JP2011056411A - System and method for desalination of water to be treated - Google Patents

System and method for desalination of water to be treated Download PDF

Info

Publication number
JP2011056411A
JP2011056411A JP2009209516A JP2009209516A JP2011056411A JP 2011056411 A JP2011056411 A JP 2011056411A JP 2009209516 A JP2009209516 A JP 2009209516A JP 2009209516 A JP2009209516 A JP 2009209516A JP 2011056411 A JP2011056411 A JP 2011056411A
Authority
JP
Japan
Prior art keywords
water
treated
seawater
ceramic
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009209516A
Other languages
Japanese (ja)
Inventor
Masashi Yamazaki
正志 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2009209516A priority Critical patent/JP2011056411A/en
Publication of JP2011056411A publication Critical patent/JP2011056411A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for desalination of water to be treated employing a reverse osmosis membrane capable of reducing the load on the reverse osmosis membrane by effectively removing a suspended matter from the water prior to the filtration of the water by means of the reverse osmosis membrane and also capable of preventing the generation of scale at a low cost. <P>SOLUTION: The desalination system employing the reverse osmosis membrane method includes a filtration means in which the suspended matter is separated from the water to be treated and a reverse osmosis membrane filtration means installed at the downstream side of the filtration means as viewed in the direction of treating the water from the upstream side to the downstream side for filtering and desalinating the water. The desalination system is characterized in that the filtration means is a ceramic membrane filtration means for filtering out the suspended matter from the water using a ceramic-made microfiltration membrane or a ceramic-made ultrafiltration membrane and also in that a decarbonation means is further included which is installed at the upstream side of the ceramic membrane filtration means as viewed in the direction of treating the water from the upstream side to the downstream side for removing carbonic acid from the water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、かん水や海水などの被処理水を淡水化するシステムおよび方法に関し、特には、被処理水を適切に前処理した後に逆浸透膜でろ過することにより、被処理水を淡水化する際に逆浸透膜にかかる負荷を低減した、被処理水の淡水化システムおよび淡水化方法に関するものである。   The present invention relates to a system and method for desalinating water to be treated such as brine or seawater, and in particular, desalinates water to be treated by appropriately pretreating the water to be treated and filtering it with a reverse osmosis membrane. In particular, the present invention relates to a desalination system and a desalination method for water to be treated, in which a load on a reverse osmosis membrane is reduced.

従来、かん水や海水などの被処理水から淡水を得るための一般的手法として、逆浸透膜(RO膜)を用いた膜分離法(逆浸透法)が知られている。   Conventionally, a membrane separation method (reverse osmosis method) using a reverse osmosis membrane (RO membrane) is known as a general method for obtaining fresh water from treated water such as brine or seawater.

そして、一般に、逆浸透法を用いた海水淡水化システムでは、被処理水である海水を、凝集剤を用いた海水中の懸濁物質等の凝集処理および凝集した懸濁物質を海水から除去するための砂ろ過を行った後に逆浸透膜でろ過することにより、逆浸透膜の早期の目詰まり発生を防止しつつ、海水の淡水化を行っている。   In general, in a seawater desalination system using a reverse osmosis method, seawater that is to be treated is agglomerated by using a flocculant such as suspended substances in the seawater, and aggregated suspended substances are removed from the seawater. For this purpose, seawater is desalinated while preventing the occurrence of early clogging of the reverse osmosis membrane by filtering with a reverse osmosis membrane after sand filtration for the purpose.

しかし、砂利や砂の層を用いて被処理水をろ過する砂ろ過では、海水から懸濁物質を十分に分離・除去することができないため、従来の海水淡水化システムには、逆浸透膜の早期の目詰まり発生を十分に抑制することができない(逆浸透膜にかかる負荷を十分に低減できない)という問題があった。   However, sand filtration that filters treated water using a layer of gravel or sand cannot sufficiently separate and remove suspended solids from seawater, so conventional seawater desalination systems have a reverse osmosis membrane. There was a problem that early clogging could not be sufficiently suppressed (the load on the reverse osmosis membrane could not be sufficiently reduced).

このような問題に対し、海水淡水化システムにおいて、有機材料製の精密ろ過膜または限外ろ過膜を用いた膜ろ過装置を砂ろ過装置の代わりに用いて海水から懸濁物質を除去することも考えられる。しかし、海水にはカルシウムやマグネシウム等の硬度成分が多く含まれているため、上記膜ろ過装置を用いた海水淡水化システムには、海水から懸濁物質を除去しようとした場合に、海水中の硬度成分が、ポンプや配管等のみならずろ過膜にも炭酸塩(炭酸カルシウム、炭酸マグネシウム等)の形で析出(スケーリング)してしまうという問題があった。   In response to such problems, in a seawater desalination system, it is also possible to remove suspended substances from seawater using a membrane filtration device using an organic material microfiltration membrane or an ultrafiltration membrane instead of a sand filtration device. Conceivable. However, since seawater contains a lot of hardness components such as calcium and magnesium, the seawater desalination system using the membrane filtration device described above, when trying to remove suspended solids from seawater, There is a problem that the hardness component is deposited (scaling) in the form of carbonate (calcium carbonate, magnesium carbonate, etc.) as well as a pump and piping.

そのため、膜ろ過装置を用いた海水淡水化システムでは、海水を膜ろ過する前に、硬度成分を炭酸塩等の形で析出させて除去する晶析法などにより軟化処理する必要があった。しかし、晶析法により軟化処理を行った場合、大量の無機汚泥(炭酸カルシウムや炭酸マグネシウム)が排出されることになり、廃棄物量が増大してコストが増大するという問題があった。   Therefore, in a seawater desalination system using a membrane filtration device, it is necessary to perform a softening treatment by a crystallization method in which hardness components are precipitated and removed in the form of carbonate or the like before membrane filtration of seawater. However, when the softening treatment is performed by the crystallization method, a large amount of inorganic sludge (calcium carbonate or magnesium carbonate) is discharged, which increases the amount of waste and increases the cost.

そのため、逆浸透膜による被処理水のろ過の前に被処理水から効果的に懸濁物質を除去して逆浸透膜にかかる負荷を低減することができ、且つ、低コストでスケールの発生を抑制し得る、逆浸透膜を用いた被処理水の淡水化システムおよび淡水化方法を開発することが求められていた。   Therefore, it is possible to effectively remove suspended substances from the water to be treated before filtering the water to be treated by the reverse osmosis membrane, thereby reducing the load on the reverse osmosis membrane and generating scale at low cost. It has been desired to develop a desalination system and a desalination method using a reverse osmosis membrane that can be suppressed.

この発明は、上記課題を有利に解決することを目的とするものであり、本発明の被処理水の淡水化システムは、被処理水中の懸濁物質を被処理水から分離するろ過手段と、被処理水を上流側から下流側に処理する方向で見て前記ろ過手段よりも下流側に設けられた、被処理水をろ過して淡水化する逆浸透膜ろ過手段とを備える、逆浸透法を用いた淡水化システムであって、前記ろ過手段が、セラミック製の精密ろ過膜またはセラミック製の限外ろ過膜を用いて被処理水から懸濁物質を分離するセラミック膜ろ過手段であり、被処理水を上流側から下流側に処理する方向で見て前記セラミック膜ろ過手段よりも上流側に、被処理水中の炭酸を除去する脱炭酸手段を更に備えることを特徴とする。このようにセラミック製の精密ろ過膜またはセラミック製の限外ろ過膜を用いて被処理水から懸濁物質を分離すれば、被処理水から懸濁物質を効果的に分離・除去し、逆浸透膜にかかる負荷を低減することができる。また、脱炭酸手段を設ければ、淡水化システム内でのスケールの発生を抑制することができる。   This invention aims to solve the above-mentioned problem advantageously, and the desalination system of the treated water of the present invention comprises filtration means for separating suspended substances in the treated water from the treated water, A reverse osmosis method provided with a reverse osmosis membrane filtration means for filtering the treated water to be desalted by being provided on the downstream side of the filtration means when viewed in the direction of treating the treated water from the upstream side to the downstream side. The filtration means is a ceramic membrane filtration means for separating suspended substances from the treated water using a ceramic microfiltration membrane or a ceramic ultrafiltration membrane, It is characterized by further comprising a decarbonation means for removing carbonic acid in the for-treatment water on the upstream side of the ceramic membrane filtration means as viewed in the direction of treating the treated water from the upstream side to the downstream side. Thus, if the suspended matter is separated from the treated water using a ceramic microfiltration membrane or a ceramic ultrafiltration membrane, the suspended matter is effectively separated and removed from the treated water, and reverse osmosis is performed. The load applied to the membrane can be reduced. Moreover, if a decarbonation means is provided, generation | occurrence | production of the scale in a desalination system can be suppressed.

ここで、本発明の淡水化システムは、前記セラミック膜ろ過手段と前記脱炭酸手段との間に、被処理水に凝集剤を添加する凝集剤添加手段を更に備えることが好ましい。凝集剤添加手段を設ければ、被処理水中の懸濁物質を凝集させてセラミック膜ろ過手段で被処理水から懸濁物質を確実に分離・除去することができるからである。   Here, it is preferable that the desalination system of the present invention further includes a flocculant addition means for adding a flocculant to the water to be treated between the ceramic membrane filtration means and the decarboxylation means. This is because if the coagulant adding means is provided, suspended substances in the water to be treated can be aggregated, and the suspended substances can be reliably separated and removed from the water to be treated by the ceramic membrane filtration means.

また、本発明の淡水化システムは、前記脱炭酸手段は、被処理水のpHを5以下にする第1のpH調整手段と、被処理水を上流側から下流側に処理する方向で見て前記第1のpH調整手段よりも下流側に設けられた、曝気手段または脱気手段、或いは、それらの双方とを備えることが好ましい。pHを5以下としてから曝気または脱気を行えば、被処理水から炭酸成分を効率的に除去してスケールの発生を抑制することができるからである。   In the desalination system of the present invention, the decarbonation means is a first pH adjusting means for reducing the pH of the water to be treated to 5 or less and a direction in which the water to be treated is treated from the upstream side to the downstream side. It is preferable to provide an aeration means, a deaeration means, or both of them provided downstream from the first pH adjustment means. This is because if the aeration or deaeration is performed after the pH is adjusted to 5 or less, the carbonic acid component can be efficiently removed from the water to be treated, and the generation of scale can be suppressed.

そして、本発明の淡水化システムは、前記脱炭酸手段と前記凝集剤添加手段との間に、被処理水のpHを6〜10に調整する第2のpH調整手段を更に備えることが好ましい。被処理水のpHを6〜10としてから凝集剤を添加すれば、被処理水中の懸濁物質を効果的に凝集させることができるからである。なお、本発明の淡水化システムでは、脱炭酸を行った後に第2のpH調整手段でpHを調整しているので、pH調整時に被処理水が炭酸イオン(CO 2−)や炭酸水素イオン(HCO )による緩衝作用を示すことがなく、pH調整に使用する薬品の使用量を低減することができる。 And it is preferable that the desalination system of this invention is further equipped with the 2nd pH adjustment means which adjusts pH of to-be-processed water to 6-10 between the said decarboxylation means and the said coagulant | flocculant addition means. This is because if the flocculant is added after adjusting the pH of the water to be treated to 6 to 10, the suspended substances in the water to be treated can be effectively aggregated. In the desalination system of the present invention, since the pH is adjusted by the second pH adjusting means after decarboxylation, the water to be treated is carbonate ion (CO 3 2− ) or bicarbonate ion during pH adjustment. The buffering action by (HCO 3 ) is not exhibited, and the amount of chemicals used for pH adjustment can be reduced.

また、本発明の被処理水の淡水化方法は、被処理水中の懸濁物質を被処理水から分離するろ過工程と、該ろ過工程を経た被処理水を逆浸透膜でろ過する逆浸透膜ろ過工程とを含む被処理水の淡水化方法であって、前記ろ過工程が、セラミック製の精密ろ過膜またはセラミック製の限外ろ過膜を用いて被処理水から懸濁物質を分離するセラミック膜ろ過工程であり、前記セラミック膜ろ過工程の前に、被処理水中の炭酸を除去する脱炭酸工程を更に含むことを特徴とする。このようにセラミック製の精密ろ過膜またはセラミック製の限外ろ過膜を用いて被処理水から懸濁物質を分離すれば、被処理水から懸濁物質を効果的に分離・除去し、逆浸透膜にかかる負荷を低減することができる。また、脱炭酸手段を設ければ、淡水化システム内でのスケールの発生を抑制することができる。   The desalination method of the water to be treated of the present invention includes a filtration step for separating suspended substances in the water to be treated from the water to be treated, and a reverse osmosis membrane for filtering the water to be treated after the filtration step with a reverse osmosis membrane A ceramic membrane that separates suspended matter from the water to be treated using a ceramic microfiltration membrane or a ceramic ultrafiltration membrane. It is a filtration process, It is characterized by further including the decarboxylation process which removes the carbonic acid in to-be-processed water before the said ceramic membrane filtration process. Thus, if the suspended matter is separated from the treated water using a ceramic microfiltration membrane or a ceramic ultrafiltration membrane, the suspended matter is effectively separated and removed from the treated water, and reverse osmosis is performed. The load applied to the membrane can be reduced. Moreover, if a decarbonation means is provided, generation | occurrence | production of the scale in a desalination system can be suppressed.

ここで、本発明の淡水化方法は、前記脱炭酸工程と前記セラミック膜ろ過工程との間に、被処理水に凝集剤を添加して被処理水中の懸濁物質を凝集させる凝集工程を更に含むことが好ましい。凝集工程を設ければ、被処理水中の懸濁物質を凝集させてセラミック膜ろ過工程で被処理水から懸濁物質を確実に分離・除去することができるからである。   Here, the desalination method of the present invention further includes a flocculation step of adding a flocculant to the water to be treated and aggregating suspended substances in the water to be treated between the decarboxylation step and the ceramic membrane filtration step. It is preferable to include. This is because if the coagulation step is provided, suspended substances in the water to be treated can be coagulated and the suspended substances can be reliably separated and removed from the water to be treated in the ceramic membrane filtration step.

また、本発明の淡水化方法は、前記脱炭酸工程は、被処理水のpHを5以下にする第1のpH調整工程と、該第1のpH調整工程を経た被処理水を曝気する曝気工程または脱気する脱気工程、或いは、それらの双方とを含むことが好ましい。pHを5以下としてから曝気または脱気を行えば、被処理水から炭酸成分を効率的に除去してスケールの発生を抑制することができるからである。   In the desalination method of the present invention, the decarboxylation step includes a first pH adjustment step in which the pH of the water to be treated is 5 or less, and aeration in which the water to be treated after the first pH adjustment step is aerated. It is preferable to include a process, a degassing process for degassing, or both of them. This is because if the aeration or deaeration is performed after the pH is adjusted to 5 or less, the carbonic acid component can be efficiently removed from the water to be treated, and the generation of scale can be suppressed.

更に、本発明の淡水化方法は、前記凝集工程と前記脱炭酸工程との間に、被処理水のpHを6〜10に調整する第2のpH調整工程を更に含むことが好ましい。被処理水のpHを6〜10としてから凝集剤を添加すれば、被処理水中の懸濁物質を効果的に凝集させることができるからである。なお、本発明の淡水化方法では、脱炭酸を行った後に第2のpH調整工程でpHを調整しているので、そのpH調整時に被処理水が炭酸イオン(CO 2−)や炭酸水素イオン(HCO )による緩衝作用を示すことがなく、pH調整に使用する薬品の使用量を低減することができる。 Furthermore, it is preferable that the desalination method of this invention further includes the 2nd pH adjustment process which adjusts pH of to-be-processed water to 6-10 between the said aggregation process and the said decarboxylation process. This is because if the flocculant is added after adjusting the pH of the water to be treated to 6 to 10, the suspended substances in the water to be treated can be effectively aggregated. In the desalination method of the present invention, since the pH is adjusted in the second pH adjustment step after decarboxylation, the water to be treated is carbonate ion (CO 3 2− ) or hydrogen carbonate at the time of pH adjustment. The buffering action by ions (HCO 3 ) is not exhibited, and the amount of chemicals used for pH adjustment can be reduced.

そして、本発明の淡水化方法は、前記曝気工程が、被処理水に対し、被処理水の流量の6〜23倍の流量で気体を曝気する工程であることが好ましい。被処理水と気体との流量比(被処理水:気体)が1:6〜1:23となるように気体を曝気すれば、被処理水から炭酸成分を効率的に除去することができるからである。   And as for the desalination method of this invention, it is preferable that the said aeration process is a process of aerating gas with the flow volume of 6-23 times the flow volume of to-be-processed water with respect to to-be-processed water. If the gas is aerated so that the flow ratio of the water to be treated and the gas (water to be treated: gas) is 1: 6 to 1:23, the carbonic acid component can be efficiently removed from the water to be treated. It is.

本発明によれば、逆浸透膜による被処理水のろ過の前に被処理水から効果的に懸濁物質を除去して逆浸透膜にかかる負荷を低減することができ、且つ、低コストでスケールの発生を抑制し得る、逆浸透膜を用いた被処理水の淡水化システムおよび淡水化方法を提供することができる。   According to the present invention, it is possible to effectively remove suspended substances from the water to be treated before filtration of the water to be treated by the reverse osmosis membrane to reduce the load on the reverse osmosis membrane, and at a low cost. The desalination system and the desalination method of the to-be-processed water using a reverse osmosis membrane which can suppress generation | occurrence | production of a scale can be provided.

本発明に係る海水淡水化システムを示す説明図である。It is explanatory drawing which shows the seawater desalination system which concerns on this invention. 本発明の実施例および比較例に係る海水淡水化システムにおける、運転時間とセラミック膜ろ過装置の膜差圧との関係を示すグラフである。It is a graph which shows the relationship between the operation time and the membrane differential pressure | voltage of a ceramic membrane filtration apparatus in the seawater desalination system which concerns on the Example and comparative example of this invention. 海水のpHが脱炭酸処理水中の全炭酸量に与える影響を示すグラフである。It is a graph which shows the influence which pH of seawater has on the total amount of carbonation in decarboxylation processing water.

以下、図面を参照して本発明の実施の形態を詳細に説明する。ここに、図1に示す本発明の淡水化システムの一例は、被処理水としての海水を淡水化して淡水を製造するための海水淡水化システム100であり、この海水淡水化システム100では、海水が脱炭酸処理および凝集ろ過された後に逆浸透膜でろ過される。なお、本発明の淡水化システムでは、かん水等を被処理水として淡水を製造しても良い。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, an example of the desalination system of the present invention shown in FIG. 1 is a seawater desalination system 100 for producing seawater by desalinating seawater as water to be treated. Is decarboxylated and coagulated and filtered through a reverse osmosis membrane. In the desalination system of the present invention, fresh water may be produced using brine or the like as treated water.

ここで、図1に示す海水淡水化システム100で処理する海水としては、例えば、硬度(炭酸カルシウム換算)が5000〜6000mg/L、pHが8.0〜8.5、全炭酸濃度が1500〜2000μmol/kg、SDIが5.5〜6.5の海水が挙げられる。なお、全炭酸濃度とは、全アルカリ度計測器(紀本電子工業(株)製)を用いてクローズド法で測定した、海水中の炭酸(HCO)、炭酸イオン(CO 2−)および炭酸水素イオン(HCO )の合計の濃度を指す。また、SDI(Silt Density Index)とは、ASTM(Standard Test Method for Silt Density Index of Water D4189−95)に従い測定した、以下の計算式を用いて算出される値を指す。
SDI15=(1−T/T15)×100/15
:孔径0.45μm、直径47mmのメンブレンフィルターを用いて圧力206kPaで試料をろ過した際に初期の試料500mlをろ過するのに要する時間(秒)
15:ろ過を15分継続した後、更に試料500mlをろ過するのに要する時間(秒)
Here, as seawater processed with the seawater desalination system 100 shown in FIG. 1, hardness (calcium carbonate conversion) is 5000-6000 mg / L, pH is 8.0-8.5, and total carbonic acid concentration is 1500-500, for example. Examples include seawater having 2000 μmol / kg and SDI of 5.5 to 6.5. The total carbonic acid concentration refers to carbonic acid (H 2 CO 3 ) and carbonate ions (CO 3 2− ) in seawater measured by a closed method using a total alkalinity measuring instrument (manufactured by Kimoto Electronics Co., Ltd.). ) And bicarbonate ion (HCO 3 ). Also, SDI (Silt Density Index) refers to a value calculated using the following calculation formula, measured according to ASTM (Standard Test Method for Silent Density Index of Water D4189-95).
SDI 15 = (1-T 0 / T 15 ) × 100/15
T 0 : Time (seconds) required to filter 500 ml of the initial sample when the sample is filtered at a pressure of 206 kPa using a membrane filter having a pore diameter of 0.45 μm and a diameter of 47 mm
T 15 : Time (seconds) required for further filtering 500 ml of the sample after 15 minutes of filtration

海水淡水化システム100は、図1に示すように、海から海水を取水する原水取水装置10と、該原水取水装置10の下流側に設けられた、海水中の炭酸を除去する脱炭酸装置30と、該脱炭酸装置30の下流側に設けられた、海水から懸濁物質を分離するセラミック膜ろ過装置70と、該セラミック膜ろ過装置70の下流側に設けられた、海水をろ過して淡水化する逆浸透膜ろ過装置90とを備えている。   As shown in FIG. 1, a seawater desalination system 100 includes a raw water intake device 10 that takes seawater from the sea, and a decarboxylation device 30 that is provided on the downstream side of the raw water intake device 10 and removes carbonic acid in seawater. And a ceramic membrane filtration device 70 provided on the downstream side of the decarboxylation device 30 for separating suspended substances from the seawater, and a freshwater obtained by filtering the seawater provided on the downstream side of the ceramic membrane filtration device 70. The reverse osmosis membrane filtration device 90 is provided.

そして、海水淡水化システム100には、原水取得装置10と脱炭酸装置30との間に、海水のpHを調整する第1のpH調整装置20と、pHを調整した海水を第1のpH調整装置20から脱炭酸装置30へ送るためのポンプ31とが設けられており、脱炭酸装置30とセラミック膜ろ過装置70との間に、炭酸成分が除去された海水のpHを調整する第2のpH調整装置40と、海水に凝集剤を添加する凝集剤添加装置50と、凝集剤を添加した海水を貯留しておくセラミック膜ろ過原水槽60と、凝集剤を添加した海水をセラミック膜ろ過原水槽60からセラミック膜ろ過装置70へ送るためのポンプ71とが順次設けられている。更に、海水淡水化システム100のセラミック膜ろ過装置70と逆浸透膜ろ過装置90との間には、セラミック膜ろ過装置70でろ過した海水を貯留しておくセラミック膜ろ過水槽80と、セラミック膜ろ過装置70でろ過した海水をセラミック膜ろ過水槽80から逆浸透膜ろ過装置90へ送るための高圧ポンプ91とが設けられている。   And in the seawater desalination system 100, the 1st pH adjustment apparatus 20 which adjusts the pH of seawater between the raw | natural water acquisition apparatus 10 and the decarboxylation apparatus 30, and the seawater which adjusted pH are 1st pH adjustment. A pump 31 for sending from the device 20 to the decarboxylation device 30 is provided, and a second for adjusting the pH of the seawater from which the carbonic acid component has been removed is provided between the decarboxylation device 30 and the ceramic membrane filtration device 70. The pH adjusting device 40, the flocculant adding device 50 for adding the flocculant to the seawater, the ceramic membrane filtration raw water tank 60 for storing the seawater to which the flocculant has been added, and the seawater to which the flocculant has been added to the ceramic membrane filtration raw material A pump 71 for sending the water from the water tank 60 to the ceramic membrane filtration device 70 is sequentially provided. Further, between the ceramic membrane filtration device 70 and the reverse osmosis membrane filtration device 90 of the seawater desalination system 100, a ceramic membrane filtration water tank 80 for storing seawater filtered by the ceramic membrane filtration device 70, and a ceramic membrane filtration A high pressure pump 91 for sending the seawater filtered by the device 70 from the ceramic membrane filtration water tank 80 to the reverse osmosis membrane filtration device 90 is provided.

ここで、原水取水装置10は、海から汲み上げた海水を原水槽13に送るためのポンプ11と、ポンプ11と原水槽13との間に設けられた酸化剤添加手段12とを備えている。そして、この原水取水装置10では、被処理水としての海水に対し、酸化剤添加手段12で次亜塩素酸ナトリウム(NaClO)等の酸化剤(殺菌剤)を添加しているので、海水淡水化システム100では、セラミック膜ろ過装置70や逆浸透膜ろ過装置90における生物由来の膜の目詰まりや、配管中での藻の発生が生じ難い。   Here, the raw water intake apparatus 10 includes a pump 11 for sending seawater pumped from the sea to the raw water tank 13, and an oxidant addition means 12 provided between the pump 11 and the raw water tank 13. And in this raw | natural water intake apparatus 10, since oxidizing agents (bactericidal agents), such as sodium hypochlorite (NaClO), are added with the oxidizing agent addition means 12 with respect to the seawater as to-be-processed water, seawater desalination In the system 100, clogging of biological membranes in the ceramic membrane filtration device 70 and the reverse osmosis membrane filtration device 90 and generation of algae in the piping are unlikely to occur.

第1のpH調整装置20は、海水のpHを5以下、好ましくは4以上に調整するためのものであり、第1pH調整槽中の海水にpH調整剤としての硫酸を添加するための薬品ポンプ21と、第1pH調整槽中の海水を撹拌するための撹拌機22と、海水のpHを測定するためのpHセンサー23と、該pHセンサー23の測定値に基づき薬品ポンプ21をフィードバック制御するpHコントローラー24とを備えている。そして、この第1のpH調整装置20では、薬品ポンプ21からの硫酸の添加量をpHコントローラー24で制御することにより、海水のpHを5以下、好ましくは4〜5に調整する。ここで、脱炭酸装置30で海水から炭酸を効果的に除去するという観点からは、第1のpH調整装置20で海水のpHを可能な限り低くすることが好ましいが、海水は緩衝作用を示し、pHが変動し難いので、薬品の添加にかかるコストの観点からは、海水のpHは4以上とすることが好ましい。なお、pHの調整に使用する薬品としては、コストや取り扱い性の観点から硫酸を使用することが好ましいが、特に硫酸に限定されることなく、塩酸や硝酸等の無機酸も用いることができる。   The first pH adjusting device 20 is for adjusting the pH of the seawater to 5 or less, preferably 4 or more, and is a chemical pump for adding sulfuric acid as a pH adjusting agent to the seawater in the first pH adjusting tank. 21, a stirrer 22 for stirring the seawater in the first pH adjustment tank, a pH sensor 23 for measuring the pH of the seawater, and a pH for feedback control of the chemical pump 21 based on the measured value of the pH sensor 23 And a controller 24. And in this 1st pH adjustment apparatus 20, the pH of seawater is adjusted to 5 or less, Preferably it is 4-5 by controlling the addition amount of the sulfuric acid from the chemical pump 21 with the pH controller 24. FIG. Here, from the viewpoint of effectively removing carbonic acid from seawater by the decarboxylation device 30, it is preferable to lower the pH of the seawater as much as possible by the first pH adjustment device 20, but the seawater exhibits a buffering action. Since the pH does not easily change, the pH of the seawater is preferably 4 or more from the viewpoint of the cost of adding the chemical. In addition, as a chemical | medical agent used for adjustment of pH, although it is preferable to use a sulfuric acid from a viewpoint of cost or handleability, inorganic acids, such as hydrochloric acid and nitric acid, can also be used without being specifically limited to a sulfuric acid.

脱炭酸装置30は、第1のpH調整装置20でpHを低下させた海水に対して空気等の気体を曝気することにより、海水から炭酸を二酸化炭素として除去するものであり、この脱炭酸装置30では、pHを低下させた海水の全炭酸濃度を、下記の化学平衡式(I)〜(III)に従い例えば30〜40μmol/kgまで低下させる。
CO 2−+H ⇔ HCO ・・・(I)
HCO +H ⇔ HCO ・・・(II)
CO ⇔ HO+CO ・・・(III)
The decarboxylation device 30 removes carbon dioxide from the seawater as carbon dioxide by aeration of a gas such as air to the seawater whose pH has been lowered by the first pH adjustment device 20. In 30, the total carbonic acid concentration of the seawater whose pH has been lowered is lowered to, for example, 30 to 40 μmol / kg according to the following chemical equilibrium formulas (I) to (III).
CO 3 2− + H + ⇔ HCO 3 (I)
HCO 3 + H + ⇔ H 2 CO 3 (II)
H 2 CO 3 ⇔ H 2 O + CO 2 (III)

脱炭酸装置30は、円筒状で、海水中の塩分により錆びることが無いプラスチック製であり、この脱炭酸装置30では、上部から導入された海水がディストリビューター32で細かい水滴にされると共に、内部に充填されているポリプロピレン製の充填材33に接触することにより、装置下部の空気導入管34から導入される空気と海水との接触面積が大きくなるようにされている。従って、この脱炭酸装置30では、海水と空気とが効率的に接触して海水中の炭酸成分(炭酸、炭酸イオンおよび炭酸水素イオン)が二酸化炭素の形で空気中へ移動し、空気と共に空気排出管35から排出されて脱炭酸が行われる。なお、脱炭酸装置30において曝気する空気の流量は、海水中の炭酸成分を除去するのに十分で、且つ、上部から降下してくる海水による空気の巻き込みを生じない流量、例えば海水の流量の6〜23倍とすることが好ましい。より具体的には、空気の流量は、例えば海水を10m/日の速度で脱炭酸する場合には、40〜160L/分、好ましくは60〜90L/分とすることができる。 The decarboxylation device 30 is cylindrical and made of plastic that does not rust due to salt in the seawater. In the decarboxylation device 30, seawater introduced from above is made into fine water droplets by the distributor 32, and the inside The contact area between the air introduced from the air introduction pipe 34 at the lower part of the apparatus and seawater is increased by contacting the polypropylene filler 33 filled in the container. Therefore, in this decarboxylation apparatus 30, seawater and air efficiently come into contact with each other, so that carbonic acid components (carbonic acid, carbonate ions and hydrogen carbonate ions) in the seawater move into the air in the form of carbon dioxide, and the air together with the air It is discharged from the discharge pipe 35 and decarboxylation is performed. Note that the flow rate of air aerated in the decarboxylation device 30 is sufficient to remove the carbonic acid component in the seawater, and is a flow rate that does not cause air entrainment by the seawater descending from the top, for example, the flow rate of seawater. It is preferably 6 to 23 times. More specifically, the flow rate of air can be 40 to 160 L / min, preferably 60 to 90 L / min, for example, when seawater is decarboxylated at a rate of 10 m 3 / day.

第2のpH調整装置40は、脱炭酸した海水のpHを6〜10に調整するためのものであり、第2pH調整槽中の海水にpH調整剤としての水酸化ナトリウムを添加するための薬品ポンプ41と、第2pH調整槽中の海水を撹拌するための撹拌機42と、第2のpH調整装置40の後段に設けられた凝集剤添加装置50中の海水のpH値に基づき薬品ポンプ41をフィードバック制御するpHコントローラー43とを備えている。そして、この第2のpH調整装置40では、薬品ポンプ41からの水酸化ナトリウムの添加量をpHコントローラー43で制御することにより、海水のpHを6〜10、好ましくは6〜9.5に調整する。ここで、脱炭酸後の海水は炭酸イオン(CO 2−)や炭酸水素イオン(HCO )による緩衝作用を示すことがないので、第2のpH調整装置40ではpHの調整を少量の水酸化ナトリウムで行うことができる。しかし、海水のpHを10超にすると、海水中に含まれているカルシウムやマグネシウムが水酸化物として析出し、スケールを発生する恐れがあるので、海水のpHは、6〜10とすることが好ましく、6〜9.5とすることがより好ましい。なお、海水淡水化システム100では、脱炭酸装置30で海水から炭酸成分が除去されているので、第2のpH調整装置40で海水のpHを上昇させても、海水中の硬度成分(マグネシウム、カルシウム等)が炭酸塩として析出することは殆どない。因みに、pHの調整に使用する薬品としては、コストや取り扱い性の観点から水酸化ナトリウムを使用することが好ましいが、特に水酸化ナトリウムに限定されることはない。 The second pH adjusting device 40 is for adjusting the pH of the decarboxylated seawater to 6 to 10, and is a chemical for adding sodium hydroxide as a pH adjusting agent to the seawater in the second pH adjusting tank. Based on the pH value of the seawater in the pump 41, the stirrer 42 for stirring the seawater in the second pH adjusting tank, and the flocculant adding device 50 provided in the subsequent stage of the second pH adjusting device 40 And a pH controller 43 for feedback control. In the second pH adjusting device 40, the pH of the seawater is adjusted to 6 to 10, preferably 6 to 9.5 by controlling the amount of sodium hydroxide added from the chemical pump 41 with the pH controller 43. To do. Here, since the seawater after decarboxylation does not show a buffering action by carbonate ions (CO 3 2− ) or bicarbonate ions (HCO 3 ), the second pH adjuster 40 adjusts the pH to a small amount. Can be done with sodium hydroxide. However, when the pH of the seawater is more than 10, calcium and magnesium contained in the seawater may precipitate as hydroxides and generate scale, so the pH of the seawater should be 6-10. Preferably, it is 6-9.5. In the seawater desalination system 100, since the carbonic acid component is removed from the seawater by the decarboxylation device 30, even if the pH of the seawater is increased by the second pH adjustment device 40, the hardness component (magnesium, Calcium etc.) hardly precipitate as carbonate. Incidentally, as a chemical used for adjusting the pH, sodium hydroxide is preferably used from the viewpoint of cost and handleability, but is not particularly limited to sodium hydroxide.

凝集剤添加装置50は、第2のpH調整装置40でpHを調整した海水に塩化第二鉄などの凝集剤を添加して海水中に含まれている懸濁物質(SS、有機物)を凝集させるためのものであり、凝集槽中の海水に凝集剤としての塩化第二鉄(FeCl)を添加するための薬品ポンプ51と、凝集槽中の海水を撹拌するための撹拌機52と、第2のpH調整装置40の薬品ポンプ41のフィードバック制御に用いる凝集剤添加装置50中の海水のpHを測定するためのpHセンサー53とを備えている。そして、この凝集剤添加装置50では、例えば濃度0.1〜3mg/L(鉄換算)、好ましくは1.5〜2mg/L(鉄換算)となるように塩化第二鉄を添加して、海水中の懸濁物質を凝集させる。 The flocculant addition device 50 adds a flocculant such as ferric chloride to the seawater whose pH has been adjusted by the second pH adjustment device 40 to agglomerate suspended substances (SS, organic matter) contained in the seawater. A chemical pump 51 for adding ferric chloride (FeCl 3 ) as a coagulant to the seawater in the coagulation tank, and an agitator 52 for stirring the seawater in the coagulation tank, A pH sensor 53 for measuring the pH of seawater in the flocculant adding device 50 used for feedback control of the chemical pump 41 of the second pH adjusting device 40 is provided. And in this coagulant | flocculant addition apparatus 50, ferric chloride is added so that it may become a density | concentration of 0.1-3 mg / L (iron conversion), preferably 1.5-2 mg / L (iron conversion), for example, Aggregates suspended matter in seawater.

セラミック膜ろ過装置70は、セラミック製の精密ろ過膜またはセラミック製の限外ろ過膜を有するセラミック膜モジュール72を3台並列に配置したものである。そして、このセラミック膜ろ過装置70では、強度および耐薬品性が高く、高流束でのろ過が可能なセラミック膜73を用いて、海水中から懸濁物質(凝集物)を除去し、後段に設けられた逆浸透膜ろ過装置90にかかる負荷を低減することができる。なお、セラミック膜モジュール72は、セラミック膜73の目詰まりの防止または解消のために、定期的に、或いは、差圧が上昇した際に、既知の手法および装置(図示せず)を用いて逆流洗浄(以下、「逆洗」と称する)することができ、セラミック膜ろ過装置70の逆洗を行う場合には、例えば3台あるうちの1台のセラミック膜モジュール72を逆洗し、残りの2台で海水のろ過を続けることにより海水の淡水化を連続的に行うことができる。   The ceramic membrane filtration device 70 includes three ceramic membrane modules 72 having a ceramic microfiltration membrane or a ceramic ultrafiltration membrane arranged in parallel. And in this ceramic membrane filtration apparatus 70, a suspended substance (aggregate) is removed from seawater using the ceramic membrane 73 with high intensity | strength and chemical resistance, and filtration with a high flux, and it is in the latter part. The load applied to the provided reverse osmosis membrane filtration device 90 can be reduced. It should be noted that the ceramic membrane module 72 uses a known method and apparatus (not shown) to back flow periodically or when the differential pressure increases to prevent or eliminate clogging of the ceramic membrane 73. When the ceramic membrane filtration device 70 is backwashed (hereinafter referred to as “backwashing”), for example, one of the three ceramic membrane modules 72 is backwashed, and the remaining Seawater desalination can be performed continuously by continuing filtration of seawater with two units.

逆浸透膜ろ過装置90は、既知の逆浸透膜92を用いたものであり、海水は、逆浸透膜ろ過装置90で、逆浸透膜92を透過した淡水と、逆浸透膜92を透過しなかった濃縮水とに分離される。そして、逆浸透膜92を透過した淡水は、任意にpH調整および殺菌処理を行った後、飲料水などとして用いられる。一方、逆浸透膜92を透過しなかった濃縮水は、排水として処理される。   The reverse osmosis membrane filtration device 90 uses a known reverse osmosis membrane 92, and seawater does not pass through the reverse osmosis membrane filtration device 90 and fresh water that has permeated the reverse osmosis membrane 92 and the reverse osmosis membrane 92. Separated into concentrated water. And the fresh water which permeate | transmitted the reverse osmosis membrane 92 is used as drinking water etc., after performing pH adjustment and a sterilization process arbitrarily. On the other hand, the concentrated water that has not permeated the reverse osmosis membrane 92 is treated as waste water.

そして、上述した海水淡水化システム100では、脱炭酸装置30で海水から炭酸成分を除去しているので、低コストで炭酸塩の析出を抑制することができる。また、セラミック膜ろ過装置70で海水から懸濁物質を除去しているので、逆浸透膜92が目詰まりし難い。   And in the seawater desalination system 100 mentioned above, since the carbonic acid component is removed from seawater with the decarboxylation apparatus 30, precipitation of carbonate can be suppressed at low cost. In addition, since the suspended matter is removed from the seawater by the ceramic membrane filtration device 70, the reverse osmosis membrane 92 is not easily clogged.

なお、本発明の被処理水の淡水化システムは、上記一例に限定されることはなく、例えば、脱炭酸装置は、減圧下で二酸化炭素を脱気することにより海水から炭酸を除去する脱気装置であっても良い。   In addition, the desalination system of the to-be-processed water of this invention is not limited to the said example, For example, a decarbonation apparatus removes carbon dioxide from seawater by deaerating carbon dioxide under reduced pressure. It may be a device.

以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

(実施例1)
図1に示す海水淡水化システムを用いて、海水(総硬度:5650mg/L(CaCO換算)、カルシウム硬度:820mg/L(CaCO換算)、pH:8.15、全炭酸濃度:2091μmol/kg、SDI:6.28)の淡水化処理(海水供給量:10m/日)を行った。なお、第1のpH調整装置では海水のpHを4.2に調整し、第2のpH調整装置では海水のpHを9.6に調整した。また、塩化第二鉄の添加量は、海水中の鉄濃度が2mg/Lとなる量とし、セラミック膜ろ過装置でのろ過流束は4m/日とした。更に、脱炭酸装置への空気の供給量は80L/分(海水供給量:空気供給量≒1:12)とし、セラミック膜ろ過装置は、40分ごとに定期的に逆洗を行った。
Example 1
Seawater (total hardness: 5650 mg / L (CaCO 3 conversion), calcium hardness: 820 mg / L (CaCO 3 conversion), pH: 8.15, total carbonic acid concentration: 2091 μmol /, using the seawater desalination system shown in FIG. kg, SDI: 6.28) was subjected to a desalination treatment (seawater supply amount: 10 m 3 / day). In the first pH adjusting device, the pH of seawater was adjusted to 4.2, and in the second pH adjusting device, the pH of seawater was adjusted to 9.6. The amount of ferric chloride added was such that the iron concentration in seawater was 2 mg / L, and the filtration flux in the ceramic membrane filtration device was 4 m / day. Furthermore, the supply amount of air to the decarboxylation device was 80 L / min (seawater supply amount: air supply amount≈1: 12), and the ceramic membrane filtration device was regularly backwashed every 40 minutes.

そして、セラミック膜ろ過装置における膜差圧(25℃換算)の変化を測定した。また、セラミック膜でろ過した海水のSDIをASTMに従い測定した。結果を図2および表1に示す。なお、上記処理条件では、150日以上運転を継続しても、海水淡水化システムの配管中等に炭酸塩のスケールが発生することは無かった。   And the change of the membrane differential pressure (25 degreeC conversion) in a ceramic membrane filtration apparatus was measured. Moreover, SDI of the seawater filtered with the ceramic membrane was measured according to ASTM. The results are shown in FIG. Under the above processing conditions, even if the operation was continued for 150 days or more, carbonate scale did not occur in the piping of the seawater desalination system.

(比較例1)
第1のpH調整装置および脱炭酸装置の代わりに晶析法を用いた軟化装置を用いた以外は実施例1で用いたのと同様の海水淡水化システムを用いて、実施例1と同様の処理条件で海水の淡水化処理を行った。そして、セラミック膜ろ過装置における膜差圧(25℃換算)の変化およびセラミック膜でろ過した海水のSDIを、実施例1と同様にして測定した。結果を図2および表1に示す。なお、上記処理条件では、14日運転を継続したところ、海水淡水化システムの配管中等に炭酸塩のスケールが発生した。
(Comparative Example 1)
The same seawater desalination system as used in Example 1 was used except that a softening device using a crystallization method was used instead of the first pH adjusting device and the decarboxylation device, and the same as in Example 1. Seawater was desalinated under the treatment conditions. And the change of the membrane differential pressure (25 degreeC conversion) in a ceramic membrane filtration apparatus and SDI of the seawater filtered with the ceramic membrane were measured like Example 1. FIG. The results are shown in FIG. Under the above treatment conditions, when the operation was continued for 14 days, carbonate scales were generated in the piping of the seawater desalination system.

Figure 2011056411
Figure 2011056411

表1より、実施例1の海水淡水化システムによれば、SDIの低い水質が良好なセラミック膜ろ過水を逆浸透膜でろ過できる(逆浸透膜にかかる負荷を低減することができる)ことが分かる。また、図2より、脱炭酸装置を備える実施例1の海水淡水化システムでは、セラミック膜の膜差圧が上昇し難いことが分かる。   From Table 1, according to the seawater desalination system of Example 1, it is possible to filter ceramic membrane filtrate with a low SDI water quality with a reverse osmosis membrane (the load on the reverse osmosis membrane can be reduced). I understand. Moreover, it turns out that the membrane differential pressure | voltage of a ceramic membrane does not rise easily from the seawater desalination system of Example 1 provided with a decarboxylation apparatus from FIG.

(参考例1)
図1に示す海水淡水化システムの脱炭酸装置を用いて、pHを4.8〜7.3の範囲で変化させた海水に対し、曝気風量:80L/分、海水流入量:6.9L/分の条件で脱炭酸処理を行った。そして、脱炭酸前の海水および脱炭酸後の海水中の全炭酸濃度を全アルカリ度滴定装置(紀本電子工業(株)製、ATT−05)で測定した。結果を図3に示す。
(Reference Example 1)
Using the decarboxylation device of the seawater desalination system shown in FIG. 1, aeration air volume: 80 L / min, seawater inflow volume: 6.9 L / min for seawater whose pH is changed in the range of 4.8 to 7.3 Decarboxylation was performed under the condition of minutes. And the total carbonic acid density | concentration in the seawater before decarboxylation and the seawater after decarboxylation was measured with the total alkalinity titration apparatus (Kimoto Electronics Co., Ltd. make, ATT-05). The results are shown in FIG.

図3より、海水のpHを6以下にしてから脱炭酸処理すれば、全炭酸濃度を充分に低下させ得ることが分かる。   From FIG. 3, it can be seen that the total carbonic acid concentration can be sufficiently reduced if the decarboxylation treatment is performed after the pH of the seawater is adjusted to 6 or less.

(参考例2)
図1に示す海水淡水化システムの脱炭酸装置を用いて、pH4.2の海水を曝気風量:80L/分の条件で脱炭酸処理した。そして、脱炭酸処理した海水のpHを、水酸化ナトリウムを用いて7.01に調整した。そして、pHを調整した海水を、(i)開放系で50rpmの撹拌速度で撹拌、(ii)開放系で120〜150rpmの撹拌速度で撹拌、(iii)密閉系で120〜150rpmの撹拌速度で撹拌した。そして、48時間撹拌した後の全炭酸濃度を全アルカリ度滴定装置(紀本電子工業(株)製、ATT−05)で測定した。結果を表2に示す。
また、同様の撹拌操作および全炭酸濃度の測定を、脱炭酸処理した後にpHを8.15または9.14に調整した海水に対しても行った。結果を表2に示す。
(Reference Example 2)
Using the decarboxylation device of the seawater desalination system shown in FIG. 1, seawater having a pH of 4.2 was decarboxylated under the conditions of an aeration air volume of 80 L / min. And the pH of the decarboxylated seawater was adjusted to 7.01 using sodium hydroxide. And the seawater adjusted pH is stirred at a stirring speed of 50 rpm in an open system, (ii) stirred at a stirring speed of 120 to 150 rpm in an open system, and (iii) at a stirring speed of 120 to 150 rpm in a closed system. Stir. And the total carbonic acid density | concentration after stirring for 48 hours was measured with the total alkalinity titration apparatus (Kimoto Electronics Co., Ltd. make, ATT-05). The results are shown in Table 2.
The same stirring operation and measurement of the total carbonic acid concentration were also performed on seawater whose pH was adjusted to 8.15 or 9.14 after decarboxylation. The results are shown in Table 2.

Figure 2011056411
Figure 2011056411

表2より、図1に示す海水淡水化システムの脱炭酸装置を用いて脱炭酸を行えば、空気中から海水への炭酸(二酸化炭素)の再溶解が起こらないことが分かる。   From Table 2, it can be seen that if decarboxylation is performed using the decarboxylation device of the seawater desalination system shown in FIG.

本発明によれば、逆浸透膜による被処理水のろ過の前に被処理水から効果的に懸濁物質を除去して逆浸透膜にかかる負荷を低減することができ、且つ、低コストでスケールの発生を抑制し得る、逆浸透膜を用いた被処理水の淡水化システムおよび淡水化方法を提供することができる。   According to the present invention, it is possible to effectively remove suspended substances from the water to be treated before filtration of the water to be treated by the reverse osmosis membrane to reduce the load on the reverse osmosis membrane, and at a low cost. The desalination system and the desalination method of the to-be-processed water using a reverse osmosis membrane which can suppress generation | occurrence | production of a scale can be provided.

10 原水取得装置
11 ポンプ
12 酸化剤添加手段
13 原水槽
20 第1のpH調整装置
21 薬品ポンプ
22 撹拌機
23 pHセンサー
24 pHコントローラー
30 脱炭酸装置
31 ポンプ
32 ディストリビューター
33 充填材
34 空気導入管
35 空気排出管
40 第2のpH調整装置
41 薬品ポンプ
42 撹拌機
43 pHコントローラー
50 凝集剤添加装置
51 薬品ポンプ
52 撹拌機
53 pHセンサー
60 セラミック膜ろ過原水槽
70 セラミック膜ろ過装置
71 ポンプ
72 セラミック膜モジュール
73 セラミック膜
80 セラミック膜ろ過水槽
90 逆浸透膜ろ過装置
91 高圧ポンプ
92 逆浸透膜
DESCRIPTION OF SYMBOLS 10 Raw water acquisition apparatus 11 Pump 12 Oxidizing agent addition means 13 Raw water tank 20 First pH adjustment apparatus 21 Chemical pump 22 Stirrer 23 pH sensor 24 pH controller 30 Decarbonation apparatus 31 Pump 32 Distributor 33 Filler 34 Air introduction pipe 35 Air discharge pipe 40 Second pH adjustment device 41 Chemical pump 42 Stirrer 43 pH controller 50 Coagulant addition device 51 Chemical pump 52 Stirrer 53 pH sensor 60 Ceramic membrane filtration raw water tank 70 Ceramic membrane filtration device 71 Pump 72 Ceramic membrane module 73 Ceramic membrane 80 Ceramic membrane filtration water tank 90 Reverse osmosis membrane filtration device 91 High pressure pump 92 Reverse osmosis membrane

Claims (9)

被処理水中の懸濁物質を被処理水から分離するろ過手段と、被処理水を上流側から下流側に処理する方向で見て前記ろ過手段よりも下流側に設けられた、被処理水をろ過して淡水化する逆浸透膜ろ過手段とを備える、逆浸透法を用いた淡水化システムであって、
前記ろ過手段が、セラミック製の精密ろ過膜またはセラミック製の限外ろ過膜を用いて被処理水から懸濁物質を分離するセラミック膜ろ過手段であり、
被処理水を上流側から下流側に処理する方向で見て前記セラミック膜ろ過手段よりも上流側に、被処理水中の炭酸を除去する脱炭酸手段を更に備えることを特徴とする、被処理水の淡水化システム。
Filtering means for separating suspended substances in the water to be treated from the water to be treated, and water to be treated provided downstream of the filtering means as viewed in the direction of treating the water to be treated from the upstream side to the downstream side. A desalination system using a reverse osmosis method, comprising a reverse osmosis membrane filtration means for filtering to desalinate,
The filtration means is a ceramic membrane filtration means for separating suspended substances from water to be treated using a ceramic microfiltration membrane or a ceramic ultrafiltration membrane,
The treated water further comprising a decarbonation means for removing carbonic acid in the treated water on the upstream side of the ceramic membrane filtration means when viewed in the direction of treating the treated water from the upstream side to the downstream side. Desalination system.
前記セラミック膜ろ過手段と前記脱炭酸手段との間に、被処理水に凝集剤を添加する凝集剤添加手段を更に備えることを特徴とする、請求項1に記載の淡水化システム。   The desalination system according to claim 1, further comprising a flocculant addition means for adding a flocculant to the water to be treated between the ceramic membrane filtration means and the decarboxylation means. 前記脱炭酸手段は、被処理水のpHを5以下にする第1のpH調整手段と、被処理水を上流側から下流側に処理する方向で見て前記第1のpH調整手段よりも下流側に設けられた、曝気手段または脱気手段、或いは、それらの双方とを備えることを特徴とする、請求項1または2に記載の淡水化システム。   The decarbonation means includes a first pH adjusting means for reducing the pH of the water to be treated to 5 or less, and a downstream of the first pH adjusting means as seen in the direction of treating the water to be treated from the upstream side to the downstream side. The desalination system according to claim 1 or 2, further comprising aeration means, deaeration means, or both of them provided on the side. 前記脱炭酸手段と前記凝集剤添加手段との間に、被処理水のpHを6〜10に調整する第2のpH調整手段を更に備えることを特徴とする、請求項2または3に記載の淡水化システム。   The second pH adjusting means for adjusting the pH of the water to be treated to 6 to 10 is further provided between the decarboxylation means and the flocculant addition means. Desalination system. 被処理水中の懸濁物質を被処理水から分離するろ過工程と、該ろ過工程を経た被処理水を逆浸透膜でろ過する逆浸透膜ろ過工程とを含む被処理水の淡水化方法であって、
前記ろ過工程が、セラミック製の精密ろ過膜またはセラミック製の限外ろ過膜を用いて被処理水から懸濁物質を分離するセラミック膜ろ過工程であり、
前記セラミック膜ろ過工程の前に、被処理水中の炭酸を除去する脱炭酸工程を更に含むことを特徴とする、被処理水の淡水化方法。
A desalination method for water to be treated comprising a filtration step for separating suspended substances in the treatment water from the treatment water, and a reverse osmosis membrane filtration step for filtering the treatment water that has passed through the filtration step with a reverse osmosis membrane. And
The filtration step is a ceramic membrane filtration step of separating suspended substances from the water to be treated using a ceramic microfiltration membrane or a ceramic ultrafiltration membrane,
A desalination method for water to be treated, further comprising a decarboxylation step of removing carbonic acid in the water to be treated before the ceramic membrane filtration step.
前記脱炭酸工程と前記セラミック膜ろ過工程との間に、被処理水に凝集剤を添加して被処理水中の懸濁物質を凝集させる凝集工程を更に含むことを特徴とする、請求項5に記載の淡水化方法。   6. The method according to claim 5, further comprising a coagulation step of adding a flocculant to the water to be treated to coagulate suspended substances in the water to be treated between the decarboxylation step and the ceramic membrane filtration step. The desalination method described. 前記脱炭酸工程は、被処理水のpHを5以下にする第1のpH調整工程と、該第1のpH調整工程を経た被処理水を曝気する曝気工程または脱気する脱気工程、或いは、それらの双方とを含むことを特徴とする、請求項5または6に記載の淡水化方法。   The decarboxylation step includes a first pH adjustment step for adjusting the pH of the water to be treated to 5 or less, an aeration step for aeration of the water to be treated after the first pH adjustment step, or a deaeration step for deaeration, or Both of them are included, The desalination method of Claim 5 or 6 characterized by the above-mentioned. 前記凝集工程と前記脱炭酸工程との間に、被処理水のpHを6〜10に調整する第2のpH調整工程を更に含むことを特徴とする、請求項6または7に記載の淡水化方法。   The desalination according to claim 6 or 7, further comprising a second pH adjustment step of adjusting the pH of the water to be treated to 6 to 10 between the aggregation step and the decarboxylation step. Method. 前記曝気工程が、被処理水に対し、被処理水の流量の6〜23倍の流量で気体を曝気する工程であることを特徴とする、請求項7または8に記載の淡水化方法。   The desalination method according to claim 7 or 8, wherein the aeration step is a step of aeration of gas at a flow rate of 6 to 23 times the flow rate of the water to be treated.
JP2009209516A 2009-09-10 2009-09-10 System and method for desalination of water to be treated Pending JP2011056411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209516A JP2011056411A (en) 2009-09-10 2009-09-10 System and method for desalination of water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209516A JP2011056411A (en) 2009-09-10 2009-09-10 System and method for desalination of water to be treated

Publications (1)

Publication Number Publication Date
JP2011056411A true JP2011056411A (en) 2011-03-24

Family

ID=43944696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209516A Pending JP2011056411A (en) 2009-09-10 2009-09-10 System and method for desalination of water to be treated

Country Status (1)

Country Link
JP (1) JP2011056411A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110491A (en) * 2015-10-10 2015-12-02 田海军 New coal mine well water underground treatment process
JP2017000940A (en) * 2015-06-09 2017-01-05 株式会社ウェルシィ Treatment method for underground water and treatment apparatus for underground water
JP2017502835A (en) * 2013-11-01 2017-01-26 バターズ,ブライアン,イー Fluid processing system
WO2017159303A1 (en) * 2016-03-14 2017-09-21 住友電気工業株式会社 Method for treating waste water having high hardness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122256A (en) * 1974-08-16 1976-02-21 Hitachi Plant Eng & Constr Co Suidoyogensuino jokashorihoho
JPS5851979A (en) * 1981-09-25 1983-03-26 Hitachi Ltd Method and apparatus for controlling ph in water-purifying plant
JPS6320902U (en) * 1986-07-25 1988-02-12
JPS6467204A (en) * 1987-09-08 1989-03-13 Mitsubishi Heavy Ind Ltd Control method for water-producing plant employing reverse osmotic membrane method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122256A (en) * 1974-08-16 1976-02-21 Hitachi Plant Eng & Constr Co Suidoyogensuino jokashorihoho
JPS5851979A (en) * 1981-09-25 1983-03-26 Hitachi Ltd Method and apparatus for controlling ph in water-purifying plant
JPS6320902U (en) * 1986-07-25 1988-02-12
JPS6467204A (en) * 1987-09-08 1989-03-13 Mitsubishi Heavy Ind Ltd Control method for water-producing plant employing reverse osmotic membrane method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012060836; 造水技術編集企画委員会編: 造水技術-水処理のすべて- , 19830510, 355, 財団法人造水推進センター *
JPN6012060837; 造水技術ハンドブック編集企画委員会編: 造水技術ハンドブック2004 , 20041125, 404-405, 財団法人造水推進センター *
JPN6013012358; 特許庁: 平成17年度標準技術集水処理技術 , 20060512, 213頁 *
JPN6013012359; 造水技術ハンドブック編集企画委員会編: 造水技術ハンドブック2004 , 20041125, 7頁, 財団法人造水推進センター *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502835A (en) * 2013-11-01 2017-01-26 バターズ,ブライアン,イー Fluid processing system
EP3062906A4 (en) * 2013-11-01 2017-08-16 Butters, Brian E. Fluid treatment system
KR20180011700A (en) * 2013-11-01 2018-02-02 1934612 온타리오 인코포레이티드 Fluid treatment system
US10005686B2 (en) 2013-11-01 2018-06-26 1934612 Ontario Inc. Fluid treatment system
AU2014343377B2 (en) * 2013-11-01 2019-02-28 1934612 Ontario Inc. Fluid treatment system
JP2021062373A (en) * 2013-11-01 2021-04-22 1934612 オンタリオ インコーポレイテッド Fluid treatment systems and methods thereof
KR102358590B1 (en) * 2013-11-01 2022-02-03 1934612 온타리오 인코포레이티드 Fluid treatment system
JP7439358B2 (en) 2013-11-01 2024-02-28 1934612 オンタリオ インコーポレイテッド Fluid treatment systems and methods
JP2017000940A (en) * 2015-06-09 2017-01-05 株式会社ウェルシィ Treatment method for underground water and treatment apparatus for underground water
CN105110491A (en) * 2015-10-10 2015-12-02 田海军 New coal mine well water underground treatment process
WO2017159303A1 (en) * 2016-03-14 2017-09-21 住友電気工業株式会社 Method for treating waste water having high hardness
JPWO2017159303A1 (en) * 2016-03-14 2019-01-17 住友電気工業株式会社 Treatment method for high hardness wastewater

Similar Documents

Publication Publication Date Title
Anis et al. Reverse osmosis pretreatment technologies and future trends: A comprehensive review
Choo et al. Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
NL2018508B1 (en) Method for purifying water as well as a suitable device.
JP3698093B2 (en) Water treatment method and water treatment apparatus
WO2009119300A1 (en) Method of pretreatment for separation with reverse osmosis membrane of water to be treated
AU2014235024B2 (en) Process for water treatment prior to reverse osmosis
JP2007245003A (en) Seawater desalination method
JP2011050843A (en) Method of and system for desalinating water to be treated
JP2009028724A (en) Method for water treatment and apparatus for water treatment
JP2011056411A (en) System and method for desalination of water to be treated
US8518235B2 (en) All-electric coagulant generation system
Oh et al. Effect of ozone on microfiltration as a pretreatment of seawater reverse osmosis
JP6662558B2 (en) Water treatment method and water treatment device
JP5103747B2 (en) Water treatment apparatus and water treatment method
JP5526093B2 (en) Seawater desalination method and seawater desalination apparatus
JP2003080246A (en) Apparatus and method for treating water
JP5238778B2 (en) Desalination system
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP4499834B1 (en) Fresh water generating apparatus and fresh water generating method
WO2012057176A1 (en) Water-treatment method and desalinization method
JP2016093789A (en) Water treatment method and water treatment system
JP2014046235A (en) Fresh water generating method
WO2013061057A1 (en) Water treatment methods and systems
JP6900641B2 (en) Disinfectant water production method and disinfectant water production system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319