with the FP. Thus, the characteristics (mainly molecular weight distribution and prediction) of the membrane contaminant can be roughly determined.

このように、本発明のFPSを用いることにより、測定感度をFPの2〜4倍程度向上させることが可能であることがわかった。
また、従来のFPと併用することにより、膜汚染物質の特性(主に分子量分布と予想)を概略判断できることがわかった。
Thus, it was found that the measurement sensitivity can be improved by about 2 to 4 times the FP by using the FP S of the present invention.
Further, it was found that the characteristics (mainly molecular weight distribution and prediction) of the membrane contaminant can be roughly judged by using together with the conventional FP.

Claims (2)

分離膜を用いて被処理水をろ過した後、得られたろ過水をさらにろ過することで、被処理水の第1膜閉塞度(IDF)を得る工程と、
前記分離膜を用いて前記被処理水をろ過した後、前記被処理水よりも塩類濃度および/またはpHが低い液体をさらにろ過することで、被処理水の第2膜閉塞度(IDS)を得る工程と、
を備え前記第1膜閉塞度(IDF)と前記第2膜閉塞度(IDS)との関係から、前記被処理水に含まれる膜汚染物質の態様を判断することを特徴とする被処理水の膜閉塞度評価方法。
After filtering the treated water using the separation membrane, further filtering the obtained filtered water to obtain a first membrane blockage degree (ID F ) of the treated water;
After filtering the water to be treated using the separation membrane, a second membrane blockage degree (ID S ) of the water to be treated is further filtered by filtering a liquid having a lower salt concentration and / or pH than the water to be treated. Obtaining
And determining the form of the membrane contaminant contained in the water to be treated from the relationship between the first membrane occlusion degree (ID F ) and the second membrane occlusion degree (ID S ). Water membrane blockage evaluation method.
前記第1膜閉塞度(IDF)と前記第2膜閉塞度(IDS)との関係は、
前記被処理水に含まれる膜汚染物質の分子量の平均値が所定値以下の場合はファウリングポテンシャル(FP)に対する前記被処理水の膜閉塞度評価指標であるセカンドファウリングポテンシャル(FPs)の値が大きくなる傾向があり、前記被処理水に含まれる膜汚染物質の分子量の平均値が前記所定値よりも大きいと、ファウリングポテンシャル(FP)に対するセカンドファウリングポテンシャル(FPs)の値が小さくなる傾向があることを特徴とする請求項に記載の被処理水の膜閉塞度評価方法。
The relationship between the first membrane occlusion degree (ID F ) and the second membrane occlusion degree (ID S ) is:
When the average value of the molecular weight of the membrane pollutant contained in the treated water is not more than a predetermined value, the second fouling potential (FP s ), which is an evaluation index of the degree of membrane clogging of the treated water relative to the fouling potential (FP). When the average value of the molecular weight of the membrane contaminant contained in the water to be treated is larger than the predetermined value, the value of the second fouling potential (FP s ) with respect to the fouling potential (FP) is increased. The method for evaluating the degree of blockage of the water to be treated according to claim 1 , wherein the film has a tendency to become smaller.
JP2015040968A 2015-03-03 2015-03-03 Method for evaluating membrane clogging of treated water Active JP6441712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040968A JP6441712B2 (en) 2015-03-03 2015-03-03 Method for evaluating membrane clogging of treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040968A JP6441712B2 (en) 2015-03-03 2015-03-03 Method for evaluating membrane clogging of treated water

Publications (3)

Publication Number Publication Date
JP2016159240A JP2016159240A (en) 2016-09-05
JP2016159240A5 JP2016159240A5 (en) 2017-11-30
JP6441712B2 true JP6441712B2 (en) 2018-12-19

Family

ID=56843753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040968A Active JP6441712B2 (en) 2015-03-03 2015-03-03 Method for evaluating membrane clogging of treated water

Country Status (1)

Country Link
JP (1) JP6441712B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641342A (en) * 2019-10-25 2022-06-17 株式会社钟化 Process for producing aqueous polymer dispersion
JP2021194586A (en) * 2020-06-12 2021-12-27 水ing株式会社 Method for evaluating membrane blockage of water to be treated and coagulation membrane filtration system
JP7472070B2 (en) 2021-04-19 2024-04-22 水ing株式会社 Method for predicting membrane clogging rate of filtration membrane for water purification treatment and membrane filtration treatment method for raw water for water purification treatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525807B2 (en) * 1987-05-20 1996-08-21 オルガノ株式会社 Method for measuring contamination index of water filtered by membrane filter
JP5863176B2 (en) * 2012-04-23 2016-02-16 水ing株式会社 Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof

Also Published As

Publication number Publication date
JP2016159240A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
AU2015301791B2 (en) Intelligent fluid filtration management system
Chen et al. Membrane separation: basics and applications
JP2007245078A (en) Water treatment system and water treatment process
JP6137176B2 (en) Water treatment method
Alhadidi et al. Using SDI, SDI+ and MFI to evaluate fouling in a UF/RO desalination pilot plant
JP4793193B2 (en) Aggregation apparatus and aggregation method
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
Roorda et al. Understanding membrane fouling in ultrafiltration of WWTP-effluent
KR101197022B1 (en) A reverse osmosis water treatment system with backwash
JP5103747B2 (en) Water treatment apparatus and water treatment method
Gasia-Bruch et al. Field experience with a 20,000 m3/d integrated membrane seawater desalination plant in Cyprus
JP2018008192A (en) Foulant quantification method
JP7113454B2 (en) Water treatment method and equipment
JP6530996B2 (en) Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus
Kim et al. Dual media filtration and ultrafiltration as pretreatment options of low-turbidity seawater reverse osmosis processes
JP2016159240A5 (en)
Zheng et al. Ceramic microfiltration–influence of pretreatment on operational performance
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
EP3056259B1 (en) Device for measuring membrane fouling index
JP6486799B2 (en) MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX
JP4033094B2 (en) Method for detecting membrane damage of membrane filtration device and apparatus therefor
JP6777130B2 (en) Membrane water treatment chemicals and membrane treatment methods
Galvañ et al. Direct pre-treatment of surface water through submerged hollow fibre ultrafiltration membranes
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
Choi et al. Large-pore membrane filtration with coagulation as an MF/UF pretreatment process

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181122

R150 Certificate of patent or registration of utility model

Ref document number: 6441712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250