JP3841735B2 - Filtration membrane cleaning method - Google Patents

Filtration membrane cleaning method Download PDF

Info

Publication number
JP3841735B2
JP3841735B2 JP2002273171A JP2002273171A JP3841735B2 JP 3841735 B2 JP3841735 B2 JP 3841735B2 JP 2002273171 A JP2002273171 A JP 2002273171A JP 2002273171 A JP2002273171 A JP 2002273171A JP 3841735 B2 JP3841735 B2 JP 3841735B2
Authority
JP
Japan
Prior art keywords
ozone
water
membrane
filtration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002273171A
Other languages
Japanese (ja)
Other versions
JP2004105876A (en
Inventor
欽三 磯村
健治 中谷
吉彦 森
昌年 橋野
昇一 須田
寅太郎 峯岸
角川  功明
和孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISOMURA HOSUI KIKO KABUSHIKI KAISHA
Fuji Electric Co Ltd
JFE Engineering Corp
Asahi Kasei Chemicals Corp
Original Assignee
ISOMURA HOSUI KIKO KABUSHIKI KAISHA
JFE Engineering Corp
Asahi Kasei Chemicals Corp
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISOMURA HOSUI KIKO KABUSHIKI KAISHA, JFE Engineering Corp, Asahi Kasei Chemicals Corp, Fuji Electric Holdings Ltd filed Critical ISOMURA HOSUI KIKO KABUSHIKI KAISHA
Priority to JP2002273171A priority Critical patent/JP3841735B2/en
Publication of JP2004105876A publication Critical patent/JP2004105876A/en
Application granted granted Critical
Publication of JP3841735B2 publication Critical patent/JP3841735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、上水道、下水道、工業用水または廃水処理の水処理方法、特に、膜ろ過処理を用いた水処理方法及び水処理装置に用いられるろ過膜の洗浄方法に関する。
【0002】
【従来の技術】
従来の膜ろ過法では、運転を継続すると、膜供給水として膜ろ過処理に供給される原水中の懸濁物質および有機物質等により、膜面あるいは膜孔内が汚染され膜ろ過水量の低下もしくは膜間差圧の上昇が見られる。
【0003】
そのため膜面および膜孔内の汚染を防止するため、通常、定期的な物理洗浄を行う。物理洗浄方法としては、例えば膜ろ過水を膜ろ過水側から原水供給側に通水する逆流洗浄や、ろ過膜の一次側から空気または空気と原水を通流させる空気洗浄等が挙げられる。これらの方法は、膜表面および膜孔内の付着物や固形物に起因する目詰まりに非常に有効であり、膜間差圧の上昇を軽減する効果がある。昨今では、この物理洗浄に加えてオゾン処理を併用する方法が発案され、例えば、特開2002−35552号公報、特開2002−35554号公報、特開2002−79064号公報等に記載されている。これらの方法はオゾン含有水で膜を洗浄する方法であり、膜表面および膜孔内の付着物をオゾンの酸化作用により分解し、除去するものである。
【0004】
【発明が解決しようとする課題】
しかしながら従来のオゾン含有水による洗浄には、以下のような問題点があった。
【0005】
第1に、オゾン含有水オゾン濃度が一定であり原水水質安定時、もしくは膜の汚染状態が進行していない状態においては、オゾン注入量が過剰であり不経済である。
【0006】
第2に、膜の汚染がある程度進行した状態では、オゾン含有水オゾン濃度が過小となり膜間差圧が上昇する。
【0007】
第3に、原水水質悪化時に膜への負荷が過剰にかかる条件では、オゾン含有水オゾン濃度が過小となり膜間差圧が上昇する。
【0008】
第4に、低水温時においては、排水中に所定範囲のオゾン濃度が残留してもオゾンが未反応となり膜間差圧が上昇する。
【0009】
本発明は、上記課題を解決するためになされたものであり、高流束の膜ろ過時においても膜の目詰まりを大幅に軽減できるだけでなく、未然に目詰まりを防止することが可能であり、かつ過剰なオゾン注入を防止することにより経済的に水処理することを可能にするろ過膜の洗浄方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明のろ過膜の洗浄方法は、原水を膜ろ過手段により処理して膜ろ過水を得る膜ろ過工程と、前記膜ろ過水の一部にオゾンを注入してオゾン処理水を得るオゾン注入工程と、前記オゾン処理水を前記膜ろ過手段のろ過水側から供給してろ過膜を逆流洗浄するろ過膜洗浄工程とを具備するろ過膜の洗浄方法において、
前記逆流洗浄によりろ過膜を通過した排水中の残留オゾン濃度を検出し、検出残留オゾン濃度に基づいて前記ろ過膜に付着した汚染物質を除去するために必要なオゾン量を演算により求め、算出したオゾン量に基づいて前記オゾン注入工程の注入オゾン量を制御する工程と、
前記原水の水温を検出し、検出水温に基づいて前記ろ過膜に付着した汚染物質を除去するために必要な反応時間を演算により求め、算出した反応時間に基づいて前記ろ過膜洗浄工程の逆流洗浄時間を制御する工程と、
を具備する。
【0011】
本発明のろ過膜の洗浄方法は、前記注入オゾン量制御工程では、逆流洗浄排水中の残留オゾン濃度が0.01〜10mg/Lの範囲内となるように前記注入オゾン量を制御することが好ましい。
【0012】
本発明のろ過膜の洗浄方法は、前記注入オゾン量制御工程では、逆流洗浄排水中の残留オゾン濃度の代わりに前記原水の水質を検出し、検出した水質を用いて必要なオゾン量を演算により求めることも可能である。
【0013】
以下、本発明を詳しく説明する。
【0014】
本発明に従うろ過膜の洗浄では逆流洗浄時間を制御する必要がある。逆流洗浄時間を制御しないと水温が低下した場合は、オゾンと膜面の汚染物質との反応速度が小さくなり、逆流洗浄排水中に所定の濃度範囲を超える未反応の残留オゾンが検出される。一方、水温が上昇した場合は、オゾンと膜面の汚染物質との反応速度およびオゾンの自己分解が速くなり、逆流洗浄排水中に所定の濃度範囲以内の残留オゾンが検出できなくなる。このため、水温により逆流洗浄時間を制御するのである。ここで、本明細書中において「逆流洗浄排水」とは、定常運転時の水流とは逆向きにオゾン処理水をろ過膜に供給し、ろ過膜から離脱した汚染物質を含む排水のことをいう。
【0015】
従って、オゾンと膜面の汚染物質との反応速度が水温により変化することを考慮すると、原水の水温に応じて逆流洗浄時間を15秒〜300秒間の範囲で変化させることが好ましい。逆流洗浄時間が300秒間よりも長くなると膜ろ過装置による原水のろ過処理が停止している時間が長くなり装置の稼動率が下がってしまう恐れがある。一方、逆流洗浄時間が15秒よりも短くなると1回の逆流洗浄流量が過剰になり、膜ろ過装置にかかる負荷が高くなり過ぎる恐れがある。以上のことから逆流洗浄時間は、好ましくは15秒〜300秒間、より好ましくは30〜120秒間の範囲で変化させる。
【0016】
逆流洗浄排水中の残留オゾン濃度は、0.01〜10mg/Lとすることが好ましい。逆流洗浄中に消費されるオゾン量を勘案すると逆流洗浄排水中の残留オゾン濃度が10mg/Lを超すと、逆流洗浄に用いられるオゾン処理水のオゾン濃度が高くなるためろ過膜に耐オゾン性の膜素材を用いても長期的にはオゾンとの反応により膜劣化が起こる恐れがある。このため膜モジュールの交換時期を考え合わせると、残留オゾン濃度は10mg/Lまでは許容され得る。一方、逆流洗浄排水中の残留オゾン濃度が0.01mg/L未満の場合には、ろ過膜に付着した汚染物質を除去するためのオゾンの効果を十分に得ることが困難になる恐れがある。以上のことから逆流洗浄排水中の残留オゾン濃度は、好ましくは0.01〜10mg/L、より好ましくは0.1〜5mg/Lとする。
【0017】
ろ過膜を逆流洗浄する際、逆流流束は、膜ろ過流束の0.2〜5倍とすることが好ましい。0.2倍を下回ると十分な洗浄効果が得られなくなる恐れがあり、一方、5倍を上回ると膜が損傷を受ける恐れがある。このため、逆流流束は膜ろ過流束の0.2〜5倍とすることが好ましく、より好ましくは0.5〜3倍とする。
【0018】
残留オゾン濃度の代わりに原水の水質を検出し、この検出結果によりろ過膜に付着した汚染物質を除去するために必要なオゾン量を算出し、オゾン処理水のオゾン濃度を制御することも可能である。ここで、本明細書中において「水質」とは水の汚染度の尺度となる濁度、過マンガン酸カリウム消費量、TOC、紫外線吸光度、色度等を含む包括的な概念をいう。
【0019】
【発明の実施の形態】
以下、本発明のろ過膜の洗浄方法を図1を参照して詳細に説明する。なお、この実施形態は本発明に限定を加えるものではない。
【0020】
図1は、本発明の一実施形態を説明するための水処理装置を示すブロック図である。図1に示すように、本発明に従うろ過膜の洗浄方法が用いられる水処理装置は、循環水槽(又は膜供給水槽)2、膜ろ過装置4、膜ろ過水槽7、オゾン発生器11および、散気管13が内蔵された逆洗水槽10を備える。
【0021】
循環水槽(又は膜供給水槽)2は、供給ライン1を介して原水供給タンク(図示せず)等に連通されている。ライン1には、原水水温計18および原水濁度計19が設けられている。循環水槽(又は膜供給水槽)2はさらに、バルブV1が設けられた供給ライン22を介して膜ろ過装置4に連通されている。ライン22には、供給ポンプ3が設置されている。膜ろ過装置4には、膜間差圧測定器21が設けられている。膜ろ過装置4はバルブV2が設けられた膜ろ過水ライン6を介して膜ろ過水槽7に連通されている。膜ろ過水槽7は、処理用水ライン8を介して用水タンク(図示せず)等に連通されている。さらに、膜ろ過水槽7は膜ろ過水ライン9を介して散気管13が内蔵された逆洗水槽10に連通されている。逆洗水槽10には、オゾン発生器11がオゾンガス移送ライン12を介して接続されている。逆洗水槽10は、オゾン処理水ライン14,23を介して膜ろ過水ライン6に連通されている。ライン14,23の接続部には、逆洗ポンプ15が設けられ、オゾン処理水ライン23にはバルブV3が設けられている。ライン22のバルブV1の下流側またはろ過装置4の原水側には、バルブV6を介してコンプレッサー24が連通されている。ライン6と連通された膜ろ過装置4はバルブV5が設けられた循環ライン5を介して循環水槽(又は膜供給水槽)2に連通されている。ライン5には、バルブV4が設けられた逆流洗浄排水ライン16が接続されている。ライン16は排水タンク(図示せず)等に接続されている。ライン16には、オゾン検知器17が設けられている。
【0022】
供給ポンプ3、オゾン発生装置11、逆洗ポンプ15、オゾン検知器17、原水水温計18、原水濁度計19は、コントローラ20に接続されている。
【0023】
次に作用について説明する。始めに原水を膜ろ過処理する場合について説明する。
【0024】
原水を膜ろ過する際は、バルブV1,V2,V5を開ける。原水を原水供給タンク(図示せず)から供給ライン1を通して循環水槽(又は膜供給水槽)2に供給する。続いてコントローラ20からの信号により供給ポンプ3を駆動させ、原水を循環水槽(又は膜供給水槽)2から供給ライン22を通して膜ろ過装置4へ圧送し、膜ろ過する。供給した原水の一部は循環ライン5を通して循環水槽(又は膜供給水槽)2へ送り、再び膜ろ過処理を施す。膜ろ過水は膜ろ過装置4から膜ろ過水ライン6を通して膜ろ過水槽7へ送る。膜ろ過水槽7中の膜ろ過水の一部を膜ろ過水ライン9を通して逆洗水槽10へ移送し、残りの膜ろ過水を処理用水ライン8を通して用水タンク(図示せず)に移送し処理用水として得る。このようにして原水を膜ろ過処理する。処理用水は、所定範囲内の回収率となるようにする。所定の時間膜ろ過処理を行った後、コントローラ20からの信号により供給ポンプ3を停止させ、バルブV1,V2,V5を閉じる。膜ろ過処理は、一定時間行っても良いし、原水の濁度を濁度計19により測定し、この結果より処理時間を決定しても良い。また、ろ過膜の膜間差圧を膜間差圧計21により測定し、この結果が一定の値に達するまで処理を行うようにしても良く、この場合、膜間差圧計21をコントローラ20の入力部に接続し、入力信号に基づいて制御するようにしても良い。
【0025】
次にろ過膜を逆流洗浄する場合について説明する。
【0026】
膜ろ過及びろ過膜の洗浄の間、逆洗水槽10に吹き込まれるオゾン量が所定の目標値となるようにコントローラ20からの信号によりオゾン発生器11をリアルタイムで制御する。オゾン発生器11から所定量のオゾンガスをオゾン発生器11の定常運転時の基本圧力によりオゾンガス移送ライン12を経て逆洗水槽10の散気管13に送る。散気管13からオゾンガスを逆洗水槽10内の膜ろ過水に吹き込む。このようにして逆洗水槽10中の膜ろ過水をオゾン処理し、所定範囲のオゾン濃度を有するオゾン処理水を得る。なお、所定のオゾン濃度を有するオゾン処理水を得るためには、オゾン発生器11から散気管13へ送るオゾンガスのオゾンガス濃度を制御することにより行っても良いし、オゾンガス流量を制御することにより行っても良い。
【0027】
ろ過膜を逆流洗浄する際は、バルブV3,V4を開ける。コントローラ20からの信号により逆洗ポンプ15を駆動させ、得られたオゾン処理水をオゾン処理水ライン14,23を通して膜ろ過水ライン6に送る。引き続きオゾン処理水を逆流洗浄水としてライン6を通して膜ろ過装置4のろ過水側から原水供給側へ圧送する。さらに、バルブV6を開き、コンプレッサー24からライン22を通して膜ろ過装置4の原水側へ空気を圧送して、逆流洗浄と同時にろ過膜の原水側を空気洗浄することもできる。ろ過膜の逆流洗浄は、所定時間毎に逆洗ポンプ15を駆動させることにより行う。逆洗ポンプ15の駆動は、一定時間毎だけでなく、濁度計19が検出する原水の濁度により決定される時間毎に行うのであっても良い。また、膜間差圧計21が検出する膜間差圧が所定の範囲を超えたときに行うのであっても良い。
【0028】
さらに、逆流洗浄終了後、バルブV3,V6を閉じ、バルブV1を開けて、コントローラ20からの信号により供給ポンプ3を駆動させ、原水を膜ろ過装置に供給し、フラッシングを行うこともできる。この原水によるフラッシングにより、逆流洗浄によってろ過膜から剥離した汚れや目詰まり物質を膜ろ過装置4から排出することができる。これにより、膜の汚れや目詰まり物質を効果的に除去することができる。
【0029】
ろ過膜を通過した逆流洗浄排水は、逆流洗浄排水ライン16を通して排水タンク(図示せず)等に排出する。このとき、ライン16中の逆流洗浄排水の残留オゾン濃度をオゾン検知器17により測定する。逆流洗浄終了後はバルブV3,V4を閉じ、その後バルブV1,V2,V5を開けて膜ろ過処理を再び開始する。
【0030】
本発明のろ過膜の洗浄方法が用いられる水処理においては、以上のような膜ろ過およびろ過膜の逆流洗浄を繰り返し交互に行う。
【0031】
膜ろ過時、原水水温計18により原水の水温を測定する。この測定結果は、コントローラ20に送られ、コントローラ20はろ過膜に付着した汚染物質を除去するために必要な逆流洗浄時のオゾン反応時間を演算処理する。この処理結果よりポンプ15を制御することにより逆流洗浄時間を制御することができる。なお、コントローラ20は、例えばCPU(中央処理装置)等を用いることができる。
【0032】
さらにまた、逆流洗浄時、オゾン検知器17により逆流洗浄排水中の残留オゾン濃度を測定する。この測定結果はコントローラ20に送られ、コントローラ20はろ過膜に付着した汚染物質を除去するために必要なオゾン消費量を演算処理する。この処理結果よりオゾン発生器11から発生するオゾンガスの注入量をフィードバック制御し、オゾン処理水中のオゾン濃度を変えることができる。膜ろ過開始時で逆流洗浄排水中の残留オゾン濃度の測定結果がまだ得られていない場合は、例えば、予備実験結果や原水水質の検査結果に応じて適当なオゾンガス注入率を予め決定しておくことができる。
【0033】
また同様に、ろ過膜に付着した汚染物質を除去するために必要なオゾン消費量を演算し、オゾン処理水のオゾン濃度および逆流洗浄量(オゾン処理水量)をフィードバック制御することもできる。すなわち、原水水質が通常時よりも極度に悪い場合又は良好な場合で、オゾン発生器11から発生するオゾンガスの注入量を調整しただけでは逆流洗浄排水中の残留オゾン濃度が所定の濃度範囲内に入らない場合は、所定の回収率で処理用水を回収することが可能な範囲内で、逆流洗浄に用いるオゾン処理水(膜ろ過水槽7から逆洗水槽10へと送る膜ろ過水)の量を変えることも可能である。これは例えばコントローラ20の信号により膜ろ過水槽7を制御することにより行うことができる。
【0034】
さらに、逆流洗浄排水中の残留オゾン濃度を検出する代わりに、原水の濁度を原水濁度計19で測定し、この測定結果からコントローラ20によりろ過膜を洗浄するために必要なオゾン量を算出し、この結果によりオゾン処理水のオゾン濃度を制御することも可能である。
【0035】
膜ろ過装置4で使用される膜としては、濁質成分及び細菌類を除去することのできる膜であればいかなるものを用いても良いが、例えば、精密ろ過膜または限外ろ過膜等を用いることができる。精密ろ過膜には、公称孔径0.01〜1μmのものを用いることが好ましい。限外ろ過膜には、分画分子量1000〜100万ダルトンのものを用いることが好ましい。膜モジュールの形状は、例えば、中空糸状、スパイラル状、チューブラ状、平膜状等を用いることが可能である。膜素材及びモジュール接着部は、高濃度のオゾンと接触するために、耐オゾン性の素材を使用することが望ましい。膜素材については、フッ化ビニリデン重合体樹脂等の耐オゾン性の有機樹脂、セラミック等の無機材料またはこれらの組み合わせを用いることができる。また、膜モジュールのろ過方式は、全量ろ過方式とクロスフローろ過方式があり、いずれのろ過方式であっても良い。また、ろ過膜への通水方式は、外圧型および内圧型のいずれの方式を用いても良い。
【0036】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。なお、実施例は本発明に限定を加えるものではない。
【0037】
(実施例1)
実施例1として図1に示した水処理実験装置(処理量14m3/日)を用いて、水処理実験を行った。
【0038】
原水として河川表流水を用いた。膜ろ過装置4には、公称孔径0.1μmのポリフッ化ビニリデン製精密ろ過膜(有効膜面積7m2の中空糸膜)を使用し、クロスフローろ過で設定膜ろ過流束2m3/m2/日の定流量ろ過運転を行った。ろ過運転を30分間行った後、オゾン処理水14を用いた逆流洗浄を行い、同時に膜モジュール直下から空気を供給して空気洗浄を行った。洗浄終了後には、膜モジュール内の懸濁質を除去するために、原水を供給ライン22から逆流洗浄排水ライン16へと通水し、原水によるフラッシングを実施した。このようにろ過および洗浄を交互に繰り返し行い、以上のような運転を1800時間行った。
【0039】
ろ過は毎回30分間行い、逆流洗浄時間は、水温に応じて30秒間から120秒間の範囲で変化させた。
【0040】
逆流洗浄開始時は、オゾン処理水14のオゾン濃度を5mg/Lとした。これ以降の逆流洗浄では、逆流洗浄排水16中の残留オゾン濃度をモニタリングし、この残留オゾン濃度の値が0.2から0.5mg/Lの範囲になるオゾンガス濃度をコントローラ20で演算し、オゾン発生装置11で生成されるオゾンガス12の注入量をフィードバック制御した。
【0041】
さらに、原水水質が平常時より極度に悪い場合又は良い場合で、オゾンガス12の注入量の調整だけでは逆流洗浄排水中の残留オゾン濃度を上記の0.2から0.5mg/Lの範囲に調整することが困難なときは、オゾンガス12の注入量の調整に加えて、逆流洗浄に用いるオゾン処理水14の量も変化させることにより対応した。このとき、処理用水8の回収率が85%から95%の範囲内で変化し、平均値で90%になるようにオゾン処理水の量を変化させた。
【0042】
このときの原水水温計18により測定した原水の水温および原水濁度計19により測定した原水の濁度の経時変化を図2に示す。
【0043】
また、オゾン発生装置11で生成されるオゾンガス12の注入量をフィードバック制御することにより制御されたオゾン処理水14のオゾン濃度の経時変化を図3に示す。
【0044】
以上の処理実験より得られた膜ろ過装置4における膜間差圧(25℃換算)の経時変化を膜間差圧計21により測定し、この結果を図4に示す。
【0045】
図4に示すように膜ろ過流束2m3/m2/日の条件下で、図2に示すような高濁時および低水温時を含む3ヶ月にわたって、膜間差圧が上昇することなく安定して通水できた。また、図3及び図4から明らかなように、逆流洗浄時間、オゾン処理水オゾン濃度およびオゾン洗浄水量のすべてが適切に制御され、最適な洗浄が行われたことが確認された。
【0046】
(実施例2)
実施例1と同様の装置を用いて原水として河川表流水の膜ろ過およびろ過膜の逆流洗浄を行った。
【0047】
逆流洗浄時間は、水温に応じて30秒間から120秒間の範囲で変化させた。また、逆流洗浄の際に、原水濁度を濁度計19によりモニタリングし、濁度5度から20度に応じた必要オゾン量を演算し、オゾン処理水オゾン濃度が3〜10mg/Lになるようにオゾン発生器11で生成されるオゾンガス12の注入量を制御することにより、オゾン処理水14の濃度を調整した。このときのオゾン処理水14のオゾン濃度の経時変化を図3に併記する。
【0048】
さらに、原水濁度が5度未満の水質清澄時又は20度を超える水質悪化時で、オゾン発生器11で生成されるオゾンガス12の注入量の調整だけでは、濁度に応じた必要オゾン量に基づくオゾン処理水14のオゾン濃度が過剰もしくは不足となる場合は、オゾンガス12の注入量の調整に加えて、逆流洗浄に用いるオゾン処理水14の量も変化させることにより対応した。このとき、処理用水8の回収率が85%から95%の範囲内で変化し、平均値で90%になるようにオゾン処理水14の量を変化させた。
【0049】
以上説明した処理条件以外は、実施例1と同様にろ過および洗浄を行った。
【0050】
以上の処理実験により得られた膜ろ過装置4における膜間差圧(25℃換算)の経時変化を図4に併記する。
【0051】
図4に示すように膜ろ過流束2m3/m2/日の条件下で、図2に示すような高濁時および低水温時を含む3ヶ月にわたって、膜間差圧が上昇することなく安定して通水できた。また、図3及び図4から明らかなように、原水水質および水温に応じて逆流洗浄時間、オゾン処理水オゾン濃度およびオゾン洗浄水量のすべてが適切に制御され、最適な洗浄が行われたことが確認された。
【0052】
(比較例1)
実施例1と同じ原水を用いて、クロスフローろ過にて設定膜ろ過流束2m3/m2/日の定流量ろ過運転を行った。ろ過運転を30分間行った後、オゾン濃度7mg/Lのオゾン処理水14を用いた逆流洗浄を60秒間行い、同時に膜モジュール直下から空気を供給して空気洗浄を行った。洗浄終了時には、膜モジュール内の懸濁質を除去するため、原水によるフラッシングを実施した。原水水温による逆流洗浄時間の制御および、逆流洗浄排水中の残留オゾン濃度または原水の水質によるオゾン処理水14のオゾン濃度の制御は行わなかった。このときのオゾン処理水14のオゾン濃度の経時変化を図3に併記する。処理用水8の回収率は、88%となるように運転を行った。これ以外は、実施例1と同様に膜ろ過処理実験を行った。
【0053】
以上の処理実験より得られた膜ろ過装置4における膜間差圧(25℃換算)の経時変化を図4に併記する。
【0054】
図2および図4から分かるように、比較例1では、膜ろ過初期の低水温期においては、実施例1よりオゾン処理水中のオゾン濃度が高いにもかかわらず膜間差圧が同等もしくは若干増加傾向にあった。これは、低水温期において逆流洗浄時間を60秒間に固定したため、オゾンと膜面の汚染物質との反応が十分に進まなかったためである。また、原水濁度上昇時には、急激な膜間差圧の上昇が見られ膜間差圧の限界値を超えた。このため、オゾン処理水による洗浄だけでは膜間差圧の十分な減少が得られず、以後ろ過膜を洗浄するために薬品を使用する必要があった。これは、オゾン処理水中のオゾン濃度を逆流洗浄排水中の残留オゾン濃度によって制御せず、図3に示すように一定としたため逆流洗浄排水中の残留オゾン濃度を所定の範囲に保つことができなかったからである。
【0055】
【発明の効果】
以上説明したように本発明によれば、膜ろ過した後にその膜ろ過水の一部にオゾンを注入して得られたオゾン処理水で膜の逆流洗浄を行う際に、水温に応じて逆流洗浄時間を決定し、逆流洗浄排水中の残留オゾン濃度または原水の水質に応じて最適なオゾン濃度に制御することができる。これにより、高い膜透過流束においても膜の目詰まりを大幅に低減することができ、膜の目詰まりに対処するための薬品洗浄に要する労力と洗浄用薬剤費とを低減させることができる。
【0056】
また、水温および逆流洗浄排水中の残留オゾン濃度または原水の水質に応じて最適なオゾン濃度及び逆流洗浄時間に制御することにより、過剰なオゾン発生を防止しエネルギー消費量を低減し、且つ最適な洗浄により処理用水の回収率を向上させることができ経済的である。
【0057】
このように本発明によれば、高流束の膜ろ過時においても膜の目詰まりを大幅に軽減できるだけでなく、未然に目詰まりを防止することが可能であり、かつ過剰なオゾン注入を防止することにより経済的に水処理することを可能にするろ過膜の洗浄方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を説明する水処理装置を示すブロック図。
【図2】原水の濁度および水温の経時変化を示す特性線図。
【図3】オゾン処理水オゾン濃度の経時変化を示す特性線図。
【図4】膜間差圧の経時変化を示す特性線図。
【符号の説明】
1,22…供給ライン
2…循環水槽(膜供給水槽)
3…供給ポンプ
4…膜ろ過装置
5…循環ライン
6,9…膜ろ過水ライン
7…膜ろ過水槽
8…処理用水ライン
10…逆洗水槽
11…オゾン発生器
12…オゾンガス移送ライン
13…散気管
14,23…オゾン処理水ライン
15…逆洗ポンプ
16…逆流洗浄排水ライン
17…オゾン検知器
18…原水水温計
19…原水濁度計
20…コントローラ
21…膜間差圧計
24…コンプレッサー
V1,V2,V5…膜ろ過バルブ
V3,V4…逆流洗浄バルブ
V6…空気用バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment method for water supply, sewerage, industrial water or wastewater treatment, and more particularly to a water treatment method using membrane filtration treatment and a filtration membrane cleaning method used in a water treatment apparatus.
[0002]
[Prior art]
In the conventional membrane filtration method, if the operation is continued, the membrane surface or the inside of the membrane pores are contaminated by suspended substances and organic substances in the raw water supplied to the membrane filtration treatment as membrane supply water, or the amount of membrane filtration water decreases or An increase in transmembrane pressure is observed.
[0003]
Therefore, regular physical cleaning is usually performed in order to prevent contamination in the membrane surface and membrane pores. Examples of the physical cleaning method include reverse flow cleaning in which membrane filtrate is passed from the membrane filtrate side to the raw water supply side, and air cleaning in which air or air and raw water are passed from the primary side of the filtration membrane. These methods are very effective for clogging caused by deposits and solids in the membrane surface and pores, and have the effect of reducing the increase in transmembrane pressure difference. In recent years, a method of using ozone treatment in combination with this physical cleaning has been proposed, and is described in, for example, JP-A-2002-35552, JP-A-2002-35554, JP-A-2002-79064, and the like. . These methods are methods of cleaning the membrane with ozone-containing water, and decompose and remove deposits on the membrane surface and membrane pores by the oxidizing action of ozone.
[0004]
[Problems to be solved by the invention]
However, the conventional cleaning with ozone-containing water has the following problems.
[0005]
First, the ozone injection amount is excessive and uneconomical when the concentration of ozone in the ozone containing water is constant and the raw water quality is stable, or when the membrane is not contaminated.
[0006]
Secondly, in a state where the contamination of the membrane has progressed to some extent, the ozone-containing water ozone concentration becomes too low and the transmembrane pressure difference increases.
[0007]
Thirdly, under conditions where the load on the membrane is excessive when the raw water quality deteriorates, the ozone-containing water ozone concentration becomes too low and the transmembrane pressure difference increases.
[0008]
Fourth, at a low water temperature, even if ozone concentration within a predetermined range remains in the waste water, ozone does not react and the transmembrane pressure rises.
[0009]
The present invention has been made to solve the above-mentioned problems, and not only can the membrane clogging be greatly reduced even during high flux membrane filtration, but also can prevent clogging in advance. And it aims at providing the washing | cleaning method of the filtration membrane which enables water treatment economically by preventing excessive ozone injection | pouring.
[0010]
[Means for Solving the Problems]
The filtration membrane cleaning method of the present invention includes a membrane filtration step in which raw water is treated by membrane filtration means to obtain membrane filtered water, and an ozone injection step in which ozone is injected into a part of the membrane filtrate to obtain ozone treated water. And a filtration membrane cleaning step of supplying the ozone-treated water from the filtered water side of the membrane filtration means and backwashing the filtration membrane,
The residual ozone concentration in the wastewater that has passed through the filtration membrane by the backflow cleaning is detected, and the amount of ozone necessary to remove the contaminants attached to the filtration membrane is calculated and calculated based on the detected residual ozone concentration. A step of controlling the amount of ozone injected in the ozone injection step based on the amount of ozone;
Detecting the water temperature of the raw water, calculating a reaction time necessary for removing contaminants adhering to the filtration membrane based on the detected water temperature, and backwashing in the filtration membrane cleaning step based on the calculated reaction time Controlling the time;
It comprises.
[0011]
In the filtration membrane cleaning method of the present invention, in the injected ozone amount control step, the injected ozone amount is controlled so that the residual ozone concentration in the backwash waste water is within a range of 0.01 to 10 mg / L. preferable.
[0012]
According to the filtration membrane cleaning method of the present invention, in the injected ozone amount control step, the quality of the raw water is detected instead of the residual ozone concentration in the backwash waste water, and the necessary amount of ozone is calculated by using the detected water quality. It is also possible to ask for it.
[0013]
The present invention will be described in detail below.
[0014]
In the washing of the filtration membrane according to the present invention, it is necessary to control the backwashing time. If the water temperature is lowered unless the backwashing time is controlled, the reaction rate between ozone and contaminants on the membrane surface is reduced, and unreacted residual ozone exceeding a predetermined concentration range is detected in the backwashing waste water. On the other hand, when the water temperature rises, the reaction rate between ozone and contaminants on the membrane surface and the self-decomposition of ozone become faster, and residual ozone within a predetermined concentration range cannot be detected in the backwash waste water. For this reason, the backwashing time is controlled by the water temperature. Here, in the present specification, “backwash waste water” refers to waste water containing pollutants separated from the filter membrane by supplying ozone-treated water to the filter membrane in the opposite direction to the water flow during steady operation. .
[0015]
Therefore, considering that the reaction rate between ozone and the contaminants on the film surface varies depending on the water temperature, it is preferable to change the backwashing time in the range of 15 seconds to 300 seconds depending on the water temperature of the raw water. If the backwashing time is longer than 300 seconds, the time during which the raw water filtration treatment by the membrane filtration device is stopped becomes longer and the operation rate of the device may be lowered. On the other hand, if the backwashing time is shorter than 15 seconds, the backwashing flow rate for one time becomes excessive, and the load on the membrane filtration device may become too high. From the above, the backwashing time is preferably changed in the range of 15 seconds to 300 seconds, more preferably 30 to 120 seconds.
[0016]
The residual ozone concentration in the backwash waste water is preferably 0.01 to 10 mg / L. Considering the amount of ozone consumed during backwashing, if the residual ozone concentration in the backwash wastewater exceeds 10 mg / L, the ozone concentration of the ozone treated water used for backwashing will increase, so the filter membrane will be ozone resistant. Even if a membrane material is used, there is a risk that the membrane will deteriorate due to a reaction with ozone in the long term. For this reason, considering the replacement time of the membrane module, the residual ozone concentration can be allowed up to 10 mg / L. On the other hand, if the residual ozone concentration in the backwash waste water is less than 0.01 mg / L, it may be difficult to sufficiently obtain the effect of ozone for removing contaminants attached to the filtration membrane. From the above, the residual ozone concentration in the backwash waste water is preferably 0.01 to 10 mg / L, more preferably 0.1 to 5 mg / L.
[0017]
When the filtration membrane is backwashed, the backflow flux is preferably 0.2 to 5 times the membrane filtration flux. If it is less than 0.2 times, a sufficient cleaning effect may not be obtained, while if it exceeds 5 times, the film may be damaged. For this reason, the reverse flux is preferably 0.2 to 5 times, more preferably 0.5 to 3 times the membrane filtration flux.
[0018]
It is also possible to detect the water quality of the raw water instead of the residual ozone concentration, calculate the amount of ozone required to remove the contaminants attached to the filter membrane, and control the ozone concentration of the ozone treated water. is there. As used herein, “water quality” refers to a comprehensive concept including turbidity, potassium permanganate consumption, TOC, ultraviolet absorbance, chromaticity, and the like, which are measures of the degree of water contamination.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the cleaning method for the filtration membrane of the present invention will be described in detail with reference to FIG. Note that this embodiment does not limit the present invention.
[0020]
FIG. 1 is a block diagram showing a water treatment apparatus for explaining an embodiment of the present invention. As shown in FIG. 1, a water treatment apparatus in which the filtration membrane cleaning method according to the present invention is used is a circulating water tank (or a membrane supply water tank) 2, a membrane filtration apparatus 4, a membrane filtration water tank 7, an ozone generator 11, A backwash water tank 10 with a built-in trachea 13 is provided.
[0021]
The circulating water tank (or membrane supply water tank) 2 is communicated with a raw water supply tank (not shown) through a supply line 1. The line 1 is provided with a raw water temperature meter 18 and a raw water turbidity meter 19. The circulating water tank (or membrane supply water tank) 2 is further communicated with the membrane filtration device 4 via a supply line 22 provided with a valve V1. A supply pump 3 is installed in the line 22. The membrane filtration device 4 is provided with a transmembrane differential pressure measuring device 21. The membrane filtration device 4 communicates with a membrane filtration water tank 7 through a membrane filtration water line 6 provided with a valve V2. The membrane filtration water tank 7 is communicated with a water tank (not shown) through a treatment water line 8. Further, the membrane filtration water tank 7 is communicated with a backwash water tank 10 having a diffuser pipe 13 built in via a membrane filtration water line 9. An ozone generator 11 is connected to the backwash water tank 10 through an ozone gas transfer line 12. The backwash water tank 10 is communicated with the membrane filtrate water line 6 through the ozone treated water lines 14 and 23. A backwash pump 15 is provided at a connection portion between the lines 14 and 23, and a valve V <b> 3 is provided in the ozone treated water line 23. A compressor 24 communicates with the downstream side of the valve V1 of the line 22 or the raw water side of the filtration device 4 via the valve V6. The membrane filtration device 4 communicated with the line 6 is communicated with a circulating water tank (or a membrane supply water tank) 2 through a circulation line 5 provided with a valve V5. The line 5 is connected with a backwash drainage line 16 provided with a valve V4. The line 16 is connected to a drain tank (not shown). The line 16 is provided with an ozone detector 17.
[0022]
The supply pump 3, the ozone generator 11, the backwash pump 15, the ozone detector 17, the raw water temperature meter 18, and the raw water turbidity meter 19 are connected to the controller 20.
[0023]
Next, the operation will be described. First, a case where raw water is subjected to membrane filtration will be described.
[0024]
When membrane filtering raw water, valves V1, V2, and V5 are opened. Raw water is supplied from a raw water supply tank (not shown) to a circulating water tank (or membrane supply water tank) 2 through a supply line 1. Subsequently, the supply pump 3 is driven by a signal from the controller 20, and the raw water is pumped from the circulating water tank (or membrane supply water tank) 2 to the membrane filtration device 4 through the supply line 22 to perform membrane filtration. A part of the supplied raw water is sent to the circulating water tank (or membrane supply water tank) 2 through the circulation line 5 and again subjected to membrane filtration. The membrane filtrate is sent from the membrane filtration device 4 to the membrane filtration water tank 7 through the membrane filtration water line 6. A part of the membrane filtered water in the membrane filtered water tank 7 is transferred to the backwash water tank 10 through the membrane filtered water line 9, and the remaining membrane filtered water is transferred to the water tank (not shown) through the processing water line 8. Get as. In this way, the raw water is subjected to membrane filtration. The treatment water is set to a recovery rate within a predetermined range. After performing the membrane filtration process for a predetermined time, the supply pump 3 is stopped by a signal from the controller 20, and the valves V1, V2, and V5 are closed. The membrane filtration treatment may be performed for a certain time, or the turbidity of the raw water may be measured by the turbidimeter 19 and the treatment time may be determined from this result. Further, the transmembrane pressure difference of the filtration membrane may be measured by the transmembrane pressure gauge 21 and processing may be performed until the result reaches a certain value. In this case, the transmembrane pressure gauge 21 is input to the controller 20. It may be connected to the control unit and controlled based on the input signal.
[0025]
Next, a case where the filtration membrane is backwashed will be described.
[0026]
During membrane filtration and cleaning of the filtration membrane, the ozone generator 11 is controlled in real time by a signal from the controller 20 so that the amount of ozone blown into the backwash water tank 10 becomes a predetermined target value. A predetermined amount of ozone gas is sent from the ozone generator 11 to the diffuser pipe 13 of the backwash water tank 10 through the ozone gas transfer line 12 by the basic pressure during steady operation of the ozone generator 11. Ozone gas is blown into the membrane filtrate in the backwash water tank 10 from the air diffuser 13. In this way, the membrane filtered water in the backwash water tank 10 is subjected to ozone treatment to obtain ozone treated water having an ozone concentration within a predetermined range. In addition, in order to obtain the ozone treated water having a predetermined ozone concentration, it may be performed by controlling the ozone gas concentration of the ozone gas sent from the ozone generator 11 to the diffusion tube 13 or by controlling the ozone gas flow rate. May be.
[0027]
When the filter membrane is backwashed, valves V3 and V4 are opened. The backwash pump 15 is driven by a signal from the controller 20, and the obtained ozone treated water is sent to the membrane filtrate water line 6 through the ozone treated water lines 14 and 23. Subsequently, the ozone-treated water is pumped back from the filtered water side of the membrane filtration device 4 to the raw water supply side through the line 6 as backwash water. Further, the valve V6 can be opened, and air can be pumped from the compressor 24 to the raw water side of the membrane filtration device 4 through the line 22, so that the raw water side of the filtration membrane can be washed with air simultaneously with the backwashing. The backwashing of the filtration membrane is performed by driving the backwash pump 15 every predetermined time. The backwash pump 15 may be driven not only at regular intervals, but also at intervals determined by the turbidity of raw water detected by the turbidimeter 19. Alternatively, it may be performed when the transmembrane pressure difference detected by the transmembrane pressure gauge 21 exceeds a predetermined range.
[0028]
Furthermore, after the backwashing is completed, the valves V3 and V6 are closed, the valve V1 is opened, the supply pump 3 is driven by a signal from the controller 20, and the raw water is supplied to the membrane filtration device to perform flushing. By this flushing with raw water, dirt and clogged substances separated from the filtration membrane by backflow cleaning can be discharged from the membrane filtration device 4. Thereby, the dirt and clogging substances of the film can be effectively removed.
[0029]
The backwash wastewater that has passed through the filtration membrane is discharged to a drainage tank (not shown) or the like through the backwash drainage line 16. At this time, the residual ozone concentration of the backwash waste water in the line 16 is measured by the ozone detector 17. After the backwashing is completed, the valves V3 and V4 are closed, and then the valves V1, V2 and V5 are opened to start the membrane filtration process again.
[0030]
In the water treatment in which the filtration membrane cleaning method of the present invention is used, the membrane filtration and the filtration membrane backwashing as described above are repeatedly performed alternately.
[0031]
At the time of membrane filtration, the raw water temperature is measured by the raw water thermometer 18. This measurement result is sent to the controller 20, and the controller 20 computes the ozone reaction time during backflow cleaning necessary to remove contaminants attached to the filtration membrane. The backwashing time can be controlled by controlling the pump 15 from the processing result. The controller 20 may be a CPU (Central Processing Unit), for example.
[0032]
Furthermore, the residual ozone concentration in the backwash waste water is measured by the ozone detector 17 during backwashing. This measurement result is sent to the controller 20, and the controller 20 computes the ozone consumption necessary for removing the contaminants attached to the filtration membrane. From this processing result, the amount of ozone gas generated from the ozone generator 11 can be feedback controlled to change the ozone concentration in the ozone-treated water. If the measurement result of residual ozone concentration in the backwash wastewater is not yet obtained at the start of membrane filtration, for example, an appropriate ozone gas injection rate is determined in advance according to the preliminary experiment result or the raw water quality test result, for example. be able to.
[0033]
Similarly, it is also possible to calculate the ozone consumption necessary for removing the contaminants adhering to the filtration membrane, and to feedback control the ozone concentration of the ozone treated water and the backwash amount (ozone treated water amount). That is, when the raw water quality is extremely poor or good than normal, the residual ozone concentration in the backwash waste water is within a predetermined concentration range by adjusting the injection amount of ozone gas generated from the ozone generator 11. If not, the amount of ozone treated water (membrane filtered water sent from the membrane filtration water tank 7 to the backwash water tank 10) used for backwashing is within the range where the treatment water can be collected at a predetermined recovery rate. It is also possible to change. This can be performed, for example, by controlling the membrane filtration water tank 7 with a signal from the controller 20.
[0034]
Further, instead of detecting the residual ozone concentration in the backwash waste water, the turbidity of the raw water is measured by the raw water turbidimeter 19, and the amount of ozone necessary for cleaning the filter membrane is calculated by the controller 20 from this measurement result. However, it is possible to control the ozone concentration of the ozone-treated water based on this result.
[0035]
The membrane used in the membrane filtration device 4 may be any membrane as long as it can remove turbid components and bacteria. For example, a microfiltration membrane or an ultrafiltration membrane is used. be able to. It is preferable to use a microfiltration membrane having a nominal pore size of 0.01 to 1 μm. It is preferable to use an ultrafiltration membrane having a molecular weight cut off of 1,000 to 1,000,000 daltons. As the shape of the membrane module, for example, a hollow fiber shape, a spiral shape, a tubular shape, a flat membrane shape or the like can be used. It is desirable to use an ozone-resistant material for the membrane material and the module bonding portion in order to come into contact with high-concentration ozone. As the film material, an ozone-resistant organic resin such as vinylidene fluoride polymer resin, an inorganic material such as ceramic, or a combination thereof can be used. Moreover, the filtration method of a membrane module has a total amount filtration method and a crossflow filtration method, and any filtration method may be sufficient. Moreover, any of an external pressure type and an internal pressure type may be used as the water flow method to the filtration membrane.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The examples do not limit the present invention.
[0037]
Example 1
As Example 1, a water treatment experiment was conducted using the water treatment experiment apparatus (treatment amount: 14 m 3 / day) shown in FIG.
[0038]
River surface water was used as raw water. The membrane filtration device 4 uses a microfiltration membrane made of polyvinylidene fluoride having a nominal pore size of 0.1 μm (a hollow fiber membrane having an effective membrane area of 7 m 2 ), and a set membrane filtration flux of 2 m 3 / m 2 / The daily constant flow filtration operation was performed. After performing the filtration operation for 30 minutes, backwashing using ozone-treated water 14 was performed, and at the same time, air was supplied from directly below the membrane module to perform air washing. After the washing, in order to remove suspended matter in the membrane module, the raw water was passed from the supply line 22 to the backwash drainage line 16, and flushing with the raw water was performed. Thus, filtration and washing were alternately repeated, and the above operation was performed for 1800 hours.
[0039]
Filtration was performed for 30 minutes each time, and the backwashing time was changed in the range from 30 seconds to 120 seconds depending on the water temperature.
[0040]
At the start of backwashing, the ozone concentration of the ozone-treated water 14 was 5 mg / L. In the subsequent backwashing, the residual ozone concentration in the backwashing waste water 16 is monitored, the ozone gas concentration in which the residual ozone concentration is in the range of 0.2 to 0.5 mg / L is calculated by the controller 20, and the ozone is The injection amount of the ozone gas 12 generated by the generator 11 was feedback controlled.
[0041]
Furthermore, when the raw water quality is extremely poor or good than normal, the residual ozone concentration in the backwash waste water is adjusted to the above range of 0.2 to 0.5 mg / L only by adjusting the injection amount of the ozone gas 12. When it was difficult to do so, in addition to adjusting the injection amount of ozone gas 12, the amount of ozone treated water 14 used for backwashing was also changed. At this time, the amount of the ozone treated water was changed so that the recovery rate of the treated water 8 changed within the range of 85% to 95% and the average value was 90%.
[0042]
Changes in the raw water temperature measured by the raw water thermometer 18 and the turbidity of the raw water measured by the raw water turbidimeter 19 are shown in FIG.
[0043]
Further, FIG. 3 shows the change over time in the ozone concentration of the ozone treated water 14 controlled by feedback control of the injection amount of the ozone gas 12 generated by the ozone generator 11.
[0044]
The time-dependent change in transmembrane pressure difference (converted to 25 ° C.) in the membrane filtration device 4 obtained from the above processing experiment was measured by the transmembrane pressure gauge 21 and the results are shown in FIG.
[0045]
As shown in FIG. 4, the transmembrane pressure difference does not increase over 3 months including the time of high turbidity and low water temperature as shown in FIG. 2 under the condition of membrane filtration flux of 2 m 3 / m 2 / day. The water flow was stable. Further, as is clear from FIGS. 3 and 4, it was confirmed that the backwashing time, the ozone treated water ozone concentration, and the amount of the ozone washing water were all appropriately controlled and the optimum washing was performed.
[0046]
(Example 2)
Using the same apparatus as in Example 1, membrane filtration of river surface water as raw water and backwashing of the filtration membrane were performed.
[0047]
The backwashing time was changed in the range from 30 seconds to 120 seconds depending on the water temperature. Further, during backwashing, the raw water turbidity is monitored by the turbidimeter 19, and the required ozone amount corresponding to the turbidity of 5 to 20 degrees is calculated, so that the ozone concentration of the ozone-treated water becomes 3 to 10 mg / L. Thus, the concentration of the ozone treated water 14 was adjusted by controlling the injection amount of the ozone gas 12 generated by the ozone generator 11. The time-dependent change of the ozone concentration of the ozone treated water 14 at this time is also shown in FIG.
[0048]
Furthermore, when the raw water turbidity is less than 5 degrees or when the water quality is worse than 20 degrees, the adjustment of the injection amount of the ozone gas 12 generated by the ozone generator 11 only makes the required ozone amount according to the turbidity. When the ozone concentration of the ozone treated water 14 based on the ozone concentration is excessive or insufficient, the amount of the ozone treated water 14 used for the backflow cleaning is changed in addition to the adjustment of the injection amount of the ozone gas 12. At this time, the amount of the ozone treated water 14 was changed so that the recovery rate of the treated water 8 varied within the range of 85% to 95% and the average value was 90%.
[0049]
Except for the treatment conditions described above, filtration and washing were performed in the same manner as in Example 1.
[0050]
The time-dependent change of the transmembrane pressure difference (converted at 25 ° C.) in the membrane filtration device 4 obtained by the above processing experiment is also shown in FIG.
[0051]
As shown in FIG. 4, the transmembrane pressure difference does not increase over 3 months including the time of high turbidity and low water temperature as shown in FIG. 2 under the condition of membrane filtration flux of 2 m 3 / m 2 / day. The water flow was stable. Further, as is clear from FIGS. 3 and 4, all of the backwashing time, the ozone treatment water ozone concentration and the ozone washing water amount are appropriately controlled according to the raw water quality and the water temperature, and the optimum washing is performed. confirmed.
[0052]
(Comparative Example 1)
Using the same raw water as in Example 1, a constant flow filtration operation was performed with a set membrane filtration flux of 2 m 3 / m 2 / day by cross flow filtration. After performing the filtration operation for 30 minutes, back-flow cleaning using ozone-treated water 14 having an ozone concentration of 7 mg / L was performed for 60 seconds, and at the same time, air was supplied from directly below the membrane module to perform air cleaning. At the end of washing, flushing with raw water was performed to remove suspended matter in the membrane module. Control of the backwashing time by the raw water temperature and control of the ozone concentration of the ozone treated water 14 by the residual ozone concentration in the backwash wastewater or the quality of the raw water were not performed. The time-dependent change of the ozone concentration of the ozone treated water 14 at this time is also shown in FIG. The operation was performed such that the recovery rate of the water for treatment 8 was 88%. Except for this, a membrane filtration treatment experiment was conducted in the same manner as in Example 1.
[0053]
FIG. 4 also shows the change over time in the transmembrane pressure difference (converted to 25 ° C.) in the membrane filtration device 4 obtained from the above treatment experiment.
[0054]
As can be seen from FIGS. 2 and 4, in Comparative Example 1, in the low water temperature period in the initial stage of membrane filtration, the transmembrane differential pressure is equal or slightly increased in spite of the higher ozone concentration in the ozone treated water than in Example 1. There was a trend. This is because the reaction between ozone and the contaminants on the film surface did not sufficiently proceed because the backwashing time was fixed at 60 seconds in the low water temperature period. In addition, when the raw water turbidity increased, the transmembrane pressure difference increased rapidly and exceeded the transmembrane pressure limit. For this reason, a sufficient decrease in the transmembrane pressure difference cannot be obtained only by cleaning with ozone-treated water, and it has been necessary to use chemicals for cleaning the filtration membrane. This is because the ozone concentration in the ozone-treated water is not controlled by the residual ozone concentration in the backwashing wastewater and is kept constant as shown in FIG. 3, so the residual ozone concentration in the backwashing wastewater cannot be kept within a predetermined range. This is because the.
[0055]
【The invention's effect】
As described above, according to the present invention, when the membrane is backwashed with ozone-treated water obtained by injecting ozone into a part of the membrane filtrate after membrane filtration, backwashing is performed according to the water temperature. The time can be determined, and the ozone concentration can be controlled to the optimum according to the residual ozone concentration in the backwash waste water or the quality of the raw water. As a result, clogging of the membrane can be greatly reduced even at high membrane permeation flux, and the labor required for chemical cleaning to cope with clogging of the membrane and the cost of cleaning chemicals can be reduced.
[0056]
In addition, by controlling the optimal ozone concentration and backwash time according to the water temperature and residual ozone concentration in the backwash water or the quality of raw water, excessive ozone generation is prevented, energy consumption is reduced, and The recovery rate of water for treatment can be improved by washing, which is economical.
[0057]
Thus, according to the present invention, not only can membrane clogging be greatly reduced even during high flux membrane filtration, it is possible to prevent clogging in advance and prevent excessive ozone injection. By doing so, it is possible to provide a filtration membrane cleaning method that enables economical water treatment.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a water treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing changes over time in turbidity and water temperature of raw water.
FIG. 3 is a characteristic diagram showing the change over time in the ozone concentration of ozone-treated water.
FIG. 4 is a characteristic diagram showing a change with time in transmembrane pressure difference.
[Explanation of symbols]
1, 22 ... Supply line 2 ... Circulating water tank (membrane supply water tank)
DESCRIPTION OF SYMBOLS 3 ... Supply pump 4 ... Membrane filtration apparatus 5 ... Circulation line 6, 9 ... Membrane filtration water line 7 ... Membrane filtration water tank 8 ... Treatment water line 10 ... Backwash water tank 11 ... Ozone generator 12 ... Ozone gas transfer line 13 ... Aeration pipe DESCRIPTION OF SYMBOLS 14,23 ... Ozone treated water line 15 ... Backwash pump 16 ... Backflow washing drainage line 17 ... Ozone detector 18 ... Raw water thermometer 19 ... Raw water turbidity meter 20 ... Controller 21 ... Transmembrane pressure gauge 24 ... Compressors V1, V2 , V5 ... Membrane filtration valve V3, V4 ... Backflow cleaning valve V6 ... Air valve

Claims (3)

原水を膜ろ過手段により処理して膜ろ過水を得る膜ろ過工程と、前記膜ろ過水の一部にオゾンを注入してオゾン処理水を得るオゾン注入工程と、前記オゾン処理水を前記膜ろ過手段のろ過水側から供給してろ過膜を逆流洗浄するろ過膜洗浄工程とを具備するろ過膜の洗浄方法において、
前記逆流洗浄によりろ過膜を通過した排水中の残留オゾン濃度を検出し、検出残留オゾン濃度に基づいて前記ろ過膜に付着した汚染物質を除去するために必要なオゾン量を演算により求め、算出したオゾン量に基づいて前記オゾン注入工程の注入オゾン量を制御する工程と、
前記原水の水温を検出し、検出水温に基づいて前記ろ過膜に付着した汚染物質を除去するために必要な反応時間を演算により求め、算出した反応時間に基づいて前記ろ過膜洗浄工程の逆流洗浄時間を制御する工程と、
を具備することを特徴とするろ過膜の洗浄方法。
A membrane filtration step of treating raw water with membrane filtration means to obtain membrane filtered water, an ozone injection step of injecting ozone into a part of the membrane filtered water to obtain ozone treated water, and the membrane filtration of the ozone treated water In the filtration membrane cleaning method comprising a filtration membrane cleaning step of supplying the filtration water from the filtered water side of the means and backwashing the filtration membrane,
The residual ozone concentration in the wastewater that has passed through the filtration membrane by the backflow cleaning is detected, and the amount of ozone necessary to remove the contaminants attached to the filtration membrane is calculated and calculated based on the detected residual ozone concentration. A step of controlling the amount of ozone injected in the ozone injection step based on the amount of ozone;
Detecting the water temperature of the raw water, calculating a reaction time necessary for removing contaminants adhering to the filtration membrane based on the detected water temperature, and backwashing in the filtration membrane cleaning step based on the calculated reaction time Controlling the time;
A filtration membrane cleaning method comprising:
前記注入オゾン量制御工程では、逆流洗浄排水中の残留オゾン濃度が0.01〜10mg/Lの範囲内となるように前記注入オゾン量を制御することを特徴とする請求項1記載の方法。2. The method according to claim 1, wherein in the injected ozone amount control step, the injected ozone amount is controlled so that a residual ozone concentration in the backwash waste water is within a range of 0.01 to 10 mg / L. 前記注入オゾン量制御工程では、逆流洗浄排水中の残留オゾン濃度の代わりに前記原水の水質を検出し、検出した水質を用いて必要なオゾン量を演算により求めることを特徴とする請求項1記載の方法。2. The injection ozone amount control step detects the quality of the raw water instead of the residual ozone concentration in the backwash waste water, and calculates a necessary ozone amount by calculation using the detected water quality. the method of.
JP2002273171A 2002-09-19 2002-09-19 Filtration membrane cleaning method Expired - Fee Related JP3841735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273171A JP3841735B2 (en) 2002-09-19 2002-09-19 Filtration membrane cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273171A JP3841735B2 (en) 2002-09-19 2002-09-19 Filtration membrane cleaning method

Publications (2)

Publication Number Publication Date
JP2004105876A JP2004105876A (en) 2004-04-08
JP3841735B2 true JP3841735B2 (en) 2006-11-01

Family

ID=32269990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273171A Expired - Fee Related JP3841735B2 (en) 2002-09-19 2002-09-19 Filtration membrane cleaning method

Country Status (1)

Country Link
JP (1) JP3841735B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906818B2 (en) 2017-12-22 2021-02-02 Ozono Polaris, S.A. de C.V. Process for back-and-forth washing of adsorptive media

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834366B2 (en) * 2005-09-21 2011-12-14 メタウォーター株式会社 Water treatment method
JP5249104B2 (en) * 2009-03-27 2013-07-31 メタウォーター株式会社 Membrane filtration system and cleaning method thereof
JP6122314B2 (en) * 2013-03-06 2017-04-26 水道機工株式会社 Membrane cleaning method
KR101572491B1 (en) * 2015-06-25 2015-11-27 주식회사 거화 Filtering system for automatic cleansing type by ozone
KR101730978B1 (en) 2015-11-18 2017-04-27 한국지역난방공사 Water treatment system and method with separation membrane washing using ozon and hydrogen peroxide
CN108697989B (en) * 2016-03-04 2019-09-27 三菱电机株式会社 The manufacturing method of film filter, filter membrane cleaning method and filter membrane
SG11202011443TA (en) * 2018-05-30 2020-12-30 Mitsubishi Electric Corp Membrane cleaning device and membrane cleaning method
WO2019239515A1 (en) 2018-06-13 2019-12-19 三菱電機株式会社 Oxidation device, water treatment device, water treatment method, ozone water generation method, and cleaning method
WO2020070788A1 (en) * 2018-10-02 2020-04-09 三菱電機株式会社 Filtration membrane processing device, membrane filtration apparatus, and filtration membrane processing method
WO2021199371A1 (en) * 2020-04-01 2021-10-07 三菱電機株式会社 Water treatment device and water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906818B2 (en) 2017-12-22 2021-02-02 Ozono Polaris, S.A. de C.V. Process for back-and-forth washing of adsorptive media
US11891311B2 (en) 2017-12-22 2024-02-06 Ozono Polaris, S.A. de C.V. Process and system for back-and-forth washing of adsorptive media

Also Published As

Publication number Publication date
JP2004105876A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
KR100384668B1 (en) Water Treating Method
JP6832710B2 (en) System for treating water
JP2004249168A (en) Operation method for water treatment device
JP3924919B2 (en) Water filtration equipment
JP3841735B2 (en) Filtration membrane cleaning method
JP2007245078A (en) Water treatment system and water treatment process
JP5151009B2 (en) Membrane separation device and membrane separation method
JP2008126223A (en) Membrane treatment system
JP5103747B2 (en) Water treatment apparatus and water treatment method
JP3514825B2 (en) Operation method of water purification system and water purification device
JP4215381B2 (en) Water treatment method and apparatus
JP4013565B2 (en) Manganese removal method and apparatus
KR101693100B1 (en) Smart Membrane-Filteration Water Treating System
JP2009262087A (en) Operation method of water treatment device
JPH11169851A (en) Water filter and its operation
TW202003098A (en) Membrane clean device and method for cleaning membrane
CN115297950B (en) Washing failure determination method for water generator and washing failure determination program
JP3826829B2 (en) Water treatment method using membrane filtration
WO2000027510A1 (en) Method for filtration with membrane
JPH06238136A (en) Method for washing filter membrane module
JP3454900B2 (en) Water purification system and its operation method
JP3986370B2 (en) Cleaning method for membrane filter module
JP3856376B2 (en) Water treatment device and its operation method
JP2006082027A (en) Water treatment method using filtration membrane and its apparatus
JP3251145B2 (en) Membrane separation device and control method of oxidant addition amount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3841735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees