WO2021117542A1 - Water softener - Google Patents

Water softener Download PDF

Info

Publication number
WO2021117542A1
WO2021117542A1 PCT/JP2020/044627 JP2020044627W WO2021117542A1 WO 2021117542 A1 WO2021117542 A1 WO 2021117542A1 JP 2020044627 W JP2020044627 W JP 2020044627W WO 2021117542 A1 WO2021117542 A1 WO 2021117542A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hardness
ion scavenger
hardness ion
treated
Prior art date
Application number
PCT/JP2020/044627
Other languages
French (fr)
Japanese (ja)
Inventor
隆好 高野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021117542A1 publication Critical patent/WO2021117542A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances

Definitions

  • the present invention relates to a water softening device.
  • a water softening device using an ion exchange resin is widely used, but has a problem. For example, if the water softening treatment is continued, the ion exchange capacity of the ion exchange resin gradually decreases. Therefore, it is necessary to regenerate the ion exchange resin after a predetermined treatment time has elapsed. In addition, it is necessary to use a large amount of salt in the regeneration process, and it has become a problem in recent years to give a load to the environment. Therefore, it is desired to realize a water softening device having a small load on the environment, and as one of the methods, a method applying the coagulation sedimentation method has been proposed.
  • the method often consists of three main steps. For example, (1) a step of insolubilizing the hardness component dissolved in water, (2) a step of forming flocs of the insolubilized hardness components with a flocculant to coarsen them, and (3) precipitating or floating the flocs, and further. Is a three-step process of solid-liquid separation by filtration.
  • Patent Document 1 a reaction tank in which a carbonate root is added and an alkaline agent is added to adjust the pH to 12 to 13 to precipitate a hardness component in water, and a coagulation tank for coagulating the reaction solution from the reaction tank. It is composed of a settling tank that solid-liquid separates the coagulation treatment liquid from the coagulation tank.
  • Patent Document 2 proposes a method of adding sodium carbonate to calcium-containing wastewater, precipitating calcium carbonate, adding a flocculant, and further separating suspended solids by sedimentation, a filter, and a filter press. ing.
  • An object of the present invention is to provide a water softening apparatus capable of stably softening water with a small load on the environment and little influence of the hardness ion concentration in raw water.
  • the water softening apparatus includes a hardness ion trapping unit that supplies a hardness ion trapping agent into the water to be treated to be water softened and traps the hardness ions.
  • the treatment water is provided with an aggregating portion for supplying the aggregating agent to agglomerate the hardness ion trapping agent that has captured the hardness ions, and a filtering portion for filtering the agglomerates aggregated by the aggregating agent.
  • It is a water-soluble anionic polymer having a group
  • the flocculant is a cationic polymer.
  • the water softening device of the present embodiment includes a hardness ion trapping unit that supplies a hardness ion trapping agent to the water to be treated to be softened and traps the hardness ions. Further, the water to be treated is provided with an aggregating portion for supplying the aggregating agent to agglomerate the hardness ion scavenger that has captured the hardness ions. Further, it is provided with a filtration unit for filtering the agglomerates aggregated by the aggregating agent.
  • the hardness ion scavenger is a water-soluble anionic polymer having a carboxyl group, and the flocculant is a cationic polymer.
  • hardness ions are captured by a hardness ion scavenger.
  • the hardness ion scavenger that has captured the hardness ions is aggregated to form an agglomerate.
  • the produced agglomerates are filtered for solid-liquid separation. That is, in the present embodiment, the hardness ions are not aggregated after being made into a carbonate or the like, but are captured by a polymer hardness ion scavenger and aggregated together with the hardness ion scavenger. Therefore, as long as the hardness ions are captured by the hardness ion scavenger, they can be easily aggregated. Therefore, even when the hardness ion concentration is low, the hardness ions can be removed, and by extension, the water can be softened almost without being affected by the concentration of the hardness ions.
  • the water softening device 10 of the first embodiment includes three main configurations of a hardness ion trapping unit 12, an agglomerating unit 14, and a filtering unit 16, each of which is connected by a pipe 18. .
  • the hardness ion scavenger 12 supplies a hardness ion scavenger to the water to be treated, and the hardness ion scavenger captures the hardness ions.
  • the hardness ion scavenger that has captured the hardness ions is agglomerated by the aggregating agent to form agglomerates (coarse particles).
  • the agglomerates in the water to be treated are filtered by the filtration unit 16 and separated into solid and liquid.
  • hardness ions are removed from the water to be treated to soften the water.
  • the hardness ion scavenger 12 supplies a hardness ion scavenger into the water to be treated to capture the hardness ions.
  • the hardness ion scavenger is a water-soluble anionic polymer having a carboxyl group, and hardness ions are bonded to the carboxyl group.
  • the hardness ion scavenger is a water-soluble anionic polymer having a carboxyl group, and has a property of complexing with calcium ions and magnesium ions, which are hardness components. That is, the hardness ion scavenger captures the hardness component by forming a complex with the hardness component in the water to be treated.
  • the weight average molecular weight of the hardness ion scavenger is preferably 25,000 to 1,000,000, more preferably 25,000 to 250,000. When the weight average molecular weight of the hardness ion scavenger becomes large, the molecular chain becomes long and easily aggregates.
  • the weight average molecular weight of the hardness ion scavenger increases, the hydrophobic property tends to become stronger, and it becomes difficult to dissolve in water. Therefore, considering the water solubility of the hardness ion scavenger, the weight average molecular weight is preferably 250,000 or less.
  • the water-soluble means that the solubility in neutral water at room temperature is 10 g / L or more. Further, it is preferable that the hardness ion scavenger does not gel.
  • the hardness ion scavenger used in the present embodiment is preferably at least one selected from the group consisting of polyacrylic acid, polyacrylic acid salt, and pectin. These hardness ion scavengers may be used alone or in combination of two or more.
  • the hardness ion trapping unit 12 can be in the form of a tank in which the water to be treated is temporarily stored or a similar form.
  • the mechanism for supplying the hardness ion scavenger into the tank is not particularly limited.
  • the hardness ion scavenger is an aqueous solution, it can be quantitatively supplied to the water to be treated by a known liquid supply mechanism.
  • the hardness ion scavenger is powder, it can be supplied as powder to the water to be treated by using a feeder or the like.
  • the amount of the hardness ion scavenger added to the hardness ion scavenger 12 may be appropriately adjusted according to the flow velocity of the water to be treated or the amount of the hardness component, but it is preferably added at a flow rate of, for example, 500 to 1000 mg / L.
  • the water to be treated that has passed through the hardness ion trapping portion 12 is guided to the agglomerating portion 14.
  • a flocculant for aggregating the hardness ion scavenger that has captured the hardness ions generated by the hardness ion scavenging section 12 is supplied, and an agglomerate of the hardness ion scavenger is generated. That is, in the agglomeration portion 14, the hardness ions are agglomerated together with the hardness ion scavenger to form an agglomerate.
  • a cationic polymer is preferable as the coagulant.
  • the cationic polymer is preferably at least one selected from the group consisting of chitosan, polyamine, polydiallyldimethylammonium chloride, and polydicyandiamide.
  • chitosan polyamine
  • polydiallyldimethylammonium chloride polydiallyldimethylammonium chloride
  • polydicyandiamide polydicyandiamide
  • the form of the aggregating portion 14 does not matter as long as the aggregating agent can be supplied to agglomerate the hardness ion scavenger.
  • the agglomerating unit 14 may have a tank in which water to be treated is temporarily stored or a similar form.
  • the mechanism for supplying the flocculant into the tank is not particularly limited.
  • the flocculant is an aqueous solution, it can be quantitatively supplied to the water to be treated by a known liquid supply mechanism.
  • the coagulant is powder, it can be supplied as powder to the water to be treated by using a feeder or the like.
  • the amount of the aggregating agent added to the aggregating portion 14 may be appropriately adjusted according to the flow velocity of the water to be treated or the amount of the hardness component, but it is preferable to add the aggregating agent at a flow rate of, for example, 150 to 3000 mg / L.
  • the mass ratio of the hardness ion scavenger and the aggregating agent supplied into the water to be treated is preferably 3: 1 to 1: 3 from the viewpoint of efficiently aggregating the hardness components.
  • the water to be treated that has passed through the agglomerating portion 14 is guided to the filtering portion 16.
  • the agglomerates generated in the agglutinating unit 14 are filtered from the water to be treated for solid-liquid separation. That is, since the agglomerates containing the hardness component of the water to be treated that has passed through the filtration unit 16 do not pass through the filter medium in the filtration unit 16, the filtered water to be treated becomes soft water.
  • the filtration unit 16 may be in any form as long as it can filter the agglomerates and separate the solid and liquid.
  • the filtration unit 16 using the granular filter medium will be described, but the present embodiment is not limited thereto.
  • the granular filter medium In the filtration part using the granular filter medium, the granular filter medium is intended to capture and remove the agglomerates. However, particles having a surface potential that are adsorbed on the granular filter medium, particles having a particle diameter of about 1 to 10 ⁇ m, and chromaticity can be removed depending on the presence of ions in the water to be treated.
  • a filter medium suitable for the object to be removed such as filtered sand or a pellet-shaped fiber filter medium, can be used.
  • the material of the granular filter medium may be, for example, sand, anthracite, garnet, ceramics, granular activated carbon, iron oxyhydroxide, manganese sand, or the like, as long as it has a hardness that allows it to settle in water and is not easily deformed by pressure. It is preferable to use a particle size having a particle size of, for example, 0.3 to 5.0 mm and a uniformity coefficient of 1.2 to 2.0.
  • the specific gravity of the granular filter medium differs depending on the material, for example, about 2.5 to 2.7 g / cm 3 for sand, 1.4 to 1.8 g / cm 3 for anthracite, and 3 for garnet. It is .8 to 4.1 g / cm 3 .
  • the multi-layer filtration method in which a plurality of types of filter media are mixed and used is a method in which particles having different sizes are laminated in order from the bottom as a layer to be filtered by utilizing such a difference in specific densities. In the multi-layer filtration method, it is common to mix particles having a large specific density and a small size and particles having a small specific density and a large size to form a multi-layer structure.
  • the multi-layer filtration method is preferable because it has advantages such as high filtration efficiency per unit volume and low head loss as compared with using a single type of filter medium.
  • the granular filter medium for example, 0.3 mm of garnet, 0.6 mm of sand, and 1.0 mm of anthracite are mixed at a ratio of 2: 1: 1 and used, depending on the particle characteristics of the turbidity. It is desirable to adjust the mixing ratio and particle size.
  • the water softening device of the second embodiment is the water softening device of the first embodiment, in which a backwash line for washing aggregates adhering to the filter medium in the filtration unit by backwashing water and a reverse washing line for washing the filter medium are completed. It is a form further provided with a settling tank for precipitating agglomerates in washing water. Since agglomerates derived from the hardness ion scavenger adhere to the filter medium of the filtration part, there is a concern that the filtration performance may deteriorate over time. Therefore, in the second embodiment, a backwashing line is provided, and a settling tank for washing the filter medium of the filtration unit by backwashing and precipitating agglomerates generated by the washing is provided.
  • FIG. 2 is a block diagram showing the overall configuration of the water softening device 11 of the second embodiment.
  • the water softening device 11 shown in FIG. 2 is different from the water softening device 10 shown in FIG. 1 in that a backwash line is mainly provided. Therefore, the same components in the water softening apparatus 10 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • a backwash line 22 is connected to the filtration unit 16.
  • the backwash line 22 has a water source for backwash water (not shown) on the upstream side so that the wash water flows in the direction opposite to the flow direction of the water to be treated (in the direction of the arrow in FIG. 2) during the softening treatment. )It is connected to the. Then, the backwash water flowing out from the water source flows into the filtration unit 16, cleans the internal filter medium, and flows out from the side opposite to the inflow port of the filtration unit 16. Further, the backwash line 22 located on the downstream side of the filtration unit 16 is provided with a settling tank 20 for precipitating agglomerates separated from the filter medium in the filtration unit 16 by backwashing.
  • the flow direction of the backwash water introduced into the filter unit 16 from the backwash line 22 with respect to the filter medium of the water to be treated, which passes through the agglomerate unit 14 and is introduced into the filter unit 16, is opposite to the flow direction of the water to be treated. Is. That is, the flow direction of the water to be treated introduced from the backwash line 22 to the filtration unit 16 is the direction in which the agglomerates adhering to the filter medium are separated.
  • the settling tank 20 is a tank for settling and separating larger agglomerates among the agglomerates separated from the filter medium. That is, the washing water that has passed through the settling tank 20 is in a state in which larger agglomerates have been removed. Therefore, clogging of the piping on the downstream side of the settling tank 20 can be suppressed.
  • the settling tank 20 is preferably provided with a discharge section for discharging the precipitated agglomerates, and the settling tank 20 shown in FIG. 2 includes a settling section 20A and a discharge section 20B.
  • the settling portion 20A is a portion for precipitating a larger agglomerate among the agglomerates in the passing washing water.
  • the discharge unit 20B is a portion for discharging the agglomerates precipitated in the sedimentation unit 20A to the outside. In the discharge unit 20B, the large aggregates that have settled can be easily discharged to the outside, which facilitates maintenance.
  • the settling tank 20 including the settling section 20A and the discharging section 20B as described above can be formed into the settling section 20A and the discharging section 20B by providing an opening at the bottom or the bottom of one tank.
  • the water softening device 11 has a sustained-release portion that gradually supplies a hardness ion scavenger and a flocculant (hereinafter, these may be collectively referred to as “drug”). You may be doing it.
  • the hardness ion scavenger 12 is provided with the hardness ion scavenger sustained release unit 13, and the agglomerating unit 14 is provided with the aggregating agent sustained release unit 15. Then, the hardness ion scavenger sustained release unit 13 gradually supplies the hardness ion scavenger to the hardness ion scavenger unit 12.
  • the coagulant sustained release unit 15 gradually supplies the coagulant to the coagulant unit 14.
  • a hardness ion scavenger sustained release portion 13 and a flocculant sustained release portion 15 (hereinafter, these may be collectively referred to as a “sustained release portion”), hardness ions are generated with respect to the water to be treated.
  • a constant amount of each of the scavenger and the flocculant can be stably supplied over a long period of time.
  • Each sustained-release unit may supply the drug continuously or intermittently.
  • a sustained release portion in the form of passing water to be treated through the solid drug is configured. May be good. In that configuration, the solid drug can function as a sustained release portion by being gradually released by passing water.
  • Both the hardness ion scavenger sustained release unit 13 and the flocculant sustained release unit 15 may be configured to gradually supply the respective agents by electrical control. According to such a configuration, for example, each drug can be gradually released only when the water to be treated is passed through the hardness ion trapping portion and / or the agglomerating portion. Therefore, since the chemicals are slowly released only when the water to be treated is passed, each chemical can be efficiently supplied without wasting it. Further, when the water to be treated is started to pass through, both the flocculant and the hardness ion scavenger are supplied at the same timing, or the flocculant is supplied at a timing later than that of the hardness ion scavenger. You can also do it.
  • the supply of both the flocculant and the hardness ion scavenger is stopped at the same timing, or the supply of the flocculant is stopped at a timing later than that of the hardness ion scavenger. It can also be. In any of the configurations, wasteful consumption of the drug is small and the drug can be efficiently supplied.
  • the hardness ion trapping portion and the agglutinating portion are provided separately, but a hardness ion capturing portion and the agglutinating portion may be provided for one tank.
  • the hardness ions are captured by the hardness ion scavenger and the hardness ion scavenger is aggregated by the flocculant in one tank.
  • the order of supplying the hardness ion scavenger and the aggregating agent may be the order of the hardness ion scavenger and the aggregating agent. preferable.
  • the above water softening device of the present embodiment can be applied to a place-installed water purifier (POU) and a building entrance-installed water purifier (POE).
  • POU place-installed water purifier
  • POE building entrance-installed water purifier
  • Example 1 In order to confirm the water softening ability of the water softening apparatus of the present embodiment, treatments were sequentially performed in each of the hardness ion trapping part, the agglomerating part and the filtering part in the beaker as follows.
  • Polyacrylic acid (average molecular weight: 5,000) was used as a hardness ion scavenger, chitosan was used as a flocculant, and a syringe filter was used as a filter.
  • Evian manufactured by Danone Japan Co., Ltd.
  • polyacrylic acid and chitosan were added in this order.
  • the concentrations of polyacrylic acid and chitosan were both added so as to be 100 ppm.
  • water was collected with a syringe and filtered with a syringe filter. Further, the above operation was also performed when the polyacrylic acid concentration and the chitosan concentration were added so as to be 250 ppm, 500 ppm, and 1000 ppm.
  • the total hardness of the water treated as described above was measured by the chelatometric titration method. The measurement results are shown in the graph of FIG.
  • Example 2 Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to one having a weight average molecular weight of 25,000, and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
  • Example 3 Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to one having a weight average molecular weight of 250,000, and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
  • Example 4 Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to one having a weight average molecular weight of 1,000,000, and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
  • Example 5 Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to pectin and the concentration of chitosan was set to 1/2 of that of pectin, and the total hardness of the treated water was measured. .. The measurement results are shown in the graph of FIG.
  • Example 6 Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to sodium polyacrylate (degree of polymerization: 2,700 to 7,500), and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
  • Example 7 Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to sodium polyacrylate (degree of polymerization: 22,000 to 77,000), and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
  • Example 5 using pectin it was found that the amount of decrease in total hardness was small, and a high concentration was required even if the same hardness treatment was applied.
  • water could not be passed through the syringe filter, so filtration was not performed, but it is considered that there is no effect on the measurement of the total hardness.
  • a water softening device capable of stably softening water with a small load on the environment and little influence of the hardness ion concentration in raw water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

A water softener which is provided with: a hardness ion capturing unit which captures hardness ions by supplying a hardness ion scavenger to water to be processed, said water being the object of water softening; a flocculation unit which causes the hardness ion scavenger that has captured hardness ions to flocculate by supplying a flocculant to the water to be processed; and a filtration unit which filters a flocculation material that has been flocculated by the flocculant. With respect to this water softener, the hardness ion scavenger is a water-soluble anionic polymer that has a carboxyl group; and the flocculant is a cationic polymer.

Description

軟水化装置Water softener
 本発明は、軟水化装置に関する。 The present invention relates to a water softening device.
 硬水を軟水化する軟水化装置は、種々の形態が知られている。中でも、イオン交換樹脂を用いた軟水化装置は広く用いられているものの問題点もある。例えば、軟水化の処理を継続すると、イオン交換樹脂のイオン交換能力が徐々に低下する。そのため、所定の処理時間経過後に、イオン交換樹脂の再生処理をする必要がある。また、再生処理に際し、大量の塩を使用する必要があり、環境に負荷を与えることが近年問題になっている。従って、環境に対する負荷が小さい軟水化装置の実現が望まれており、その方式の一つとして、凝集沈殿法を応用した方式が提案されている。その方式は、主に3つの工程で構成されていることが多い。例えば、(1)水中に溶存している硬度成分を不溶化する工程、(2)不溶化した硬度成分を凝集剤によりフロックを形成し、粗大化させる工程、及び(3)フロックを沈殿又は浮上、さらにはろ過により固液分離する工程、の3つの工程である。 Various forms of water softening equipment for softening hard water are known. Among them, a water softening device using an ion exchange resin is widely used, but has a problem. For example, if the water softening treatment is continued, the ion exchange capacity of the ion exchange resin gradually decreases. Therefore, it is necessary to regenerate the ion exchange resin after a predetermined treatment time has elapsed. In addition, it is necessary to use a large amount of salt in the regeneration process, and it has become a problem in recent years to give a load to the environment. Therefore, it is desired to realize a water softening device having a small load on the environment, and as one of the methods, a method applying the coagulation sedimentation method has been proposed. The method often consists of three main steps. For example, (1) a step of insolubilizing the hardness component dissolved in water, (2) a step of forming flocs of the insolubilized hardness components with a flocculant to coarsen them, and (3) precipitating or floating the flocs, and further. Is a three-step process of solid-liquid separation by filtration.
 例えば、特許文献1では、炭酸根を添加するとともにアルカリ剤を添加して、pH12~13に調整し、水中の硬度成分を析出させる反応槽と、反応槽からの反応液を凝集処理する凝集槽と、凝集槽からの凝集処理液を固液分離する沈殿槽により構成されている。 For example, in Patent Document 1, a reaction tank in which a carbonate root is added and an alkaline agent is added to adjust the pH to 12 to 13 to precipitate a hardness component in water, and a coagulation tank for coagulating the reaction solution from the reaction tank. It is composed of a settling tank that solid-liquid separates the coagulation treatment liquid from the coagulation tank.
 また、特許文献2では、カルシウムを含有する排水に炭酸ナトリウムを添加し、炭酸カルシウムを析出させ、凝集剤を添加し、さらに浮遊物質を沈降分離、ろ過器、フィルタープレスにより分離する方式が提案されている。 Further, Patent Document 2 proposes a method of adding sodium carbonate to calcium-containing wastewater, precipitating calcium carbonate, adding a flocculant, and further separating suspended solids by sedimentation, a filter, and a filter press. ing.
 特許文献1及び2の方式では、イオン交換樹脂のような再生処理をする必要がない。従って、再生処理のために用いる塩は不要であり、環境に与える負荷は小さいと考えられる。 In the methods of Patent Documents 1 and 2, it is not necessary to perform a regeneration process unlike an ion exchange resin. Therefore, the salt used for the regeneration treatment is unnecessary, and it is considered that the load on the environment is small.
特開2015-112593号公報Japanese Unexamined Patent Publication No. 2015-112593 特開2016-16341号公報Japanese Unexamined Patent Publication No. 2016-16341
 しかしながら、特許文献1及び2のいずれも、硬度成分を炭酸塩として析出させて除去するため、水中に含まれる硬度イオンの濃度の影響を強く受ける。例えば、比較的硬度の低い硬水の場合、硬度イオン濃度が低いため、硬度成分を析出させることが困難となる。そのため、軟水化水処理を安定的に行うことが困難である。また、原水の硬度が変動してしまうと、析出の度合いも不安定となってしまうため、安定に軟水化することが困難となる。 However, in both Patent Documents 1 and 2, since the hardness component is precipitated and removed as a carbonate, it is strongly affected by the concentration of hardness ions contained in water. For example, in the case of hard water having a relatively low hardness, the hardness ion concentration is low, which makes it difficult to precipitate a hardness component. Therefore, it is difficult to stably perform the softened water treatment. Further, if the hardness of the raw water fluctuates, the degree of precipitation also becomes unstable, and it becomes difficult to stably soften the water.
 以上のことから、イオン交換樹脂で必要とされる、塩による再生を必要とせず、被処理水中に溶存するカルシウム、マグネシウム等の硬度成分を除去する低環境負荷な方法は存在する。しかし、そのシステムの構成は、硬度成分を炭酸塩等として析出させるため、原水中の硬度イオン濃度の影響を受けるという問題があった。 From the above, there is a low environmental load method that removes hardness components such as calcium and magnesium dissolved in the water to be treated without the need for salt regeneration, which is required for ion exchange resins. However, the structure of the system has a problem that it is affected by the hardness ion concentration in the raw water because the hardness component is precipitated as a carbonate or the like.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、環境に対する負荷が小さく、原水中の硬度イオン濃度の影響が少なく、安定的に軟水化可能な軟水化装置を提供することにある。 The present invention has been made in view of the problems of the prior art. An object of the present invention is to provide a water softening apparatus capable of stably softening water with a small load on the environment and little influence of the hardness ion concentration in raw water.
 上記課題を解決するために、本発明の態様に係る軟水化装置は、軟水化の対象となる被処理水中に、硬度イオン捕捉剤を供給して硬度イオンを捕捉する硬度イオン捕捉部と、被処理水に凝集剤を供給して、硬度イオンを捕捉した硬度イオン捕捉剤を凝集させる凝集部と、凝集剤により凝集した凝集物を濾過する濾過部と、を備え、硬度イオン捕捉剤が、カルボキシル基を有する水溶性のアニオン性高分子であり、凝集剤がカチオン性高分子である。 In order to solve the above problems, the water softening apparatus according to the aspect of the present invention includes a hardness ion trapping unit that supplies a hardness ion trapping agent into the water to be treated to be water softened and traps the hardness ions. The treatment water is provided with an aggregating portion for supplying the aggregating agent to agglomerate the hardness ion trapping agent that has captured the hardness ions, and a filtering portion for filtering the agglomerates aggregated by the aggregating agent. It is a water-soluble anionic polymer having a group, and the flocculant is a cationic polymer.
第1の実施形態に係る軟水化装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the water softening apparatus which concerns on 1st Embodiment. 第2の実施形態に係る軟水化装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the water softening apparatus which concerns on 2nd Embodiment. 実施例において測定した、ポリアクリル酸濃度に対する全硬度を示すグラフである。It is a graph which shows the total hardness with respect to the polyacrylic acid concentration measured in an Example. 実施例において測定した、硬度イオン捕捉剤濃度に対する全硬度を示すグラフである。It is a graph which shows the total hardness with respect to the hardness ion scavenger concentration measured in an Example.
 以下、図面を参照しながら、本実施形態の軟水化装置を説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the water softening apparatus of this embodiment will be described with reference to the drawings. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 本実施形態の軟水化装置は、軟水化の対象となる被処理水中に、硬度イオン捕捉剤を供給して硬度イオンを捕捉する硬度イオン捕捉部を備える。また、被処理水に凝集剤を供給して、硬度イオンを捕捉した前記硬度イオン捕捉剤を凝集させる凝集部を備える。さらに、凝集剤により凝集した凝集物を濾過する濾過部を備える。そして、硬度イオン捕捉剤が、カルボキシル基を有する水溶性のアニオン性高分子であり、凝集剤がカチオン性高分子である。 The water softening device of the present embodiment includes a hardness ion trapping unit that supplies a hardness ion trapping agent to the water to be treated to be softened and traps the hardness ions. Further, the water to be treated is provided with an aggregating portion for supplying the aggregating agent to agglomerate the hardness ion scavenger that has captured the hardness ions. Further, it is provided with a filtration unit for filtering the agglomerates aggregated by the aggregating agent. The hardness ion scavenger is a water-soluble anionic polymer having a carboxyl group, and the flocculant is a cationic polymer.
 本実施形態の軟水化装置においては、まず、硬度イオンを硬度イオン捕捉剤により捕捉する。次いで、硬度イオンを捕捉した硬度イオン捕捉剤を凝集させ凝集物とする。その後、生成した凝集物を濾過して固液分離する。すなわち、本実施形態においては、硬度イオンを炭酸塩等とした上で凝集させるのではなく、高分子たる硬度イオン捕捉剤に捕捉させて、硬度イオン捕捉剤ごと凝集させる。従って、硬度イオンが硬度イオン捕捉剤に捕捉されさえすれば容易に凝集させることができる。そのため、硬度イオン濃度が低い場合であっても硬度イオンを除去することができ、ひいては硬度イオンの濃度の影響をほとんど受けることなく軟水化することができる。 In the water softening device of the present embodiment, first, hardness ions are captured by a hardness ion scavenger. Next, the hardness ion scavenger that has captured the hardness ions is aggregated to form an agglomerate. Then, the produced agglomerates are filtered for solid-liquid separation. That is, in the present embodiment, the hardness ions are not aggregated after being made into a carbonate or the like, but are captured by a polymer hardness ion scavenger and aggregated together with the hardness ion scavenger. Therefore, as long as the hardness ions are captured by the hardness ion scavenger, they can be easily aggregated. Therefore, even when the hardness ion concentration is low, the hardness ions can be removed, and by extension, the water can be softened almost without being affected by the concentration of the hardness ions.
<第1の実施形態>
 第1の実施形態の軟水化装置10は、図1に示すように、硬度イオン捕捉部12、凝集部14、及び濾過部16の3つの主要構成を含み、それぞれが配管18により接続されている。そして、硬度イオン捕捉部12において、被処理水に対して硬度イオン捕捉剤を供給して、硬度イオン捕捉剤により硬度イオンを捕捉する。次いで、凝集部14において、硬度イオンを捕捉した硬度イオン捕捉剤が凝集剤により凝集して凝集物(粗大粒子)となる。そして、濾過部16において被処理水中の凝集物が濾過され固液分離される。以上のようにして、被処理水から硬度イオンが除去され軟水化される。
 以下、本実施形態の軟水化装置の各構成について順次説明する。
<First Embodiment>
As shown in FIG. 1, the water softening device 10 of the first embodiment includes three main configurations of a hardness ion trapping unit 12, an agglomerating unit 14, and a filtering unit 16, each of which is connected by a pipe 18. .. Then, the hardness ion scavenger 12 supplies a hardness ion scavenger to the water to be treated, and the hardness ion scavenger captures the hardness ions. Next, in the agglomerating portion 14, the hardness ion scavenger that has captured the hardness ions is agglomerated by the aggregating agent to form agglomerates (coarse particles). Then, the agglomerates in the water to be treated are filtered by the filtration unit 16 and separated into solid and liquid. As described above, hardness ions are removed from the water to be treated to soften the water.
Hereinafter, each configuration of the water softening device of the present embodiment will be sequentially described.
[硬度イオン捕捉部]
 硬度イオン捕捉部12においては、被処理水中に硬度イオン捕捉剤を供給して硬度イオンを捕捉する。硬度イオン捕捉剤は、カルボキシル基を有する水溶性のアニオン性高分子であり、当該カルボキシル基に硬度イオンが結合する。
[Hardness ion trapping unit]
The hardness ion scavenger 12 supplies a hardness ion scavenger into the water to be treated to capture the hardness ions. The hardness ion scavenger is a water-soluble anionic polymer having a carboxyl group, and hardness ions are bonded to the carboxyl group.
 硬度イオン捕捉剤は、上記の通り、カルボキシル基を有する水溶性のアニオン性高分子であり、硬度成分たるカルシウムイオン及びマグネシウムイオンと錯形成する性質を有する。すなわち、硬度イオン捕捉剤は、被処理水中の硬度成分と錯形成することにより硬度成分を捕捉する。
 硬度イオン捕捉剤の重量平均分子量は、25000~1000000であることが好ましく、25000~250000であることがより好ましい。硬度イオン捕捉剤の重量平均分子量が大きくなると、分子鎖が長くなるため凝集しやすくなる。ただし、硬度イオン捕捉剤の重量平均分子量が大きくなると疎水性の性質が強くなる傾向にあり、水に溶解しにくくなる。そのため、硬度イオン捕捉剤の水溶性を考慮すると、重量平均分子量は250000以下であることが好ましい。
 なお、水溶性とは、常温で中性の水に対する溶解度が10g/L以上のことをいう。また、硬度イオン捕捉剤はゲル化しないものであることが好ましい。
As described above, the hardness ion scavenger is a water-soluble anionic polymer having a carboxyl group, and has a property of complexing with calcium ions and magnesium ions, which are hardness components. That is, the hardness ion scavenger captures the hardness component by forming a complex with the hardness component in the water to be treated.
The weight average molecular weight of the hardness ion scavenger is preferably 25,000 to 1,000,000, more preferably 25,000 to 250,000. When the weight average molecular weight of the hardness ion scavenger becomes large, the molecular chain becomes long and easily aggregates. However, as the weight average molecular weight of the hardness ion scavenger increases, the hydrophobic property tends to become stronger, and it becomes difficult to dissolve in water. Therefore, considering the water solubility of the hardness ion scavenger, the weight average molecular weight is preferably 250,000 or less.
The water-soluble means that the solubility in neutral water at room temperature is 10 g / L or more. Further, it is preferable that the hardness ion scavenger does not gel.
 本実施形態において使用する硬度イオン捕捉剤は、具体的には、ポリアクリル酸、ポリアクリル酸塩、及びペクチンからなる群より選択される少なくとも1種であることが好ましい。これらの硬度イオン捕捉剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Specifically, the hardness ion scavenger used in the present embodiment is preferably at least one selected from the group consisting of polyacrylic acid, polyacrylic acid salt, and pectin. These hardness ion scavengers may be used alone or in combination of two or more.
 本実施形態において、硬度イオン捕捉部12は、被処理水が一時的に貯留されるタンク又はそれに類する形態とすることができる。また、当該タンク内へ硬度イオン捕捉剤を供給する機構は特に限定されるものではない。例えば、硬度イオン捕捉剤を水溶液とした場合には、公知の液体供給機構により被処理水に定量的に供給することができる。また、硬度イオン捕捉剤が粉体の場合には、フィーダー等を用いて、被処理水に粉体のまま供給することができる。 In the present embodiment, the hardness ion trapping unit 12 can be in the form of a tank in which the water to be treated is temporarily stored or a similar form. Further, the mechanism for supplying the hardness ion scavenger into the tank is not particularly limited. For example, when the hardness ion scavenger is an aqueous solution, it can be quantitatively supplied to the water to be treated by a known liquid supply mechanism. When the hardness ion scavenger is powder, it can be supplied as powder to the water to be treated by using a feeder or the like.
 硬度イオン捕捉部12における硬度イオン捕捉剤の添加量は、被処理水の流速又は硬度成分の量によって適宜調整すればよいが、例えば、500~1000mg/Lの流量で添加することが好ましい。 The amount of the hardness ion scavenger added to the hardness ion scavenger 12 may be appropriately adjusted according to the flow velocity of the water to be treated or the amount of the hardness component, but it is preferably added at a flow rate of, for example, 500 to 1000 mg / L.
[凝集部]
 硬度イオン捕捉部12を経た被処理水は凝集部14に導かれる。凝集部14においては、硬度イオン捕捉部12で生成した、硬度イオンを捕捉した硬度イオン捕捉剤を凝集させる凝集剤が供給され、硬度イオン捕捉剤の凝集物が生成する。すなわち、凝集部14においては、硬度イオンを硬度イオン捕捉剤ごと凝集させて凝集物を生成する。
[Aggregate part]
The water to be treated that has passed through the hardness ion trapping portion 12 is guided to the agglomerating portion 14. In the agglomerating section 14, a flocculant for aggregating the hardness ion scavenger that has captured the hardness ions generated by the hardness ion scavenging section 12 is supplied, and an agglomerate of the hardness ion scavenger is generated. That is, in the agglomeration portion 14, the hardness ions are agglomerated together with the hardness ion scavenger to form an agglomerate.
 本実施形態の軟水化装置においては、軟水化した水を家庭生活用水とする場合、凝集剤としては、カチオン性高分子が好ましい。カチオン性高分子としては、キトサン、ポリアミン、ポリジアリルジメチルアンモニウムクロリド、及びポリジシアンジアミドからなる群より選択される少なくとも1種であることが好ましい。これらの凝集剤は1種を単独で用いてもよいし、2種以上を併用してもよい。 In the water softening device of the present embodiment, when the softened water is used as household water, a cationic polymer is preferable as the coagulant. The cationic polymer is preferably at least one selected from the group consisting of chitosan, polyamine, polydiallyldimethylammonium chloride, and polydicyandiamide. One of these flocculants may be used alone, or two or more thereof may be used in combination.
 本実施形態において、凝集部14は、凝集剤を供給して硬度イオン捕捉剤を凝集することができればその形態は問わない。凝集部14は、硬度イオン捕捉部12と同様、被処理水が一時的に貯留されるタンク又はそれに類する形態とすることができる。また、当該タンク内へ凝集剤を供給する機構は特に限定されるものではない。例えば、凝集剤を水溶液とした場合には、公知の液体供給機構により被処理水に定量的に供給することができる。また、凝集剤が粉体の場合には、フィーダー等を用いて、被処理水に粉体のまま供給することができる。 In the present embodiment, the form of the aggregating portion 14 does not matter as long as the aggregating agent can be supplied to agglomerate the hardness ion scavenger. Similar to the hardness ion trapping unit 12, the agglomerating unit 14 may have a tank in which water to be treated is temporarily stored or a similar form. Further, the mechanism for supplying the flocculant into the tank is not particularly limited. For example, when the flocculant is an aqueous solution, it can be quantitatively supplied to the water to be treated by a known liquid supply mechanism. When the coagulant is powder, it can be supplied as powder to the water to be treated by using a feeder or the like.
 凝集部14における凝集剤の添加量は、被処理水の流速又は硬度成分の量によって適宜調整すればよいが、例えば、150~3000mg/Lの流量で添加することが好ましい。 The amount of the aggregating agent added to the aggregating portion 14 may be appropriately adjusted according to the flow velocity of the water to be treated or the amount of the hardness component, but it is preferable to add the aggregating agent at a flow rate of, for example, 150 to 3000 mg / L.
 本実施形態において、被処理水中に供給される、硬度イオン捕捉剤及び凝集剤の質量比率は、硬度成分を効率よく凝集させる観点から、3:1~1:3とすることが好ましい。 In the present embodiment, the mass ratio of the hardness ion scavenger and the aggregating agent supplied into the water to be treated is preferably 3: 1 to 1: 3 from the viewpoint of efficiently aggregating the hardness components.
[濾過部]
 凝集部14を経た被処理水は、濾過部16に導かれる。濾過部16においては、被処理水から、凝集部14で生成した凝集物を濾過して固液分離する。すなわち、濾過部16を経た被処理水は硬度成分を含む凝集物は濾過部16における濾材を通過しないことから、濾過された被処理水は軟水となる。
[Filtration section]
The water to be treated that has passed through the agglomerating portion 14 is guided to the filtering portion 16. In the filtration unit 16, the agglomerates generated in the agglutinating unit 14 are filtered from the water to be treated for solid-liquid separation. That is, since the agglomerates containing the hardness component of the water to be treated that has passed through the filtration unit 16 do not pass through the filter medium in the filtration unit 16, the filtered water to be treated becomes soft water.
 本実施形態において、濾過部16は、凝集物を濾過して固液分離が可能であればその形態は問わない。以下に、粒状濾材を用いた濾過部16について説明するが、本実施形態においてはそれに限定されるものではない。 In the present embodiment, the filtration unit 16 may be in any form as long as it can filter the agglomerates and separate the solid and liquid. Hereinafter, the filtration unit 16 using the granular filter medium will be described, but the present embodiment is not limited thereto.
 粒状濾材を用いた濾過部において、粒状濾材は、凝集物を捕捉して除去することを目的としている。ただし、粒状濾材に吸着するような表面電位を持つ粒子や、被処理水中のイオン等の存在状態によっては粒子径約1~10μmの粒子や色度も除去可能となる。粒状濾材には、濾過砂をはじめ、ペレット状の繊維濾材等、除去対象物に適した濾材を用いることができる。粒状濾材の材質は、例えば、砂、アンスラサイト、ガーネット、セラミックス、粒状活性炭、オキシ水酸化鉄、マンガン砂など、水中で沈降し、圧力で変形しにくい硬度をもつものであればよい。粒子径は、例えば0.3~5.0mm、均等係数1.2~2.0などのものを用いるとよい。 In the filtration part using the granular filter medium, the granular filter medium is intended to capture and remove the agglomerates. However, particles having a surface potential that are adsorbed on the granular filter medium, particles having a particle diameter of about 1 to 10 μm, and chromaticity can be removed depending on the presence of ions in the water to be treated. As the granular filter medium, a filter medium suitable for the object to be removed, such as filtered sand or a pellet-shaped fiber filter medium, can be used. The material of the granular filter medium may be, for example, sand, anthracite, garnet, ceramics, granular activated carbon, iron oxyhydroxide, manganese sand, or the like, as long as it has a hardness that allows it to settle in water and is not easily deformed by pressure. It is preferable to use a particle size having a particle size of, for example, 0.3 to 5.0 mm and a uniformity coefficient of 1.2 to 2.0.
 また、粒状濾材は材質によって比重が異なり、例えば砂であればおよそ2.5~2.7g/cm、アンスラサイトであれば、1.4~1.8g/cm、ガーネットであれば3.8~4.1g/cmである。複数の種類の濾材を混合して使用する複層濾過法は、このような比重の違いを利用し、濾過を行う層としてサイズの異なる粒子を小さい粒子から順に下から積層する方法である。複層濾過法では、比重が大きくサイズが小さい粒子と、比重が小さくサイズが大きい粒子を混合して多層構造にするのが一般的である。複層濾過法は、単一の種類の濾材を用いるのに比べて、単位体積あたりの濾過効率が高く、一方で損失水頭が低く抑えられるなどのメリットがあるため好ましい。粒状濾材としては、例えば、ガーネットの0.3mmと、砂の0.6mm、アンスラサイトの1.0mmのものを、2:1:1で混合して使用するが、濁質の粒子特性に応じて混合比率や粒子径を調整することが望ましい。 The specific gravity of the granular filter medium differs depending on the material, for example, about 2.5 to 2.7 g / cm 3 for sand, 1.4 to 1.8 g / cm 3 for anthracite, and 3 for garnet. It is .8 to 4.1 g / cm 3 . The multi-layer filtration method in which a plurality of types of filter media are mixed and used is a method in which particles having different sizes are laminated in order from the bottom as a layer to be filtered by utilizing such a difference in specific densities. In the multi-layer filtration method, it is common to mix particles having a large specific density and a small size and particles having a small specific density and a large size to form a multi-layer structure. The multi-layer filtration method is preferable because it has advantages such as high filtration efficiency per unit volume and low head loss as compared with using a single type of filter medium. As the granular filter medium, for example, 0.3 mm of garnet, 0.6 mm of sand, and 1.0 mm of anthracite are mixed at a ratio of 2: 1: 1 and used, depending on the particle characteristics of the turbidity. It is desirable to adjust the mixing ratio and particle size.
<第2の実施形態>
 第2の実施形態の軟水化装置は、第1の実施形態の軟水化装置において、濾過部内の濾材に付着した凝集物を逆洗水により洗浄する逆洗ラインと、濾材の洗浄を終えた逆洗水中の凝集物を沈殿させる沈殿槽と、をさらに備える形態である。濾過部の濾材には硬度イオン捕捉剤由来の凝集物が付着するため、時間の経過とともに濾過性能が悪化することが危惧される。そこで、第2の実施形態においては、逆洗ラインを設け、濾過部の濾材を逆洗により洗浄するとともに、洗浄により生じる凝集物を沈殿させる沈殿槽を設けている。
<Second embodiment>
The water softening device of the second embodiment is the water softening device of the first embodiment, in which a backwash line for washing aggregates adhering to the filter medium in the filtration unit by backwashing water and a reverse washing line for washing the filter medium are completed. It is a form further provided with a settling tank for precipitating agglomerates in washing water. Since agglomerates derived from the hardness ion scavenger adhere to the filter medium of the filtration part, there is a concern that the filtration performance may deteriorate over time. Therefore, in the second embodiment, a backwashing line is provided, and a settling tank for washing the filter medium of the filtration unit by backwashing and precipitating agglomerates generated by the washing is provided.
 図2は、第2の実施形態の軟水化装置11の全体構成を示すブロック図である。図2に示す軟水化装置11は、主に逆洗ラインを設けた点において図1に示す軟水化装置10とは異なる。従って、図1に示す軟水化装置10における同じ構成要素には同じ符号を付して説明を省略する。 FIG. 2 is a block diagram showing the overall configuration of the water softening device 11 of the second embodiment. The water softening device 11 shown in FIG. 2 is different from the water softening device 10 shown in FIG. 1 in that a backwash line is mainly provided. Therefore, the same components in the water softening apparatus 10 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図2に示す軟水化装置11において、濾過部16には逆洗ライン22が接続されている。逆洗ライン22は、軟水化処理時における被処理水の流通方向とは逆方向(図2の矢線方向)に洗浄水が流通するように、上流側には逆洗水の水源(不図示)に接続されている。そして、水源から流出した逆洗水は濾過部16に流入し、内部の濾材を洗浄して、濾過部16の流入口とは反対側から流出する。また、濾過部16の下流側に位置する逆洗ライン22には、逆洗により濾過部16内の濾材から離脱した凝集物を沈殿させる沈殿槽20が設けられている。 In the water softening device 11 shown in FIG. 2, a backwash line 22 is connected to the filtration unit 16. The backwash line 22 has a water source for backwash water (not shown) on the upstream side so that the wash water flows in the direction opposite to the flow direction of the water to be treated (in the direction of the arrow in FIG. 2) during the softening treatment. )It is connected to the. Then, the backwash water flowing out from the water source flows into the filtration unit 16, cleans the internal filter medium, and flows out from the side opposite to the inflow port of the filtration unit 16. Further, the backwash line 22 located on the downstream side of the filtration unit 16 is provided with a settling tank 20 for precipitating agglomerates separated from the filter medium in the filtration unit 16 by backwashing.
 上記の通り、逆洗ライン22から濾過部16に導入される逆洗水の濾材に対する流通方向は、凝集部14を通過し濾過部16に導入される被処理水の濾材に対する流通方向とは正反対である。すなわち、逆洗ライン22から濾過部16に導入される被処理水の流通方向は、濾材に付着した凝集物を離脱させる方向である。 As described above, the flow direction of the backwash water introduced into the filter unit 16 from the backwash line 22 with respect to the filter medium of the water to be treated, which passes through the agglomerate unit 14 and is introduced into the filter unit 16, is opposite to the flow direction of the water to be treated. Is. That is, the flow direction of the water to be treated introduced from the backwash line 22 to the filtration unit 16 is the direction in which the agglomerates adhering to the filter medium are separated.
 沈殿槽20は、濾材から離脱した凝集物のうち、より大きい凝集物を沈降分離するための槽である。すなわち、沈殿槽20を通過した洗浄水は、より大きい凝集物が除去された状態となる。従って、沈殿槽20の下流側の配管の詰まりを抑制することができる。 The settling tank 20 is a tank for settling and separating larger agglomerates among the agglomerates separated from the filter medium. That is, the washing water that has passed through the settling tank 20 is in a state in which larger agglomerates have been removed. Therefore, clogging of the piping on the downstream side of the settling tank 20 can be suppressed.
 沈殿槽20には、沈殿した凝集物を排出さる排出部を備えることが好ましく、図2に示す沈殿槽20は、沈殿部20Aと排出部20Bとからなる。沈殿部20Aは、通過する洗浄水中の凝集物のうち、より大きい凝集物を沈殿させる部位である。排出部20Bは、沈殿部20Aで沈殿した凝集物を外部に排出する部位である。排出部20Bにおいて、沈殿した大きな凝集物の外部への排出が容易となり、メンテナンスしやすくなる。
 以上のような、沈殿部20Aと排出部20Bとからなる沈殿槽20は、1つのタンクの下部又は底部に開口部を設けることで、沈殿部20Aと排出部20Bとすることができる。
The settling tank 20 is preferably provided with a discharge section for discharging the precipitated agglomerates, and the settling tank 20 shown in FIG. 2 includes a settling section 20A and a discharge section 20B. The settling portion 20A is a portion for precipitating a larger agglomerate among the agglomerates in the passing washing water. The discharge unit 20B is a portion for discharging the agglomerates precipitated in the sedimentation unit 20A to the outside. In the discharge unit 20B, the large aggregates that have settled can be easily discharged to the outside, which facilitates maintenance.
The settling tank 20 including the settling section 20A and the discharging section 20B as described above can be formed into the settling section 20A and the discharging section 20B by providing an opening at the bottom or the bottom of one tank.
 一方、図2に示すように、軟水化装置11は、硬度イオン捕捉剤及び凝集剤(以下、これらをまとめて「薬剤」と呼ぶことがある。)をそれぞれ徐々に供給する徐放部を有していてもよい。具体的には、硬度イオン捕捉部12には硬度イオン捕捉剤徐放部13を備え、凝集部14には凝集剤徐放部15を備える構成である。そして、硬度イオン捕捉剤徐放部13は、硬度イオン捕捉部12に対して硬度イオン捕捉剤を徐々に供給する。また、凝集剤徐放部15は凝集部14に対して凝集剤を徐々に供給する。このような硬度イオン捕捉剤徐放部13及び凝集剤徐放部15(以下、これらをまとめて「徐放部」と呼ぶことがある。)を備えることで、被処理水に対して硬度イオン捕捉剤及び凝集剤のそれぞれを長時間にわたって一定量を安定的に供給することができる。各徐放部は、それぞれ薬剤を連続的に供給してもよいし、断続的に供給してもよい。 On the other hand, as shown in FIG. 2, the water softening device 11 has a sustained-release portion that gradually supplies a hardness ion scavenger and a flocculant (hereinafter, these may be collectively referred to as “drug”). You may be doing it. Specifically, the hardness ion scavenger 12 is provided with the hardness ion scavenger sustained release unit 13, and the agglomerating unit 14 is provided with the aggregating agent sustained release unit 15. Then, the hardness ion scavenger sustained release unit 13 gradually supplies the hardness ion scavenger to the hardness ion scavenger unit 12. Further, the coagulant sustained release unit 15 gradually supplies the coagulant to the coagulant unit 14. By providing such a hardness ion scavenger sustained release portion 13 and a flocculant sustained release portion 15 (hereinafter, these may be collectively referred to as a “sustained release portion”), hardness ions are generated with respect to the water to be treated. A constant amount of each of the scavenger and the flocculant can be stably supplied over a long period of time. Each sustained-release unit may supply the drug continuously or intermittently.
 硬度イオン捕捉剤又は凝集剤を固形にすることができ、かつ、当該固形の薬剤が徐放性を有する場合、固形の薬剤に被処理水を通水するといった形態の徐放部を構成してもよい。その構成においては、固形の薬剤が通水により徐々に放出されることで徐放部として機能し得る。 When the hardness ion scavenger or flocculant can be solidified and the solid drug has sustained release properties, a sustained release portion in the form of passing water to be treated through the solid drug is configured. May be good. In that configuration, the solid drug can function as a sustained release portion by being gradually released by passing water.
 硬度イオン捕捉剤徐放部13も、凝集剤徐放部15も、電気的制御によりそれぞれの薬剤を徐々に供給するように構成してもよい。そのような構成によると、例えば、硬度イオン捕捉部及び/又は凝集部に被処理水が通水されている時にのみそれぞれの薬剤を徐放する構成とすることができる。従って、被処理水の通水時にのみ薬剤が徐放されるため、各薬剤を無駄に消費することなく、効率的に供給することができる。
 また、被処理水を通水開始する際には、凝集剤及び硬度イオン捕捉剤のいずれも同じタイミングで供給開始するか、凝集剤を硬度イオン捕捉剤よりも遅れたタイミングで供給開始する構成とすることもできる。同様に、被処理水を通水停止する際には、凝集剤及び硬度イオン捕捉剤のいずれも同じタイミングで供給停止するか、凝集剤を硬度イオン捕捉剤よりも遅れたタイミングで供給停止する構成とすることもできる。いずれの構成も、薬剤の無駄な消費が少なく、効率よく供給することができる。
Both the hardness ion scavenger sustained release unit 13 and the flocculant sustained release unit 15 may be configured to gradually supply the respective agents by electrical control. According to such a configuration, for example, each drug can be gradually released only when the water to be treated is passed through the hardness ion trapping portion and / or the agglomerating portion. Therefore, since the chemicals are slowly released only when the water to be treated is passed, each chemical can be efficiently supplied without wasting it.
Further, when the water to be treated is started to pass through, both the flocculant and the hardness ion scavenger are supplied at the same timing, or the flocculant is supplied at a timing later than that of the hardness ion scavenger. You can also do it. Similarly, when the water to be treated is stopped, the supply of both the flocculant and the hardness ion scavenger is stopped at the same timing, or the supply of the flocculant is stopped at a timing later than that of the hardness ion scavenger. It can also be. In any of the configurations, wasteful consumption of the drug is small and the drug can be efficiently supplied.
 以上の第1及び第2の実施形態においては、硬度イオン捕捉部と凝集部とをそれぞれ別に設けたが、1つのタンクに対して硬度イオン捕捉部と凝集部とを設ける構成してもよい。その場合、1つのタンク内において、硬度イオン捕捉剤による硬度イオンの捕捉と、凝集剤による硬度イオン捕捉剤の凝集とがなされる。
 また、硬度イオン捕捉剤が硬度成分を捕捉した後に凝集剤により凝集させるのが理想であるため、硬度イオン捕捉剤及び凝集剤の供給順序は、硬度イオン捕捉剤、凝集剤の順とするこが好ましい。
In the above first and second embodiments, the hardness ion trapping portion and the agglutinating portion are provided separately, but a hardness ion capturing portion and the agglutinating portion may be provided for one tank. In that case, the hardness ions are captured by the hardness ion scavenger and the hardness ion scavenger is aggregated by the flocculant in one tank.
Further, since it is ideal that the hardness ion scavenger captures the hardness component and then agglomerates with the aggregating agent, the order of supplying the hardness ion scavenger and the aggregating agent may be the order of the hardness ion scavenger and the aggregating agent. preferable.
 以上の本実施形態の軟水化装置は、使用場所設置型浄水装置(POU)や建物入口設置型浄水装置(POE)に適用することが可能である。 The above water softening device of the present embodiment can be applied to a place-installed water purifier (POU) and a building entrance-installed water purifier (POE).
 以下、本実施形態における軟水化装置の作用を実施例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the operation of the water softening device in the present embodiment will be described in more detail with reference to Examples, but the present embodiment is not limited to these Examples.
[実施例1]
 本実施形態の軟水化装置の軟水化能力を確認するため、以下のように、ビーカー内にて、硬度イオン捕捉部、凝集部及び濾過部のそれぞれにおける処理を順次行った。
[Example 1]
In order to confirm the water softening ability of the water softening apparatus of the present embodiment, treatments were sequentially performed in each of the hardness ion trapping part, the agglomerating part and the filtering part in the beaker as follows.
 硬度イオン捕捉剤としてポリアクリル酸(平均分子量:5,000)を、凝集剤としてキトサンを、濾過部としてシリンジフィルターを用いた。まず、ビーカー内に、硬水(被処理水)としてエビアン(ダノンジャパン株式会社製)を100g投入した。次いで、スターラーで硬水を撹拌しながら、ポリアクリル酸、キトサンの順に添加した。このとき、ポリアクリル酸及びキトサンの濃度はいずれも100ppmとなるように添加した。その後、シリンジで採水しシリンジフィルターで濾過した。また、ポリアクリル酸の濃度及びキトサンの濃度が250ppm、500ppm、及び1000ppmとなるように添加した場合においても以上の操作を行った。 Polyacrylic acid (average molecular weight: 5,000) was used as a hardness ion scavenger, chitosan was used as a flocculant, and a syringe filter was used as a filter. First, 100 g of Evian (manufactured by Danone Japan Co., Ltd.) was put into the beaker as hard water (water to be treated). Then, while stirring the hard water with a stirrer, polyacrylic acid and chitosan were added in this order. At this time, the concentrations of polyacrylic acid and chitosan were both added so as to be 100 ppm. Then, water was collected with a syringe and filtered with a syringe filter. Further, the above operation was also performed when the polyacrylic acid concentration and the chitosan concentration were added so as to be 250 ppm, 500 ppm, and 1000 ppm.
 以上のように処理をした水の全硬度をキレート滴定法により測定した。測定結果を図3のグラフに示す。 The total hardness of the water treated as described above was measured by the chelatometric titration method. The measurement results are shown in the graph of FIG.
[実施例2]
 ポリアクリル酸を、重量平均分子量が25,000のものに変更したこと以外は実施例1と同様にして硬水を処理し、処理後の水の全硬度を測定した。測定結果を図3のグラフに示す。
[Example 2]
Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to one having a weight average molecular weight of 25,000, and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
[実施例3]
 ポリアクリル酸を、重量平均分子量が250,000のものに変更したこと以外は実施例1と同様にして硬水を処理し、処理後の水の全硬度を測定した。測定結果を図3のグラフに示す。
[Example 3]
Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to one having a weight average molecular weight of 250,000, and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
[実施例4]
 ポリアクリル酸を、重量平均分子量が1,000,000のものに変更したこと以外は実施例1と同様にして硬水を処理し、処理後の水の全硬度を測定した。測定結果を図3のグラフに示す。
[Example 4]
Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to one having a weight average molecular weight of 1,000,000, and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
 図3のグラフより、実施例1~4のいずれにおいても、ポリアクリル酸濃度を増加させると処理した水の全硬度が低下した。すなわち、本実施形態の軟水化装置により軟水化処理可能であることが示された。ただし、ポリアクリル酸の濃度が500ppm以上では、それ以上添加濃度を増加させても硬度の低下は観察されなかった。このことは、ポリアクリル酸濃度の増加によりpHが低下し、カルボキシル基と硬度イオンが反応しなくなったためと推察される。
 また、それぞれにおいて異なる重量平均分子量のポリアクリル酸を使用した実施例1~4の比較から、ポリアクリル酸の重量平均分子量が大きいほうが、全硬度の低下量が大きく、硬度処理に有利であることが分かる。
From the graph of FIG. 3, in any of Examples 1 to 4, the total hardness of the treated water decreased as the polyacrylic acid concentration was increased. That is, it was shown that the water softening treatment can be performed by the water softening device of the present embodiment. However, when the concentration of polyacrylic acid was 500 ppm or more, no decrease in hardness was observed even if the added concentration was further increased. It is presumed that this is because the pH decreased due to the increase in the concentration of polyacrylic acid, and the carboxyl group and the hardness ion stopped reacting.
Further, from the comparison of Examples 1 to 4 in which polyacrylic acids having different weight average molecular weights are used, the larger the weight average molecular weight of polyacrylic acid, the larger the decrease in total hardness, which is advantageous for hardness treatment. I understand.
[実施例5]
 ポリアクリル酸を、ペクチンに変更したこと、及びキトサンの濃度をペクチンの1/2の濃度としたこと以外は実施例1と同様にして硬水を処理し、処理後の水の全硬度を測定した。測定結果を図4のグラフに示す。
[Example 5]
Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to pectin and the concentration of chitosan was set to 1/2 of that of pectin, and the total hardness of the treated water was measured. .. The measurement results are shown in the graph of FIG.
[実施例6]
 ポリアクリル酸を、ポリアクリル酸ナトリウム(重合度:2,700~7,500)に変更したこと以外は実施例1と同様にして硬水を処理し、処理後の水の全硬度を測定した。測定結果を図4のグラフに示す。
[Example 6]
Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to sodium polyacrylate (degree of polymerization: 2,700 to 7,500), and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
[実施例7]
 ポリアクリル酸を、ポリアクリル酸ナトリウム(重合度:22,000~77,000)に変更したこと以外は実施例1と同様にして硬水を処理し、処理後の水の全硬度を測定した。測定結果を図4のグラフに示す。
[Example 7]
Hard water was treated in the same manner as in Example 1 except that the polyacrylic acid was changed to sodium polyacrylate (degree of polymerization: 22,000 to 77,000), and the total hardness of the treated water was measured. The measurement results are shown in the graph of FIG.
 図4より、実施例5~7のいずれにおいても、それぞれの硬度イオン捕捉剤の濃度を増加させると処理した水の全硬度が低下した。従って、これら硬度イオン捕捉剤を用いて、硬度処理可能である。ただし、全硬度の低下量には違いが生じ、重合度の高いポリアクリル酸ナトリウムを用いた実施例6が最も低下量が大きく有利であることが分かる。逆に、ペクチンを用いた実施例5においては全硬度の低下量は少なく、同じ硬度処理するにしても高濃度が必要になることが分かった。なお、ペクチンを用いた実施例5では、シリンジフィルターに通水できなかったため、濾過は行わなかったが、全硬度の測定には影響はないと考えられる。 From FIG. 4, in any of Examples 5 to 7, the total hardness of the treated water decreased as the concentration of each hardness ion scavenger was increased. Therefore, hardness treatment can be performed using these hardness ion scavengers. However, there is a difference in the amount of decrease in total hardness, and it can be seen that Example 6 using sodium polyacrylate having a high degree of polymerization has the largest decrease and is advantageous. On the contrary, in Example 5 using pectin, it was found that the amount of decrease in total hardness was small, and a high concentration was required even if the same hardness treatment was applied. In Example 5 using pectin, water could not be passed through the syringe filter, so filtration was not performed, but it is considered that there is no effect on the measurement of the total hardness.
 特願2019-224537(出願日:2019年12月12日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2019-224537 (application date: December 12, 2019) are incorporated here.
 本開示によれば、環境に対する負荷が小さく、原水中の硬度イオン濃度の影響が少なく、安定的に軟水化可能な軟水化装置を提供することができる。 According to the present disclosure, it is possible to provide a water softening device capable of stably softening water with a small load on the environment and little influence of the hardness ion concentration in raw water.
10 11 軟水化装置
12 硬度イオン捕捉部
14 凝集部
16 濾過部
18 配管
20 沈殿槽
20A 沈殿部
20B 排出部
22 逆洗ライン
10 11 Water softening device 12 Hardness ion trapping part 14 Aggregating part 16 Filtration part 18 Piping 20 Sedimentation tank 20A Sedimentation part 20B Discharge part 22 Backwash line

Claims (6)

  1.  軟水化の対象となる被処理水中に、硬度イオン捕捉剤を供給して硬度イオンを捕捉する硬度イオン捕捉部と、
     前記被処理水に凝集剤を供給して、硬度イオンを捕捉した前記硬度イオン捕捉剤を凝集させる凝集部と、
     前記凝集剤により凝集した凝集物を濾過する濾過部と、
    を備え、
     前記硬度イオン捕捉剤が、カルボキシル基を有する水溶性のアニオン性高分子であり、前記凝集剤がカチオン性高分子である、軟水化装置。
    A hardness ion scavenger that captures hardness ions by supplying a hardness ion scavenger into the water to be treated to be softened.
    An aggregating portion that supplies an aggregating agent to the water to be treated to agglomerate the hardness ion scavenger that has captured the hardness ions.
    A filtration unit that filters the aggregates aggregated by the flocculant, and
    With
    A water softening device in which the hardness ion scavenger is a water-soluble anionic polymer having a carboxyl group and the flocculant is a cationic polymer.
  2.  前記硬度イオン捕捉剤の重量平均分子量が25000~1000000である、請求項1に記載の軟水化装置。 The water softening device according to claim 1, wherein the hardness ion scavenger has a weight average molecular weight of 25,000 to 1,000,000.
  3.  前記硬度イオン捕捉剤が、ポリアクリル酸、ポリアクリル酸塩、及びペクチンからなる群より選択される少なくとも1種である、請求項1又は2に記載の軟水化装置。 The water softening apparatus according to claim 1 or 2, wherein the hardness ion scavenger is at least one selected from the group consisting of polyacrylic acid, polyacrylate, and pectin.
  4.  前記凝集剤が、キトサン、ポリアミン、ポリジアリルジメチルアンモニウムクロリド、及びポリジシアンジアミドからなる群より選択される少なくとも1種である、請求項1~3のいずれか1項に記載の軟水化装置。 The water softening apparatus according to any one of claims 1 to 3, wherein the flocculant is at least one selected from the group consisting of chitosan, polyamine, polydiallyldimethylammonium chloride, and polydicyandiamide.
  5.  前記濾過部内の濾材に付着した凝集物を逆洗水により洗浄する逆洗ラインと、前記濾材の洗浄を終えた逆洗水中の凝集物を沈殿させる沈殿槽と、をさらに備える、請求項1~4のいずれか1項に記載の軟水化装置。 Claim 1 to further include a backwash line for washing the agglomerates adhering to the filter medium in the filter medium with backwash water, and a settling tank for precipitating the agglomerates in the backwash water after washing the filter medium. The water softening apparatus according to any one of 4.
  6.  前記沈殿槽に、沈殿した前記凝集物を排出さる排出部を備える、請求項5に記載の軟水化装置。 The water softening device according to claim 5, wherein the settling tank is provided with a discharge unit for discharging the settled agglomerates.
PCT/JP2020/044627 2019-12-12 2020-12-01 Water softener WO2021117542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019224537 2019-12-12
JP2019-224537 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021117542A1 true WO2021117542A1 (en) 2021-06-17

Family

ID=76330216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044627 WO2021117542A1 (en) 2019-12-12 2020-12-01 Water softener

Country Status (1)

Country Link
WO (1) WO2021117542A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127383A (en) * 1977-02-07 1978-11-07 American Cyanamid Co Scale controlling composition and controlling method
US5152403A (en) * 1990-03-10 1992-10-06 Suresh Patel Treatment of seawater evaporator aqueous systems with scale-inhibiting mixture of polymaleic anhydride and a carboxyl-containing acrylic polymer
JP2007098270A (en) * 2005-10-04 2007-04-19 Japan Organo Co Ltd Method and apparatus for producing pure water
JP2008006369A (en) * 2006-06-29 2008-01-17 Kurita Water Ind Ltd Scale prevention method
JP2009183901A (en) * 2008-02-07 2009-08-20 Metawater Co Ltd Membrane filtration concentration method of coagulation treated water and coagulated waste muddy water
JP2009297600A (en) * 2008-06-10 2009-12-24 Japan Organo Co Ltd Method for treating dispersant-containing water
JP2011521012A (en) * 2008-03-31 2011-07-21 株式会社日本触媒 Sulphonic acid group-containing maleic acid water-soluble copolymer aqueous solution and powder obtained by drying
JP2012086149A (en) * 2010-10-19 2012-05-10 Metawater Co Ltd Membrane filtering method
WO2018030109A1 (en) * 2016-08-08 2018-02-15 オルガノ株式会社 Membrane filtration method and membrane filtration system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127383A (en) * 1977-02-07 1978-11-07 American Cyanamid Co Scale controlling composition and controlling method
US5152403A (en) * 1990-03-10 1992-10-06 Suresh Patel Treatment of seawater evaporator aqueous systems with scale-inhibiting mixture of polymaleic anhydride and a carboxyl-containing acrylic polymer
JP2007098270A (en) * 2005-10-04 2007-04-19 Japan Organo Co Ltd Method and apparatus for producing pure water
JP2008006369A (en) * 2006-06-29 2008-01-17 Kurita Water Ind Ltd Scale prevention method
JP2009183901A (en) * 2008-02-07 2009-08-20 Metawater Co Ltd Membrane filtration concentration method of coagulation treated water and coagulated waste muddy water
JP2011521012A (en) * 2008-03-31 2011-07-21 株式会社日本触媒 Sulphonic acid group-containing maleic acid water-soluble copolymer aqueous solution and powder obtained by drying
JP2009297600A (en) * 2008-06-10 2009-12-24 Japan Organo Co Ltd Method for treating dispersant-containing water
JP2012086149A (en) * 2010-10-19 2012-05-10 Metawater Co Ltd Membrane filtering method
WO2018030109A1 (en) * 2016-08-08 2018-02-15 オルガノ株式会社 Membrane filtration method and membrane filtration system

Similar Documents

Publication Publication Date Title
JP5277997B2 (en) Water purification method
US6919031B2 (en) Method of treating water and wastewater with a ballasted flocculation process and a chemical precipitation process
JP5352256B2 (en) Waste water purification flocculant, and waste water purification method and waste water purification apparatus using the same
JP2011230038A (en) Water treatment apparatus
JP4223870B2 (en) Water purification method
JP5222808B2 (en) Flocculant, sewage purification method using flocculant, and water purifier using flocculant
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
JP7068773B2 (en) Water treatment agent, water treatment method and water treatment equipment
JP4176915B2 (en) Solid-liquid separator
WO2021117542A1 (en) Water softener
JP3409322B2 (en) Pure water production method
JP2006263572A (en) Method and apparatus for treating waste water containing inorganic suspended particle
JP4359025B2 (en) Muddy water treatment method
Thiruvenkatachari et al. Flocculation—cross-flow microfiltration hybrid system for natural organic matter (NOM) removal using hematite as a flocculent
JP2019198806A (en) Water treatment method, and water treatment device
JP5452677B2 (en) Water purifier
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JP4800463B2 (en) Filtration device
JP2007252977A (en) Water treatment process and treatment apparatus containing suspended solid and chromatic component
JP4800462B2 (en) Filtration method
JP7117101B2 (en) Water treatment method and device
JP2021003672A (en) Water softening device
WO2021079818A1 (en) Water treatment device
JP2000135407A (en) Powdery flocculant
JP2001321795A (en) Liquid cleaning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP