JP5863176B2 - Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof - Google Patents

Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof Download PDF

Info

Publication number
JP5863176B2
JP5863176B2 JP2012097767A JP2012097767A JP5863176B2 JP 5863176 B2 JP5863176 B2 JP 5863176B2 JP 2012097767 A JP2012097767 A JP 2012097767A JP 2012097767 A JP2012097767 A JP 2012097767A JP 5863176 B2 JP5863176 B2 JP 5863176B2
Authority
JP
Japan
Prior art keywords
membrane
water
removal rate
treated
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012097767A
Other languages
Japanese (ja)
Other versions
JP2013223846A (en
JP2013223846A5 (en
Inventor
吉英 貝谷
吉英 貝谷
浩二 鹿島田
浩二 鹿島田
崇史 山本
崇史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2012097767A priority Critical patent/JP5863176B2/en
Publication of JP2013223846A publication Critical patent/JP2013223846A/en
Publication of JP2013223846A5 publication Critical patent/JP2013223846A5/en
Application granted granted Critical
Publication of JP5863176B2 publication Critical patent/JP5863176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、被処理水の評価方法、膜処理装置およびその運転方法に関する。   The present invention relates to a method for evaluating water to be treated, a membrane treatment apparatus, and an operation method thereof.

限外ろ過膜や精密ろ過膜を用いた膜ろ過装置は、圧力容器内に分離膜を配設して、分離膜で容器内を原水側と透過水側(ろ過水側)に仕切り、原水側に原水をポンプで加圧導入するとともに、膜ろ過により透過水側から透過水を得るものである。
特に近年は、クリプトスポリジウムなどの病原性微生物の問題から、河川水、地下水を原水とした浄水処理への適用が進んでいる。
Membrane filtration devices using ultrafiltration membranes or microfiltration membranes are provided with a separation membrane in the pressure vessel, and the separation membrane separates the vessel into the raw water side and the permeate side (filtrated water side), and the raw water side The raw water is pressurized and introduced with a pump, and permeate is obtained from the permeate side by membrane filtration.
Particularly in recent years, due to problems of pathogenic microorganisms such as Cryptosporidium, application to water purification treatment using river water and groundwater as raw water is progressing.

このような膜ろ過装置では、分離膜の原水側膜面や膜細孔内に原水中に含まれる成分の付着や析出が生じて分離膜が汚染され、継続使用によってろ過性能が次第に低下する。
浄化処理において膜汚染を生じさせる物質は、有機物、鉄、マンガン、アルミニウム、シリカ等であると言われており、現状、膜透過流速等の運転条件を選定する際には、原水中のこれらの濃度を測定し、その結果と今までの実績等から経験的に決定することが多い。
In such a membrane filtration device, the components contained in the raw water adhere to and deposit on the raw water side membrane surface and membrane pores of the separation membrane, contaminating the separation membrane, and the filtration performance gradually deteriorates due to continuous use.
Substances that cause membrane contamination in purification treatment are said to be organic matter, iron, manganese, aluminum, silica, etc., and at present, when selecting operating conditions such as membrane permeation flow rate, these substances in raw water In many cases, the concentration is measured and determined empirically from the results and the past results.

また、膜汚染の原因物質として有機物は最も重要である。この水質指標としては全有機炭素(TOC)が使用されているが、TOCの値が同じ原水でも膜のろ過抵抗の上昇速度が異なる場合が度々見受けられ、実際の運転と設計時の予想が大きく異なるため、薬品洗浄の頻度が増えたりするなどのトラブルが発生することは少なくない。
また、運転管理においても同様であり、TOC濃度に変化がないのに膜汚染が急激に進行する場合もある。この原因としては、膜汚染を引き起こす原因となる有機物がTOC成分の極々一部であり、その濃度が低いため、その変化がTOCを測定しても検出できないことにある。
Organic substances are the most important cause of membrane contamination. Total organic carbon (TOC) is used as the water quality indicator, but even when the raw water has the same TOC value, the rate of increase in the filtration resistance of the membrane is often different. Because of differences, it is not uncommon for problems such as increased frequency of chemical cleaning.
The same applies to the operation management, and there is a case where the film contamination rapidly progresses even though the TOC concentration does not change. This is because the organic matter that causes film contamination is an extremely small part of the TOC component, and its concentration is low, so that the change cannot be detected even if the TOC is measured.

TOC等の個々の水質ではなく、オーバーオールに分離膜供給水の膜閉塞性を評価する手法として、JIS K3802に定義されているファウリングインデックス(FI値)を使用した方法等があるが、これら従来の指標は、基本的に逆透過膜装置への供給水の評価を想定した指標であり、数度の濁度がある水道原水では、同じFI値となり評価方法として適切でない。   As a method for evaluating the membrane blockage of the separation membrane supply water in the overall rather than the individual water quality such as TOC, there is a method using the fouling index (FI value) defined in JIS K3802, etc. The index is basically an index that assumes the evaluation of the water supplied to the reverse permeable membrane device. In the tap water with several degrees of turbidity, the FI value is the same and is not suitable as an evaluation method.

また、関連する従来法として、例えば特許文献1には、膜供給水の濁質量と溶解性有機炭素(DOC)の測定値および膜透過流速の関数から、膜透過流速、物理洗浄間隔、薬品洗浄間隔、前処理条件等の最適化を図る方法が記載されている。しかしながら、この方法では、DOC、紫外線吸光度(E260)、濁度を分析する必要があり、また、比較的難解な理論式を用いるため煩雑であり、汎用的ではない。また、この方法は有機成分由来の汚染原因をフミン質に限定し、膜汚染の進行割合をDOCとE260の比率から単に計算しているため、フミン質以外の有機成分が膜汚染に関与する場合には、その影響を正しく評価できない。
また、近年の研究では、浄水処理における膜汚染に関与する有機物で重要なものは、紫外線吸光度発現物質であるフミン質よりも、多糖類であることが明らかになっており、その意味でも特許文献1に記載の方法は妥当性に欠けるものである。
In addition, as a related conventional method, for example, Patent Document 1 discloses a membrane permeation flow rate, a physical washing interval, a chemical washing from a function of a turbid mass of membrane feed water, a measured value of dissolved organic carbon (DOC) and a membrane permeation flow rate A method for optimizing the interval, preprocessing conditions and the like is described. However, in this method, it is necessary to analyze DOC, ultraviolet absorbance (E260), and turbidity, and since it uses a relatively difficult theoretical formula, it is complicated and not versatile. In addition, this method limits the cause of contamination from organic components to humic substances, and simply calculates the rate of progress of membrane contamination from the ratio of DOC and E260, so that organic components other than humic substances are involved in membrane contamination. Cannot be evaluated correctly.
In recent researches, it has been clarified that the important organic substances involved in membrane contamination in water purification treatment are polysaccharides rather than humic substances that express UV absorbance. The method described in 1 is lacking in validity.

また、特許文献2および特許文献3においても原水、膜供給水、膜ろ過水などのフミン質や紫外線吸光度(E260)に基づき凝集処理などの制御を行うことが記載されているが、これらは近年の研究報告から考えると合理性に欠く運転方法である。   Further, Patent Document 2 and Patent Document 3 also describe that the coagulation treatment and the like are controlled based on humic substances such as raw water, membrane supply water, and membrane filtered water, and ultraviolet absorbance (E260). This is a driving method that lacks rationality.

本発明者は鋭意研究を重ね、非特許文献1〜4に記載の水道原水等の膜供給水中の膜閉塞有機物質に関する新しい指標である「ファウリングポテンシャル(Fouling Potential:FP)」を開発した。
本指標は、水道原水やそれについて前処理を行った膜供給水中の膜閉塞有機物、すなわち、多糖類の存在量や分子量に関する有益な情報を与える指標である。
This inventor repeated earnest research and developed "Fouling Potential (FP)" which is a new parameter | index regarding the film | membrane obstruction | occlusion organic substance in film | membrane supply waters, such as raw water supply of a nonpatent literature 1-4.
This index is an index that gives useful information regarding the abundance and molecular weight of the membrane clogging organic matter in the raw water supply water or the membrane supply water that has been pretreated therefor, that is, polysaccharides.

また、FP測定に必要な試料量は500〜1000mL程度であり、浄水処理で凝集剤注入率選択のために一般的に行われるジャーテストに必要な試料量とほぼ同じであることから、ジャーテストを行った後に引き続いてFPを測定することで、凝集処理による膜閉塞物質量の減少量を定量的に把握することが可能となる、非常に有効な指標である。   In addition, the sample amount necessary for FP measurement is about 500 to 1000 mL, which is almost the same as the sample amount necessary for the jar test generally performed for selecting the flocculant injection rate in the water purification treatment. This is a very effective index that enables the amount of decrease in the amount of the membrane occluding substance due to the aggregation treatment to be quantitatively grasped by continuously measuring FP after performing the above.

特開2001−327967号公報JP 2001-327967 A 特開2001−170458号公報JP 2001-170458 A 特開2008−126223号公報JP 2008-126223 A

鹿島田浩二、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(I)」、第60回全国水道研究発表会講演集、社団法人日本水道協会、2009年5月、p.134−135Koji Kashimada and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (I)”, Proceedings of the 60th National Waterworks Research Conference, Japan Water Works Association, May 2009, p. 134-135 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(II)」、第60回全国水道研究発表会講演集、社団法人日本水道協会、2009年5月、p.136−137Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (II)”, Proceedings of the 60th National Waterworks Research Conference, Japan Waterworks Association, May 2009, p. 136-137 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(III)」、第61回全国水道研究発表会講演集、社団法人日本水道協会、2010年5月、p.252−253Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Purification and Its Characteristic Evaluation (III)”, 61st National Waterworks Research Conference Lecture, Japan Waterworks Association, May 2010, p. 252-253 貝谷吉英、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(IV)」、第62回全国水道研究発表会講演集、社団法人日本水道協会、2011年5月、p.352−353Yoshihide Kaitani and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (IV)”, 62nd National Waterworks Research Presentation Lecture, Japan Waterworks Association, May 2011, p. 352-353

このようにFPの測定は比較的煩雑な操作を伴わず、必要試料量も少ないが、測定時間は、試料の膜閉塞物質量によるものの、1〜3時間程度が標準的であり、また、専用の測定装置が必要であることから、現場における連続モニタリング指標としては、必ずしも適しているとはいえない。   As described above, FP measurement does not involve a relatively complicated operation and requires a small amount of sample. However, although the measurement time depends on the amount of the membrane-occluding substance in the sample, it is typically about 1 to 3 hours. Therefore, it is not always suitable as a continuous monitoring index in the field.

以上のように従来法では、水道原水等の被処理水に含まれる膜閉塞物質の含有量を正確かつ簡単に、そして迅速に測定することができなかった。また、それに伴って、膜処理装置およびそれを含む水処理プラントをトラブルなく継続して運転することが困難であった。   As described above, according to the conventional method, the content of the membrane-occluding substance contained in the water to be treated such as raw water for tap water cannot be measured accurately, simply and quickly. Accordingly, it has been difficult to continuously operate the membrane treatment apparatus and the water treatment plant including the same without any trouble.

本発明の目的は、水道原水等の被処理水に含まれる膜閉塞物質を正確かつ簡単に、そして迅速に測定して被処理水を評価する方法、その評価を行う手段を備える膜処理装置、その装置を含む水処理プラント、ならびにその膜処理装置および水処理プラントの運転方法を提供することにある。   An object of the present invention is to accurately and easily measure a membrane plugging substance contained in water to be treated, such as raw water for water supply, quickly, and to evaluate the water to be treated, a membrane treatment apparatus having means for performing the evaluation, An object of the present invention is to provide a water treatment plant including the apparatus, and a method for operating the membrane treatment apparatus and the water treatment plant.

本発明者は、上記課題を解決すべく鋭意研究を重ね、紫外線吸光度発現物質よりも多糖様物質の方が膜閉塞において遥かに重大な影響を与え、被処理水の膜閉塞性と相関性が高いのは、紫外線吸光度発現物質の存在量ではなく、多糖様物質の存在量であることを見出した。そして、紫外線吸光度発現物質の存在量とFPに代表される膜閉塞物質指標とには直接的な相関関係が見いだせないものの、紫外線吸光度の除去率とFPに代表される膜閉塞物質指標の除去率との良好な相関関係が存在することを見出し、本発明を完成させた。   The present inventor has intensively studied to solve the above-mentioned problems, and the polysaccharide-like substance has a much more significant effect on the membrane occlusion than the UV light-absorbing substance and has a correlation with the membrane occlusion of the water to be treated. It has been found that the higher is not the amount of the substance exhibiting UV absorbance, but the amount of the polysaccharide-like substance. Although there is no direct correlation between the abundance of the UV absorbance-expressing substance and the membrane occluding substance index represented by FP, the UV absorbance removal rate and the membrane occluding substance index represented by FP are removed. And the present invention was completed.

本発明は、以下の(1)〜(9)である。
(1)被処理水に含まれる膜閉塞物質を測定し被処理水を評価する被処理水の評価方法において、
及び前記被処理水について紫外線吸光度を測定し
前記紫外線吸光度の測定結果から該紫外線吸光度の除去率を求め
前記紫外線吸光度の除去率から、前記被処理水の前記膜閉塞物質の含有量を算出により求め、該算出結果から前記被処理水の膜閉塞性を評価することを特徴とする被処理水の評価方法。
(2)前記被処理水における膜閉塞性の評価は、
予め求められた前記紫外線吸光度の除去率と膜閉塞物質指標の除去率との相関関係基づいて、該膜閉塞物質指標の除去率から前記被処理水中の膜閉塞物質の含有量を求め、該膜閉塞物質の含有量により行うことを特徴とする上記(1)に記載の被処理水の評価方法。
(3)原水の紫外線吸光度発現物質および膜閉塞物質の含有量を低下させるために凝集剤注入を行い、被処理水を得る凝集剤注入手段と、
前記原水及び前記被処理水の紫外線吸光度を測定する紫外線吸光度測定手段と、
前記被処理水をろ過処理してろ過水を得る膜処理手段と、
前記紫外線吸光度測定手段によって得られた紫外線吸光度からその紫外線吸光度除去率を求め、該紫外線吸光度除去率から前記被処理水の膜閉塞物質の含有量を求めて、該被処理水の膜閉塞を評価し、該膜閉塞性の評価結果に基づいて前記凝集剤注入手段により前記凝集剤の注入を制御する制御手段と、
を有することを特徴とする膜処理装置。
(4)前記制御手段は、予め求められた前記紫外線吸光度の除去率と膜閉塞物質指標の除去率との相関関係基づいて前記膜閉塞度を求めることを特徴とする上記(3)に記載の膜処理装置。
(5)前記紫外線吸光度除去率(式(I))及び前記膜閉塞物質指標の除去率(式(II))は、次式により算出されることを特徴とする上記(4)に記載の膜処理装置。
・(原水の紫外線吸光度−被処理水の紫外線吸光度)/原水の紫外線吸光度×100・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・式(I)
・(原水の膜閉塞物質指標−被処理水の膜閉塞物質指標)/原水の膜閉塞物質指標×100・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・式(II)
(6)上記(3)〜(5)のいずれかに記載の膜処理装置を含むことを特徴とする水処理プラント。
(7)原水紫外線吸光度発現物質および膜閉塞物質の含有量を低下させ被処理水を得るために凝集剤注入する処理を行う凝集剤注入処理ステップと、
前記原水及び前記被処理水紫外線吸光度を測定する紫外線吸光度測定ステップと、
前記被処理水から分離膜を用いてろ過水を得るろ過処理ステップと、
前記紫外線吸光度からその紫外線吸光度除去率を求め、該紫外線吸光度除去率に基づいて、前記被処理水の膜閉塞物質の含有量を求め、該被処理水の膜閉塞を評価する膜閉塞性評価ステップと、
前記膜閉塞性評価ステップによる膜閉塞性の評価結果に基づいて、前記凝集剤注入処理ステップにより前記凝集剤の注入を制御する制御ステップと
備えることを特徴とする膜処理装置の運転方法。
(8)前記膜閉塞性評価ステップにおいて、予め求められた前記紫外線吸光度の除去率と膜閉塞物質指標の除去率との相関関係基づいて前記膜閉塞度を求めることを特徴とする上記(7)に記載の膜処理装置の運転方法。
(9)上記(7)または(8)に記載の膜処理装置の運転方法を含むことを特徴とする水処理プラントの運転方法。
The present invention includes the following (1) to (9).
(1) In the method for evaluating water to be treated, which measures the membrane blocking substance contained in the water to be treated and evaluates the water to be treated .
Raw water and the measured UV absorbance for the treatment water,
Obtaining the removal rate of the ultraviolet absorbance from the measurement result of the ultraviolet absorbance ,
The removal rate of the ultraviolet absorbance, the determined by calculating the content of the film plugging agent in water to be treated, voted result output the calculated treated water, characterized in that to evaluate the film obstructive of the water to be treated Method.
(2) Evaluation of the membrane occlusion in the treated water is as follows:
Based on the correlation between the previously obtained removal rate of the ultraviolet absorbance and film removal rate occlusive material index, determine the content of the film occlusive material of the water to be treated from the removal rate of the membrane plugging agent index, the The method for evaluating water to be treated as described in (1) above, which is carried out according to the content of the membrane occluding substance .
(3) a flocculant injection means for injecting a flocculant to reduce the contents of the raw material ultraviolet light absorbency-expressing substance and the membrane plugging substance to obtain treated water;
And ultraviolet absorbance measurement means that measure the UV absorbance of the raw water and the water to be treated,
Membrane treatment means for filtering the treated water to obtain filtered water;
The search of the ultraviolet absorbance removal rate from the ultraviolet absorbance obtained by ultraviolet absorbance measurement unit, wherein from the ultraviolet absorbance removal rate seeking content of the membrane plugging agent of the water to be treated, the film obstructive of the water to be treated evaluating, based on the membrane obstructive evaluation results, and control means for controlling the injection of the coagulant by the coagulant injection unit,
A film processing apparatus comprising:
(4) the control means, based on the correlation between the removal rate of the ultraviolet absorbance obtained in advance and film removal rate occlusive material index, the above (3), characterized in that obtaining the membrane clogging degree The film processing apparatus as described.
(5) The membrane according to (4) above, wherein the UV absorbance removal rate (Formula (I)) and the membrane blocking substance index removal rate (Formula (II)) are calculated by the following formula: Processing equipment.
・ (UV absorbance of raw water-UV absorbance of water to be treated) / UV absorbance of raw water x 100 ...・ ・ ・ ・ ・ ・ ・ ・ Formula (I)
・ (Raw water membrane blocking substance index-treated water membrane blocking substance index) / Raw water membrane blocking substance index x 100 ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Formula (II)
(6) A water treatment plant comprising the membrane treatment apparatus according to any one of (3) to (5) above.
(7) and the coagulant injection process step in which the content is lowered is carried out a process of coagulant injection in order to obtain treated water of the ultraviolet absorbance expressed material and membrane plugging agent of the raw water,
An ultraviolet absorbance measurement step of measuring the ultraviolet absorbance of the raw water and the water to be treated,
A filtration step for obtaining filtered water from the treated water using a separation membrane;
Searching for the ultraviolet absorbance removal rate from the ultraviolet absorbance, based on the UV absorbance removal rate, the determined content of the membrane plugging agent of the water to be treated, film obstructive evaluation to assess film obstructive該被treated water Steps,
Based on the evaluation result of the membrane occlusive property by the membrane occlusive property evaluation step, a control step for controlling the injection of the flocculating agent by the coagulant injecting treatment step ,
A method for operating a film processing apparatus comprising:
(8) In the film obstructive evaluation step, based on the correlation between the removal rate of the ultraviolet absorbance obtained in advance and film removal rate occlusive material index, above, characterized in that determining said membrane closure degree ( 7) A method for operating the membrane treatment apparatus.
(9) A method for operating a water treatment plant, comprising the method for operating the membrane treatment apparatus according to (7) or (8).

紫外線吸光度の除去率は非常に簡単かつ迅速に測定することができるので、本発明によれば、水道原水等の被処理水に含まれる膜閉塞物質を正確かつ簡単に、そして迅速に測定して被処理水を評価する方法、その評価を行う手段を備える膜処理装置、その装置を含む水処理プラント、ならびにその膜処理装置および水処理プラントの運転方法を提供することができる。   Since the removal rate of UV absorbance can be measured very simply and quickly, according to the present invention, membrane clogging substances contained in water to be treated such as raw water for tap water can be measured accurately, easily and quickly. It is possible to provide a method for evaluating water to be treated, a membrane treatment apparatus including means for performing the evaluation, a water treatment plant including the apparatus, and a method for operating the membrane treatment apparatus and the water treatment plant.

本発明の装置の概略図である。1 is a schematic view of an apparatus of the present invention. 実施例1において求めたグラフである。3 is a graph obtained in Example 1. 実施例2において求めたグラフである。6 is a graph obtained in Example 2.

本発明について説明する。
本発明は、被処理水に含まれる膜閉塞物質を測定し被処理水を評価する被処理水の評価方法において、原及び前記被処理水について紫外線吸光度を測定し、前記紫外線吸光度の測定結果から該紫外線吸光度の除去率を求め、前記紫外線吸光度の除去率から、前記被処理水の前記膜閉塞物質の含有量を算出により求め、該算出結果から前記被処理水の膜閉塞性を評価することを特徴とする被処理水の評価方法である。
このような評価方法を、以下では「本発明の評価方法」ともいう。
The present invention will be described.
The present invention, in the evaluation method of the water to be treated to evaluate the treatment water measured film occlusive substance contained in the treatment water, raw water and the measured UV absorbance for the treatment water, the measurement results of the UV absorbance determine the removal ratio of the ultraviolet absorbance of from removal rate of the ultraviolet absorbance, the determined by calculating the content of the film plugging agent treated water, to evaluate the film obstructive of the water to be treated from the results output the calculated This is a method for evaluating water to be treated.
Hereinafter, such an evaluation method is also referred to as “the evaluation method of the present invention”.

また、本発明は、原水の紫外線吸光度発現物質および膜閉塞物質の含有量を低下させるために凝集剤注入を行い、被処理水を得る凝集剤注入手段と、前記原水及び前記被処理水の紫外線吸光度を測定する紫外線吸光度測定手段と、前記被処理水をろ過処理してろ過水を得る膜処理手段と、前記紫外線吸光度測定手段によって得られた紫外線吸光度からその紫外線吸光度除去率を求め、該紫外線吸光度除去率から前記被処理水の膜閉塞物質の含有量を求めて、該被処理水の膜閉塞を評価し、該膜閉塞性の評価結果に基づいて前記凝集剤注入手段により前記凝集剤の注入を制御する制御手段と、を有することを特徴とする膜処理装置である。
このような膜処理装置を、以下では「本発明の装置」ともいう。
In addition, the present invention provides a flocculant injection means for injecting a flocculant to reduce the contents of the ultraviolet light absorbency expressing substance and the membrane occluding substance in raw water to obtain treated water, and the ultraviolet light in the raw water and the treated water. determined and ultraviolet absorbance measurement means that measure the absorbance, the a film processing means for obtaining a filtrate by filtration treatment water to be treated, the ultraviolet absorbance removal rate from the ultraviolet absorbance obtained by the ultraviolet absorbance measurement unit, wherein from the ultraviolet absorbance removal rate seeking content of the membrane plugging agent of the water to be treated, to evaluate the film obstructive of the water to be treated, based on the membrane obstructive evaluation results, by the coagulant injection means And a control means for controlling the injection of the flocculant .
Hereinafter, such a film processing apparatus is also referred to as “the apparatus of the present invention”.

また、本発明は、本発明の装置を含む水処理プラントである。
このような水処理プラントを、以下では「本発明のプラント」ともいう。
Moreover, this invention is a water treatment plant containing the apparatus of this invention.
Hereinafter, such a water treatment plant is also referred to as a “plant of the present invention”.

また、本発明は、本発明の装置の運転方法である。
このような運転方法を、以下では「本発明の装置の運転方法」ともいう。
The present invention is also a method for operating the apparatus of the present invention.
Hereinafter, such an operation method is also referred to as an “operation method of the apparatus of the present invention”.

さらに、本発明は、本発明のプラントの運転方法である。
このような運転方法を、以下では「本発明のプラントの運転方法」ともいう。
Furthermore, this invention is the operating method of the plant of this invention.
Hereinafter, such an operation method is also referred to as “the operation method of the plant of the present invention”.

<本発明の評価方法>
初めに、本発明の評価方法について説明する。
本発明の評価方法は、原水と、分離膜を用いて処理する前の被処理水とについて紫外線吸光度を測定してその除去率を求めることで、その被処理水について分離膜を用いて処理した場合に分離膜を閉塞させてしまう程度を評価する方法である。
<Evaluation method of the present invention>
First, the evaluation method of the present invention will be described.
In the evaluation method of the present invention, the water to be treated was treated with the separation membrane by measuring the ultraviolet absorbance of the raw water and the water to be treated before being treated with the separation membrane to obtain the removal rate. This is a method for evaluating the degree of blocking the separation membrane.

本発明の評価方法では、初めに原水と被処理水とを用意する。   In the evaluation method of the present invention, raw water and treated water are prepared first.

本発明の評価方法において、原水は紫外線吸光度発現物質および膜閉塞物質を含むものであれば特に限定されない。
ここで紫外線吸光度発現物質とは、紫外部(200〜300nm、好ましくは220〜280nm、より好ましくは250〜260nmの波長)に吸収を示す物質を意味するものとする。原水に含まれる不飽和結合を有する有機物は、概ね紫外線吸光度発現物質と考えられる。具体的な紫外線吸光度発現物質としてはフミン質が挙げられる。フミン質とは、植物などが微生物によって分解されるときの最終分解生成物で、直鎖炭化水素および多環芳香族化合物等からなる高分子化合物である。
また、膜閉塞物質は、分離膜を継続使用した場合に目詰まりを生じさせるものであり、主として多糖様物質であると本発明者は考えている。
なお、紫外線吸光度発現物質に該当するものであっても、分離膜を継続使用した場合に目詰まりを生じさせ得るし、逆に、多糖様物質等の膜閉塞物質も紫外部に吸収を示し得るが、本発明においては、両者を厳密に区別する必要はない。例えば、紫外線吸光度発現物質および膜閉塞物質の両方に該当するものが原水に含まれていてもよい。
In the evaluation method of the present invention, the raw water is not particularly limited as long as it contains an ultraviolet light absorbance-expressing substance and a membrane occluding substance.
Here, the substance exhibiting UV absorbance means a substance that absorbs in the UV region (200 to 300 nm, preferably 220 to 280 nm, more preferably 250 to 260 nm). The organic substance having an unsaturated bond contained in the raw water is generally considered to be a substance exhibiting ultraviolet absorbance. Specific examples of the substance exhibiting UV absorbance include humic substances. The humic substance is a final decomposition product when a plant or the like is decomposed by a microorganism, and is a polymer compound composed of a linear hydrocarbon, a polycyclic aromatic compound, and the like.
In addition, the present inventor believes that the membrane-occluding substance causes clogging when the separation membrane is continuously used, and is mainly a polysaccharide-like substance.
In addition, even if the substance corresponds to a substance exhibiting ultraviolet absorbance, clogging may occur when the separation membrane is continuously used, and conversely, membrane-occluding substances such as polysaccharide-like substances may also absorb in the ultraviolet part. However, in the present invention, it is not necessary to strictly distinguish the two. For example, the raw water may contain a substance that corresponds to both the UV absorbance-expressing substance and the membrane occluding substance.

原水に含まれる紫外線吸光度発現物質および膜閉塞物質の含有量は特に限定されないが、これらの合計濃度が0.01〜200ppbであることが好ましく、0.1〜100ppbであることがより好ましい。   The contents of the ultraviolet light absorbance-expressing substance and the membrane occluding substance contained in the raw water are not particularly limited, but the total concentration thereof is preferably 0.01 to 200 ppb, more preferably 0.1 to 100 ppb.

原水は、紫外線吸光度発現物質および膜閉塞物質の他に、さらに別の有機物、無機物(鉄、マンガン、アルミニウム、シリカ等)、病原性微生物などを含んでもよい。   The raw water may contain other organic substances, inorganic substances (iron, manganese, aluminum, silica, etc.), pathogenic microorganisms, and the like in addition to the ultraviolet light absorbance developing substance and the membrane occluding substance.

原水として、具体的には、水道原水(河川水、地下水など)、海水、汽水等が挙げられる。   Specific examples of raw water include raw tap water (river water, groundwater, etc.), seawater, brackish water, and the like.

本発明の評価方法において、被処理水は、前記原水に紫外線吸光度発現物質および膜閉塞物質の含有量を低下させる処理を施して得られるものであって、分離膜を用いて処理されることで、それに含まれる紫外線吸光度発現物質および膜閉塞物質の少なくとも一部を除去される水であればよい。   In the evaluation method of the present invention, the water to be treated is obtained by subjecting the raw water to a treatment for lowering the contents of the UV light-absorbing substance and the membrane plugging substance, and is treated using a separation membrane. Any water may be used as long as at least a part of the ultraviolet light absorbance-expressing substance and the membrane occluding substance contained therein is removed.

被処理水に含まれる紫外線吸光度発現物質および膜閉塞物質の含有量は特に限定されないが、これらの合計濃度が0.01〜2000ppbであることが好ましく、0.1〜1000ppbであることがより好ましい。   Although there are no particular limitations on the contents of the UV absorbance-expressing substance and the membrane occluding substance contained in the water to be treated, the total concentration of these is preferably 0.01 to 2000 ppb, more preferably 0.1 to 1000 ppb. .

被処理水を得るための、前記原水に含まれる紫外線吸光度発現物質および膜閉塞物質の含有量を低下させる処理は、特に限定されず、原水に活性炭を浸漬させて紫外線吸光度発現物質および膜閉塞物質の少なくとも一部を吸着することで含有量を低下させる吸着処理等であってもよいが、前記原水へ凝集剤を添加して紫外線吸光度発現物質および膜閉塞物質の少なくとも一部を凝集することで含有量を低下させる凝集処理であることが好ましい。凝集処理において用いる凝集剤は、例えば従来公知のPAC(ポリ塩化アルミニウム)、塩化第二鉄、ポリ硫酸第二鉄、硫酸ばん土、高分子凝集剤(ポリアクリルアミド系、ポリアミン系、ポリアクリルエステル系、ポリエチレンイミン系など)などを用いることができる。   The treatment for reducing the contents of the ultraviolet light absorbance-expressing substance and the membrane occluding substance contained in the raw water for obtaining the water to be treated is not particularly limited, and the ultraviolet light absorbing substance and the membrane occluding substance are immersed in raw water. It may be an adsorption treatment or the like for reducing the content by adsorbing at least a part of the material, but by adding an aggregating agent to the raw water to agglomerate at least a part of the ultraviolet light absorption expressing substance and the membrane occluding substance. It is preferable that the agglomeration treatment reduce the content. The aggregating agent used in the aggregating treatment is, for example, a conventionally known PAC (polyaluminum chloride), ferric chloride, polyferric sulfate, clay sulfate, polymer aggregating agent (polyacrylamide type, polyamine type, polyacrylic ester type). , Polyethyleneimine, etc.) can be used.

本発明の評価方法において分離膜は特に限定されず、上記のような被処理水について分離膜を用いて処理することで、その被処理水に含まれる紫外線吸光度発現物質および膜閉塞物質の少なくとも一部を分離できる性能を備えるものであればよい。
具体的に、分離膜として、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)、逆浸透膜(RO膜)、ナノろ過膜(NF膜)などが挙げられる。
In the evaluation method of the present invention, the separation membrane is not particularly limited. By treating the water to be treated with the separation membrane as described above, at least one of the ultraviolet light absorbance-expressing substance and the membrane occluding substance contained in the water to be treated. What is necessary is just to provide the performance which can isolate | separate a part.
Specific examples of the separation membrane include an ultrafiltration membrane (UF membrane), a microfiltration membrane (MF membrane), a reverse osmosis membrane (RO membrane), and a nanofiltration membrane (NF membrane).

本発明の評価方法では、前記原水および前記被処理水について、紫外線吸光度を測定する。
紫外線吸光度の測定方法は、上水試験方法(2011年版、II.理化学編(無機物部会)、日本水道協会)において示されている方法であり、具体的には次に示す方法である。
初めに、以下のガラス繊維ろ紙、分光光度計、吸収セルを用意する。
・ガラス繊維ろ紙:孔径1μmのガラス繊維のもの。
・分光光度計:波長200〜400nmの紫外部域の波長に設定できるもの。
・吸収セル:10mmまたは50mmの光路長をもつ石英製のもの。
次に、被処理水の約100mLをガラス繊維ろ紙でろ過し、これを検液とする。
そして適量の検液を10mmまたは50mm吸収セルに採り、分光光度計を用いて波長250〜260nmの範囲で吸光度を測定する。
このようにして得られた紫外線吸光度を「E260」ともいう。
In the evaluation method of the present invention, ultraviolet absorbance is measured for the raw water and the treated water.
The method for measuring the ultraviolet absorbance is the method shown in the water supply test method (2011 edition, II. Riken (Inorganic Substances Group), Japan Waterworks Association), and specifically the following method.
First, the following glass fiber filter paper, spectrophotometer, and absorption cell are prepared.
Glass fiber filter paper: glass fiber having a pore diameter of 1 μm.
Spectrophotometer: A spectrophotometer that can be set to an ultraviolet wavelength of 200 to 400 nm.
Absorption cell: a quartz cell having an optical path length of 10 mm or 50 mm.
Next, about 100 mL of water to be treated is filtered with glass fiber filter paper, and this is used as a test solution.
Then, an appropriate amount of the test solution is taken in a 10 mm or 50 mm absorption cell, and the absorbance is measured in the wavelength range of 250 to 260 nm using a spectrophotometer.
The ultraviolet absorbance thus obtained is also referred to as “E260”.

このような方法によって、前記原水および前記被処理水について紫外線吸光度を測定した後、得られた原水および被処理水の各々の紫外線吸光度から紫外線吸光度の除去率を求める。「紫外線吸光度の除去率」を、以下では「E260除去率」ともいう。
E260除去率は、次の式(I)より求めるものとする。
After measuring the ultraviolet absorbance of the raw water and the treated water by such a method, the removal rate of the ultraviolet absorbance is obtained from the ultraviolet absorbance of each of the obtained raw water and treated water. The “ultraviolet light absorption removal rate” is hereinafter also referred to as “E260 removal rate”.
The E260 removal rate is obtained from the following equation (I).

E260除去率(%)=(原水のE260−被処理水のE260)/原水のE260×100 ・・・・式(I)   E260 removal rate (%) = (E260 of raw water−E260 of treated water) / E260 × 100 of raw water Formula (I)

そして、E260除去率から膜閉塞物質指標の除去率を求める。E260除去率と膜閉塞物質指標の除去率とは良好な相関関係が存在するため、E260除去率を求めることで、膜閉塞物質指標の除去率を算出することができる。被処理水に含まれる膜閉塞物質の含有量の測定は手間と時間がかかるが、それに比べて紫外線吸光度は簡単かつ短時間で測定することができる。   And the removal rate of a membrane | film | membrane obstruction | occlusion substance parameter | index is calculated | required from E260 removal rate. Since there is a good correlation between the E260 removal rate and the membrane occlusion substance index removal rate, the membrane occlusion material index removal rate can be calculated by obtaining the E260 removal rate. Although the measurement of the content of the membrane occluding substance contained in the water to be treated takes time and effort, the ultraviolet absorbance can be measured easily and in a short time.

ここでE260除去率と膜閉塞物質指標の除去率との相関関係は、評価対象の被処理水およびその原水によって異なり得る。したがって、本発明の評価方法では、評価対象の被処理水およびその原水における紫外線吸光度の除去率と膜閉塞物質指標の除去率との関係を予め求めておくことが好ましい。
紫外線吸光度の除去率と膜閉塞物質指標の除去率との関係は、後の実施例1および2を用いて説明するように良好な相関があり、具体的には図2および図3に示すように、双方は概ね比例関係(多くの場合、原点を通過する正比例の関係)を有するとみなすことができることを本発明者は見出した。
したがって、図2や図3に示すような相関関係を予め求めておけば、上記のようにしてE260除去率を求めるだけで、膜閉塞物質指標の除去率を正確に求めることができる。そして、膜閉塞物質指標の除去率から被処理水中の膜閉塞物質の含有量を算出できるので、得られた膜閉塞物質の含有量から、被処理水における膜閉塞性の評価を正確に行うことができる。
Here, the correlation between the E260 removal rate and the removal rate of the membrane occluding substance index may differ depending on the water to be evaluated and its raw water. Therefore, in the evaluation method of the present invention, it is preferable to obtain in advance the relationship between the removal rate of the ultraviolet light absorbance and the removal rate of the membrane occluding substance index in the water to be evaluated and its raw water.
The relationship between the removal rate of the ultraviolet absorbance and the removal rate of the membrane occluding substance index has a good correlation as will be described later with reference to Examples 1 and 2, and specifically, as shown in FIGS. In addition, the present inventor has found that both of them can be regarded as having a substantially proportional relationship (in many cases, a directly proportional relationship passing through the origin).
Therefore, if the correlation as shown in FIG. 2 or FIG. 3 is obtained in advance, the removal rate of the membrane occluding substance index can be obtained accurately only by obtaining the E260 removal rate as described above. And since the content of the membrane occluding substance in the treated water can be calculated from the removal rate of the membrane occluding material index, the membrane occluding property in the treated water can be accurately evaluated from the obtained content of the membrane occluding material. Can do.

ここで本発明の評価方法においてE260除去率を求める際は、前記原水および前記被処理水について紫外線吸光度を測定するが、原水の紫外線吸光度が大きく変化しない場合は、原水の紫外線吸光度については測定せずに、以前に測定した値を利用し、被処理水についてのみ外線吸光度を測定して、その除去率を求めてもよい。その場合であっても本発明の範囲内である。   Here, when obtaining the E260 removal rate in the evaluation method of the present invention, the ultraviolet absorbance is measured for the raw water and the treated water. However, if the ultraviolet absorbance of the raw water does not change greatly, measure the ultraviolet absorbance of the raw water. Instead, the removal rate may be obtained by measuring the external light absorbance of only the water to be treated using the previously measured value. Even that case is within the scope of the present invention.

なお、膜閉塞物質指標の除去率は、次の式(II)から求めるものとする。
膜閉塞物質指標の除去率(%)=(原水の膜閉塞物質指標−被処理水の膜閉塞物質指標)/原水の膜閉塞物質指標×100 ・・・・式(II)
It should be noted that the removal rate of the membrane occluding substance index is obtained from the following equation (II).
Removal rate of membrane plugging substance index (%) = (membrane blocking substance index of raw water−film blocking substance index of treated water) / film blocking substance index of raw water × 100 Formula (II)

本発明の評価方法において膜閉塞物質指標とは、被処理水に含まれる膜閉塞物質の含有量を示す指標であれば特に限定されない。
膜閉塞物質指標として、例えば、
1)FP
2)SDI、修正SDI
3)MFI(MFI0.45)、MFI−UF、NF−MFI、CFS−MFIUF
4)SUR
5)UMFI
6)MF、KMF
が挙げられる。
本発明の評価方法では、膜閉塞物質指標としてFPを利用して被処理水の膜閉塞度を評価することが好ましい。より正確かつ簡単に、そして迅速に被処理水の膜閉塞度を把握することができるからである。
In the evaluation method of the present invention, the membrane occluding substance index is not particularly limited as long as it is an index indicating the content of the membrane occluding material contained in the water to be treated.
As a membrane occluding substance indicator, for example,
1) FP
2) SDI, modified SDI
3) MFI (MFI 0.45 ), MFI-UF, NF-MFI, CFS-MFI UF
4) SUR
5) UMFI
6) MF, KMF
Is mentioned.
In the evaluation method of the present invention, it is preferable to evaluate the degree of membrane clogging of water to be treated using FP as a membrane clogging substance index. This is because it is possible to grasp the degree of membrane clogging of water to be treated more accurately, simply and quickly.

以下に膜閉塞物質指標の具体的内容を説明する。
1)FP(Fouling Potential)
被処理水を0.45μmのメンブレンフィルターでろ過して濁度成分を除去し、試料水とする。
次に、500〜1000mLの試料水を、公称孔径0.22μmの疎水性PVDF膜(平膜)を用い、撹拌式加圧セルを使用して、全量を定速ろ過する。
そして、所定の膜差圧上昇が生じた後、スポンジ洗浄とシュウ酸洗浄を行い、これらの洗浄によって回復しなかった膜差圧(m−Aq at 25℃)の増分を測定し、それを単位膜面積当たりのろ過水量で除した値(m3/m2)を求め、FPとする。
参考資料:鹿島田浩二、他1名、「浄水処理におけるファウリングポテンシャルの提案とその特性評価(I)」、第60回全国水道研究発表会講演集、社団法人日本水道協会、2009年5月、p.134−135
The specific contents of the membrane occluding substance index will be described below.
1) FP (Fouling Potential)
The water to be treated is filtered through a 0.45 μm membrane filter to remove turbidity components, and used as sample water.
Next, 500 to 1000 mL of sample water is filtered at a constant rate using a hydrophobic PVDF membrane (flat membrane) having a nominal pore size of 0.22 μm and using a stirring type pressure cell.
Then, after a predetermined increase in membrane differential pressure occurs, sponge washing and oxalic acid washing are performed, and the increment of the membrane differential pressure (m-Aq at 25 ° C.) that has not been recovered by these washings is measured, A value (m 3 / m 2 ) divided by the amount of filtered water per membrane area is obtained and defined as FP.
Reference materials: Koji Kashimada and one other, “Proposal of Fouling Potential in Water Treatment and Its Characteristic Evaluation (I)”, 60th National Waterworks Research Presentation Lecture, Japan Waterworks Association, May 2009, p. 134-135

2)SDI(Silt Density Index)、修正SDI
SDIは、ASTM D4189−95に記載されている方法であり、FI(Fouling Index)とも呼ばれる。
平均孔径0.45μm±0.02μm、直径47mmのメンブレンフィルター(一般に、ミリポア社製、セルロース混合エステル(TYPE HA))を用い、これに圧力207KPa(30psi)で被処理水を通水し、ろ過を行う。
まず、最初の500mLをろ過するのに要した時間(T0)を測定する。そして、そのままろ過を継続し、15分経過した後、さらに500mLをろ過し、それに要した時間(T15)を測定する。この2つの時間から、次式により、SDI(=FI)を求める。
SDI=(1−T0/T15)×100/T
ここでT=15であり、採取した時間(分)を意味する。
また、SDIが75%を超える場合は、15分ではなく、10分や5分と短い時間を採用し、それぞれ採用した時間Tで除す。
また、修正SDIは、測定方法はSDIと同じであるが、任意の細孔径の膜を使用した場合として提案されたものであり、細孔径0.2μmのナイロン膜が用いられる例がある。
参考資料:ASTM D4189−95
参考資料:松本幹治、古市光春、他2名、「膜ろ過プロセスにおける修正SDIによる水質評価」、膜、34(2)p.94−103(2009)
2) SDI (Silt Density Index), modified SDI
SDI is a method described in ASTM D4189-95, and is also called FI (Fouling Index).
A membrane filter (generally manufactured by Millipore, cellulose mixed ester (TYPE HA)) having an average pore diameter of 0.45 μm ± 0.02 μm and a pressure of 207 KPa (30 psi) was passed through the water to be treated and filtered. I do.
First, the time (T 0 ) required to filter the first 500 mL is measured. Then, the filtration is continued as it is, and after 15 minutes, 500 mL is further filtered, and the time (T 15 ) required for it is measured. From these two times, SDI (= FI) is obtained by the following equation.
SDI = (1-T 0 / T 15 ) × 100 / T
Here, T = 15, which means the time (minutes) collected.
When the SDI exceeds 75%, a short time such as 10 minutes or 5 minutes is adopted instead of 15 minutes, and the time T is divided by the adopted time T.
The modified SDI has the same measurement method as that of the SDI, but has been proposed as a case where a membrane having an arbitrary pore diameter is used, and there is an example in which a nylon membrane having a pore diameter of 0.2 μm is used.
Reference material: ASTM D4189-95
Reference materials: Mikiharu Matsumoto, Mitsuharu Furuichi, and two others, “Water quality assessment by modified SDI in membrane filtration process”, Membrane, 34 (2) p.94-103 (2009)

3)MFI(MFI0.45)、MFI−UF、NF−MFI、CFS−MFIUF
MFI(Modified Fouling Index)では、SDIと同じ平均孔径0.45μm、直径47mmのメンブレンフィルター(一般に、ミリポア社製、セルロース混合エステル(TYPE HA))を用い、これに圧力2.0bar(200kPa)で被処理水を通水し、ろ過を行う。
グラフの横軸及び縦軸をそれぞれ、ろ過水量:V(l)及びろ過時間/ろ過水量:t/V(s/l)として、20℃におけるろ過試験結果としてプロットし、t/V−Vカーブの直線となる部分の傾きを算出し、その値をMFIとする。
MFI−UF(Modified Fouling Index-Ultrafiltration)は、UF膜を利用して測定する場合であり、分画分子量13,000ダルトンのUF膜を使用する例がある
NF−MFI(Nanofiltration-Modified Fouling Index)は、NF膜を使用して測定する場合であり、500〜1500ダルトンのNF膜を使用する例がある。
CFS−MFIUF(Crossflow Sampler-Modified Fouling Index-Ultrafiltration)は、MFI−UF法に供給する試験水の前処理として、クロスフローろ過方式の膜ろ過装置を使用し、その膜ろ過水をMFI−UF法の評価装置に供給する方式である。
参考資料:Desalination, Vol.32, pp.137-148(1980)
参考資料:Jornal of Membrane Science, Vol.197, pp.1-21(2002)
参考資料:Desalination, Vol.192, pp.1-7(2006)
参考資料:Water Research, Vol.45, pp.1639-1650(2011)
3) MFI (MFI 0.45 ), MFI-UF, NF-MFI, CFS-MFI UF
In MFI (Modified Fouling Index), a membrane filter (generally manufactured by Millipore, cellulose mixed ester (TYPE HA)) having an average pore diameter of 0.45 μm and a diameter of 47 mm, which is the same as SDI, is used at a pressure of 2.0 bar (200 kPa). Water to be treated is passed through and filtered.
The horizontal axis and vertical axis of the graph are plotted as filtration test results at 20 ° C., with the filtered water amount: V (l) and the filtration time / filtered water amount: t / V (s / l), respectively, and the t / V-V curve. The slope of the part that becomes a straight line is calculated, and the value is defined as MFI.
MFI-UF (Modified Fouling Index-Ultrafiltration) is a case where measurement is performed using a UF membrane, and there is an example using a UF membrane with a molecular weight cut off of 13,000 daltons. NF-MFI (Nanofiltration-Modified Fouling Index) Is a case where measurement is performed using an NF membrane, and there is an example using an NF membrane of 500 to 1500 daltons.
CFS-MFI UF (Crossflow Sampler-Modified Fouling Index-Ultrafiltration) uses a cross-flow filtration type membrane filtration device as a pretreatment of test water supplied to the MFI-UF method, and the membrane filtration water is used as MFI-UF. This is a method of supplying to a legal evaluation device.
Reference materials: Desalination, Vol.32, pp.137-148 (1980)
Reference materials: Journal of Membrane Science, Vol.197, pp.1-21 (2002)
Reference: Desalination, Vol.192, pp.1-7 (2006)
Reference materials: Water Research, Vol.45, pp.1639-1650 (2011)

4)SUR
SUR(Specific Ultrafiltration Resistance)の測定方法は、基本的には、MFIと同じだが、実際に使用するUF膜から作成したミニモジュールを利用する。
MFI同様、t/V−Vカーブの直線となる部分の傾きを算出するが、それをろ過水量及び膜面積当たりに換算した値をSURとする。
参考資料:Desalination, Vol.179, pp.131-150(2005)
4) SUR
The measurement method of SUR (Specific Ultrafiltration Resistance) is basically the same as that of MFI, but uses a mini-module created from a UF membrane actually used.
Like MFI, the slope of the portion that becomes the straight line of the t / V-V curve is calculated, and the value obtained by converting the slope per filtered water volume and membrane area is SUR.
Reference: Desalination, Vol.179, pp.131-150 (2005)

5)UMFI
UMFI(Unified Membrane Fouling Index)は、実際に使用する膜でミニモジュールを作成し、それを用いてろ過試験を行う方法である。従って、ろ過条件は、使用する膜や実機の運転条件などによって選択される。
実際の膜ろ過装置は、定速ろ過で運転される場合が多いため、ろ過試験においても定速ろ過が採用される事が多い。
ケーキろ過理論が適用できるので、ケーキろ過定数を算出し、それをUMFIとする。
参考資料:Environ. Sci.Technol., Vol.42, pp.714-720(2008)
5) UMFI
The UMFI (Unified Membrane Fouling Index) is a method of creating a mini-module with a membrane actually used and performing a filtration test using the mini-module. Therefore, the filtration conditions are selected depending on the membrane used, the operating conditions of the actual machine, and the like.
Since an actual membrane filtration apparatus is often operated by constant speed filtration, constant speed filtration is often employed in filtration tests.
Since the cake filtration theory can be applied, the cake filtration constant is calculated and set as UMFI.
Reference: Environ. Sci. Technol., Vol.42, pp.714-720 (2008)

6)MF、KMF
MF(Membrane Filtration Time)法は、孔径0.45μm、直径47mmのメンブレンフィルター(例えばミリポア社製、セルロース混合エステル(TYPE HA))を用い、1リットルの被処理水を500mmHg(66kPa)の真空圧で吸引ろ過するのに要する吸引時間(t、秒)を求め、それを次式のように粘度補正して求める。
MF=μ25/μ×t
ここでμ25は25℃での粘度(Pa・s)、μは測定時の水温での粘度(Pa・s)を意味する。
なお、MFとKMFは同じ手法である。
参考資料:Desalination, Vol.20, pp.353-364(1977)
参考資料:澤田繁樹著、現場で役立つ膜ろ過技術、工業調査会(2006)
6) MF, KMF
The MF (Membrane Filtration Time) method uses a membrane filter having a pore diameter of 0.45 μm and a diameter of 47 mm (for example, cellulose mixed ester (TYPE HA) manufactured by Millipore), and 1 liter of water to be treated is vacuum pressure of 500 mmHg (66 kPa). Then, the suction time (t, second) required for suction filtration is obtained, and the viscosity is obtained by correcting the viscosity as in the following equation.
MF = μ 25 / μ × t
Here, μ 25 means the viscosity at 25 ° C. (Pa · s), and μ means the viscosity at the water temperature at the time of measurement (Pa · s).
MF and KMF are the same method.
Reference: Desalination, Vol.20, pp.353-364 (1977)
Reference material: Shigeki Sawada, useful membrane filtration technology in the field, Industrial Research Committee (2006)

本発明の評価方法では、膜閉塞物質指標として、上記のようなものを用いることができる。
本発明の評価方法では、前記原水および前記被処理水について紫外線吸光度(E260)を測定する。そして式(I)に基づきE260除去率を求める。そして、好ましくは予め求めたE260の除去率と膜閉塞物質指標の除去率との関係に基づいて、膜閉塞度指標の除去率を求め、さらに式(II)に基づいて被処理水の膜閉塞度指標を求めて、被処理水における膜閉塞度を把握し、評価することができる。
被処理水に含まれる膜閉塞物質の含有量の測定は手間と時間がかかるが、それに比べて紫外線吸光度は簡単かつ短時間で測定することができるので、本発明の評価方法によれば、水道原水等の被処理水に含まれる膜閉塞物質を正確かつ簡単に、そして迅速に測定して被処理水を評価することができる。
In the evaluation method of the present invention, the above can be used as the membrane occluding substance index.
In the evaluation method of the present invention, ultraviolet absorbance (E260) is measured for the raw water and the treated water. Then, the E260 removal rate is obtained based on the formula (I). Preferably, the removal rate of the membrane occlusion degree index is obtained based on the relationship between the removal rate of E260 and the removal rate of the membrane occlusion substance index determined in advance. The degree index can be obtained, and the degree of membrane blockage in the treated water can be grasped and evaluated.
Although the measurement of the content of the membrane occluding substance contained in the water to be treated takes time and effort, the ultraviolet absorbance can be measured easily and in a short time compared with it, so according to the evaluation method of the present invention, The water to be treated can be evaluated by accurately and easily measuring the membrane blocking substance contained in the water to be treated such as raw water.

<本発明の装置、本発明の装置の運転方法>
次に、本発明の装置について図1を用いて説明する。図1は本発明の装置の好適態様を示すものであるが、本発明の装置はこれに限定されない。
図1に示すように、本発明の装置10は、膜処理部12、紫外線吸光度測定手段としてのUV計14および低下処理手段(凝集剤注入手段)としての凝集剤注入装置16を有し、さらに評価手段(制御手段)としての制御部18を有する。
<The device of the present invention and the operation method of the device of the present invention>
Next, the apparatus of the present invention will be described with reference to FIG. FIG. 1 shows a preferred embodiment of the apparatus of the present invention, but the apparatus of the present invention is not limited to this.
As shown in FIG. 1, an apparatus 10 according to the present invention includes a film processing unit 12, a UV meter 14 as an ultraviolet absorbance measurement unit, and a flocculant injection device 16 as a reduction processing unit (coagulant injection unit). It has the control part 18 as an evaluation means (control means) .

原水1はタンク20へ供給され、ここで必要に応じて凝集剤注入装置16から注入管22を介して注入された凝集剤と混合される。そして、タンク20から被処理水3として排出される。排出された被処理水3は供給管24を介して膜処理部12へ供給される。膜処理部12は前述の分離膜を備えるものであり、例えば上向流式の態様のものであってよい。膜処理部12からは、膜分離された後のろ過水5が排出される。
また、供給管24には被処理水3の紫外線吸光度を測定するUV計14が配置されている。UV計14は被処理水3の紫外線吸光度を測定し、その計測データを制御部18へ送る。
The raw water 1 is supplied to the tank 20 where it is mixed with the flocculant injected from the flocculant injection device 16 through the injection pipe 22 as necessary. Then, it is discharged from the tank 20 as the treated water 3. The discharged treated water 3 is supplied to the membrane treatment unit 12 through the supply pipe 24. The membrane processing unit 12 includes the above-described separation membrane, and may be, for example, an upward flow type. From the membrane treatment part 12, the filtrate 5 after membrane separation is discharged.
In addition, a UV meter 14 that measures the ultraviolet absorbance of the water to be treated 3 is disposed in the supply pipe 24. The UV meter 14 measures the ultraviolet absorbance of the treated water 3 and sends the measurement data to the control unit 18.

制御部18では、本発明の評価方法の場合と同様に、原水1および被処理水3の紫外線吸光度の計測データから前述の式(I)に基づいてE260除去率を算出し、後に図2または図3として示すような、予め求められた紫外線吸光度の除去率と膜閉塞物質指標の除去率との関係に基づいて、被処理水の膜閉塞度指標を算出し、膜閉塞度を評価する。そして、膜閉塞度の程度(すなわち、多糖様物質等の膜閉塞物質の含有率)に基づいて、被処理水の膜閉塞度が所定値となるように、凝集剤注入装置16へ凝集剤注入量についての指示を送る。ここで凝集剤の注入量は、膜閉塞度の程度に基づいて変化させてもよいし、凝集剤注入量は一定としてUV計14による紫外線吸光度の測定を逐次行い、その測定結果に基づく膜閉塞度が所定値になるまで凝集剤の注入を繰り返し行ってもよい。   In the control unit 18, as in the evaluation method of the present invention, the E260 removal rate is calculated from the measurement data of the ultraviolet absorbance of the raw water 1 and the water to be treated 3 based on the above-described formula (I). Based on the relationship between the removal rate of the UV absorbance and the removal rate of the membrane occluding substance index that are obtained in advance as shown in FIG. Then, the flocculant is injected into the flocculant injecting device 16 so that the degree of film obstruction of the water to be treated becomes a predetermined value based on the degree of the membrane occlusion (that is, the content of the membrane occluding substance such as polysaccharide-like substance) Send instructions about quantity. Here, the injection amount of the flocculant may be changed on the basis of the degree of membrane occlusion, and the ultraviolet light absorbance measurement is sequentially performed by the UV meter 14 with the coagulant injection amount being constant, and the membrane occlusion based on the measurement result. The flocculant may be repeatedly injected until the degree reaches a predetermined value.

また、本発明の装置10は原水の紫外線吸光度を測定する手段を有していて被処理水3の紫外線吸光度と合わせて、または不定期にその紫外線吸光度を測定することが好ましい。しかし、原水1の紫外線吸光度が大きく変動しない場合は、例えば原水1の一部を採取し、本発明の装置の系外でその紫外線吸光度を測定して、その測定値を制御部18において利用してもよい。   In addition, the apparatus 10 of the present invention preferably has means for measuring the ultraviolet absorbance of raw water, and preferably measures the ultraviolet absorbance together with the ultraviolet absorbance of the water to be treated 3 or irregularly. However, if the ultraviolet absorbance of the raw water 1 does not vary greatly, for example, a part of the raw water 1 is collected, the ultraviolet absorbance is measured outside the system of the present invention, and the measured value is used in the control unit 18. May be.

本発明の装置は図1に示した態様のように、評価手段(制御手段、図1における制御部18)を備えることが好ましい。ただし、本発明の装置は評価手段(制御手段)を有さず、紫外線吸光度測定手段によって得られた紫外線吸光度から、人間が被処理水の膜閉塞度を評価し、その評価結果に基づいて低下処理手段(凝集剤注入手段)を行ってもよい。
また、低下処理手段としては、凝集剤注入装置の他にも、活性炭等を用いた吸着槽を用いることもできる。
The apparatus of the present invention preferably includes evaluation means ( control means, control unit 18 in FIG. 1) as in the embodiment shown in FIG. However, the apparatus of the present invention does not have an evaluation means (control means), and a human evaluates the degree of blockage of the water to be treated from the ultraviolet absorbance obtained by the ultraviolet absorbance measurement means, and decreases based on the evaluation result. Processing means (flocculant injection means) may be performed.
Moreover, as the lowering process hand stage, in addition to the coagulant injection unit, it can also be used adsorption vessel using activated carbon or the like.

このような本発明の装置10は、次のような本発明の装置の運転方法によって運転(操業)することが好ましい
すなわち、原水1について凝集剤注入装置16から凝集剤を添加して(紫外線吸光度発現物質および膜閉塞物質の含有量を低下させる処理を施して)被処理水3を得る凝集剤注入ステップと、分離膜を用いて処理してろ過水5を得るろ過処理ステップと、前記原水1および前記被処理水3についてUV計14を用いて紫外線吸光度を測定する紫外線吸光度測定ステップと、前記紫外線吸光度からその紫外線吸光度除去率を求め、該紫外線吸光度除去率に基づいて、前記被処理水3の膜閉塞物質の含有量を求め、被処理水3の膜閉塞を評価する膜閉塞性評価ステップと、前記膜閉塞性評価ステップによる膜閉塞の評価結果に基づいて、前記原水1へ凝集剤の注入(紫外線吸光度発現物質および膜閉塞物質の含有量を低下させる処理を行う)を制御する制御ステップとを備える方法によって、本発明の装置を運転することが好ましい。
Such an apparatus 10 of the present invention is preferably operated (operated) by the following operation method of the apparatus of the present invention. That is, a flocculant is added from the flocculant injection device 16 to the raw water 1 (ultraviolet light absorbance). A flocculant injecting step for obtaining treated water 3 by performing a treatment for reducing the contents of the expressed substance and the membrane occluding substance, a filtration step for obtaining filtered water 5 by using a separation membrane, and the raw water 1 And an ultraviolet absorbance measurement step for measuring the ultraviolet absorbance of the water to be treated 3 using a UV meter 14, a UV absorbance removal rate obtained from the UV absorbance , and the treated water 3 based on the UV absorbance removal rate. determine the content of the film plugging agent, based on the film obstructive evaluation step of evaluating the film obstructive treated water 3, the film obstructive rated film occlusive evaluation results of step There are, by a method and a control step of controlling the injection of the coagulant to the raw water 1 (performs processing for reducing the content of the ultraviolet absorbance expressed material and membrane plugging agent), to be operated device of the present invention preferable.

このように本発明の装置は、本発明の評価方法に基づいて被処理水を評価して、必要に応じて凝集剤の注入量を迅速かつ正確に調整することができるので、トラブルなく装置を運転することができる。   As described above, the apparatus of the present invention can evaluate the water to be treated based on the evaluation method of the present invention, and can adjust the injection amount of the flocculant quickly and accurately as necessary. You can drive.

<本発明のプラント、本発明のプラントの運転方法>
本発明のプラントについて説明する。
本発明のプラントは、本発明の装置を含む水処理プラントであれば特に限定されず、本発明の装置の他に、例えば従来公知の装置を含むプラントであってよい。
例えば、急速撹拌槽と、ここへpH調整剤(酸剤、アルカリ剤)および凝集剤を添加する添加手段と、緩速撹拌槽と、凝集沈殿槽と、本発明の装置とを含むプラントが挙げられる。このようなプラントでは、例えば水道原水を急速撹拌装置へ受け入れて、ここへpH調整剤(酸剤、アルカリ剤)および凝集剤を添加して急速撹拌することで微細なフロックを形成した後、緩速撹拌槽において一定時間緩やかに撹拌してフロックを成長させる。そして、凝集沈殿槽において凝集フロックと上澄水とに分離し、上澄水を本発明の装置によって処理することでろ過水を得ることができる。
<Plant of the present invention, operation method of the plant of the present invention>
The plant of the present invention will be described.
The plant of the present invention is not particularly limited as long as it is a water treatment plant including the apparatus of the present invention, and may be a plant including, for example, a conventionally known apparatus in addition to the apparatus of the present invention.
For example, a plant including a quick stirring tank, an adding means for adding a pH adjusting agent (acid agent, alkali agent) and a flocculant thereto, a slow stirring tank, a coagulating sedimentation tank, and the apparatus of the present invention can be mentioned. It is done. In such a plant, for example, tap water is received into a rapid stirrer, and after adding a pH adjusting agent (acid agent, alkali agent) and a flocculant thereto and stirring rapidly, a fine floc is formed and then loosened. The floc is grown by gently stirring for a certain period of time in a fast stirring tank. And it isolate | separates into a floc floc and supernatant water in a coagulation sedimentation tank, and filtrate water can be obtained by processing a supernatant water with the apparatus of this invention.

このような本発明のプラントは、本発明の装置の運転方法を含むことが好ましい。すなわち、本発明のプラントにおける本発明の装置の部分は、前述の本発明の装置の運転方法によって運転し、それ以外の部分は、従来公知の方法で運転することが好ましい。   Such a plant of the present invention preferably includes a method of operating the apparatus of the present invention. That is, it is preferable that the part of the apparatus of the present invention in the plant of the present invention is operated by the above-described operation method of the apparatus of the present invention and the other parts are operated by a conventionally known method.

このように本発明のプラントは、本発明の評価方法に基づいて被処理水を評価して、必要に応じて凝集剤の注入量を迅速かつ正確に調整することができるので、トラブルなくプラントを運転することができる。   As described above, the plant of the present invention can evaluate the water to be treated based on the evaluation method of the present invention, and can adjust the injection amount of the flocculant quickly and accurately as necessary. You can drive.

<実施例1>
3種類の水道原水(原水A、B、C)を用意し、各々について紫外線吸光度およびFPを測定した。紫外線吸光度およびFPの測定方法は、前述のとおりである(以下の実施例においても同様)。
次に、各々の水道原水に所定量の凝集剤を添加して(PAC:10〜40mg/L)凝集処理した後、得られた凝集処理水の紫外線吸光度およびFPを、水道原水の場合と同様の方法で測定した。
そして、水道原水および凝集処理水の各々についての紫外線吸光度およびFPから、紫外線吸光度除去率(E260除去率)およびFP除去率を算出した。紫外線吸光度除去率(E260除去率)およびFP除去率の算出方法は、前述のとおりである(以下の実施例においても同様)。
このような処理を、凝集剤の添加量を変化させて、各々の水道原水に対して4回行い、E260除去率とFP除去率との関係をグラフに示した。そのグラフを図2に示す。
図2から、各水道原水におけるE260除去率とFP除去率とは正比例関係を備えることがわかる。
<Example 1>
Three kinds of raw tap water (raw water A, B, C) were prepared, and ultraviolet absorbance and FP were measured for each. The methods for measuring UV absorbance and FP are as described above (the same applies to the following examples).
Next, after adding a predetermined amount of a flocculant to each raw tap water (PAC: 10 to 40 mg / L) and performing the agglomeration treatment, the ultraviolet absorbance and FP of the obtained agglomerated water are the same as in the case of the raw tap water. It measured by the method of.
And the ultraviolet-absorbance removal rate (E260 removal rate) and FP removal rate were computed from the ultraviolet-ray light absorbency and FP about each of raw | natural tap water and coagulation treated water. The method for calculating the UV absorbance removal rate (E260 removal rate) and the FP removal rate is as described above (the same applies to the following examples).
Such treatment was performed four times for each raw tap water while changing the addition amount of the flocculant, and the relationship between the E260 removal rate and the FP removal rate is shown in the graph. The graph is shown in FIG.
From FIG. 2, it can be seen that the E260 removal rate and the FP removal rate in each tap raw water have a direct proportional relationship.

<実施例2>
4種類の水道原水(原水D、E、F、G)について、紫外線吸光度およびFPを測定した。
次に、各々の水道原水に所定量の凝集剤を添加して(PAC:10〜80mg/L)凝集処理した後、得られた凝集処理水の紫外線吸光度およびFPを、水道原水の場合と同様の方法で測定した。
そして、水道原水および凝集処理水の各々についての紫外線吸光度およびFPから、紫外線吸光度除去率(E260除去率)およびFP除去率を算出した。
このような処理を採取日を変えて複数回行った。また、凝集剤の添加量を変化させた。
そして、E260除去率とFP除去率との関係をグラフに示した。そのグラフを図3に示す。
図3から、各水道原水におけるE260除去率とFP除去率とは正比例関係を備えることがわかる。
<Example 2>
Ultraviolet light absorbency and FP were measured for four types of tap water (raw water D, E, F, G).
Next, after adding a predetermined amount of a flocculant to each raw water (PAC: 10 to 80 mg / L) and aggregating, the UV absorbance and FP of the obtained agglomerated water are the same as in the case of raw water. It measured by the method of.
And the ultraviolet-absorbance removal rate (E260 removal rate) and FP removal rate were computed from the ultraviolet-ray light absorbency and FP about each of raw | natural tap water and coagulation treated water.
Such processing was performed several times with different collection dates. Moreover, the addition amount of the flocculant was changed.
The relationship between the E260 removal rate and the FP removal rate is shown in a graph. The graph is shown in FIG.
From FIG. 3, it can be seen that the E260 removal rate and the FP removal rate in each raw water supply have a directly proportional relationship.

<実施例3>
水道原水Hについて、紫外線吸光度およびFPを複数回測定し、実施例1および実施例2と同様の方法でE260除去率とFP除去率との関係を求めた。
その結果、水道原水HにおけるE260除去率とFP除去率との関係は原点を通過する正比例の関係であり、FP除去率/E260除去率=1.27であった。
<Example 3>
The raw water H was measured for ultraviolet absorbance and FP several times, and the relationship between the E260 removal rate and the FP removal rate was determined in the same manner as in Example 1 and Example 2.
As a result, the relationship between the E260 removal rate and the FP removal rate in the tap water H was a directly proportional relationship passing through the origin, and the FP removal rate / E260 removal rate = 1.27.

<実施例3−1>
水道原水Hを採取し、紫外線吸光度およびFPを測定したところ、紫外線吸光度(E260)は0.527、FPは8.0であった。
次に、この水道原水Hへ凝集剤(PAC、タイパック、大明化学工業社製)を50mg/Lで添加して混合し、凝集処理水を得た。そして、凝集処理水の紫外線吸光度およびFPを測定したところ、紫外線吸光度(E260)は0.174、FPは0.94であった。また、水道原水および凝集処理水の紫外線吸光度(E260)から、紫外線吸光度除去率(E260除去率)は67.0%と算出された。
次に、上記のE260除去率(67.0%)と、FP除去率/E260除去率(1.27)とから、FP除去率の予測値を算出し、さらにその算出結果から凝集処理水のFPを算出した。その結果、凝集処理水のFPの予測値は1.19であり、実測値と非常に近い値であった。
実測値および予測値を第1表に示す。
<Example 3-1>
The tap water H was sampled and the ultraviolet absorbance and FP were measured. The ultraviolet absorbance (E260) was 0.527 and the FP was 8.0.
Next, a flocculant (PAC, Thai Pack, manufactured by Daimei Chemical Industry Co., Ltd.) was added to the tap water H and mixed at 50 mg / L to obtain agglomerated treated water. And when the ultraviolet light absorbency and FP of coagulation process water were measured, the ultraviolet light absorbency (E260) was 0.174 and FP was 0.94. Moreover, the ultraviolet light absorbance removal rate (E260 removal rate) was calculated to be 67.0% from the ultraviolet light absorbance (E260) of raw tap water and coagulated water.
Next, a predicted value of the FP removal rate is calculated from the E260 removal rate (67.0%) and the FP removal rate / E260 removal rate (1.27), and the aggregation treatment water is further calculated from the calculation result. FP was calculated. As a result, the predicted value of the FP of the flocculated water was 1.19, which was very close to the actual measurement value.
The actually measured values and the predicted values are shown in Table 1.

<実施例3−2>
実施例3−1とは別の日に水道原水Hを採取し、実施例3−1と同様に、紫外線吸光度を測定したところ0.512であった。FPは数日ではほぼ変化しないため、実施例3−1と同様に8.0とした。
そして、実施例3−1の場合と同様に、水道原水Hへ凝集剤を50mg/Lで添加して混合し、凝集処理水を得た後、凝集処理水の紫外線吸光度およびFPを測定したところ、紫外線吸光度は0.189、FPは1.41であった。また、水道原水および凝集処理水の紫外線吸光度から、紫外線吸光度除去率(E260除去率)は63.1%と算出された。
次に、上記のE260除去率(63.1%)と、FP除去率/E260除去率(1.27)とから、FP除去率の予測値を算出し、さらにその算出結果から凝集処理水のFPを算出した。その結果、凝集処理水のFPの予測値は1.60であり、実測値と非常に近い値であった。
実測値および予測値を第1表に示す。
<Example 3-2>
The raw tap water H was collected on a different day from Example 3-1, and the ultraviolet absorbance was measured in the same manner as in Example 3-1. Since FP hardly changed in several days, it was set to 8.0 like Example 3-1.
Then, as in Example 3-1, the flocculant was added to the raw tap water H at 50 mg / L and mixed to obtain the agglomerated treated water, and then the ultraviolet absorbance and FP of the agglomerated treated water were measured. The UV absorbance was 0.189, and the FP was 1.41. Moreover, the ultraviolet light absorbance removal rate (E260 removal rate) was calculated to be 63.1% from the ultraviolet light absorbance of raw tap water and coagulated water.
Next, a predicted value of the FP removal rate is calculated from the E260 removal rate (63.1%) and the FP removal rate / E260 removal rate (1.27), and the aggregation treatment water is further calculated from the calculation result. FP was calculated. As a result, the predicted value of the FP of the flocculated water was 1.60, which was very close to the actually measured value.
The actually measured values and the predicted values are shown in Table 1.

<実施例3−3>
実施例3−1および実施例3−2とは別の日に水道原水Hを採取し、実施例3−1と同様に、紫外線吸光度を測定したところ0.502であった。FPは数日ではほぼ変化しないため、実施例3−1と同様に8.0とした。
そして、実施例3−1の場合と同様に、水道原水Hへ凝集剤を50mg/Lで添加して混合し、凝集処理水を得た後、凝集処理水の紫外線吸光度およびFPを測定したところ、紫外線吸光度は0.201、FPは1.72であった。また、水道原水および凝集処理水の紫外線吸光度から、紫外線吸光度除去率(E260除去率)は60.0%と算出された。
次に、上記のE260除去率(60.0%)と、FP除去率/E260除去率(1.27)とから、FP除去率の予測値を算出し、さらにその算出結果から凝集処理水のFPを算出した。その結果、凝集処理水のFPの予測値は1.90であり、実測値と非常に近い値であった。
実測値および予測値を第1表に示す。
<Example 3-3>
The raw tap water H was collected on a different day from Example 3-1 and Example 3-2, and the ultraviolet absorbance was measured in the same manner as in Example 3-1. Since FP hardly changed in several days, it was set to 8.0 like Example 3-1.
Then, as in Example 3-1, the flocculant was added to the raw tap water H at 50 mg / L and mixed to obtain the agglomerated treated water, and then the ultraviolet absorbance and FP of the agglomerated treated water were measured. The UV absorbance was 0.201 and FP was 1.72. Moreover, the ultraviolet light absorption removal rate (E260 removal rate) was calculated to be 60.0% from the ultraviolet light absorbance of tap water and coagulated water.
Next, a predicted value of the FP removal rate is calculated from the E260 removal rate (60.0%) and the FP removal rate / E260 removal rate (1.27), and the aggregation treatment water is further calculated from the calculation result. FP was calculated. As a result, the predicted value of the FP of the flocculated water was 1.90, which was very close to the actual measurement value.
The actually measured values and the predicted values are shown in Table 1.

Figure 0005863176
Figure 0005863176

1 原水
3 被処理水
5 ろ過水
10 本発明の装置
12 膜処理部
14 UV計
16 凝集剤注入装置
18 制御部
20 タンク
22 注入管
24 供給管
DESCRIPTION OF SYMBOLS 1 Raw water 3 To-be-processed water 5 Filtration water 10 Apparatus of this invention 12 Membrane processing part 14 UV meter 16 Coagulant injection apparatus 18 Control part 20 Tank 22 Injection pipe 24 Supply pipe

Claims (9)

原水と、該原水に含まれる紫外線吸光度発現物質および膜閉塞物質の含有量を低下させる処理によって得られた被処理水と、
前記原水及び前記被処理水について紫外線吸光度を測定し、
前記紫外線吸光度の測定結果から該紫外線吸光度の除去率を求め、
前記紫外線吸光度の除去率から、前記被処理水の前記膜閉塞物質のうち多糖様物質の含有量を算出により求め、該算出結果から前記被処理水の膜閉塞性を評価することを特徴とする被処理水の評価方法。
Raw water, water to be treated obtained by a treatment for reducing the content of the ultraviolet light absorbance-expressing substance and the membrane occluding substance contained in the raw water,
The raw water and the measured UV absorbance for the treatment water,
Obtaining the removal rate of the ultraviolet absorbance from the measurement result of the ultraviolet absorbance,
The content of the polysaccharide-like substance in the membrane plugging substance of the treated water is calculated from the removal rate of the ultraviolet absorbance, and the membrane blocking property of the treated water is evaluated from the calculation result. Evaluation method of treated water.
前記被処理水における膜閉塞性の評価は、
予め求められた前記紫外線吸光度の除去率と膜閉塞物質指標の除去率との相関関係に基づいて、該膜閉塞物質指標の除去率から前記被処理水中の膜閉塞物質の含有量を求め、該膜閉塞物質の含有量により行うことを特徴とする請求項1に記載の被処理水の評価方法。
Evaluation of the membrane occlusion in the treated water is
Based on the correlation between the removal rate of the ultraviolet absorbance and the removal rate of the membrane occluding substance index determined in advance, the content of the membrane occluding material in the treated water is determined from the removal rate of the membrane occluding material indicator, The method for evaluating water to be treated according to claim 1, wherein the evaluation is performed based on the content of the membrane occluding substance.
原水の紫外線吸光度発現物質および膜閉塞物質の含有量を低下させるために凝集剤注入を行い、被処理水を得る凝集剤注入手段と、
前記原水及び前記被処理水の紫外線吸光度を測定する紫外線吸光度測定手段と、
前記被処理水をろ過処理してろ過水を得る膜処理手段と、
前記紫外線吸光度測定手段によって得られた紫外線吸光度からその紫外線吸光度除去率を求め、該紫外線吸光度除去率から前記被処理水の膜閉塞物質の含有量を求めて、該被処理水の膜閉塞性を評価し、該膜閉塞性の評価結果に基づいて、前記凝集剤注入手段により前記凝集剤の注入を制御する制御手段と、
を有することを特徴とする膜処理装置。
A flocculant injection means for injecting a flocculant to reduce the contents of the raw material's ultraviolet absorbance expression substance and the membrane occluding substance, and to obtain treated water;
Ultraviolet absorbance measuring means for measuring the ultraviolet absorbance of the raw water and the treated water;
Membrane treatment means for filtering the treated water to obtain filtered water;
The ultraviolet absorbance removal rate is obtained from the ultraviolet absorbance obtained by the ultraviolet absorbance measurement means, the content of the membrane-occluding substance of the treated water is obtained from the ultraviolet absorbance removal rate, and the membrane occluding property of the treated water is determined. And a control means for controlling the injection of the flocculant by the flocculant injection means based on the evaluation result of the membrane occlusiveness,
A film processing apparatus comprising:
前記制御手段は、予め求められた前記紫外線吸光度の除去率と膜閉塞物質指標の除去率との相関関係に基づいて、前記膜閉塞度を求めることを特徴とする請求項3に記載の膜処理装置。   4. The membrane treatment according to claim 3, wherein the control means obtains the degree of membrane occlusion based on a correlation between the removal rate of the ultraviolet absorbance and the rate of removal of the membrane occlusion substance index that are obtained in advance. apparatus. 前記紫外線吸光度除去率(式(I))及び前記膜閉塞物質指標の除去率(式(II))は、次式により算出されることを特徴とする請求項4に記載の膜処理装置。
・(原水の紫外線吸光度−被処理水の紫外線吸光度)/原水の紫外線吸光度×100・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・式(I)
・(原水の膜閉塞物質指標−被処理水の膜閉塞物質指標)/原水の膜閉塞物質指標×100・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・式(II)
5. The film processing apparatus according to claim 4, wherein the ultraviolet absorbance removal rate (formula (I)) and the membrane blocking substance index removal rate (formula (II)) are calculated by the following formulae.
・ (UV absorbance of raw water-UV absorbance of water to be treated) / UV absorbance of raw water x 100 ...・ ・ ・ ・ ・ ・ ・ ・ Formula (I)
・ (Raw water membrane blocking substance index-treated water membrane blocking substance index) / Raw water membrane blocking substance index x 100 ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Formula (II)
請求項3〜5のいずれかに記載の膜処理装置を含むことを特徴とする水処理プラント。   A water treatment plant comprising the membrane treatment apparatus according to claim 3. 原水の紫外線吸光度発現物質および膜閉塞物質の含有量を低下させ被処理水を得るために凝集剤注入する処理を行う凝集剤注入処理ステップと、
前記原水及び前記被処理水の紫外線吸光度を測定する紫外線吸光度測定ステップと、
前記被処理水から分離膜を用いてろ過水を得るろ過処理ステップと、
前記紫外線吸光度からその紫外線吸光度除去率を求め、該紫外線吸光度除去率に基づいて、前記被処理水の膜閉塞物質の含有量を求め、該被処理水の膜閉塞性を評価する膜閉塞性評価ステップと、
前記膜閉塞性評価ステップによる膜閉塞性の評価結果に基づいて、前記凝集剤注入処理ステップにより前記凝集剤の注入を制御する制御ステップと、
を備えることを特徴とする膜処理装置の運転方法。
A flocculant injection treatment step for performing a treatment of injecting the flocculant in order to reduce the contents of the raw material ultraviolet absorbance expression substance and the membrane plugging substance and obtain water to be treated;
An ultraviolet absorbance measurement step for measuring the ultraviolet absorbance of the raw water and the treated water;
A filtration step for obtaining filtered water from the treated water using a separation membrane;
Obtaining the ultraviolet absorbance removal rate from the ultraviolet absorbance, obtaining the content of the membrane occluding substance of the treated water based on the ultraviolet absorbance removal rate, and evaluating the membrane occluding property of the treated water Steps,
Based on the evaluation result of the membrane occlusive property by the membrane occlusive property evaluation step, a control step for controlling the injection of the flocculating agent by the coagulant injecting treatment step,
A method for operating a film processing apparatus comprising:
前記膜閉塞性評価ステップにおいて、予め求められた前記紫外線吸光度の除去率と膜閉塞物質指標の除去率との相関関係に基づいて、前記膜閉塞度を求めることを特徴とする請求項7に記載の膜処理装置の運転方法。   8. The degree of membrane occlusion is obtained based on a correlation between the removal rate of the ultraviolet absorbance and the rate of removal of the membrane occlusion substance index obtained in advance in the membrane occlusion evaluation step. Of operating the membrane treatment apparatus of the present invention. 請求項7または8に記載の膜処理装置の運転方法を含むことを特徴とする水処理プラントの運転方法。   A method for operating a water treatment plant, comprising the method for operating a membrane treatment apparatus according to claim 7 or 8.
JP2012097767A 2012-04-23 2012-04-23 Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof Active JP5863176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012097767A JP5863176B2 (en) 2012-04-23 2012-04-23 Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012097767A JP5863176B2 (en) 2012-04-23 2012-04-23 Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof

Publications (3)

Publication Number Publication Date
JP2013223846A JP2013223846A (en) 2013-10-31
JP2013223846A5 JP2013223846A5 (en) 2015-02-05
JP5863176B2 true JP5863176B2 (en) 2016-02-16

Family

ID=49594318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012097767A Active JP5863176B2 (en) 2012-04-23 2012-04-23 Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof

Country Status (1)

Country Link
JP (1) JP5863176B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530996B2 (en) * 2015-03-03 2019-06-12 水ing株式会社 Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus
JP6441712B2 (en) * 2015-03-03 2018-12-19 水ing株式会社 Method for evaluating membrane clogging of treated water
JP6486799B2 (en) * 2015-09-04 2019-03-20 水ing株式会社 MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170458A (en) * 1999-12-15 2001-06-26 Meidensha Corp Method of detecting membrane breaking and fouling in membrane cleaning
KR100338346B1 (en) * 2000-05-24 2002-05-30 박호군 Membrane filtration equipment and method for simultaneously and continuously monitoring time-based membrane fouling
JP2008126223A (en) * 2006-11-27 2008-06-05 Meidensha Corp Membrane treatment system
US8070951B2 (en) * 2008-06-19 2011-12-06 University Of Washington Through Its Center For Commercialization Method for removing contaminants from liquids using membrane filtration in combination with particle adsorption to reduce fouling
JP5407994B2 (en) * 2009-08-11 2014-02-05 栗田工業株式会社 Water treatment method and water treatment flocculant

Also Published As

Publication number Publication date
JP2013223846A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
Choi et al. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes
Kim et al. A hybrid microfiltration–granular activated carbon system for water purification and wastewater reclamation/reuse
WO2014103860A1 (en) Water treatment method
Brehant et al. Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
Delgado et al. Aerobic membrane bioreactor for wastewater treatment–Performance under substrate-limited conditions
Mitrouli et al. New granular materials for dual-media filtration of seawater: Pilot testing
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
Mitrouli et al. Pretreatment for desalination of seawater from an open intake by dual-media filtration: Pilot testing and comparison of two different media
JP2012213676A (en) Water quality evaluation method and operation management method for water treatment apparatus
Frick et al. Evaluation of pretreatments for a blowdown stream to feed a filtration system with discarded reverse osmosis membranes
JP2008264723A (en) Method and apparatus for coagulating impurity
Zait et al. Analysis and optimization of operating conditions on ultrafiltration of landfill leachate using a response surface methodological approach
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
JP7113454B2 (en) Water treatment method and equipment
JP6530996B2 (en) Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus
JP6486799B2 (en) MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX
Hilal et al. Enhanced membrane pre‐treatment processes using macromolecular adsorption and coagulation in desalination plants: a review
EP2137113B1 (en) Method for reducing fouling in microfiltration systems
Vera et al. Can microfiltration of treated wastewater produce suitable water for irrigation?
Kucera Reverse osmosis: Fundamental causes of membrane deposition and approaches to mitigation
JP5993605B2 (en) Flocculant evaluation method and flocculant processing apparatus
Bogati Membrane fouling and its control in drinking water membrane filtration process
Kawasaki et al. The filtration characteristics of hollow fiber microfiltration—Effect of various kinds of solids in the excess activated sludge
JP2008062223A (en) Membrane filtering method and membrane filtering system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5863176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250