JP4215381B2 - Water treatment method and apparatus - Google Patents

Water treatment method and apparatus Download PDF

Info

Publication number
JP4215381B2
JP4215381B2 JP2000286344A JP2000286344A JP4215381B2 JP 4215381 B2 JP4215381 B2 JP 4215381B2 JP 2000286344 A JP2000286344 A JP 2000286344A JP 2000286344 A JP2000286344 A JP 2000286344A JP 4215381 B2 JP4215381 B2 JP 4215381B2
Authority
JP
Japan
Prior art keywords
membrane
water
ozone
filtration
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000286344A
Other languages
Japanese (ja)
Other versions
JP2002086193A (en
Inventor
吉彦 森
昌年 橋野
欽三 磯村
健治 中谷
寅太郎 峯岸
健一郎 水野
和孝 高橋
角川  功明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISOMURA HOSUI KIKO KABUSHIKI KAISHA
JFE Engineering Corp
Asahi Kasei Chemicals Corp
Metawater Co Ltd
Original Assignee
ISOMURA HOSUI KIKO KABUSHIKI KAISHA
JFE Engineering Corp
Asahi Kasei Chemicals Corp
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISOMURA HOSUI KIKO KABUSHIKI KAISHA, JFE Engineering Corp, Asahi Kasei Chemicals Corp, Metawater Co Ltd filed Critical ISOMURA HOSUI KIKO KABUSHIKI KAISHA
Priority to JP2000286344A priority Critical patent/JP4215381B2/en
Publication of JP2002086193A publication Critical patent/JP2002086193A/en
Application granted granted Critical
Publication of JP4215381B2 publication Critical patent/JP4215381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、上水道、下水道、工業用水または廃水処理の水処理方法に関し、特に、オゾン処理と膜濾過処理と活性炭処理とを組み合わせて相互の相乗効果による高効率で高度に処理することのできる水処理方法に関する。
【0002】
【従来の技術】
近年、浄水処理において、小規模水道を中心に従来の凝集沈殿―砂濾過処理の代替として、維持管理性および省スペース化に優れた膜濾過処理を用いるケースが増大しつつある。
しかしながら、膜濾過処理の大中規模浄水場への適用を考慮した場合には、従来の凝集沈殿―砂濾過処理の場合と同等以下のコストまで削減することが不可欠である。従って、ランニングコストを低減するためには、高い膜濾過流束で安定して運転できることが必要となる。
また、大中規模浄水場は都市部に位置することが多く、年々、河川水質が悪化する傾向が見られている。
原水中の溶解性有機物であるトリハロメタン前駆物質や臭気物質を除去するためには、将来的にはオゾン処理あるいは活性炭処理という高度処理を導入することが想定される。
【0003】
この場合、膜濾過処理とオゾン処理と活性炭処理との組み合わせとして、
(I)オゾン処理と活性炭処理と膜濾過処理とを順次行う方式、および(2)膜濾過処理とオゾン処理と活性炭処理とを順次行う方式の2つの方式が考えられる。
しかしながら、いずれの方式においても、膜供給原水として膜濾過処理に導入される原水中の懸濁物質および有機物質等によって膜ファウリングが進行し、3m3 /m2 /日以上の高流束で運転した場合には、比較的短期間で濾過膜の目詰まりを起こす恐れがある。
【0004】
こうした問題を解決する方法の一つとして、従来例の特開平10−309576号公報には、以下のような方法が提案されている。
まず原水を原水槽に送り込み、供給ポンプにより循環槽または膜供給槽に供給し、次いで膜供給ポンプからエジェクター注入装置を介して膜濾過装置に送り込む。エジェクター注入装置には、オゾン発生器からオゾンがインライン注入されることによって、膜供給水とオゾンとが接触して酸化処理が施される。
膜濾過装置において得られた膜濾過水は、膜濾過槽へ送り込まれ、膜濾過水の一部は膜逆流洗浄水として用いられ、残りの大部分は活性炭供給ポンプにより活性炭処理装置へ送られる。活性炭処理装置により膜濾過水中のオゾン副生成物等が除去されて、最終的に処理水が得られる。
【0005】
この方式では、以下のような利点が得られることが記載されている。
(I)膜ファウリングの原因となる高分子有機物が、オゾン処理によって分解あるいは低分子化されるため、膜目詰まりが抑制される。
(2) 膜濾過水中にオゾンを残留させることによって、膜面および細孔内がオゾンにより常に洗浄された状態となるため、高い膜濾過流束で比較的長期間安定通水する事ができる。
(3) 飲料に十分適した高度な処理水を得ることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記方法によっても、原水中の鉄やマンガンなどの無機物によってオゾンが消費されオゾン注入量が多くなったり、酸化された無機物によって膜の目詰まりが進行し、高い膜濾過流束が得られない場合がある。
本発明は、上述したような問題点を克服すべく、鋭意検討の結果完成されたものであって、マンガン除去処理とオゾン処理と膜濾過処理とを含む水処理方法であって、少量のオゾン注入量で、しかも膜目詰まりを抑制して高濾過流束で安定した処理水量を得ることが可能な水処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は、基本的には、原水中のマンガン濃度を低下させてマンガン除去原水を得る工程と、前記マンガン除去原水へインライン注入装置を用いてオゾンガスを注入する工程と、前記オゾンガス注入原水を膜濾過して膜濾過水を得る工程と、前記膜濾過水を活性炭処理する工程とを具備する水処理方法を提供する。
本発明の水処理方法においては、前記原水へのオゾン注入量を制御して、前記膜濾過水中の残留オゾン濃度が所定範囲に維持することが好ましい。
前記膜濾過水中の残留オゾン濃度が0.01〜10mg/L、好ましくは0.1〜5.0mg/Lの範囲であることが望ましい。
さらに、本発明の水処理方法においては、前記マンガン除去原水を得る工程が、酸化剤の添加及びマンガン砂濾過工程からなることが好ましい。
【0008】
【発明の実施の形態】
以下、本発明の水処理方法を、図面を参照して詳細に説明する。
図1は、本発明の水処理方法の一例を説明するための処理フローを示す模式図である。
本発明の水処理方法は、こうした構成の本発明の処理装置を含む工程に従って実施することができる。
図示する装置においては、原水1に酸化剤注入装置16を用いて酸化剤17が注入され、次いでマンガン砂濾過装置18に送り込まれる。
マンガン砂濾過装置18でマンガンが除去された原水は貯槽2に供給され、次いで膜供給ポンプ3からエジェクター注入装置4を介して膜濾過装置5に送り込まれる。
なお、エジェクター注入装置4には、オゾン発生器8からのオゾンガス6がインライン注入され、これによって膜供給水とオゾンとが接触して酸化処理が施される。即ち、膜濾過装置5には酸化処理後の処理水が送り込まれる。
膜濾過装置5において得られた膜濾過水は、膜濾過水槽7へ送り込まれ、膜濾過水の一部は膜逆流洗浄水として用いられ、残りの大部分は活性炭供給ポンプ12により活性炭処理装置13へ送られる。
【0009】
活性炭処理装置13において、膜濾過水中のオゾン副生成物等が除去されて、最終的に処理水14が得られる。
図示するように、膜濾過装置5においては、循環水9を循環槽または貯槽2へ返送することもできる。
循環槽または貯槽2より排出される排オゾンガス10は、排オゾンガス処理設備11に導入されて処理される。
この場合、排オゾンガス処理設備11の形式は、活性炭式、熱分解式、および触媒式等のいずれの形式としても問題はない。
【0010】
膜濾過水槽7においては、オゾン検出器15によって膜濾過水中の残留オゾン濃度が検出されて常時計測される。
オゾン検出器15としては、溶存オゾン濃度検出器を用いることができる。
得られたオゾン濃度の計測値に基づいて、オゾン発生器8からエジェクター注入装置4に供給されるオゾン量が制御される。
膜濾過水中の残留オゾン濃度測定手段としては、特に制限されないが、オゾン検出器、特に溶存オゾン濃度検出器(例えば、東亜電波工業(株)製OZ―20)を用いることが良く、これによって溶存オゾン濃度が検出されて常時計測される。
膜濾過水中の残留オゾン濃度が、0.01〜10mg/Lの範囲内となるように、オゾン発生器8の印加電圧やバルブ(図示せず)の開閉操作等の調整を行うことが良く、これによって、オゾン発生器からエジェクター注入装置に直接インライン注入されるオゾン注入量が制御される。
具体的には、CPU(中央演算処理装置)等による制御手段によって、膜濾過水中の残留オゾン濃度を算出して、インライン注入されるオゾン注入量をフィードバック制御することができる。
【0011】
膜濾過装置5により得られた膜濾過水に残留するオゾン量は、膜濾過装置5の濾過速度を高く維持するために、0.01〜10mg/Lとすることが好ましい。
膜濾過水中の残留オゾン濃度が10mg/Lより高くなると、膜濾過装置5の濾過膜として耐オゾン性の膜材料を用いても、長期的にはオゾンとの反応によって膜劣化が生じる恐れがあるものの、膜モジュールの交換時期を考え合わせると、10mg/Lまでは許容される。また、残留オゾン濃度が10mg/Lより高くなると、副生成物量も多くなるという問題がある。
また、残留オゾン濃度が0.01mg/L以下では、膜の閉塞が早く、高頻度で洗浄を行うことが必要となり効率が低下する。
以上のことから、膜濾過水中の残留オゾン濃度は0.01〜10mg/Lであることが好ましく、0.1〜5.0mg/Lであることがより好ましい。
【0012】
次に、マンガン除去原水を得る工程について説明する。
原水中のマンガンには膜を透過する溶解性マンガンと、膜を透過しない不溶解性マンガンが存在するが、膜面に不溶解性マンガンが堆積すると、溶解性マンガンも膜面で酸化され膜表面に堆積し、膜を目詰まりさせ、透過流束を大きく低下させる。
更に、前段でのオゾン注入によりマンガンが酸化されるので、オゾン注入量が多くなるという問題点がある。
そのため、オゾン注入の前にできるだけマンガンを除去しておくことによりオゾン注入率の低減、膜の目詰まり防止に有効になる。
マンガン除去は酸化剤を注入した後にマンガン砂濾過を行うのが好ましい。
酸化剤としては、エアレーション、塩素、次亜塩素酸ナトリウム、過マンガン酸カリウム、二酸化塩素等を用いることができる。
マンガン砂濾過は、例えば昭和62年6月15日産業用水調査会発行、高井雄他1名著「用水の除鉄・除マンガン処理」に記載されるように、通常の方法を用いればよい。
【0013】
次に、本発明におけるオゾン注入について説明する。
オゾンの注入方法としては、通常には、散気管方式とエジェクターを用いたインライン注入方法の2つがある。
本発明において、高い膜透過流束を得るためには、膜濾過水中の残存オゾン濃度が(所定範囲で)高い方が好ましい。
散気管方式でオゾンを注入すると、オゾンと原水の接触時間が長いために膜の目詰まり抑制に有効でない反応でオゾンが消費される。
そこで、本発明では、膜の直前でインライン注入方式を用いてオゾンガスを注入すると、膜の目詰まり成分との反応のみが有効に生じ、少ないオゾン注入量で高い膜透過流束が得られる。
【0014】
本発明の水処理方法においては、原水とオゾンガスとの接触時間を5分以下とすることが好ましい。
接触時間が5分を越えて長いと、膜の目詰まり防止に有効でない反応を生じ、オゾンを有効に利用できない。
従って、原水とオゾンガスとの接触時間は、5分以下、好ましくは3分以下が望ましい。
更に、本発明の水処理方法においては、原水にオゾンガスを注入するに先立ち凝集剤を添加しても良い。
膜濾過に際し、膜の孔径が精密濾過の領域になると、孔径が大きくなるため、原水中の懸濁物質やバクテリア等が膜内に浸入する。従って、懸濁物質やバクテリアが多い原水の場合には、高い膜濾過流束を得るには多くのオゾン注入が必要になる。
このオゾン添加量を低減する目的で、オゾン添加に先立ちポリ塩化アルミニウム(PAC)、硫酸バンド、塩化第一鉄、塩化第二鉄等の凝集剤を使用することが好ましい。
また、懸濁物質やバクテリアがそれほど多くない原水でも、低水温期に上記凝集剤を添加することによって、高い膜濾過流束を維持することが可能になる。
凝集剤の添加量は、原水中に含まれる懸濁物質等を凝集できる量である必要があり、一般的に原水1リットル中に1〜100mg添加すればよい。
【0015】
次に、本発明において用いられる膜濾過装置5について説明する。
まず、膜濾過方法について説明する。
膜濾過方式には、一般には全量濾過方式とクロスフロー濾過方式との2つの方法のどちらかが採用できる。
本発明の方法に用いる膜モジュールの濾過方式としては、全量濾過方式(デッドエンド濾過法)およびクロスフロー濾過方式のいずれの方式を用いてもよい。
クロスフロー濾過方式は、濾過水量の2倍程度の水量を膜に供給するのが一般的であり、膜に供給された水の約半分は原水に戻される。
一方、全量濾過方式は、膜に供給した原水をすべて濾過する方法であって、原水量と濾水量とが同じである。
クロスフロー濾過方式では、原水に注入したオゾンのうち約半分は原水に戻されるのに対して、全量濾過方式では全量が膜濾過水となり、同じオゾン注入率では膜濾過水の残留オゾン濃度は、全量濾過方式の方が高くなる。
従って、膜濾過流束は、濾水中の残留オゾン濃度が(所定範囲で)高い方が好ましいので、本発明の水処理方法において、全量濾過方式を用いれば、クロスフロー濾過方式に比べて少ないオゾン注入量で、同じ膜濾過流束が得られることになる。
【0016】
膜濾過装置5としては、膜供給水が処理できれば特に制限されないが、膜供給水にオゾンが溶解された状態で膜濾過するために、生物ファウリングによる膜の目詰まりを防止することができ、かつ高い透過流束を得ることが可能である。
膜濾過装置5に使用される膜としては、原水中の濁質成分および細菌類を除去することのできる膜であれば良く、一般に精密濾過膜または限外濾過膜が用いられる。
精密濾過膜の場合は、公称孔径0.01〜0.5μmのものが用いられ、限外濾過膜の場合には、分画分子量1,000〜20万ダルトンのものが用いられる。
また、膜モジュールの形式は、中空糸状、スパイラル状、チューブラ状、および平膜状等のいずれの形式でも問題はない。
膜素材およびポッティング部は、高濃度のオゾンと接触するために、耐オゾン性の素材で構成することが望ましい。膜素材については、フッ化ビニリデン重合体樹脂等の耐オゾン性の有機樹脂またはセラミック等の無機材料を用いることができる。
さらに、膜濾過への通水方式は、外圧型と内圧型があり、どちらの通水方式でも問題ない。
【0017】
本発明の処理フローに使用する活性炭処理装置としては、使用する活性炭には特に制限されないが、微生物被覆活性炭が好ましく使用される。
例えば、活性炭に微生物を繁殖させた活性炭、即ち生物活性能を付与したバイオアクティブカーボン(BAC)を床とする槽中での処理を採用することが望ましい。特に、該微生物被覆活性炭を用いると、フミン質等がオゾン処理により酸化され、消化し易くなった有機物を除去できる。
従って、活性炭の吸着に微生物消化機能が付与され、より高度に処理された水質を得ることができる。また、オゾンでは処理し難いアンモニアも微生物で消化させて滅することができる。
【0018】
【実施例】
以下、本発明に基づく水の処理方法および処理装置の実施例について説明する。なお、以下の実施例は本発明に限定を加えるものではない。
(実施例1)
図1に示した本発明の処理フローに基づく実験装置(処理量35m3 /日)において、河川表流水を原水として処理実験を行った。
実験中の原水水質は濁度が6〜40度、色度が4〜28度、TOCが2〜5mg/L、総マンガン濃度0.2〜0.3mg/L、水温は15℃〜30℃であった。
原水に酸化剤注入装置16を用いて残留塩素濃度が1mg/Lとなるように塩素を注入した後、マンガン砂濾過塔を通し貯槽2へ供給した。
マンガン砂濾過処理後の総マンガン濃度は0.005mg/L未満の検出限界以下であった。
膜濾過装置5には、公称孔径0.1μmのフッ化ビニリデン樹脂製精密濾過中空糸膜(膜面積7m2)を用いて、循環水量を濾水量の1/10に設定したクロスフロー濾過にて設定膜濾過流束5m3/m2/日の定流量濾過運転を行った。
運転条件は、濾過を20分行った後、逆流洗浄を30秒間行うという操作を繰り返し、1時間毎に膜モジュール直下から空気を供給してエアーバブリングを2分間行った。
また、膜濾過水中の残留オゾン濃度が0.5mg/L程度となるようにオゾン検出器15を用いてフィードバック制御して、オゾンをオゾン発生器8からエジェクター注入装置4にインライン注入した。
120日間連続運転した後の25℃換算の膜間差圧は100kPaで、その間薬品洗浄も必要なく安定に運転できた。またこの間の平均オゾン注入率は3mg/Lであった。
さらに、活性炭処理後の水質は、すべて快適水質項目の基準を上回るものであった。
【0019】
(実施例2)
実施例1において、酸化剤として塩素の代わりに二酸化塩素を1mg/L添加する以外は、実施例1と同様に行った。
120日間連続運転した後の25℃換算の膜間差圧は100kPaで、その間薬品洗浄も必要なく安定に運転できた。さらに、活性炭処理後の水質は、すべて快適水質項目の基準を上回るものであった。
【0020】
(比較例1)
実施例1において、酸化剤注入及びマンガン砂濾過工程を行わない以外は、実施例1と同様に行った。
活性炭処理後の水質は、すべての水質項目の基準を上回るものであったが、100日間連続運転した後、25℃換算の膜間差圧が200kPaとなり、運転を停止せざるを得なかった。またこの間の平均オゾン注入率は4mg/Lと高かった。
【0021】
【発明の効果】
以上説明したように、本発明によれば、マンガン除去処理とオゾン処理と膜濾過処理と活性炭処理を含む水処理方法であって、少量のオゾン注入で、しかも膜目詰まりを抑制して高流束で安定した処理水量を得ることが可能な水処理方法が提供される。
本発明方法を用いることにより、高い膜濾過流束においても膜の目詰まりを大幅に軽減することができ、膜の目詰まりに対処するための薬品洗浄に要する労力と洗浄薬剤費とを低減することができる。
しかも、オゾンの注入制御を行うことによって、オゾン注入量を最小限にして無駄なオゾン消費を抑制することが可能となる。
本発明は、上水道、下水道、工業用水または廃水の処理に極めて有効に用いられ、その工業的価値は大きい。
【図面の簡単な説明】
【図1】本発明の一実施例の処理フローを示す模式図である。
【符号の説明】
1 原水
2 循環槽または貯槽
3 膜供給ポンプ
4 エジェクター注入装置
5 膜濾過装置
6 オゾンガス
7 膜濾過水槽
8 オゾン発生器
9 循環水
10 排オゾンガス
11 排オゾンガス処理設備
12 活性炭供給ポンプ
13 活性炭処理装置
14 処理水
15 オゾン検出器
16 酸化剤注入装置
17 酸化剤
18 マンガン砂濾過装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment method for water supply, sewerage, industrial water or wastewater treatment, and in particular, water that can be treated with high efficiency and high efficiency by a synergistic effect by combining ozone treatment, membrane filtration treatment and activated carbon treatment. It relates to the processing method.
[0002]
[Prior art]
In recent years, cases of using membrane filtration processing excellent in maintenance and space saving as an alternative to the conventional coagulation sedimentation-sand filtration treatment, mainly in small-scale water supply, are increasing in water purification treatment.
However, considering the application of membrane filtration treatment to large and medium-scale water purification plants, it is essential to reduce the cost to the same level or lower as in the case of conventional coagulation sedimentation-sand filtration treatment. Therefore, in order to reduce the running cost, it is necessary to be able to operate stably with a high membrane filtration flux.
Large and medium-sized water purification plants are often located in urban areas, and river water quality tends to deteriorate year by year.
In order to remove trihalomethane precursors and odorous substances, which are soluble organic substances in raw water, it is assumed that advanced treatment such as ozone treatment or activated carbon treatment will be introduced in the future.
[0003]
In this case, as a combination of membrane filtration treatment, ozone treatment and activated carbon treatment,
There are two methods: (I) a method of sequentially performing ozone treatment, activated carbon treatment, and membrane filtration treatment; and (2) a method of sequentially performing membrane filtration treatment, ozone treatment, and activated carbon treatment.
However, in either method, membrane fouling proceeds due to suspended substances and organic substances in the raw water introduced into the membrane filtration process as the membrane supply raw water, and a high flux of 3 m 3 / m 2 / day or more. When operated, there is a risk of clogging of the filtration membrane in a relatively short period of time.
[0004]
As one method for solving such a problem, the following method is proposed in Japanese Patent Laid-Open No. 10-309576, which is a conventional example.
First, the raw water is fed into the raw water tank, supplied to the circulation tank or the membrane supply tank by the supply pump, and then sent from the membrane supply pump to the membrane filtration device via the ejector injection device. Ozone is injected into the ejector injection device in-line from an ozone generator, so that the membrane feed water and ozone come into contact with each other to be oxidized.
Membrane filtration water obtained in the membrane filtration apparatus is sent to a membrane filtration tank, a part of the membrane filtration water is used as a membrane back-flow washing water, and most of the remainder is sent to an activated carbon treatment apparatus by an activated carbon supply pump. The activated carbon treatment device removes ozone by-products and the like from the membrane filtered water, and finally the treated water is obtained.
[0005]
This method describes that the following advantages can be obtained.
(I) Since the organic polymer that causes film fouling is decomposed or reduced in molecular weight by ozone treatment, film clogging is suppressed.
(2) By leaving ozone in the membrane filtered water, the membrane surface and the inside of the pores are always washed with ozone, so that stable water can be passed for a relatively long time with a high membrane filtration flux.
(3) It is possible to obtain advanced treated water that is well suited for beverages.
[0006]
[Problems to be solved by the invention]
However, even with the above method, ozone is consumed by inorganic substances such as iron and manganese in the raw water and the amount of injected ozone is increased, or clogging of the membrane proceeds due to oxidized inorganic substances, and a high membrane filtration flux is obtained. There may not be.
The present invention has been completed as a result of intensive studies to overcome the above-described problems, and is a water treatment method including manganese removal treatment, ozone treatment, and membrane filtration treatment, which comprises a small amount of ozone. It is an object of the present invention to provide a water treatment method capable of obtaining a stable treated water amount with a high filtration flux by suppressing the clogging of the membrane with an injection amount.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention basically includes a step of reducing manganese concentration in raw water to obtain manganese-removed raw water, and a step of injecting ozone gas into the manganese-removed raw water using an in-line injection device. And a process for obtaining a membrane filtrate by subjecting the ozone gas injection raw water to a membrane filtration, and a step of subjecting the membrane filtrate to an activated carbon treatment.
In the water treatment method of the present invention, it is preferable to control the amount of ozone injected into the raw water so that the residual ozone concentration in the membrane filtrate is maintained within a predetermined range.
The residual ozone concentration in the membrane filtered water is 0.01 to 10 mg / L, preferably 0.1 to 5.0 mg / L.
Furthermore, in the water treatment method of the present invention, it is preferable that the step of obtaining the manganese-removed raw water includes an oxidizing agent addition and a manganese sand filtration step.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the water treatment method of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a processing flow for explaining an example of the water treatment method of the present invention.
The water treatment method of the present invention can be carried out according to a process including the treatment apparatus of the present invention having such a configuration.
In the illustrated apparatus, an oxidant 17 is injected into the raw water 1 using an oxidant injection device 16 and then fed into a manganese sand filtration device 18.
The raw water from which manganese has been removed by the manganese sand filtration device 18 is supplied to the storage tank 2 and then sent from the membrane supply pump 3 to the membrane filtration device 5 via the ejector injection device 4.
In addition, the ozone gas 6 from the ozone generator 8 is inline-injected into the ejector injection device 4, whereby the membrane supply water and ozone come into contact with each other to be oxidized. That is, treated water after the oxidation treatment is fed into the membrane filtration device 5.
The membrane filtrate obtained in the membrane filtration device 5 is sent to the membrane filtration water tank 7, a part of the membrane filtration water is used as the membrane backwash water, and most of the remainder is activated carbon treatment device 13 by the activated carbon supply pump 12. Sent to.
[0009]
In the activated carbon treatment device 13, ozone by-products and the like in the membrane filtered water are removed, and finally treated water 14 is obtained.
As shown in the figure, in the membrane filtration device 5, the circulating water 9 can be returned to the circulation tank or the storage tank 2.
The exhaust ozone gas 10 discharged from the circulation tank or the storage tank 2 is introduced into the exhaust ozone gas processing facility 11 and processed.
In this case, there is no problem even if the exhaust ozone gas treatment equipment 11 has any type such as an activated carbon type, a thermal decomposition type, and a catalytic type.
[0010]
In the membrane filtration water tank 7, the ozone detector 15 detects the residual ozone concentration in the membrane filtration water and constantly measures it.
As the ozone detector 15, a dissolved ozone concentration detector can be used.
Based on the measured value of the obtained ozone concentration, the amount of ozone supplied from the ozone generator 8 to the ejector injector 4 is controlled.
The means for measuring the residual ozone concentration in the membrane filtrate is not particularly limited, but an ozone detector, particularly a dissolved ozone concentration detector (for example, OZ-20 manufactured by Toa Denpa Kogyo Co., Ltd.) is preferably used. The ozone concentration is detected and constantly measured.
It is good to adjust the applied voltage of the ozone generator 8 and the opening / closing operation of a valve (not shown) so that the residual ozone concentration in the membrane filtered water is within the range of 0.01 to 10 mg / L. This controls the amount of ozone injected directly in-line from the ozone generator to the ejector injector.
Specifically, the residual ozone concentration in the membrane filtrate can be calculated by a control means such as a CPU (Central Processing Unit), and the amount of ozone injected in-line can be feedback controlled.
[0011]
The amount of ozone remaining in the membrane filtered water obtained by the membrane filtration device 5 is preferably 0.01 to 10 mg / L in order to keep the filtration rate of the membrane filtration device 5 high.
When the residual ozone concentration in the membrane filtered water is higher than 10 mg / L, there is a risk that membrane degradation may occur due to reaction with ozone in the long term even if an ozone resistant membrane material is used as the filtration membrane of the membrane filtration device 5. However, considering the replacement time of the membrane module, up to 10 mg / L is allowed. Moreover, when residual ozone concentration becomes higher than 10 mg / L, there exists a problem that the amount of by-products also increases.
Further, when the residual ozone concentration is 0.01 mg / L or less, the membrane is clogged quickly, and it is necessary to perform cleaning frequently, and the efficiency is lowered.
From the above, the residual ozone concentration in the membrane filtered water is preferably 0.01 to 10 mg / L, and more preferably 0.1 to 5.0 mg / L.
[0012]
Next, the process of obtaining manganese removal raw water is demonstrated.
Manganese in raw water contains soluble manganese that permeates the membrane and insoluble manganese that does not permeate the membrane, but when insoluble manganese accumulates on the membrane surface, the soluble manganese is also oxidized on the membrane surface. And clogs the membrane, greatly reducing the permeation flux.
Furthermore, since manganese is oxidized by ozone injection in the previous stage, there is a problem that the amount of ozone injection increases.
For this reason, removing manganese as much as possible before ozone injection is effective in reducing the ozone injection rate and preventing clogging of the film.
Manganese removal is preferably performed by filtering manganese sand after injecting an oxidizing agent.
As an oxidizing agent, aeration, chlorine, sodium hypochlorite, potassium permanganate, chlorine dioxide, or the like can be used.
Manganese sand filtration may be carried out by using an ordinary method as described in, for example, published on June 15, 1987, by the Industrial Water Research Committee, Yutaka Takai et al.
[0013]
Next, ozone injection in the present invention will be described.
Usually, there are two ozone injection methods: an air diffuser method and an in-line injection method using an ejector.
In the present invention, in order to obtain a high membrane permeation flux, it is preferable that the residual ozone concentration in the membrane filtrate is high (within a predetermined range).
When ozone is injected by an air diffuser, ozone is consumed by a reaction that is not effective in suppressing clogging of the membrane because the contact time of ozone and raw water is long.
Therefore, in the present invention, when ozone gas is injected immediately before the membrane using the in-line injection method, only the reaction with the clogging component of the membrane effectively occurs, and a high membrane permeation flux can be obtained with a small ozone injection amount.
[0014]
In the water treatment method of the present invention, the contact time between raw water and ozone gas is preferably 5 minutes or less.
If the contact time is longer than 5 minutes, a reaction that is not effective in preventing clogging of the film occurs, and ozone cannot be used effectively.
Therefore, the contact time between raw water and ozone gas is 5 minutes or less, preferably 3 minutes or less.
Furthermore, in the water treatment method of the present invention, a flocculant may be added prior to injecting ozone gas into the raw water.
During membrane filtration, when the pore size of the membrane is in the region of microfiltration, the pore size becomes large, and suspended matter, bacteria, etc. in raw water enter the membrane. Therefore, in the case of raw water rich in suspended solids and bacteria, a lot of ozone injection is necessary to obtain a high membrane filtration flux.
For the purpose of reducing the amount of ozone added, it is preferable to use a flocculant such as polyaluminum chloride (PAC), sulfuric acid band, ferrous chloride, ferric chloride prior to ozone addition.
Further, even in raw water that does not contain so much suspended solids and bacteria, it is possible to maintain a high membrane filtration flux by adding the flocculant during the low water temperature period.
The addition amount of the flocculant needs to be an amount capable of aggregating suspended substances contained in the raw water, and generally 1 to 100 mg may be added to 1 liter of raw water.
[0015]
Next, the membrane filtration device 5 used in the present invention will be described.
First, the membrane filtration method will be described.
In general, one of two methods, a total filtration method and a cross flow filtration method, can be adopted as the membrane filtration method.
As a filtration method of the membrane module used in the method of the present invention, any method of a total amount filtration method (dead end filtration method) and a cross flow filtration method may be used.
In the cross-flow filtration method, it is general to supply a water amount about twice the amount of filtered water to the membrane, and about half of the water supplied to the membrane is returned to the raw water.
On the other hand, the total amount filtration method is a method of filtering all the raw water supplied to the membrane, and the raw water amount and the filtered water amount are the same.
In the cross flow filtration method, about half of the ozone injected into the raw water is returned to the raw water, whereas in the total amount filtration method, the whole amount becomes membrane filtered water, and at the same ozone injection rate, the residual ozone concentration of the membrane filtered water is The total filtration method is higher.
Therefore, it is preferable that the membrane filtration flux has a higher residual ozone concentration (within a predetermined range) in the filtrate. Therefore, if the total amount filtration method is used in the water treatment method of the present invention, less ozone than the cross flow filtration method. The same amount of membrane filtration flux is obtained with the injection amount.
[0016]
The membrane filtration device 5 is not particularly limited as long as the membrane supply water can be treated, but since membrane filtration is performed in a state where ozone is dissolved in the membrane supply water, clogging of the membrane due to biological fouling can be prevented, And it is possible to obtain a high permeation flux.
The membrane used in the membrane filtration device 5 may be any membrane that can remove turbid components and bacteria in the raw water, and is generally a microfiltration membrane or an ultrafiltration membrane.
In the case of a microfiltration membrane, one having a nominal pore size of 0.01 to 0.5 μm is used, and in the case of an ultrafiltration membrane, one having a molecular weight cut off of 1,000 to 200,000 daltons is used.
In addition, the membrane module may be any type such as a hollow fiber shape, a spiral shape, a tubular shape, and a flat membrane shape.
The membrane material and the potting part are preferably made of an ozone-resistant material in order to come into contact with high-concentration ozone. As the film material, an ozone-resistant organic resin such as vinylidene fluoride polymer resin or an inorganic material such as ceramic can be used.
Furthermore, there are two types of water flow methods for membrane filtration, an external pressure type and an internal pressure type.
[0017]
The activated carbon treatment apparatus used in the treatment flow of the present invention is not particularly limited to the activated carbon used, but microorganism-coated activated carbon is preferably used.
For example, it is desirable to employ a treatment in a tank having activated carbon obtained by breeding microorganisms on activated carbon, that is, bioactive carbon (BAC) imparted with bioactivity. In particular, when the microorganism-coated activated carbon is used, humic substances and the like are oxidized by ozone treatment, and organic substances that are easily digested can be removed.
Accordingly, a microorganism digestion function is imparted to the adsorption of activated carbon, and a more highly treated water quality can be obtained. Ammonia, which is difficult to treat with ozone, can also be destroyed by digestion with microorganisms.
[0018]
【Example】
Embodiments of the water treatment method and treatment apparatus according to the present invention will be described below. The following examples do not limit the present invention.
Example 1
In the experimental apparatus (treatment amount 35 m 3 / day) based on the treatment flow of the present invention shown in FIG. 1, treatment experiments were conducted using river surface water as raw water.
The raw water quality during the experiment is 6 to 40 degrees in turbidity, 4 to 28 degrees in chromaticity, 2 to 5 mg / L in TOC, 0.2 to 0.3 mg / L in total manganese concentration, and 15 to 30 ° C in water temperature. Met.
Chlorine was injected into the raw water using an oxidant injection device 16 so that the residual chlorine concentration was 1 mg / L, and then supplied to the storage tank 2 through a manganese sand filtration tower.
The total manganese concentration after the manganese sand filtration treatment was below the detection limit of less than 0.005 mg / L.
The membrane filtration device 5 uses a microfiltration hollow fiber membrane (membrane area 7 m 2 ) made of vinylidene fluoride resin having a nominal pore size of 0.1 μm, and by cross flow filtration with the circulating water amount set to 1/10 of the filtered water amount. A constant flow filtration operation was carried out at a set membrane filtration flux of 5 m 3 / m 2 / day.
The operating condition was that filtration was performed for 20 minutes and then backwashing was performed for 30 seconds. Air was bubbled for 2 minutes by supplying air from directly under the membrane module every hour.
Further, feedback control was performed using the ozone detector 15 so that the residual ozone concentration in the membrane filtered water was about 0.5 mg / L, and ozone was injected inline from the ozone generator 8 to the ejector injector 4.
After the continuous operation for 120 days, the transmembrane differential pressure in terms of 25 ° C. was 100 kPa, and during that time, no chemical cleaning was necessary and the operation was stable. Further, the average ozone injection rate during this period was 3 mg / L.
Furthermore, the water quality after the activated carbon treatment exceeded all the standards for comfortable water quality items.
[0019]
(Example 2)
In Example 1, it carried out like Example 1 except adding 1 mg / L of chlorine dioxide instead of chlorine as an oxidizing agent.
After the continuous operation for 120 days, the transmembrane differential pressure in terms of 25 ° C. was 100 kPa, and during that time, no chemical cleaning was necessary and the operation was stable. Furthermore, the water quality after the activated carbon treatment exceeded all the standards for comfortable water quality items.
[0020]
(Comparative Example 1)
In Example 1, it carried out like Example 1 except not performing an oxidizing agent injection | pouring and a manganese sand filtration process.
The water quality after the activated carbon treatment exceeded the standards of all the water quality items, but after 100 days of continuous operation, the transmembrane differential pressure in terms of 25 ° C. became 200 kPa, and the operation had to be stopped. The average ozone injection rate during this period was as high as 4 mg / L.
[0021]
【The invention's effect】
As described above, according to the present invention, a water treatment method including a manganese removal treatment, an ozone treatment, a membrane filtration treatment, and an activated carbon treatment, and with a small amount of ozone injection, the membrane clogging is suppressed and a high flow rate is achieved. A water treatment method capable of obtaining a stable amount of treated water in a bundle is provided.
By using the method of the present invention, the clogging of the membrane can be greatly reduced even at a high membrane filtration flux, and the labor and the cleaning chemical cost required for chemical cleaning to cope with the clogging of the membrane are reduced. be able to.
In addition, by performing ozone injection control, it is possible to minimize wasteful ozone consumption by minimizing the amount of ozone injected.
The present invention is very effectively used for the treatment of waterworks, sewage, industrial water or wastewater, and its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a processing flow of an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water 2 Circulation tank or storage tank 3 Membrane supply pump 4 Ejector injection device 5 Membrane filtration device 6 Ozone gas 7 Membrane filtration water tank 8 Ozone generator 9 Circulating water 10 Exhaust ozone gas 11 Exhaust ozone gas treatment equipment 12 Activated carbon supply pump 13 Activated carbon treatment device 14 Treatment Water 15 Ozone detector 16 Oxidant injection device 17 Oxidant 18 Manganese sand filtration device

Claims (4)

酸化剤の添加及びマンガン砂濾過工程からなる原水中のマンガン濃度を低下させてマンガン除去原水を得る工程と、前記マンガン除去原水に対し膜の直前でインライン注入装置を用いてオゾンガスを注入し、前記マンガン除去原水とオゾンとの接触時間を3分以下とする工程と、前記オゾンガス注入原水を膜濾過して膜濾過水を得る工程と、前記膜濾過水を活性炭処理する工程とを具備することを特徴とする水処理方法。 The step of obtaining the manganese removal raw water by reducing the manganese concentration in the raw water comprising the addition of the oxidizing agent and the manganese sand filtration step, and injecting ozone gas using an in- line injection device immediately before the membrane with respect to the manganese removal raw water , Comprising a step of making the contact time between the manganese-removed raw water and ozone 3 minutes or less, a step of obtaining membrane filtered water by subjecting the ozone gas-injected raw water to membrane filtration, and a step of treating the membrane filtered water with activated carbon. A water treatment method characterized. 前記原水へのオゾン注入量を制御して、前記膜濾過水中の残留オゾン濃度を所定範囲に維持することを特徴とする請求項1記載の水処理方法。  The water treatment method according to claim 1, wherein the residual ozone concentration in the membrane filtered water is maintained within a predetermined range by controlling an ozone injection amount into the raw water. 前記膜濾過水中の残留オゾン濃度が0.01〜10mg/Lの範囲であることを特徴とする請求項2記載の水処理方法。  The water treatment method according to claim 2, wherein the residual ozone concentration in the membrane filtrate is in the range of 0.01 to 10 mg / L. 前記膜濾過水を得る工程が全量濾過方式又は循環水量/濾水量の比率が1/10以下であるクロスフロー濾過方式であることを特徴とする請求項1〜3のいずれかに記載の水処理方法。The water treatment according to any one of claims 1 to 3, wherein the step of obtaining the membrane filtrate is a total filtration method or a cross-flow filtration method in which the ratio of circulating water amount / filtered water amount is 1/10 or less. Method.
JP2000286344A 2000-09-21 2000-09-21 Water treatment method and apparatus Expired - Lifetime JP4215381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286344A JP4215381B2 (en) 2000-09-21 2000-09-21 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286344A JP4215381B2 (en) 2000-09-21 2000-09-21 Water treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2002086193A JP2002086193A (en) 2002-03-26
JP4215381B2 true JP4215381B2 (en) 2009-01-28

Family

ID=18770280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286344A Expired - Lifetime JP4215381B2 (en) 2000-09-21 2000-09-21 Water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4215381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436673A (en) * 2019-09-02 2019-11-12 宝武集团环境资源科技有限公司 A kind of Treating Electroplate Wastewater Containing Nickel recycling and reusing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095813A (en) * 2003-09-26 2005-04-14 Daicen Membrane Systems Ltd Underground water purifying device
JP2005095812A (en) * 2003-09-26 2005-04-14 Daicen Membrane Systems Ltd Water purifying device and water purifying method
KR100705611B1 (en) * 2004-07-21 2007-04-10 (주)비룡 Advanced drinking water purification system by membrain filtration equipment using demanganese tower
JP4862005B2 (en) * 2008-03-10 2012-01-25 メタウォーター株式会社 Water treatment method and water treatment apparatus
JP4977650B2 (en) * 2008-06-19 2012-07-18 三洋電機株式会社 Water treatment system
JP2014094322A (en) * 2012-11-07 2014-05-22 Sumitomo Precision Prod Co Ltd Multistage organic waste water treatment system
JP6251095B2 (en) * 2014-03-20 2017-12-20 オルガノ株式会社 Membrane filtration system, membrane filtration method, and apparatus for producing water for breeding aquatic organisms
JP6966540B2 (en) * 2017-04-24 2021-11-17 メタウォーター株式会社 Soluble manganese removal method
CN113243330B (en) * 2021-05-19 2024-09-17 郑桂森 Filter system of fish tank with disposable cotton bottom filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436673A (en) * 2019-09-02 2019-11-12 宝武集团环境资源科技有限公司 A kind of Treating Electroplate Wastewater Containing Nickel recycling and reusing method

Also Published As

Publication number Publication date
JP2002086193A (en) 2002-03-26

Similar Documents

Publication Publication Date Title
US6464877B1 (en) Water treating method
KR101214991B1 (en) Method for treating waste water
EP2072470B1 (en) Method of reutilizing wastewater
JP4215381B2 (en) Water treatment method and apparatus
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JP2001191086A (en) Water treating apparatus
JP3712110B2 (en) Purification method of sewage secondary treated water
Mavrov et al. Treatment of low-contaminated waste water from the food industry to produce water of drinking quality for reuse
JP3575047B2 (en) Wastewater treatment method
JP5055746B2 (en) Water circulation system using membrane
JP3552580B2 (en) Method and apparatus for treating human wastewater
JP3444202B2 (en) Water treatment equipment
JP4373871B2 (en) Activated sludge treatment equipment
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
JP4304803B2 (en) Water treatment apparatus cleaning method and water treatment apparatus
JP3707293B2 (en) Wastewater treatment equipment
WO2000027510A1 (en) Method for filtration with membrane
KR20200087397A (en) Treatment system of waste water using oxidation preprocess
JP3565083B2 (en) Method and apparatus for treating human wastewater
KR20190032919A (en) Water treatment apparatus and method using ozone pretreatment
JP2002079062A (en) Method and apparatus for water treatment
JP2002035554A (en) Method for treating water and its apparatus
JP2000024660A (en) Water treatment and device therefor
JPH11277060A (en) Apparatus for treating water containing manganese
JP3449247B2 (en) Water treatment method and apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080317

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4215381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term