WO2021199371A1 - Water treatment device and water treatment method - Google Patents

Water treatment device and water treatment method Download PDF

Info

Publication number
WO2021199371A1
WO2021199371A1 PCT/JP2020/014984 JP2020014984W WO2021199371A1 WO 2021199371 A1 WO2021199371 A1 WO 2021199371A1 JP 2020014984 W JP2020014984 W JP 2020014984W WO 2021199371 A1 WO2021199371 A1 WO 2021199371A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone water
value
water
ozone
differential pressure
Prior art date
Application number
PCT/JP2020/014984
Other languages
French (fr)
Japanese (ja)
Inventor
英二 今村
祐樹 佐藤
佳史 林
野田 清治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021503927A priority Critical patent/JP6952930B1/en
Priority to CN202080099049.0A priority patent/CN115335138B/en
Priority to PCT/JP2020/014984 priority patent/WO2021199371A1/en
Priority to TW110109956A priority patent/TWI764629B/en
Publication of WO2021199371A1 publication Critical patent/WO2021199371A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • This application relates to a water treatment device and a water treatment method.
  • a membrane filtration method is widely adopted in which the water to be treated is filtered with a filtration membrane to obtain clear filtered water.
  • the filtration membrane used in this method is, for example, an organic material membrane having innumerable fine pores having a pore diameter of about 0.1 micrometer on the surface, or an inorganic material membrane. This membrane makes it possible to remove suspended solids in the water to be treated.
  • the membrane filtration method has a problem that extremely high quality filtered water can be obtained as treated water by a filtration membrane having a precise structure as described above, while pores of the filtration membrane are blocked by a substance such as a suspended substance. ..
  • a chemical solution containing filtered water, ozone, or hypochlorous acid is passed through the filtration membrane in the direction opposite to the filtration direction of the water to be treated to block the pores of the filtration membrane.
  • a "backwash” is performed to remove.
  • Patent Documents 1 and 2 disclose a method for backwashing a filtration membrane using ozone water, which is water in which ozone is dissolved.
  • the dissolved ozone concentration is easily affected by the properties of the liquid that is the solvent for ozone gas, and the ozone dissolution rate and the final dissolved ozone concentration change each time it is produced. Therefore, the cleaning effect varies, and the cleaning effect expected in the ozone water cleaning process of injecting ozone water into the filter membrane cannot be obtained, and immediate re-cleaning is required, which may increase the cleaning frequency. be.
  • This application was made to solve the above-mentioned problems, eliminate the uncertainty caused by the characteristics of ozone in ozone water generation and cleaning, start ozone water generation at an appropriate timing, and stabilize it. It is an object of the present invention to provide a water treatment apparatus and a water treatment method for obtaining a sufficient ozone water cleaning effect.
  • the water treatment device disclosed in the present application is A membrane filtration step of filtering the water to be treated with a filtration membrane to obtain the treated water and an ozone water cleaning step of cleaning the filtered membrane with ozone water are performed.
  • An arithmetic unit that calculates the intermembrane differential pressure value from the measured pressure difference before and after the filtration membrane, When the calculated intermembrane differential pressure value or the estimated value calculated based on the intermembrane differential pressure value becomes equal to or larger than the reference value, the start of ozone water generation is instructed. It is characterized by having a control unit.
  • the uncertainty caused by the characteristics of ozone in ozone water generation and cleaning is eliminated, ozone water generation is started at an appropriate timing, and stable and sufficient ozone water cleaning is performed. The effect can be obtained.
  • FIG. It is a figure explaining an example of the structure of the water treatment apparatus in Embodiment 1.
  • FIG. It is a flowchart explaining the operation of the water treatment apparatus in Embodiment 1. It is a figure explaining the start and completion of the ozone water cleaning process in Embodiment 1. It is another figure explaining the start and completion of the ozone water cleaning process in Embodiment 1. It is another figure explaining the start and completion of the ozone water cleaning process in Embodiment 1. It is a figure explaining an example of the structure of the water treatment apparatus in Embodiment 2. It is a flowchart explaining the operation of the water treatment apparatus in Embodiment 2. It is a figure which shows an example of the hardware which comprises the calculation part, control part, setting part, and the intermembrane differential pressure change rate calculation means shown in Embodiments 1 and 2.
  • FIG. 1 shows an example of the configuration of the water treatment apparatus according to the first embodiment.
  • the water treatment device of FIG. 1 includes a storage tank 2 for accommodating the filtration membrane 1.
  • the storage tank 2 is filled with the water to be treated 4, and the filtration membrane 1 is immersed in the water 4 to be treated.
  • the storage tank 2 is provided with a water to be treated pipe 19 for supplying the water to be treated 4.
  • a filtered water pipe 15 is connected to the filtration membrane 1.
  • a pressure gauge 9 is installed on the pipe. The pressure information obtained by the pressure gauge 9 is transmitted to the calculation unit 10 and converted into the intermembrane differential pressure.
  • the filtration pump 13 is connected to the filtered water pipe 15 so that the filtered water obtained through the filtration membrane 1 can be sent to the filtered water tank 14. Further, the filtered water pipe 15 is connected to the ozone water supply pipe 7.
  • the ozone water supply pipe 7 supplies the ozone water discharged from the ozone water generator 3 via the ozone water supply pump 6 to the filtration membrane 1.
  • the ozone water generator 3 includes an ozone gas generator 12 that generates ozone gas, an ozone water tank 5 that generates ozone water by bringing the generated ozone gas into contact with a liquid stored inside, and a dissolved ozone concentration in the ozone water tank 5. It is composed of an ozone water concentration meter 8 for measuring.
  • Valves 16 and 17 are installed in the filtered water pipe 15 and the ozone water supply pipe 7, and the supply of filtered water or ozone water is switched by opening and closing these valves. Further, a control unit 11 capable of receiving the operation parameters of each device set by the setting unit 18, the calculation result calculated by the calculation unit 10, information from other devices, or transmitting a command to each device is provided. Be prepared.
  • step S1 the water to be treated 4 is received into the storage tank 2 and the water to be treated 4 is filtered by the filtration membrane 1.
  • the water to be treated 4 supplied from the water pipe 19 to be treated is stored in the storage tank 2.
  • the valve 17 By opening the valve 17 (at this time, the valve 16 is closed) and operating the filtration pump 13 to suck the water, the filtration membrane 1 filters the water to be treated 4.
  • the filtered water obtained by filtration is transferred to the filtered water tank 14.
  • the pressure difference (trans-membrane pressure: TMP) before and after the filtration membrane 1 increases.
  • TMP trans-membrane pressure
  • An excessive increase in TMP causes a malfunction of the device such as damage to the filtration membrane 1, so it is desirable to constantly monitor the TMP to grasp the degree of fouling.
  • the pressure information obtained by the pressure gauge 9 is converted into TMP by adding a treatment predetermined by the calculation unit 10 and recorded.
  • the predetermined treatment here is a treatment for obtaining the difference between the pressure acting on the primary side of the filtration film 1 and the pressure acting on the secondary side.
  • the storage tank is used as the pressure acting on the primary side of the filtration film 1.
  • the water pressure generated by the water level of 2 is adopted, and the sum of the water pressure generated by the mounting height of the pressure gauge 9 and the measured value of the pressure gauge 9 is adopted as the pressure acting on the secondary side.
  • the water to be treated 4 is not particularly limited, and may be, for example, natural water collected from rivers, lakes, oceans, etc., or sewage, industrial wastewater, or the like.
  • activated sludge may be stored in the storage tank 2, water 4 to be treated may be introduced therein, and the mixed liquid may be filtered by the filtration membrane 1.
  • the filtration may be continuous or intermittent. For example, the filtration may be stopped at predetermined time intervals to allow the filtered water to flow back to perform backwashing, and then the filtration may be restarted.
  • the shape of the filtration membrane 1 may be either a hollow yarn type or a flat membrane type, and the material of the filtration membrane 1 is an inorganic material such as ceramics, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or the like. Fluororesin-based organic materials can be used.
  • the filtration membrane 1 to be used is not limited as long as the water to be treated 4 has a pore diameter that can be filtered to the target water quality and has a structure or material having sufficient ozone resistance.
  • the water treatment apparatus shown in this embodiment is equipped with a device for solving such a problem. That is, the TMP is sequentially calculated by the calculation unit 10 from the measured value of the pressure gauge 9 during the membrane filtration step execution, and transmitted to the control unit 11. As a result, the TMP acting on the filtration membrane 1 is constantly monitored. Further setting unit 18 in advance input P max, and the P sub and TMP is P max constant value lower TMP than the control unit 11 compares sequentially (step S2), and it has reached the P sub, i.e., When the control unit 11 detects that the TMP is equal to or greater than the P sub , ozone water generation is started (step S3).
  • P sub it is preferable to set the P sub in the setting unit 18 so that the time from P sub to P max is longer than the time that ozone water generation can be completed, and the time required for ozone water generation is about 10 to 120 minutes. Therefore, for example, it is preferable to set Psub to a value 5 to 20 kPa lower than P max.
  • the ozone water generation step is started, the ozone gas generator 12 operates, and the ozone gas supply to the ozone water tank 5 is started.
  • a liquid that can be a solvent for ozone is stored in the ozone water tank 5 in advance, and ozone water is generated by bringing this liquid into contact with ozone gas.
  • tap water, industrial water, pure water, ultrapure water, or a part of the filtered water stored in the filtered water tank 14 may be transferred and used as this liquid.
  • acidic chemicals such as hydrochloric acid and sulfuric acid, or radical scavengers (for example, carbon dioxide gas) are injected into the liquid in the ozone water tank 5 at the same time as ozone gas or prior to ozone gas supply. You can keep it. By adding such an operation, it is possible to suppress the decomposition of ozone, and it is possible to obtain high-concentration ozone water in a shorter time.
  • the membrane filtration step is continued. That is, in the membrane filtration step, the filtration pump 13 operates and filters the water to be treated 4 through the filtration membrane 1, but the operation of the equipment related to ozone water generation and the operation of the equipment related to membrane filtration are independent. Unless the TMP reaches P max , i.e., when the TMP is equal to or greater than P max , it is not always necessary to shut down these devices and stop the membrane filtration process during ozone water production. This is one aspect of the effect of the present embodiment, and by starting ozone water generation before the limit value P max of the intermembrane differential pressure requiring cleaning, the filtration stop time can be shortened to the ultimate. can. When the P max is reached before the ozone water generation is completed, the filtration process can be stopped or the filtered water amount (filtration flux) can be reduced until the ozone water generation is completed.
  • the ozone water concentration during ozone water generation is constantly monitored by the ozone water concentration meter 8 and transmitted to the calculation unit 10.
  • the concentration information received by the calculation unit 10 is transmitted to the control unit 11, and when the control unit 11 determines that the ozone water concentration at the time of monitoring has reached the predetermined concentration Cartget set in advance by the setting unit 18, the ozone water Start the cleaning process.
  • Step S4 Dissolved ozone concentration of the ozone water in the control unit 11 has reached a concentration C target a predetermined, i.e., after a determination is made that equal to or greater and C target, stopping the membrane filtration step (Step S4). Meanwhile, while the ozone gas supply to the ozone water tank 5 by the ozone gas generator 12 is continued, the ozone water supply to the filtration membrane 1 is started. That is, a command is transmitted from the control unit 11, the filtration pump 13 is stopped, the valve 17 is closed, and the valve 16 is opened. Further, the ozone water supply pump 6 operates, and the ozone water stored in the ozone water tank 5 is supplied to the filtration film 1 through the ozone water supply pipe 7.
  • the supplied ozone water chemically decomposes fouling-causing substances (organic components such as biofilms, etc.) that block the pores of the filtration membrane in the process of permeating from the secondary side to the primary side of the filtration membrane. Or physically peel off.
  • fouling-causing substances organic components such as biofilms, etc.
  • the CT value obtained by the product of the cleaning effect that is, the effect of reducing TMP
  • the concentration of ozone water used for cleaning and the cleaning time in the ozone water cleaning of the water treatment filter membrane It became clear that there could be a correlation with. That is, when the filtered membrane in which water in which an organic substance such as sugar or protein is dissolved is filtered and fouled until it shows a predetermined TMP is washed with ozone water, even if the ozone water concentration C changes each time.
  • the TMP can be used after any cleaning in which the ozone water concentration C has changed.
  • the amount of reduction was about the same. As a result, it is considered possible to manage the ozone water cleaning effect by managing the cleaning time while grasping the change in the ozone water concentration obtained as a result of ozone water generation.
  • the concentration of ozone water stored in the ozone water tank 5 in the ozone water generation step is measured by the ozone water concentration meter 8.
  • the measured values are sequentially transmitted to the calculation unit 10, and the calculated current ozone water concentration information is transmitted to the control unit 11.
  • Control unit 11 compares the current concentration of ozone water that has been transmitted from the control unit, and a concentration of ozone water C target set in the preset unit 18. As shown in FIG. 3, when it is determined that the Cartaget has been reached, the ozone water cleaning step is started (step S5).
  • the ozone water concentration after the start of the ozone water cleaning process is averaged by adjusting the ozone gas concentration or flow rate supplied to the ozone water tank 5 by changing the output of the ozone gas generator 12. It may be operated so as to become a C target.
  • the measured value of the ozone water concentration meter 8 the control unit 11 received via the operation unit 10 is, the ozone gas generator in accordance with a deviation between the C target is the current concentration of ozone water and the target value Increase or decrease the ozone gas concentration or flow rate emitted from 12.
  • the ozone gas generator 12 is controlled by the control unit 11 so that the ozone water concentration during the execution of the ozone water cleaning step becomes a Cartaget on average. Further, the control unit 11 calculates the required cleaning time ⁇ 1 from the CT target and the ozone water concentration C target , which are predetermined target CT values, in the setting unit 18, and executes the ozone water cleaning step for the required cleaning time ⁇ 1.
  • the ozone water concentration may be adjusted without changing the ozone gas concentration, the flow rate, or other conditions.
  • the control unit 11 sequentially acquires the measured value of the ozone water concentration meter 8 and records it as the ozone water concentration via the calculation unit 10.
  • the product of the recorded ozone water concentration and the elapsed time of the ozone water cleaning step is accumulated, and when the accumulated value reaches the CT target (step S6), that is, when it is equal to or larger than the CT target, ozone is used.
  • the water washing step may be completed (step S7). For example, at this time, the following formula may be introduced into the calculation unit 10, and the calculation result may be sequentially compared and determined with the CT target.
  • CT present ⁇ (C present ⁇ ⁇ t) here, CT present indicates the current cumulative CT value.
  • C present indicates the current ozone water concentration.
  • ⁇ t indicates the elapsed time from the previous CT present calculation.
  • the average ozone water concentration Ave at each time point from the start of the ozone water cleaning process is sequentially calculated, and this calculated value is used.
  • the ozone water cleaning process completion point may be determined by comparing the ⁇ Cave ⁇ dt value obtained by multiplying the ozone water cleaning process execution time at the same time point with the CT target (step S6).
  • the ozone water cleaning process start condition is set to the ozone water concentration. That is, when the preset ozone water concentration Cartage is reached, the ozone water cleaning step is started. However, for example, even if the ozone water generation step is operated so as to forcibly start the ozone water cleaning step when the predetermined time ⁇ has elapsed, as shown in FIG. 5, without defining the Cartaget. good. At this time, the ozone water concentration at the start of the ozone water cleaning process is not always constant, but since the cleaning effect itself by the ozone water can be controlled by the CT value, the ozone water cleaning is performed according to the ozone water concentration and the CT target to be measured sequentially. The process execution time may be adjusted.
  • step S8 After the ozone water cleaning process is completed, the ozone gas supply from the ozone gas generator 12 and the ozone water supply by the ozone water supply pump 6 are stopped, the valve 16 is closed, and the filtration process is restarted (step S8).
  • high-concentration ozone water can be obtained in a shorter time with the start of the ozone water generation process. Further, by managing the cleaning time while grasping the change in the ozone water concentration, it is possible to manage the ozone water cleaning effect. Due to these remarkable effects, the uncertainty caused by the characteristics of ozone in ozone water generation and cleaning can be eliminated, ozone water generation can be started at an appropriate timing, and a stable and sufficient ozone water cleaning effect can be obtained. ..
  • Embodiment 2 In a water treatment device that obtains treated water by filtering the water 4 to be treated with a filtration membrane, fouling of the filtration membrane proceeds as described above, but the fouling rate, that is, the rate of change in differential pressure between membranes is not always constant. It does not change depending on the filtration conditions, such as the water-based condition to be treated from time to time. Therefore, by determining the ozone water generation start timing according to the rate of change in the differential pressure between the membranes, more efficient operation becomes possible.
  • the TMP is calculated by the calculation unit 10 from the measured values of the pressure gauge 9, and is sequentially recorded in the control unit 11.
  • That control unit 11 includes a current transmembrane pressure P n, was predetermined at the setting unit 18 sequentially records the transmembrane pressure P n-1 before a predetermined time T 1 than the current, P n From the difference between P n-1 and P n-1, and from T 1 , the average intermembrane differential pressure change rate v from P n -1 to P n is calculated.
  • control unit 11 sequentially calculates in the setting unit 18, ⁇ P, which is the product of the predetermined time T 2 and the average intermembrane differential pressure change rate v, and the value P n + x, which is the sum of this ⁇ P and P n.
  • the control unit 11 sequentially compares this value P n + x with the P max preset by the setting unit 18, and when it is determined that P n + x has reached P max (step S9), the ozone water generation step is started. (Step S3).
  • P n + x is an estimated intermembrane pressure after time T 2 starting from the current time.
  • T 1 needs to be a time suitable for predicting the intermembrane differential pressure in the near future from the current time from the intermembrane differential pressure increase rate near the current time, and is set between 10 minutes and 240 minutes. Is good. If T 1 is shorter than 10 minutes, it is greatly affected by the change in the differential pressure between the membranes due to a slight fluctuation in the filtration flow rate in the filtration step, and v is calculated to be excessively large or small.
  • T 1 is longer than 240 minutes, it is affected when the intermembrane pressure suddenly rises or falls for some reason in the process from P n-1 to P n , and v and P n + x are calculated. It becomes inappropriate.
  • T 2 it is preferable to input the time required from the start of ozone water generation to the arrival of the required ozone water concentration Cartaget , which is 10 to 120 minutes. That is, when it is determined that the intermembrane differential pressure can reach P max or more defined as the limit intermembrane differential pressure when the time required for ozone water generation elapses from the current time, the ozone water generation process is immediately started. do.
  • FIG. 8 shows an example of the hardware constituting the calculation unit 10, the control unit 11, the setting unit 18, and the intermembrane differential pressure change speed calculation means 110. It is composed of a processor 100 and a storage device 200, and although not shown, the storage device includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 100 By executing the program input from the storage device 200, the processor 100 performs each calculation and each control described with reference to, for example, FIG. 2 or FIG. In this case, a program for calculation or control is input from the auxiliary storage device to the processor 100 via the volatile storage device.
  • the processor 100 may output data such as a calculation result to the volatile storage device of the storage device 200, or may store the data in the auxiliary storage device via the volatile storage device.
  • a plurality of processors 100 may be mounted, and the arithmetic unit 10, the control unit 11, and the setting unit 18 may be configured by one processor 100.
  • 1 Filtration membrane
  • 2 Storage tank
  • 3 Ozone water generator
  • 4 Treated water
  • 5 Ozone water tank
  • 6 Ozone water supply pump
  • 7 Ozone water supply pipe
  • 8 Ozone water concentration meter
  • 9 Pressure gauge
  • 10 Calculation unit
  • 11 Control unit
  • 12 Ozone gas generator
  • 13 Filtration pump
  • 14 Filtered water tank
  • 15 Filtered water pipe
  • 16 Valve
  • 18 Setting unit
  • 19 Covered Treated water piping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

In a water treatment device that uses ozone water to clean a filter membrane, it is difficult to time the start of ozone water generation and manage a cleaning effect, due to the unstable nature of ozone, and thus sometimes the expected cleaning effect cannot be achieved. In order to solve this problem, the present invention is configured such that a transmembrane pressure difference value is calculated from a measured difference in pressure before and after the filter membrane, and the start of ozone water generation is commanded when the calculated transmembrane pressure difference value, or an estimated value calculated on the basis of said transmembrane pressure difference value, is equal to a reference value or has become greater than said reference value.

Description

水処理装置および水処理方法Water treatment equipment and water treatment method
 本願は水処理装置および水処理方法に関するものである。 This application relates to a water treatment device and a water treatment method.
 上下水処理または排水処理において、被処理水をろ過膜でろ過し、清澄なろ過水を得る膜ろ過法が広く採用されている。同法に使用されるろ過膜は、例えば表面に細孔径0.1マイクロメートルほどの微細な無数の孔を有する有機材料膜、または無機材料膜である。この膜により、被処理水中の懸濁物質の除去が可能である。 In water and sewage treatment or wastewater treatment, a membrane filtration method is widely adopted in which the water to be treated is filtered with a filtration membrane to obtain clear filtered water. The filtration membrane used in this method is, for example, an organic material membrane having innumerable fine pores having a pore diameter of about 0.1 micrometer on the surface, or an inorganic material membrane. This membrane makes it possible to remove suspended solids in the water to be treated.
 膜ろ過法は、前述のような精密な構造を持つろ過膜により極めて高品質なろ過水が処理水として得られる一方、懸濁物質等の物質によりろ過膜の細孔が閉塞するという課題がある。これに対して一般的に、ろ過水、オゾン、または次亜塩素酸を含んだ薬品溶液を被処理水のろ過方向とは逆向きにろ過膜に通水して、ろ過膜細孔の閉塞を取り除く「逆洗」が行われる。例えば、特許文献1および2には、オゾンを溶解させた水であるオゾン水を利用したろ過膜の逆洗方法が開示されている。 The membrane filtration method has a problem that extremely high quality filtered water can be obtained as treated water by a filtration membrane having a precise structure as described above, while pores of the filtration membrane are blocked by a substance such as a suspended substance. .. On the other hand, in general, a chemical solution containing filtered water, ozone, or hypochlorous acid is passed through the filtration membrane in the direction opposite to the filtration direction of the water to be treated to block the pores of the filtration membrane. A "backwash" is performed to remove. For example, Patent Documents 1 and 2 disclose a method for backwashing a filtration membrane using ozone water, which is water in which ozone is dissolved.
特開2001-300576号公報Japanese Unexamined Patent Publication No. 2001-300736 特開2014-128790号公報Japanese Unexamined Patent Publication No. 2014-128790
 例えば、オゾン水によりろ過膜を洗浄する場合、洗浄に必要なオゾン濃度を含んだオゾン水を洗浄の都度生成する必要がある。これはオゾンの不安定さに起因する。すなわち、目標オゾン濃度のオゾン水を生成しても、オゾンガスの供給を停止すると時間経過とともにオゾンが分解してオゾン濃度が低下し、洗浄剤としての効力が損なわれる。このため、比較的分解速度が遅く、保存が可能である次亜塩素酸ナトリウムなどの洗浄剤によるろ過膜洗浄とは異なり、ろ過膜の洗浄が必要な状態になったとしても、直ちに洗浄を開始することができず、ろ過膜に過剰なファウリング(細孔の閉塞)が発生する。 For example, when cleaning the filter membrane with ozone water, it is necessary to generate ozone water containing the ozone concentration required for cleaning each time it is washed. This is due to the instability of ozone. That is, even if ozone water having a target ozone concentration is generated, if the supply of ozone gas is stopped, ozone is decomposed with the passage of time and the ozone concentration is lowered, so that the effectiveness as a cleaning agent is impaired. Therefore, unlike the filtration membrane cleaning with a cleaning agent such as sodium hypochlorite, which has a relatively slow decomposition rate and can be stored, even if the filtration membrane needs to be cleaned, cleaning is started immediately. This cannot be done, and excessive fouling (blockage of pores) occurs in the filtration membrane.
 さらに溶存オゾン濃度はオゾンガスの溶媒となる液体の性状に影響を受けやすく、オゾンの溶解速度、最終的な溶存オゾン濃度は生成の都度変化する。従って、洗浄効果にばらつきが生じ、オゾン水をろ過膜に注入するオゾン水洗浄工程において期待したとおりの洗浄効果が得られず、ただちに再度の洗浄が必要になり洗浄頻度が増大してしまう恐れがある。 Furthermore, the dissolved ozone concentration is easily affected by the properties of the liquid that is the solvent for ozone gas, and the ozone dissolution rate and the final dissolved ozone concentration change each time it is produced. Therefore, the cleaning effect varies, and the cleaning effect expected in the ozone water cleaning process of injecting ozone water into the filter membrane cannot be obtained, and immediate re-cleaning is required, which may increase the cleaning frequency. be.
 本願は上述のような問題を解消するためになされたもので、オゾン水生成および洗浄におけるオゾンの特性に起因した不確実さを解消し、適切なタイミングでオゾン水生成を開始し、安定して十分なオゾン水洗浄効果を得る水処理装置および水処理方法を提供することを目的とする。 This application was made to solve the above-mentioned problems, eliminate the uncertainty caused by the characteristics of ozone in ozone water generation and cleaning, start ozone water generation at an appropriate timing, and stabilize it. It is an object of the present invention to provide a water treatment apparatus and a water treatment method for obtaining a sufficient ozone water cleaning effect.
 本願に開示される水処理装置は、
 被処理水をろ過膜でろ過して処理水を取得する膜ろ過工程と、ろ過膜をオゾン水で洗浄するオゾン水洗浄工程を行うものであって、
 測定されたろ過膜前後の圧力差から膜間差圧値を算出する演算部と、
 算出された膜間差圧値、または膜間差圧値に基づいて算出された推定値が、基準値と等しいか、または基準値よりも大きくなったときに、オゾン水の生成開始を指示する制御部と、を備えたことを特徴とする。
The water treatment device disclosed in the present application is
A membrane filtration step of filtering the water to be treated with a filtration membrane to obtain the treated water and an ozone water cleaning step of cleaning the filtered membrane with ozone water are performed.
An arithmetic unit that calculates the intermembrane differential pressure value from the measured pressure difference before and after the filtration membrane,
When the calculated intermembrane differential pressure value or the estimated value calculated based on the intermembrane differential pressure value becomes equal to or larger than the reference value, the start of ozone water generation is instructed. It is characterized by having a control unit.
 本願に開示される水処理装置によれば、オゾン水生成および洗浄におけるオゾンの特性に起因した不確実さを解消し、適切なタイミングでオゾン水生成を開始し、安定して十分なオゾン水洗浄効果を得ることができる。 According to the water treatment apparatus disclosed in the present application, the uncertainty caused by the characteristics of ozone in ozone water generation and cleaning is eliminated, ozone water generation is started at an appropriate timing, and stable and sufficient ozone water cleaning is performed. The effect can be obtained.
実施の形態1における水処理装置の構成の一例を説明する図である。It is a figure explaining an example of the structure of the water treatment apparatus in Embodiment 1. FIG. 実施の形態1における水処理装置の動作を説明するフローチャートである。It is a flowchart explaining the operation of the water treatment apparatus in Embodiment 1. 実施の形態1におけるオゾン水洗浄工程の開始と完了を説明する図である。It is a figure explaining the start and completion of the ozone water cleaning process in Embodiment 1. 実施の形態1におけるオゾン水洗浄工程の開始と完了を説明する別の図である。It is another figure explaining the start and completion of the ozone water cleaning process in Embodiment 1. 実施の形態1におけるオゾン水洗浄工程の開始と完了を説明する別の図である。It is another figure explaining the start and completion of the ozone water cleaning process in Embodiment 1. 実施の形態2における水処理装置の構成の一例を説明する図である。It is a figure explaining an example of the structure of the water treatment apparatus in Embodiment 2. 実施の形態2における水処理装置の動作を説明するフローチャートである。It is a flowchart explaining the operation of the water treatment apparatus in Embodiment 2. 実施の形態1および2に示された演算部、制御部、設定部、および膜間差圧変化速度算出手段を構成するハードウエアの一例を示す図である。It is a figure which shows an example of the hardware which comprises the calculation part, control part, setting part, and the intermembrane differential pressure change rate calculation means shown in Embodiments 1 and 2.
 以下、本願に係る水処理装置の好適な実施の形態について、図面を参照して説明する。なお、同一内容および相当部については同一符号を配し、その詳しい説明は省略する。以降の実施の形態も同様に、同一符号を付した構成について重複した説明は省略する。 Hereinafter, preferred embodiments of the water treatment apparatus according to the present application will be described with reference to the drawings. The same contents and corresponding parts are designated by the same reference numerals, and detailed description thereof will be omitted. Similarly, in the subsequent embodiments, duplicate description of the configurations with the same reference numerals will be omitted.
実施の形態1.
 図1に実施の形態1に係る水処理装置の構成の一例を示す。図1の水処理装置は、ろ過膜1を収容する収容槽2を備える。収容槽2には被処理水4が充填されており、ろ過膜1は被処理水4に浸漬されている。また収容槽2に被処理水4を供給する被処理水配管19を備える。ろ過膜1にはろ過水配管15が接続されている。さらに同配管上には圧力計9が設置されている。圧力計9で得られた圧力情報は演算部10に伝送され、膜間差圧に換算される。
Embodiment 1.
FIG. 1 shows an example of the configuration of the water treatment apparatus according to the first embodiment. The water treatment device of FIG. 1 includes a storage tank 2 for accommodating the filtration membrane 1. The storage tank 2 is filled with the water to be treated 4, and the filtration membrane 1 is immersed in the water 4 to be treated. Further, the storage tank 2 is provided with a water to be treated pipe 19 for supplying the water to be treated 4. A filtered water pipe 15 is connected to the filtration membrane 1. Further, a pressure gauge 9 is installed on the pipe. The pressure information obtained by the pressure gauge 9 is transmitted to the calculation unit 10 and converted into the intermembrane differential pressure.
 ろ過ポンプ13はろ過水配管15と接続され、ろ過膜1を介して得たろ過水をろ過水槽14に送水可能とする。さらにろ過水配管15はオゾン水供給配管7と接続している。オゾン水供給配管7は、オゾン水生成装置3から、オゾン水供給ポンプ6を介して排出されたオゾン水を、ろ過膜1に供給する。オゾン水生成装置3は、オゾンガスを発生するオゾンガス発生器12と、発生したオゾンガスを、内部に貯留した液体とを接触させてオゾン水を生成するオゾン水槽5と、オゾン水槽5内の溶存オゾン濃度を測定するオゾン水濃度計8とから構成される。 The filtration pump 13 is connected to the filtered water pipe 15 so that the filtered water obtained through the filtration membrane 1 can be sent to the filtered water tank 14. Further, the filtered water pipe 15 is connected to the ozone water supply pipe 7. The ozone water supply pipe 7 supplies the ozone water discharged from the ozone water generator 3 via the ozone water supply pump 6 to the filtration membrane 1. The ozone water generator 3 includes an ozone gas generator 12 that generates ozone gas, an ozone water tank 5 that generates ozone water by bringing the generated ozone gas into contact with a liquid stored inside, and a dissolved ozone concentration in the ozone water tank 5. It is composed of an ozone water concentration meter 8 for measuring.
 ろ過水配管15、およびオゾン水供給配管7にはバルブ16、17が設置されており、これらの開閉によってろ過水、またはオゾン水の供給を切り替える。さらに、設定部18で設定される各装置の運転パラメータ、演算部10で演算された演算結果、その他の各機器からの情報を受信し、または各機器に対して指令を送信できる制御部11を備える。 Valves 16 and 17 are installed in the filtered water pipe 15 and the ozone water supply pipe 7, and the supply of filtered water or ozone water is switched by opening and closing these valves. Further, a control unit 11 capable of receiving the operation parameters of each device set by the setting unit 18, the calculation result calculated by the calculation unit 10, information from other devices, or transmitting a command to each device is provided. Be prepared.
 次に図1の水処理装置による水処理の一連の動作を図2のフローチャートを参照しながら説明する。
[膜ろ過工程]
 膜ろ過工程(ステップS1)では被処理水4の収容槽2への受入、およびろ過膜1による被処理水4のろ過を行う。被処理水配管19から供給された被処理水4は収容槽2に貯留される。バルブ17を開き(このときバルブ16は閉)、ろ過ポンプ13を稼動させて吸引することで、ろ過膜1で被処理水4のろ過を行う。ろ過によって得られたろ過水はろ過水槽14に移送される。
Next, a series of operations of water treatment by the water treatment apparatus of FIG. 1 will be described with reference to the flowchart of FIG.
[Membrane filtration process]
In the membrane filtration step (step S1), the water to be treated 4 is received into the storage tank 2 and the water to be treated 4 is filtered by the filtration membrane 1. The water to be treated 4 supplied from the water pipe 19 to be treated is stored in the storage tank 2. By opening the valve 17 (at this time, the valve 16 is closed) and operating the filtration pump 13 to suck the water, the filtration membrane 1 filters the water to be treated 4. The filtered water obtained by filtration is transferred to the filtered water tank 14.
 ろ過に伴ってろ過膜1のファウリング、すなわち細孔の閉塞が進行する。ファウリングが進行すると、ろ過膜1前後での圧力差(膜間差圧=Trans-membrane pressure:TMP)が上昇する。過度なTMP上昇は、ろ過膜1の破損など装置の不具合原因となるので、常にTMPを監視してファウリングの程度を把握することが望ましい。本実施の形態の水処理装置では、圧力計9により得られた圧力情報に、演算部10で予め定められた処理を加えることでTMPに換算し、これを記録する。ここで予め定められた処理とは、ろ過膜1の一次側に働く圧力と二次側に働く圧力との差を求める処理であり、ここでは、ろ過膜1の一次側に働く圧力として収容槽2の水位によって生じる水圧を採用し、二次側に働く圧力として圧力計9の取り付け高さによって生じる水圧と圧力計9の測定値との和を採用している。 Fowling of the filtration membrane 1, that is, blockage of pores progresses with filtration. As the fouling progresses, the pressure difference (trans-membrane pressure: TMP) before and after the filtration membrane 1 increases. An excessive increase in TMP causes a malfunction of the device such as damage to the filtration membrane 1, so it is desirable to constantly monitor the TMP to grasp the degree of fouling. In the water treatment apparatus of the present embodiment, the pressure information obtained by the pressure gauge 9 is converted into TMP by adding a treatment predetermined by the calculation unit 10 and recorded. The predetermined treatment here is a treatment for obtaining the difference between the pressure acting on the primary side of the filtration film 1 and the pressure acting on the secondary side. Here, the storage tank is used as the pressure acting on the primary side of the filtration film 1. The water pressure generated by the water level of 2 is adopted, and the sum of the water pressure generated by the mounting height of the pressure gauge 9 and the measured value of the pressure gauge 9 is adopted as the pressure acting on the secondary side.
 被処理水4については、特に限定はなく、例えば河川、湖沼、海洋などから採水した自然水であっても良いし、または下水、産業排水などであってもよい。膜分離バイオリアクタとして運用する場合には、収容槽2に活性汚泥を貯留しておいて、ここに被処理水4を導入し、混合した液をろ過膜1でろ過しても良い。 The water to be treated 4 is not particularly limited, and may be, for example, natural water collected from rivers, lakes, oceans, etc., or sewage, industrial wastewater, or the like. When operating as a membrane separation bioreactor, activated sludge may be stored in the storage tank 2, water 4 to be treated may be introduced therein, and the mixed liquid may be filtered by the filtration membrane 1.
 また、ろ過は連続であっても断続的に行っても良い。例えば、予め定められた時間毎にろ過を停止してろ過水を逆流させるなどして逆洗を実施し、その後、ろ過を再開させるなどしても良い。また、ろ過膜1の形状は中空糸型、あるいは平膜型のいずれでも良く、ろ過膜1の材料はセラミックスなどの無機材料、例えばポリフッ化ビニリデン(PVDF)、またはポリテトラフルオロエチレン(PTFE)などのフッ素樹脂系有機材料が利用できる。いずれにしても被処理水4を、目的水質にろ過可能な細孔径であって、オゾン耐性が十分な構造、または材料であれば使用するろ過膜1に限定はない。 Also, the filtration may be continuous or intermittent. For example, the filtration may be stopped at predetermined time intervals to allow the filtered water to flow back to perform backwashing, and then the filtration may be restarted. The shape of the filtration membrane 1 may be either a hollow yarn type or a flat membrane type, and the material of the filtration membrane 1 is an inorganic material such as ceramics, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or the like. Fluororesin-based organic materials can be used. In any case, the filtration membrane 1 to be used is not limited as long as the water to be treated 4 has a pore diameter that can be filtered to the target water quality and has a structure or material having sufficient ozone resistance.
[オゾン水生成工程]
 前述の通り、ろ過に伴ってろ過膜1のファウリングが進行し、TMPが上昇する。ろ過膜1に対し、与えることのできるTMPには限度があり、限度以上のTMPでろ過を継続すると、ろ過膜1が破損する虞がある。また限度内のTMPであっても、高いTMPを維持してろ過を継続すると、洗浄によるTMPの低減が困難になる場合がある。よって、予め設定部18に入力したTMPの限界値Pmaxに到達した場合に、オゾン水洗浄を実施することが望ましい。例えばPmaxとして10~50kPaに設定するのがよい。
[Ozone water generation process]
As described above, the fouling of the filtration membrane 1 progresses with the filtration, and the TMP increases. There is a limit to the TMP that can be given to the filtration membrane 1, and if filtration is continued with a TMP exceeding the limit, the filtration membrane 1 may be damaged. Further, even if the TMP is within the limit, if the high TMP is maintained and the filtration is continued, it may be difficult to reduce the TMP by washing. Therefore, it is desirable to perform ozone water cleaning when the limit value P max of TMP input to the setting unit 18 in advance is reached. For example, it is preferable to set P max to 10 to 50 kPa.
 ところでオゾン水によりろ過膜1を洗浄する場合、ろ過に必要なオゾン水を必要の都度生成する必要がある。これはオゾンの特性によるものである。すなわち半減期が極めて短いため、一度に必要なオゾン水を長期間に亘って保持しておくことができない。または、保持しようとすればオゾン水が不必要な間も継続的にオゾンガスを供給する必要があり、非効率である。従って、Pmaxに到達した時点で洗浄を開始するには、効率の観点から、定めたPmaxに到達する所定時間前にオゾン水の生成を開始する必要がある。 By the way, when the filtration membrane 1 is washed with ozone water, it is necessary to generate ozone water necessary for filtration each time. This is due to the characteristics of ozone. That is, since the half-life is extremely short, it is not possible to retain the ozone water required at one time for a long period of time. Or, if it is to be retained, it is necessary to continuously supply ozone gas even when ozone water is unnecessary, which is inefficient. Therefore, to start the washing Upon reaching P max, from the viewpoint of efficiency, it is necessary to start generating ozone water before the predetermined time to reach P max which defines.
 本実施の形態に示す水処理装置はかかる問題を解決するための工夫が実装されている。すなわち、膜ろ過工程実行中の圧力計9の測定値から演算部10によりTMPを逐次算出し、制御部11に伝送する。これにより、ろ過膜1に働くTMPを常時監視する。さらに設定部18に予め入力されたPmax、およびPmaxよりも一定値低いTMPであるPsubとTMPとを制御部11が逐次比較し(ステップS2)、Psubに到達したこと、すなわち、TMPがPsubに等しいかまたは大きくなったことを、制御部11が検知したところでオゾン水生成を開始する(ステップS3)。PsubからPmaxに至るまでの時間が、オゾン水生成を完了できる時間以上となるように設定部18においてPsubを設定するのがよく、オゾン水生成にかかる時間は10~120分程度であるので、例えばPmaxよりも5~20kPa低い値にPsubを設定するのがよい。 The water treatment apparatus shown in this embodiment is equipped with a device for solving such a problem. That is, the TMP is sequentially calculated by the calculation unit 10 from the measured value of the pressure gauge 9 during the membrane filtration step execution, and transmitted to the control unit 11. As a result, the TMP acting on the filtration membrane 1 is constantly monitored. Further setting unit 18 in advance input P max, and the P sub and TMP is P max constant value lower TMP than the control unit 11 compares sequentially (step S2), and it has reached the P sub, i.e., When the control unit 11 detects that the TMP is equal to or greater than the P sub , ozone water generation is started (step S3). It is preferable to set the P sub in the setting unit 18 so that the time from P sub to P max is longer than the time that ozone water generation can be completed, and the time required for ozone water generation is about 10 to 120 minutes. Therefore, for example, it is preferable to set Psub to a value 5 to 20 kPa lower than P max.
 前述のとおり、膜ろ過工程において、TMPがPsubに到達した場合にオゾン水生成工程が開始され、オゾンガス発生器12が稼働して、オゾン水槽5にオゾンガス供給を開始する。オゾン水槽5にはあらかじめオゾンの溶媒となりうる液体を貯留させておき、この液体とオゾンガスを接触させることでオゾン水を生成する。この液体には例えば、水道水、工業用水、純水、あるいは超純水のほか、ろ過水槽14に貯留されたろ過水の一部を移送して使用しても良い。またオゾン水槽5でのオゾン水生成時にはオゾン水槽5内の液体に対して、塩酸、硫酸などの酸性薬品、またはラジカルスカベンジャ(例えば炭酸ガス)を、オゾンガスと同時またはオゾンガス供給に先駆けて注入しておいても良い。このような操作を加えることでオゾンの分解抑制が可能になり、より短時間で高濃度のオゾン水を得ることができる。 As described above, in the membrane filtration step, when the TMP reaches Psub , the ozone water generation step is started, the ozone gas generator 12 operates, and the ozone gas supply to the ozone water tank 5 is started. A liquid that can be a solvent for ozone is stored in the ozone water tank 5 in advance, and ozone water is generated by bringing this liquid into contact with ozone gas. For example, tap water, industrial water, pure water, ultrapure water, or a part of the filtered water stored in the filtered water tank 14 may be transferred and used as this liquid. When ozone water is generated in the ozone water tank 5, acidic chemicals such as hydrochloric acid and sulfuric acid, or radical scavengers (for example, carbon dioxide gas) are injected into the liquid in the ozone water tank 5 at the same time as ozone gas or prior to ozone gas supply. You can keep it. By adding such an operation, it is possible to suppress the decomposition of ozone, and it is possible to obtain high-concentration ozone water in a shorter time.
 なおオゾン水生成工程が実行される傍ら、膜ろ過工程は継続される。すなわち膜ろ過工程ではろ過ポンプ13が稼働し、ろ過膜1を介して被処理水4をろ過するが、オゾン水生成にかかる機器の動作と膜ろ過にかかる機器の動作は独立しているので、TMPがPmaxに達した場合、すなわち、TMPがPmaxに等しいかまたは大きくなったときを除き、オゾン水生成に際してこれらの機器を必ずしも停止させ、膜ろ過工程を休止させる必要がない。これは本実施の形態の効果の一側面であり、洗浄が必要な膜間差圧の限界値Pmaxよりも前からオゾン水生成を開始することで、ろ過停止時間を究極まで短縮することができる。オゾン水生成が完了するよりも先にPmaxに到達した場合には、前述のとおり、ろ過工程を停止するか、オゾン水生成完了までろ過水量(ろ過フラックス)を減じて運転することができる。 While the ozone water generation step is executed, the membrane filtration step is continued. That is, in the membrane filtration step, the filtration pump 13 operates and filters the water to be treated 4 through the filtration membrane 1, but the operation of the equipment related to ozone water generation and the operation of the equipment related to membrane filtration are independent. Unless the TMP reaches P max , i.e., when the TMP is equal to or greater than P max , it is not always necessary to shut down these devices and stop the membrane filtration process during ozone water production. This is one aspect of the effect of the present embodiment, and by starting ozone water generation before the limit value P max of the intermembrane differential pressure requiring cleaning, the filtration stop time can be shortened to the ultimate. can. When the P max is reached before the ozone water generation is completed, the filtration process can be stopped or the filtered water amount (filtration flux) can be reduced until the ozone water generation is completed.
 オゾン水生成中のオゾン水濃度はオゾン水濃度計8によって常時モニタリングされ、演算部10に伝送される。演算部10で受信した濃度情報は制御部11に伝送され、モニタリング時のオゾン水濃度が、予め設定部18において設定した所定濃度Ctargetに到達したと制御部11において判断されたところで、オゾン水洗浄工程を開始する。 The ozone water concentration during ozone water generation is constantly monitored by the ozone water concentration meter 8 and transmitted to the calculation unit 10. The concentration information received by the calculation unit 10 is transmitted to the control unit 11, and when the control unit 11 determines that the ozone water concentration at the time of monitoring has reached the predetermined concentration Cartget set in advance by the setting unit 18, the ozone water Start the cleaning process.
[オゾン水洗浄工程]
 制御部11においてオゾン水中の溶存オゾン濃度が、予め定められた濃度Ctargetに到達した、すなわち、Ctargetと等しいかまたは大きくなったと判断されたのち、膜ろ過工程を停止する(ステップS4)。その傍ら、オゾンガス発生器12によるオゾン水槽5へのオゾンガス供給は継続しつつ、ろ過膜1へのオゾン水供給を開始する。すなわち、制御部11から指令を伝送してろ過ポンプ13を停止し、バルブ17を閉じ、バルブ16を開く。さらにオゾン水供給ポンプ6が稼働して、オゾン水槽5内に貯留されたオゾン水がオゾン水供給配管7を通じてろ過膜1に供給される。供給されたオゾン水は、ろ過膜の二次側から一次側へと透過する過程で、ろ過膜細孔を閉塞させているファウリング原因物質(バイオフィルムなどの有機成分など)を化学的に分解するか、または物理的に剥離させる。
[Ozone water cleaning process]
Dissolved ozone concentration of the ozone water in the control unit 11 has reached a concentration C target a predetermined, i.e., after a determination is made that equal to or greater and C target, stopping the membrane filtration step (Step S4). Meanwhile, while the ozone gas supply to the ozone water tank 5 by the ozone gas generator 12 is continued, the ozone water supply to the filtration membrane 1 is started. That is, a command is transmitted from the control unit 11, the filtration pump 13 is stopped, the valve 17 is closed, and the valve 16 is opened. Further, the ozone water supply pump 6 operates, and the ozone water stored in the ozone water tank 5 is supplied to the filtration film 1 through the ozone water supply pipe 7. The supplied ozone water chemically decomposes fouling-causing substances (organic components such as biofilms, etc.) that block the pores of the filtration membrane in the process of permeating from the secondary side to the primary side of the filtration membrane. Or physically peel off.
 水処理装置の運用においては常に運転管理者が意図した洗浄効果を安定して得られることが必要である。しかしながらオゾン水による水処理用ろ過膜の洗浄メカニズムについては解明されていないことが多く、洗浄効果の管理が困難であった。またオゾン水生成の結果得られるオゾン水濃度はオゾンガスの溶媒となる液体の性状によって変化することも洗浄効果の管理を一層困難にしていた。 In the operation of the water treatment equipment, it is necessary to always obtain the cleaning effect intended by the operation manager in a stable manner. However, the cleaning mechanism of the filtration membrane for water treatment with ozone water has not been clarified in many cases, and it has been difficult to control the cleaning effect. In addition, the concentration of ozone water obtained as a result of ozone water generation changes depending on the properties of the liquid that is the solvent for ozone gas, making it even more difficult to control the cleaning effect.
 これに対し、発明者らが鋭意検討した結果、水処理ろ過膜のオゾン水洗浄において、洗浄効果、すなわちTMPの低減効果と、洗浄に使用するオゾン水濃度と洗浄時間の積で求められるCT値との間に相関が存在しうることが明らかとなった。つまり、糖またはタンパク質などの有機物を溶解させた水をろ過して所定のTMPを示すまでファウリングさせたろ過膜に対してオゾン水洗浄を施したところ、オゾン水濃度Cが都度変化しても、オゾン水濃度Cと、オゾン水での洗浄時間Tとの積であるCT値が一定になるようオゾン水洗浄時間を調整することで、オゾン水濃度Cの変化したいずれの洗浄後もTMPの低減量は同程度となった。これによりオゾン水生成の結果得られたオゾン水濃度の変化を把握しながら洗浄時間を管理することで、オゾン水洗浄効果の管理が可能になると考えられる。 On the other hand, as a result of diligent studies by the inventors, the CT value obtained by the product of the cleaning effect, that is, the effect of reducing TMP, and the concentration of ozone water used for cleaning and the cleaning time in the ozone water cleaning of the water treatment filter membrane. It became clear that there could be a correlation with. That is, when the filtered membrane in which water in which an organic substance such as sugar or protein is dissolved is filtered and fouled until it shows a predetermined TMP is washed with ozone water, even if the ozone water concentration C changes each time. By adjusting the ozone water cleaning time so that the CT value, which is the product of the ozone water concentration C and the cleaning time T in ozone water, is constant, the TMP can be used after any cleaning in which the ozone water concentration C has changed. The amount of reduction was about the same. As a result, it is considered possible to manage the ozone water cleaning effect by managing the cleaning time while grasping the change in the ozone water concentration obtained as a result of ozone water generation.
 本実施の形態に示す水処理装置では、オゾン水生成工程においてオゾン水槽5に貯留されたオゾン水の濃度を、オゾン水濃度計8で測定する。測定値は、演算部10に逐次送信され、演算された現在のオゾン水濃度情報を制御部11に送信する。制御部11が、制御部から送信された現在のオゾン水濃度と、あらかじめ設定部18に設定されたオゾン水濃度Ctargetとを比較する。図3に示すように、Ctargetに到達したと判断したところで、オゾン水洗浄工程を開始する(ステップS5)。 In the water treatment apparatus shown in the present embodiment, the concentration of ozone water stored in the ozone water tank 5 in the ozone water generation step is measured by the ozone water concentration meter 8. The measured values are sequentially transmitted to the calculation unit 10, and the calculated current ozone water concentration information is transmitted to the control unit 11. Control unit 11 compares the current concentration of ozone water that has been transmitted from the control unit, and a concentration of ozone water C target set in the preset unit 18. As shown in FIG. 3, when it is determined that the Cartaget has been reached, the ozone water cleaning step is started (step S5).
 オゾン水洗浄工程開始後のオゾン水濃度は、図3に示すように、オゾン水槽5に供給されるオゾンガス濃度または流量をオゾンガス発生器12の出力を変化させることで調整するなどして平均的にCtargetとなるよう運転しても良い。この場合には、オゾン水濃度計8の測定値を、演算部10を経由して受信した制御部11が、現在のオゾン水濃度と目標値であるCtargetとの乖離に応じてオゾンガス発生器12から放出されるオゾンガス濃度、または流量を増減させる。このようにしてオゾン水洗浄工程実行中のオゾン水濃度が平均的にCtargetになるよう制御部11によりオゾンガス発生器12を制御する。さらに制御部11は、設定部18において、予め定めた目標CT値であるCTtargetとオゾン水濃度Ctargetとから必要洗浄時間α1を算出し、必要洗浄時間α1だけオゾン水洗浄工程を実行する。 As shown in FIG. 3, the ozone water concentration after the start of the ozone water cleaning process is averaged by adjusting the ozone gas concentration or flow rate supplied to the ozone water tank 5 by changing the output of the ozone gas generator 12. It may be operated so as to become a C target. In this case, the measured value of the ozone water concentration meter 8, the control unit 11 received via the operation unit 10 is, the ozone gas generator in accordance with a deviation between the C target is the current concentration of ozone water and the target value Increase or decrease the ozone gas concentration or flow rate emitted from 12. In this way, the ozone gas generator 12 is controlled by the control unit 11 so that the ozone water concentration during the execution of the ozone water cleaning step becomes a Cartaget on average. Further, the control unit 11 calculates the required cleaning time α1 from the CT target and the ozone water concentration C target , which are predetermined target CT values, in the setting unit 18, and executes the ozone water cleaning step for the required cleaning time α1.
 また、オゾンガス濃度、流量、その他の条件を変えずにオゾン水濃度を成り行きとしても良い。この場合には、オゾン水濃度計8の測定値を、制御部11が逐次取得し、演算部10を経由して、オゾン水濃度としてこれを記録する。記録されたオゾン水濃度と、オゾン水洗浄工程の経過時間との積を累積し、累積値がCTtargetに到達したところ(ステップS6)、すなわち、CTtargetと等しいか、大きくなった時点でオゾン水洗浄工程を完了するようにしても良い(ステップS7)。例えばこの時、下記式を演算部10に導入しておき、算出結果をCTtargetと逐次比較および判定すればよい。 Further, the ozone water concentration may be adjusted without changing the ozone gas concentration, the flow rate, or other conditions. In this case, the control unit 11 sequentially acquires the measured value of the ozone water concentration meter 8 and records it as the ozone water concentration via the calculation unit 10. The product of the recorded ozone water concentration and the elapsed time of the ozone water cleaning step is accumulated, and when the accumulated value reaches the CT target (step S6), that is, when it is equal to or larger than the CT target, ozone is used. The water washing step may be completed (step S7). For example, at this time, the following formula may be introduced into the calculation unit 10, and the calculation result may be sequentially compared and determined with the CT target.
CTpresent = Σ(Cpresent×Δt)
ここで、
CTpresentは、現在の累積CT値を示す。
presentは、現在のオゾン水濃度を示す。
Δtは、前回のCTpresent算出からの経過時間を示す。
CT present = Σ (C present × Δt)
here,
CT present indicates the current cumulative CT value.
C present indicates the current ozone water concentration.
Δt indicates the elapsed time from the previous CT present calculation.
 また、オゾン水洗浄工程中のオゾン水濃度を成り行きとする場合、図4に示すようにオゾン水洗浄工程開始から各時点での平均的なオゾン水濃度Caveを逐次算出し、この算出値と同時点でのオゾン水洗浄工程実行時間との積で得られる∫Cave・dt値とCTtargetとを比較して、オゾン水洗浄工程完了点を判断しても良い(ステップS6)。 In addition, when the ozone water concentration during the ozone water cleaning process is taken as a matter of course, as shown in FIG. 4, the average ozone water concentration Ave at each time point from the start of the ozone water cleaning process is sequentially calculated, and this calculated value is used. The ozone water cleaning process completion point may be determined by comparing the ∫Cave · dt value obtained by multiplying the ozone water cleaning process execution time at the same time point with the CT target (step S6).
 また、本実施の形態ではオゾン水洗浄工程開始条件をオゾン水濃度とした。すなわち、予め設定したオゾン水濃度Ctargetに到達したところで、オゾン水洗浄工程を開始するようにした。しかし、例えば、Ctargetを定めず、図5に示すように、オゾン水生成工程が、予め定められた時間βを経過したところで、強制的にオゾン水洗浄工程を開始するように運転しても良い。このとき、必ずしもオゾン水洗浄工程開始時のオゾン水濃度が一定とはならないが、オゾン水による洗浄効果自体はCT値で管理できるため、逐次測定するオゾン水濃度およびCTtargetに応じてオゾン水洗浄工程実行時間を調整すればよい。 Further, in the present embodiment, the ozone water cleaning process start condition is set to the ozone water concentration. That is, when the preset ozone water concentration Cartage is reached, the ozone water cleaning step is started. However, for example, even if the ozone water generation step is operated so as to forcibly start the ozone water cleaning step when the predetermined time β has elapsed, as shown in FIG. 5, without defining the Cartaget. good. At this time, the ozone water concentration at the start of the ozone water cleaning process is not always constant, but since the cleaning effect itself by the ozone water can be controlled by the CT value, the ozone water cleaning is performed according to the ozone water concentration and the CT target to be measured sequentially. The process execution time may be adjusted.
 オゾン水洗浄工程完了後、オゾンガス発生器12からのオゾンガス供給およびオゾン水供給ポンプ6によるオゾン水供給を停止し、バルブ16を閉じて、ろ過工程を再開する(ステップS8)。 After the ozone water cleaning process is completed, the ozone gas supply from the ozone gas generator 12 and the ozone water supply by the ozone water supply pump 6 are stopped, the valve 16 is closed, and the filtration process is restarted (step S8).
 以上のように、本実施の形態によれば、オゾン水生成工程開始に伴い、より短時間で高濃度のオゾン水を得ることができる。また、オゾン水濃度の変化を把握しながら洗浄時間を管理することで、オゾン水洗浄効果の管理が可能になる。これら顕著な効果により、オゾン水生成および洗浄におけるオゾンの特性に起因した不確実さを解消し、適切なタイミングでオゾン水生成を開始し、安定して十分なオゾン水洗浄効果を得ることができる。 As described above, according to the present embodiment, high-concentration ozone water can be obtained in a shorter time with the start of the ozone water generation process. Further, by managing the cleaning time while grasping the change in the ozone water concentration, it is possible to manage the ozone water cleaning effect. Due to these remarkable effects, the uncertainty caused by the characteristics of ozone in ozone water generation and cleaning can be eliminated, ozone water generation can be started at an appropriate timing, and a stable and sufficient ozone water cleaning effect can be obtained. ..
実施の形態2.
 ろ過膜により被処理水4をろ過して、処理水を得る水処理装置では前述のとおり、ろ過膜のファウリングが進行するが、ファウリングの速度、すなわち膜間差圧変化速度は必ずしも一定ではなく、時々の被処理水性状など、ろ過条件によって変化する。従ってオゾン水生成開始タイミングについても、膜間差圧変化速度に応じて決定することで、より効率的な運転が可能になる。
Embodiment 2.
In a water treatment device that obtains treated water by filtering the water 4 to be treated with a filtration membrane, fouling of the filtration membrane proceeds as described above, but the fouling rate, that is, the rate of change in differential pressure between membranes is not always constant. It does not change depending on the filtration conditions, such as the water-based condition to be treated from time to time. Therefore, by determining the ozone water generation start timing according to the rate of change in the differential pressure between the membranes, more efficient operation becomes possible.
 実施の形態1に示した水処理装置では、各時点でのTMPとPsubを、制御部11において比較してオゾン水生成工程開始タイミングを決定したが、本実施の形態では、図6に示すように、制御部11に膜間差圧変化速度算出手段110を追加することで、より的確にオゾン水生成工程開始タイミングを決定できる。 The water treatment apparatus shown in the first embodiment, the TMP and P sub at each time point, was determined ozone water generation process start timing by comparing the control unit 11, in this embodiment, shown in FIG. 6 As described above, by adding the intermembrane differential pressure change rate calculation means 110 to the control unit 11, the ozone water generation process start timing can be determined more accurately.
 すなわち、本実施の形態では膜ろ過工程実行中、圧力計9における測定値から演算部10によりTMPを算出し、制御部11に逐次記録する。つまり制御部11は、現在の膜間差圧Pと、設定部18においてあらかじめ定めた、現在よりも所定時間Tだけ前の膜間差圧Pn-1とを逐次記録し、PとPn-1との差、およびTとから、Pn-1からPに至るまでの平均膜間差圧変化速度vを算出する。 That is, in the present embodiment, during the execution of the membrane filtration step, the TMP is calculated by the calculation unit 10 from the measured values of the pressure gauge 9, and is sequentially recorded in the control unit 11. That control unit 11 includes a current transmembrane pressure P n, was predetermined at the setting unit 18 sequentially records the transmembrane pressure P n-1 before a predetermined time T 1 than the current, P n From the difference between P n-1 and P n-1, and from T 1 , the average intermembrane differential pressure change rate v from P n -1 to P n is calculated.
 さらに制御部11は設定部18において、予め定めた時間Tと平均膜間差圧変化速度vとの積であるΔPと、このΔPにPを加算した値Pn+xを逐次算出する。制御部11は、この値Pn+xと、やはり設定部18であらかじめ設定したPmaxとを逐次比較し、Pn+xがPmaxに到達したと判断したところで(ステップS9)、オゾン水生成工程を開始する(ステップS3)。 Further, the control unit 11 sequentially calculates in the setting unit 18, ΔP, which is the product of the predetermined time T 2 and the average intermembrane differential pressure change rate v, and the value P n + x, which is the sum of this ΔP and P n. The control unit 11 sequentially compares this value P n + x with the P max preset by the setting unit 18, and when it is determined that P n + x has reached P max (step S9), the ozone water generation step is started. (Step S3).
 Pn+xとはすなわち、現時刻を起点として、時間T後の推定膜間差圧である。Tは現時刻から近い将来の膜間差圧を、現時刻近傍の膜間差圧上昇速度から予測するのに適した時間とする必要があり、10分~240分の間で設定するのが良い。Tが10分よりも短いと、ろ過工程における多少のろ過流量の変動に起因する膜間差圧の変化に大きく影響を受け、vが過剰に大きくまたは小さく算出されてしまう。 P n + x is an estimated intermembrane pressure after time T 2 starting from the current time. T 1 needs to be a time suitable for predicting the intermembrane differential pressure in the near future from the current time from the intermembrane differential pressure increase rate near the current time, and is set between 10 minutes and 240 minutes. Is good. If T 1 is shorter than 10 minutes, it is greatly affected by the change in the differential pressure between the membranes due to a slight fluctuation in the filtration flow rate in the filtration step, and v is calculated to be excessively large or small.
 一方、Tが240分よりも長いと、Pn-1からPに至る過程において何らかの理由で膜間差圧が急上昇、あるいは急低下した場合に影響を受け、vおよびPn+xの算出が不適切となる。 On the other hand, if T 1 is longer than 240 minutes, it is affected when the intermembrane pressure suddenly rises or falls for some reason in the process from P n-1 to P n , and v and P n + x are calculated. It becomes inappropriate.
 Tはオゾン水生成開始から、必要なオゾン水濃度Ctargetに到達するまでに要する時間を入力するのが良く、10~120分である。すなわち現時刻を起点としてオゾン水生成に要する時間経過したところで、膜間差圧が限界膜間差圧として定めたPmax以上に達しうると判断された場合に、即座にオゾン水生成工程を開始する。 For T 2, it is preferable to input the time required from the start of ozone water generation to the arrival of the required ozone water concentration Cartaget , which is 10 to 120 minutes. That is, when it is determined that the intermembrane differential pressure can reach P max or more defined as the limit intermembrane differential pressure when the time required for ozone water generation elapses from the current time, the ozone water generation process is immediately started. do.
 以上のように時々刻々と膜間差圧変化速度が変化する場合にも、逐次局所的な膜間差圧変化速度を算出および記録することで将来の膜間差圧を推定可能になり、またこれを利用することで的確にオゾン水生成開始タイミングを決定することができる。 Even when the intermembrane differential pressure change rate changes from moment to moment as described above, it is possible to estimate the future intermembrane differential pressure by sequentially calculating and recording the local intermembrane differential pressure change rate. By using this, the ozone water generation start timing can be accurately determined.
 なお、演算部10、制御部11、設定部18、および膜間差圧変化速度算出手段110を構成するハードウエアの一例を図8に示す。プロセッサ100と記憶装置200から構成され、図示していないが、記憶装置はランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ100は、記憶装置200から入力されたプログラムを実行することにより、例えば図2または図7により説明した各演算、及び各制御を行う。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ100に演算または制御のためのプログラムが入力される。また、プロセッサ100は、演算結果等のデータを記憶装置200の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。プロセッサ100は、複数搭載されていてもよく、演算部10、制御部11および設定部18を1つのプロセッサ100で構成してもよい。 FIG. 8 shows an example of the hardware constituting the calculation unit 10, the control unit 11, the setting unit 18, and the intermembrane differential pressure change speed calculation means 110. It is composed of a processor 100 and a storage device 200, and although not shown, the storage device includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory. By executing the program input from the storage device 200, the processor 100 performs each calculation and each control described with reference to, for example, FIG. 2 or FIG. In this case, a program for calculation or control is input from the auxiliary storage device to the processor 100 via the volatile storage device. Further, the processor 100 may output data such as a calculation result to the volatile storage device of the storage device 200, or may store the data in the auxiliary storage device via the volatile storage device. A plurality of processors 100 may be mounted, and the arithmetic unit 10, the control unit 11, and the setting unit 18 may be configured by one processor 100.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
1:ろ過膜、2:収容槽、3:オゾン水生成装置、4:被処理水、5:オゾン水槽、6:オゾン水供給ポンプ、7:オゾン水供給配管、8:オゾン水濃度計、9:圧力計、10:演算部、11:制御部、12:オゾンガス発生器、13:ろ過ポンプ、14:ろ過水槽、15:ろ過水配管、16、17:バルブ、18:設定部、19:被処理水配管 1: Filtration membrane, 2: Storage tank, 3: Ozone water generator, 4: Treated water, 5: Ozone water tank, 6: Ozone water supply pump, 7: Ozone water supply pipe, 8: Ozone water concentration meter, 9 : Pressure gauge, 10: Calculation unit, 11: Control unit, 12: Ozone gas generator, 13: Filtration pump, 14: Filtered water tank, 15: Filtered water pipe, 16, 17: Valve, 18: Setting unit, 19: Covered Treated water piping

Claims (12)

  1.  被処理水をろ過膜でろ過して処理水を取得する膜ろ過工程と前記ろ過膜をオゾン水で洗浄するオゾン水洗浄工程を行う水処理装置において、
     測定された前記ろ過膜前後の圧力差から膜間差圧値を算出する演算部と、
     前記算出された膜間差圧値、または前記膜間差圧値に基づいて算出された推定値が、基準値と等しいか、または基準値よりも大きくなったときに、前記オゾン水の生成開始を指示する制御部と、
    を備えたことを特徴とする水処理装置。
    In a water treatment apparatus that performs a membrane filtration step of filtering water to be treated with a filter membrane to obtain treated water and an ozone water cleaning step of cleaning the filter membrane with ozone water.
    An arithmetic unit that calculates the intermembrane differential pressure value from the measured pressure difference before and after the filtration membrane,
    The generation of ozone water starts when the calculated intermembrane differential pressure value or the estimated value calculated based on the intermembrane differential pressure value becomes equal to or larger than the reference value. And the control unit that instructs
    A water treatment device characterized by being equipped with.
  2.  前記膜間差圧値と前記基準値とを比較する場合、前記基準値は、前記オゾン水洗浄工程による膜間差圧値の低減が困難となる第1の値よりも一定値低い第2の値に設定することを特徴とする請求項1に記載の水処理装置。 When comparing the intermembrane differential pressure value with the reference value, the reference value is a second value that is constant lower than the first value that makes it difficult to reduce the intermembrane differential pressure value by the ozone water cleaning step. The water treatment apparatus according to claim 1, wherein the value is set.
  3.  前記一定値は、前記第2の値から第1の値に至るまでの時間が前記オゾン水の生成開始から生成完了までに至るまでの時間よりも長くなるように設定されることを特徴とする請求項2に記載の水処理装置。 The constant value is characterized in that the time from the second value to the first value is set to be longer than the time from the start of generation of ozone water to the completion of generation of ozone water. The water treatment apparatus according to claim 2.
  4.  前記算出された膜間差圧値が、前記オゾン水洗浄工程による膜間差圧値の低減が困難となる第1の値と等しいか、または第1の値よりも大きくなったときに、前記膜ろ過工程を停止することを特徴とする請求項2に記載の水処理装置。 When the calculated intermembrane differential pressure value is equal to or larger than the first value that makes it difficult to reduce the intermembrane differential pressure value by the ozone water cleaning step, the above-mentioned The water treatment apparatus according to claim 2, wherein the membrane filtration step is stopped.
  5.  前記推定値と前記基準値とを比較する場合、前記基準値は、前記オゾン水洗浄工程による膜間差圧値の低減が困難となる限界値であることを特徴とする請求項1に記載の水処理装置。 The first aspect of the present invention is that when the estimated value is compared with the reference value, the reference value is a limit value at which it is difficult to reduce the intermembrane differential pressure value by the ozone water cleaning step. Water treatment equipment.
  6.  前記推定値は、前記演算部により算出された膜間差圧値と、この膜間差圧値よりも予め定められた時間前の膜間差圧値との差から膜間差圧変化速度を算出し、この膜間差圧変化速度に基づいて予め定められた時間後の膜間差圧値を算出した値であることを特徴とする請求項5に記載の水処理装置。 The estimated value is the intermembrane differential pressure change rate from the difference between the intermembrane differential pressure value calculated by the calculation unit and the intermembrane differential pressure value predetermined time before the intermembrane differential pressure value. The water treatment apparatus according to claim 5, wherein the value is calculated and the intermembrane differential pressure value after a predetermined time is calculated based on the intermembrane differential pressure change rate.
  7.  前記算出された膜間差圧値が、前記オゾン水洗浄工程による膜間差圧値の低減が困難となる限界値と等しいか、または限界値よりも大きくなったときに、前記ろ過膜工程を停止することを特徴とする請求項5に記載の水処理装置。 When the calculated intermembrane differential pressure value is equal to or larger than the limit value at which it is difficult to reduce the intermembrane differential pressure value by the ozone water cleaning step, the filtration membrane step is performed. The water treatment apparatus according to claim 5, wherein the water treatment apparatus is stopped.
  8.  生成された前記オゾン水の濃度が予め定められた目標濃度に到達した後、前記オゾン水洗浄工程を開始することを特徴とする請求項1から7のいずれか一項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 7, wherein the ozone water cleaning step is started after the concentration of the generated ozone water reaches a predetermined target concentration.
  9.  前記オゾン水の濃度と前記オゾン水洗浄工程の経過時間との積算値が設定値となった時に、前記オゾン水洗浄工程を終了することを特徴とする請求項8に記載の水処理装置。 The water treatment apparatus according to claim 8, wherein the ozone water cleaning step is terminated when the integrated value of the ozone water concentration and the elapsed time of the ozone water cleaning step reaches a set value.
  10.  前記オゾン水洗浄工程のオゾン水の濃度が平均的に前記目標濃度となるように前記制御部がオゾンガス発生器のオゾンガス濃度及び流量を調整することを特徴とする請求項8に記載の水処理装置。 The water treatment apparatus according to claim 8, wherein the control unit adjusts the ozone gas concentration and the flow rate of the ozone gas generator so that the ozone water concentration in the ozone water cleaning step becomes the target concentration on average. ..
  11.  被処理水をろ過膜でろ過して処理水を取得する膜ろ過工程と前記ろ過膜をオゾン水で洗浄するオゾン水洗浄工程を有する水処理方法において、
     測定された前記ろ過膜前後の圧力差から膜間差圧値を算出し、
     この膜間差圧値が、前記オゾン水洗浄工程による膜間差圧値の低減が困難となる限界値よりも一定値低く設定された基準値と等しいか、または基準値よりも大きくなったときに、前記オゾン水の生成を開始し、
     生成された前記オゾン水の濃度が予め定められた目標濃度に到達した後、前記ろ過膜工程を停止するとともに、前記オゾン水洗浄工程を開始し、
     前記オゾン水の濃度と前記オゾン水洗浄工程の経過時間との積算値が設定値となった時に、前記オゾン水洗浄工程を終了することを特徴とする水処理方法。
    In a water treatment method having a membrane filtration step of filtering water to be treated with a filtration membrane to obtain treated water and an ozone water cleaning step of cleaning the filtered membrane with ozone water.
    The intermembrane differential pressure value is calculated from the measured pressure difference before and after the filtration membrane.
    When the intermembrane differential pressure value is equal to or larger than the reference value set to be a constant value lower than the limit value at which it is difficult to reduce the intermembrane differential pressure value by the ozone water cleaning step. To start the generation of ozone water,
    After the concentration of the generated ozone water reaches a predetermined target concentration, the filtration membrane step is stopped and the ozone water cleaning step is started.
    A water treatment method characterized in that the ozone water cleaning step is terminated when the integrated value of the ozone water concentration and the elapsed time of the ozone water cleaning step reaches a set value.
  12.  被処理水をろ過膜でろ過して処理水を取得する膜ろ過工程と前記ろ過膜をオゾン水で洗浄するオゾン水洗浄工程を有する水処理方法において、
     測定された前記ろ過膜前後の圧力差から膜間差圧値を算出し、
     前記膜間差圧値に基づいて算出された一定時間後の膜間差圧値の推定値が、前記オゾン水洗浄工程による膜間差圧値の低減が困難となる限界値と等しいか、または前記限界値よりも大きくなったときに、前記オゾン水の生成を開始し、
     生成された前記オゾン水の濃度が予め定められた目標濃度に到達した後、前記ろ過膜工程を停止するとともに、前記オゾン水洗浄工程を開始し、
     前記オゾン水の濃度と前記オゾン水洗浄工程の経過時間との積算値が設定値となった時に、前記オゾン水洗浄工程を終了することを特徴とする水処理方法。
    In a water treatment method having a membrane filtration step of filtering water to be treated with a filtration membrane to obtain treated water and an ozone water cleaning step of cleaning the filtered membrane with ozone water.
    The intermembrane differential pressure value is calculated from the measured pressure difference before and after the filtration membrane.
    The estimated value of the intermembrane differential pressure value after a certain period of time calculated based on the intermembrane differential pressure value is equal to or equal to the limit value at which it is difficult to reduce the intermembrane differential pressure value by the ozone water washing step. When it becomes larger than the limit value, the generation of the ozone water is started, and the ozone water is generated.
    After the concentration of the generated ozone water reaches a predetermined target concentration, the filtration membrane step is stopped and the ozone water cleaning step is started.
    A water treatment method characterized in that the ozone water cleaning step is terminated when the integrated value of the ozone water concentration and the elapsed time of the ozone water cleaning step reaches a set value.
PCT/JP2020/014984 2020-04-01 2020-04-01 Water treatment device and water treatment method WO2021199371A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021503927A JP6952930B1 (en) 2020-04-01 2020-04-01 Water treatment equipment and water treatment method
CN202080099049.0A CN115335138B (en) 2020-04-01 2020-04-01 Water treatment device and water treatment method
PCT/JP2020/014984 WO2021199371A1 (en) 2020-04-01 2020-04-01 Water treatment device and water treatment method
TW110109956A TWI764629B (en) 2020-04-01 2021-03-19 Water treatment device and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014984 WO2021199371A1 (en) 2020-04-01 2020-04-01 Water treatment device and water treatment method

Publications (1)

Publication Number Publication Date
WO2021199371A1 true WO2021199371A1 (en) 2021-10-07

Family

ID=77929808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014984 WO2021199371A1 (en) 2020-04-01 2020-04-01 Water treatment device and water treatment method

Country Status (4)

Country Link
JP (1) JP6952930B1 (en)
CN (1) CN115335138B (en)
TW (1) TWI764629B (en)
WO (1) WO2021199371A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327967A (en) * 2000-05-19 2001-11-27 Toray Ind Inc Operating method and manufacturing method of membrane filtration plant
JP2003053363A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Treatment method and treatment equipment for organic matter-containing water
JP2004105876A (en) * 2002-09-19 2004-04-08 Isomura Housui Kiko Kk Method of washing filtration membrane
WO2016185533A1 (en) * 2015-05-18 2016-11-24 三菱電機株式会社 Water treatment system and water treatment method
WO2017033478A1 (en) * 2015-08-27 2017-03-02 三菱電機株式会社 Water treatment method and water treatment device
WO2017149758A1 (en) * 2016-03-04 2017-09-08 三菱電機株式会社 Membrane filtration device, filtration membrane cleaning method, and method for manufacturing filtration membrane
JP6695515B1 (en) * 2019-06-17 2020-05-20 三菱電機株式会社 Filtration membrane cleaning device, filtration membrane cleaning method, and water treatment system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826829B2 (en) * 2002-04-11 2006-09-27 富士電機システムズ株式会社 Water treatment method using membrane filtration
JP5632779B2 (en) * 2011-03-15 2014-11-26 水野ストレーナー工業株式会社 Backwash type filtration device
CN103739124B (en) * 2014-01-24 2015-12-09 太平洋水处理工程有限公司 A kind of efficient water treatment device and water treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327967A (en) * 2000-05-19 2001-11-27 Toray Ind Inc Operating method and manufacturing method of membrane filtration plant
JP2003053363A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Treatment method and treatment equipment for organic matter-containing water
JP2004105876A (en) * 2002-09-19 2004-04-08 Isomura Housui Kiko Kk Method of washing filtration membrane
WO2016185533A1 (en) * 2015-05-18 2016-11-24 三菱電機株式会社 Water treatment system and water treatment method
WO2017033478A1 (en) * 2015-08-27 2017-03-02 三菱電機株式会社 Water treatment method and water treatment device
WO2017149758A1 (en) * 2016-03-04 2017-09-08 三菱電機株式会社 Membrane filtration device, filtration membrane cleaning method, and method for manufacturing filtration membrane
JP6695515B1 (en) * 2019-06-17 2020-05-20 三菱電機株式会社 Filtration membrane cleaning device, filtration membrane cleaning method, and water treatment system

Also Published As

Publication number Publication date
TW202140386A (en) 2021-11-01
JP6952930B1 (en) 2021-10-27
JPWO2021199371A1 (en) 2021-10-07
TWI764629B (en) 2022-05-11
CN115335138B (en) 2023-05-02
CN115335138A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
US20070138092A1 (en) Method and system for controlling duration of a backwash cycle of a filtration system
JP2004073950A (en) Membrane washing method
KR102329058B1 (en) A computer readable recording medium recording a clogged point specific program of the separation membrane module, a tidal system and a tidal method
US10159940B2 (en) Method for cleaning hollow fiber membrane module
KR20100016080A (en) Method for the filtration of a fluid
JP2014188473A (en) Water treatment method
JP2010201312A (en) Membrane separation method
JPH0669530B2 (en) Method and apparatus for improving the flux rate of a cross flow filtration system
WO2021199371A1 (en) Water treatment device and water treatment method
TWI717743B (en) Membrane clean device and method for cleaning membrane
JP2013212497A (en) Water treating method
CN115297950B (en) Washing failure determination method for water generator and washing failure determination program
JP7103513B2 (en) Control method of water production equipment by filtration characteristic prediction, trouble judgment method of water production equipment, water production equipment, operation program of water production equipment, trouble judgment program of water production equipment, and recording medium
JPH081158A (en) Method for operating water purification system and water purifier
JP2007289899A (en) Membrane washing method for membrane separation means, and water treatment apparatus
JP2006081979A (en) Membrane washing method
JP4927597B2 (en) Separation membrane cleaning method and apparatus
JP7067678B1 (en) Filtration membrane cleaning equipment, water treatment equipment and filtration membrane cleaning method
JP6644211B1 (en) Water treatment device and water treatment method
JP7325694B1 (en) Filtration membrane cleaning device
JPH07328623A (en) Operation of water purifying system and water purifying device
JP2005230730A (en) Water treatment method and water treatment apparatus
JP2007105570A (en) Continuous operation method of water cleaning system
JP2009148667A (en) Membrane filtration apparatus and membrane washing method
JP2007245065A (en) Washing apparatus for filtration membrane

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021503927

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928332

Country of ref document: EP

Kind code of ref document: A1