JP4223870B2 - Water purification method - Google Patents
Water purification method Download PDFInfo
- Publication number
- JP4223870B2 JP4223870B2 JP2003182882A JP2003182882A JP4223870B2 JP 4223870 B2 JP4223870 B2 JP 4223870B2 JP 2003182882 A JP2003182882 A JP 2003182882A JP 2003182882 A JP2003182882 A JP 2003182882A JP 4223870 B2 JP4223870 B2 JP 4223870B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- water
- floc
- raw water
- water purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Sludge (AREA)
- Water Treatment By Sorption (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、浄水処理方法に関するものであり、より詳しくは、原水に凝集剤と粒状物を添加し原水中の懸濁物質とともにフロックとして凝集させ、該フロックを沈降させて処理水と分離し、沈降したフロックを含むスラリーを抜き出して分離器により汚泥と粒状物とに分離し、分離した粒状物を循環使用する浄水処理方法に関するものである。
【0002】
【従来の技術】
原水中に懸濁している物質を凝集沈殿により分離除去する装置が知られている。従来の原水中の懸濁物質を除去するための凝集沈殿装置として、原水に硫酸バンドやポリ塩化アルミニウム(PAC)等の無機凝集剤を注入し、生成した凝集物を沈殿させ、凝集フロックを汚泥として引き抜くとともに上部から処理水を導出するようにした装置は良く知られている。また、近年では無機凝集剤に加えて、高分子凝集剤を添加して凝集フロックをさらに巨大化させる方法も開発されている。
このような一般的な凝集沈殿装置では、凝集物の沈殿に長時間を要し、沈殿槽としても極めて大型のものが要求されていることから、より効率よく凝集沈殿を行わせるようにした凝集沈殿装置が提案されている。
【0003】
例えば、原水に対して補助清澄物質、特に砂の顆粒(粒径20〜200μm)を注入し、原水中の懸濁物質を比重の大きい比較的大きなフロックとして凝集させ、沈殿槽において凝集槽から導入された被処理水中のフロックを沈殿させて処理水と分離する凝集沈殿装置が知られている。沈殿槽から引き抜かれた沈殿フロックを含むスラリーは、サイクロン等の分離器により汚泥と粒状物とに分離され、分離された粒状物は凝集槽に戻されて循環再使用される。このような凝集沈殿装置では、比較的小型の沈殿槽にて、高速流で処理水と凝集フロックとの分離処理が可能になる。
【0004】
一方、下水、下水処理水、各種産業排水、湖沼水、河川水など、種々のCOD含有水中のCOD成分の高度除去方法や、し尿の二次処理水中のCOD、SS、色などの高度処理に粉末活性炭と無機凝集剤の組合わせ処理方法が好結果を生じることも良く知られている。
【0005】
【発明が解決しようとする課題】
ところで、近年、湖沼や河川の富栄養化が進み藻類が増殖するようになった。増殖した藻類の凝集性が不良であるため、上記の粒状物を使用する凝集沈殿装置を適用した場合には、凝集剤と藻類の接触時間が短く、その結果藻類が凝集フロックに取り込まれずに、処理水の濁度を増大させるという問題を生じていた。また、殺藻を目的として原水に次亜塩素酸ソーダを注入して前処理した場合には、藻類に由来する色が発生して、処理水を着色させてしまうという問題も生じる。また、藻類の増殖時でなくても、上記装置は一般に高分子凝集剤注入後に高速撹拌されるので、一旦生成したフロックが破壊されて、この影響で処理水濁度が上昇することがある。これは比較的重い粒状物が原因であると考えられる。
【0006】
上記した砂のような粒状物は、その比重が大きいことを利用して、その粒状物を取り込んだフロックの沈降性を増大させて高速凝集沈殿を可能ならしめ、比較的小型の沈殿槽での処理水の凝集フロックとの分離を可能にするものである。
一方、活性炭は粉末状、粒状を問わず表面積が大きい多孔性炭素である。そのため、比重の大きい粒状物と同時に使用しても互いに分離してしまい、高速沈殿とCOD、色などの高度除去の相乗効果を得ることはできなかった。また、無機凝集剤と併用しても粒状物と活性炭を絡めて巨大な一体のフロックに形成する力が弱く、ある程度の大きさのフロックを形成しても、高速撹拌されたときに一旦生成したフロックが破壊されて、所期の目的を達成することができなかった。
【0007】
本発明は、従来の粒状物の重さに起因する凝集沈殿法の上記問題点を解決し、高速撹拌によりフロックが破壊されることなく、処理水の濁度や色度が大きく改善でき、沈殿槽の小型化も可能な浄水処理方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
そこで、本発明者らは上記の粒状物を使用する凝集沈殿処理方法の問題点を解決すべく鋭意検討した結果、粒状物の一部として活性炭を併用することで問題点を解決できることを見出し、この知見に基づいて本発明を完成するに至った。
【0009】
すなわち、本発明は、下記の手段により上記の課題を解決することができた。
(1)原水を凝集沈殿させて浄化する浄水処理方法において、該原水に凝集剤と、浄水処理施設の活性炭吸着塔に充填されていた使用済み粒状活性炭と砂、ガーネット、玄武岩、金属酸化物、酸化鉄、軽石、イオン交換樹脂又はゼオライトから選ばれるいずれか一の粒状物を添加し、高速攪拌しながら原水中の懸濁物質とともにフロックとして凝集させ、該フロックを沈降させて処理水と分離し、前記沈降したフロックを含むスラリーを抜き出すことを特徴とする浄水処理方法。
(2)前記活性炭の平均粒径が20〜2000μm、かつ充填密度が0.4〜0.7g/ミリリットルであることを特徴とする前記(1)に記載の浄水処理方法。
(3)前記スラリーを抜き出して、分離手段により汚泥と粒状物とに分離し、該分離した粒状物を循環使用することを特徴とする前記(1)又は(2)に記載の浄水処理方法。
【0010】
本発明の骨子は、まず原水に凝集剤と沈降促進のための粒状物とを添加して、原水中の懸濁物質とともにフロックとして凝集させ、該フロックを沈降させて処理水と分離するに際して、砂などの粒状物について適度の粒径の活性炭を同時に添加することにより、比重の大きい粒状物に起因する凝集フロックの破壊を防止できるとともに、活性炭による濁度や色度の大きな低下も実現できることを見出した点にある。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照にして説明する。図1は本発明の一実施形態を表すフロー図である。
原水1は初めに急速撹拌槽3で無機凝集剤13と混合される。急速撹拌槽3にはモーターによって駆動される撹拌機14が設けてある。急速撹拌槽3で形成したマイクロフロックは、次に混和槽4に送られて、高分子凝集剤15及び活性炭を含む粒状物(砂)18と混合される。混和槽4にはモータによって駆動される撹拌機が設けてある。撹拌機の撹拌によって混合物は凝集される。
【0012】
本発明において、粒状物が活性炭を含むものであるということは、予め粒状物に活性炭を添加した混合物である必要はなく、活性炭を粒状物と殆ど同時に注入して、粒状物が取り込まれた高分子凝集剤が絡まった巨大フロック中に活性炭も一緒に取り込まれて、一旦生成したフロックが高速撹拌により破壊されないように、粒状物包含巨大化フロックの軽量化が行えれば良いことを意味する。このような手段を取ることを可能にしたのは、本発明において「活性炭」として、特定の性状の活性炭を用いるからである。
【0013】
凝集物は、フロック形成槽5に送られる。フロック形成槽5にはモーターによって駆動される撹拌機が設けてあり、高分子凝集剤15が絡まった粒状物18が取り込まれた重く巨大化されたフロックに成長される。図1は混和槽4とフロック形成槽5が別々に設けられている例であるが、一つの槽で両方の機能を備えさせても良い。高分子凝集剤15及び粒状物18と混合され、同一槽内でフロックの成長まで行うことも可能である。
【0014】
成長したフロックは沈殿池6で固液分離され、処理水7は表層から排出される。図に示したものは傾斜板11が設置された沈殿池6であるが、傾斜板11を設けなくても構わない。処理水7は砂ろ過塔8に送られろ過された後、活性炭吸着塔9で処理され浄水10となる。
【0015】
沈殿池6内では、沈殿したフロックは汚泥掻寄機12で沈殿池6中央部に集められ沈殿汚泥17となる。沈殿池6底部には沈殿汚泥17をスラッジとして引抜くための引抜きラインがあり、これを通して沈殿池6底部に沈降したスラッジと粒状物を含む沈殿汚泥17は、ポンプPで液体サイクロン16に送られる。遠心力により粒状物18と排水スラッジ19に分離された後、排水スラッジ19は系外に排出され、粒状物18は循環再利用され混和槽(池)4に注入される。
なお、図1において点線で囲まれた部分は、使用済み粒状活性炭を使用する場合を示すものであり、21は使用済み粒状活性炭で、22は再生装置であり、そこからの活性炭23が浄水装置2に入る前の原水1又は浄水装置2のいずれかに添加される。
【0016】
本発明の対象となる浄水処理方法は、まず原水1に対して無機凝集剤13が添加・混合される。原水1は河川水、湖沼水、地下水いずれの場合も適用対象となる。無機凝集剤13としては公知の硫酸バンド、ポリ塩化アルミニウム(PAC)、ポリ硫酸第2鉄(ポリ鉄)、塩化第2鉄、あるいはこれらの混合物が使用可能である。無機凝集剤13の添加量は、原水1の水質により変動するので一概には規定できないが、概ね100〜5000mg/リットルの範囲である。
【0017】
また、無機凝集剤に代えて一般に使用されている有機凝結剤も使用可能であり、縮合系ポリアミン、ジシアンジアミド・ホルマリン縮合物、ポリエチレンイミン、ポリビニルイミダリン、ポリビニルピリジン、ジアリルアミン塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩、ポリジメチルジアリルアンモニウム塩・アクリルアミド共重合体、ポリジメチルジアリルアンモニウム塩・ジアリルアミン塩酸塩誘導体共重合体、アリルアミン塩重合体などが挙げられる。
【0018】
縮合系ポリアミンの具体例としては、アルキレンジクロライドとアルキレンポリアミンとの縮合物、アニリンとホルマリンの縮合物、アルキレンジアミンとエピクロルヒドリンとの縮合物、アンモニアとエピクロルヒドリンとの縮合物などが挙げられる。エピクロルヒドリンと縮合するアルキレンジアミンとしては、ジメチルアミン、ジエチルアミン、メチルプロピルアミン、メチルブチルアミン、ジブチルアミンなどが挙げられる。
【0019】
上述の無機凝集剤と有機凝結剤は、使用に際してそれぞれ単独で、または混合物の形態で使用してもよいが、そうした混合物をあらかじめ水で希釈した水溶液の状態で使用してもよい。混合物として使用する場合には、組み合わせによって沈殿物が析出してくる場合があるので注意が必要である。無機凝集剤と有機凝結剤の原水への添加順序は特に問わない。
【0020】
次に、本発明の方法は、さらに高分子凝集剤を添加して、フロックを巨大化させて凝集沈殿処理を行う。無機凝集剤や有機凝結剤を添加して凝集させた場合でもある程度の大きさのフロックを形成するが、フロックの沈降性や処理水の水質は十分ではない。使用する高分子凝集剤としては公知のアニオン系、ノニオン系、カチオン系高分子凝集剤を挙げることができる。
【0021】
アニオン系高分子凝集剤としては、ポリアクリルアミド部分加水分解物、アニオン性モノマーの共重合体、アニオン性モノマーとアクリルアミド等のノニオン性モノマーとの共重合体が挙げられる。アニオン性モノマーとしてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、ビニルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アリルアミドエタンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、2−メタリルアミドエタンスルホン酸、2−メタクリルアミド−2−メチルプロパンスルホン酸、2−アクリロイルオキシエタンスルホン酸、3−アクリロイルオキシプロパンスルホン酸、4−アクリロイルオキシブタンスルホン酸、2−メタクリロイルオキシエタンスルホン酸、3−メタクリロイルオキシプロパンスルホン酸、4−メタクリロイルオキシブタンスルホン酸、及びこれらのアルカリ金属、アルカリ土類金属等の金属塩又はアンモニウム塩が挙げられる。これらアニオン性モノマーは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0022】
ノニオン性モノマーとしてはアクリルアミド、メタクリルアミド、メタアクリロニトリル、酢酸ビニル等が挙げられる。これらノニオン性モノマーは単独で用いてもよく、2種以上を組み合わせて用いてもよい。共重合体として好ましいものは、アクリルアミド・アクリル酸塩共重合体、アクリルアミド・2−アクリルアミド−2−メチルプロパンスルホン酸共重合体である。
【0023】
次に、ノニオン系高分子凝集剤とは、上記のノニオン性モノマーの重合体又は共重合体であるが、好ましくはポリアクリルアミドである。
【0024】
更に、カチオン系高分子凝集剤とは、カチオン性モノマーを必須成分として有するものであり、カチオン性モノマーの共重合体又は、カチオン性モノマーと上記のノニオン性モノマーの共重合体である。カチオン性モノマーとしては、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレートもしくはこれらの中和塩、4級塩などが挙げられる。また、分子内にアミジン単位を含有するカチオン系高分子凝集剤も可能である。
また、本発明のカチオン系高分子凝集剤と同等に使用できるものとして、カチオン性モノマー単位、アニオン性モノマー単位及びノニオン性モノマー単位を共重合した、いわゆる両性高分子凝集剤を挙げることができる。
【0025】
また、廃水の濁度が高い場合には、カチオン系高分子凝集剤を前段に添加し、アニオン系又はノニオン系高分子凝集剤を後段に添加することにより、除濁効果が高くなり、処理水の濁度が低下する。高分子凝集剤は1種を単独で使用することもできるが、2種以上を併用することもできる。一般に高分子凝集剤は水溶液として使用され、その溶解濃度は0.01〜0.5%程度である。高分子凝集剤の添加量は、通常の凝集沈殿処理における添加量、0.1〜1mg/リットルの範囲でよい。
【0026】
粒状物としては、一般的に砂(いわゆるマイクロサンド)が使用される。砂は天然物、人工物のいずれでも良い。すなわち、砂、マイクロ砂に加えてガーネット、玄武岩、金属酸化物、酸化鉄、軽石、イオン交換樹脂、ゼオライト等から作られたものであっても良い。これらは化学的、生物学的に活性でも不活性でも良い。これらの粒状物は、平均粒子径が20〜300μm、好ましくは80〜200μmのものが使用されている。比重はそのみかけの比重が活性炭に近いものの方が好ましい。
【0027】
本発明の大きな特徴の一つは、粒状物として少なくとも活性炭を含んでいることである。活性炭を使用することで従来のマイクロサンドによる処理では困難であった、藻類に由来する濁度や色度を除去することが可能となる。また、マイクロサンドの注入量も低減可能となるので、マイクロサンドが原因の凝集フロックの破壊と、それに伴い濁度が上昇するという問題も解決できる。
【0028】
本発明で粒状物の一部として使用される活性炭としては、新炭を使用してもよいが、以下に記載するような使用済み粒状活性炭を使用することも可能である。すなわち、高度浄水処理施設では活性炭吸着設備が付加されているが、活性炭吸着塔に充填されている活性炭は通常2〜3年で再生されるか、あるいは新炭と交換される。本発明では、このような活性炭吸着設備に充填されている使用済み粒状活性炭を使用することができる。
【0029】
本発明において、使用済みの粒状活性炭はそのまま使用しても良いが、再生設備で破砕機にかけ所望の形状にして使用しても良い。本発明は、活性炭吸着設備において使用済みとなった活性炭を使用することができるので、産業廃棄物を処分するのに要する多額の経費を節約できるという二次的な効果も発生する。
【0030】
本発明において使用される活性炭は、その形状が重要であり、活性炭の平均粒径を20〜2000μm、より好ましくは50〜1000μm、かつ充填密度を0.4〜0.7g/ミリリットル、より好ましくは0.45〜0.6g/ミリリットルとすることで、藻類に由来する濁度や色度を効率的に除去することができる。活性炭の平均粒径20μm未満では、フロックに取り込まれず沈殿池で浮遊し、処理水側に流出してしまう場合がある。一方平均粒径が2000μmを越えると、有効に使用される細孔数が相対的に減少するので経済的でない。また、活性炭の充填密度が0.4g/ミリリットル未満では急速撹拌槽や混和槽内で沈殿堆積する恐れがある。一方、0.7g/ミリリットルを超えると原水との混和が速やかに行われず活性炭同士が塊状化してしまうので好ましくない。さらに、粒状物に対する活性炭の使用割合は容量割合で1:0.01〜1:10が好ましい。
【0031】
活性炭は、通常は粒状物と殆ど同時に注入するが、原水着水井(図示省略)、急速撹拌槽、混和槽(池)の何れに注入しても良い。注入場所は、原水水質や処理水水質に応じて適宜変更すれば良い。注入された活性炭は凝集フロックに取り込まれて沈殿汚泥として分離手段、好ましくはサイクロンに送られる。サイクロンでの遠心分離などで分離される際に活性炭は排水スラッジとともに排出されるが、一部は砂とともに循環使用され混和槽(池)に再注入される。排水スラッジが機械脱水される場合には、スラッジに混入した活性炭の影響で脱水性が改善され、汚泥ケーキ含水率を低下させることができる。
【0032】
【実施例】
以下、実施例により本発明をさらに具体的に説明する。ただし、本発明はこれらの実施例により何等限定されるものではない。
【0033】
実施例1
(実験装置)
図1に示す装置を用い、第1表に示す性状の湖沼水を原水として実験を行った。無機凝集剤としてポリ塩化アルミニウム(PAC)を急速撹拌槽に注入し、また、混和槽に高分子凝集剤(分子量1300万、アニオン系ポリアクリルアミド)、粒状物として平均粒径100μmの珪砂を使用した。また、浄水処理場内の使用済み活性炭(乾燥品粒径1000μm、乾燥品充填密度0.55g/ミリリットル)を急速撹拌槽に注入した。
【0034】
【表1】
【0035】
(実験条件)
以下の第2表に記載する運転諸条件により処理実験を行った。
(実験結果)
実験結果を第3表に示す。
【0036】
【表2】
【0037】
実施例2
活性炭の注入場所を原水着水井にしたこと以外は実施例1と同様に実験を行った。結果を第3表に示す。
【0038】
実施例3
実施例1で使用した活性炭を破砕したものを使用したこと以外は実施例1と同様に実験を行った。破砕後の活性炭性状は平均粒径0.8mm、充填密度0.65g/ミリリットルであった。結果を第3表に示す。
【0039】
比較例1
活性炭を注入しなかったこと以外は実施例1と同様に実験を行った。結果を第3表に示す。
【0040】
【表3】
【0041】
【発明の効果】
本発明によれば、粒状物の添加による沈降速度の増大により沈殿槽の小型化が可能となるとともに、粒状物として砂のような比重の大きなものと活性炭のような比重の小さなものとを併用したので、高分子凝集剤が絡まって粒状物が取り込まれた巨大化されたフロックが、粒状物として砂だけを使用した巨大化されたフロックに比べて軽量化されることになり、その結果高速撹拌されても一旦生成したフロックが破壊されることがなくなり、このため処理水濁度が上昇することがなくなる。更に、活性炭の吸着作用により原水の濁度や色度が大きく低下し、藻類が増殖した原水の藻類の除去率も大きく増加するという優れた効果も発揮する。
【図面の簡単な説明】
【図1】本発明の一実施態様のフローを示す装置の概要図である。
【符号の説明】
1 原水
2 浄水装置
3 急速撹拌槽
4 混和槽
5 フロック形成槽
6 沈殿池
7 処理水
8 砂ろ過塔
9 活性炭吸着塔
10 浄水
11 傾斜板
12 汚泥掻寄機
13 無機凝集剤
14 攪拌機
15 高分子凝集剤
16 サイクロン
17 沈殿汚泥
18 砂(粒状物)
19 排水スラッジ
20 活性炭
21 使用済み活性炭
22 再生装置
23 活性炭
P ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water purification treatment method, and more specifically, a flocculant and a granular material are added to raw water and aggregated as a floc together with suspended substances in the raw water, the floc is settled and separated from the treated water, The present invention relates to a water purification treatment method in which a slurry containing settled floc is extracted and separated into sludge and particulate matter by a separator, and the separated particulate matter is circulated and used.
[0002]
[Prior art]
An apparatus for separating and removing substances suspended in raw water by coagulation sedimentation is known. As a conventional flocculation / precipitation device for removing suspended substances in raw water, an inorganic flocculant such as sulfate band or polyaluminum chloride (PAC) is injected into the raw water to precipitate the generated agglomerates, and flocs flocs are sludged. A device that draws out and treats treated water from the top is well known. In recent years, in addition to inorganic flocculants, a method has been developed in which a polymer flocculant is added to make the floc flocs larger.
In such a general coagulation sedimentation apparatus, it takes a long time to settle the aggregate, and since a very large sedimentation tank is required, the coagulation sedimentation can be performed more efficiently. A precipitation device has been proposed.
[0003]
For example, auxiliary clarified substances, particularly sand granules (particle size 20-200 μm) are injected into the raw water, and suspended substances in the raw water are agglomerated as relatively large flocs having a large specific gravity and introduced from the agglomeration tank in the precipitation tank. There is known a coagulation sedimentation apparatus for precipitating floc in the treated water and separating it from the treated water. The slurry containing the precipitation floc extracted from the settling tank is separated into sludge and particulate matter by a separator such as a cyclone, and the separated particulate matter is returned to the coagulating tank and recycled. In such a coagulation sedimentation apparatus, it is possible to separate the treated water and the coagulation floc by a high-speed flow in a relatively small sedimentation tank.
[0004]
On the other hand, for advanced removal methods of COD components in various COD-containing water such as sewage, sewage treated water, various industrial wastewater, lake water, river water, etc., and advanced treatment of COD, SS, color, etc. in secondary treated water of human waste It is also well known that the combined treatment of powdered activated carbon and inorganic flocculant produces good results.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, eutrophication of lakes and rivers has progressed, and algae have grown. Since the aggregating property of the grown algae is poor, when the agglomeration sedimentation apparatus using the above granular material is applied, the contact time between the aggregating agent and the algae is short, and as a result, the algae are not taken into the agglomerated floc, There has been a problem of increasing the turbidity of treated water. In addition, when pretreatment is performed by injecting sodium hypochlorite into raw water for the purpose of algae killing, a color derived from algae is generated and the treated water is colored. Even when the algae is not grown, the apparatus is generally stirred at a high speed after injecting the polymer flocculant, so that the flocs once generated may be destroyed, and the treatment water turbidity may increase due to this influence. This is thought to be due to relatively heavy particulate matter.
[0006]
The above-mentioned granular material such as sand makes use of the large specific gravity to increase the sedimentation property of the floc incorporating the granular material, thereby enabling high-speed coagulation sedimentation, and in a relatively small sedimentation tank. Separation from the coagulation floc of treated water is possible.
On the other hand, activated carbon is porous carbon having a large surface area regardless of whether it is powdered or granular. For this reason, even when used at the same time as granular materials having a large specific gravity, they are separated from each other, and it is impossible to obtain a synergistic effect of high-speed precipitation and advanced removal such as COD and color. In addition, even when used in combination with inorganic flocculants, the force to form a large monolithic floc with entangled granular material and activated carbon is weak, even if flocs of a certain size are formed, once generated when stirred at high speed The flock was destroyed and the intended purpose could not be achieved.
[0007]
The present invention solves the above-mentioned problems of the coagulation sedimentation method due to the weight of the conventional granular material, the turbidity and chromaticity of the treated water can be greatly improved without breaking the floc by high-speed stirring, the precipitation It is an object of the present invention to provide a water purification method capable of downsizing the tank.
[0008]
[Means for Solving the Problems]
Therefore, as a result of intensive studies to solve the problems of the coagulation sedimentation treatment method using the above-mentioned granular material, the present inventors have found that the problem can be solved by using activated carbon together as part of the granular material, The present invention has been completed based on this finding.
[0009]
That is, the present invention was able to solve the above problems by the following means.
(1) In the water purification method for purifying raw water by coagulating and precipitating, a flocculant in the raw water, used granular activated carbon and sand, garnet, basalt, metal oxide , filled in the activated carbon adsorption tower of the water purification treatment facility , Add any one granular material selected from iron oxide, pumice, ion exchange resin or zeolite , and agglomerate with suspended solids in raw water while stirring at high speed, settle the floc and separate it from treated water. A method for water purification comprising extracting the slurry containing the precipitated floc.
(2) The water purification method according to (1), wherein the activated carbon has an average particle size of 20 to 2000 μm and a packing density of 0.4 to 0.7 g / ml.
(3) The water purification method according to (1) or (2) , wherein the slurry is extracted, separated into sludge and granular materials by a separating means, and the separated granular materials are circulated and used.
[0010]
The essence of the present invention is to first add a flocculant and a granular material for promoting sedimentation to raw water, aggregate it as a floc together with suspended substances in the raw water, and separate the floc from the treated water by sedimentation. By simultaneously adding activated carbon with an appropriate particle size to granular materials such as sand, it is possible to prevent the destruction of agglomerated flocs caused by granular materials with a large specific gravity, and to realize a large decrease in turbidity and chromaticity due to activated carbon. It is in the point found.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing an embodiment of the present invention.
The
[0012]
In the present invention, that the granular material contains activated carbon does not need to be a mixture obtained by adding activated carbon to the granular material in advance, and polymer agglomeration in which activated carbon is injected almost simultaneously with the granular material to incorporate the granular material. It means that the activated flocs can be reduced in weight so that the activated flocs are taken together into the giant flocs entangled with the agent and the once produced flocs are not destroyed by high-speed stirring. The reason why such measures can be taken is that activated carbon having a specific property is used as the “activated carbon” in the present invention.
[0013]
The agglomerates are sent to the floc forming tank 5. The floc forming tank 5 is provided with a stirrer driven by a motor, and grows into a heavier and larger floc into which the particulate matter 18 entangled with the
[0014]
Grown flocs are solid-liquid separated in the sedimentation basin 6 and the treated water 7 is discharged from the surface layer. Although what is shown in the figure is the sedimentation basin 6 in which the
[0015]
In the sedimentation basin 6, the precipitated flocs are collected in the central part of the sedimentation basin 6 by the
In addition, the part enclosed with the dotted line in FIG. 1 shows the case where used granular activated carbon is used, 21 is used granular activated carbon, 22 is a regenerating apparatus, and activated carbon 23 from there is a water purifier. 2 is added to either the
[0016]
In the water purification method that is the subject of the present invention, the
[0017]
In addition, commonly used organic coagulants can be used in place of inorganic flocculants, such as condensed polyamines, dicyandiamide / formalin condensates, polyethyleneimine, polyvinylimidazoline, polyvinylpyridine, diallylamine salts / sulfur dioxide copolymers. , Polydimethyldiallylammonium salt / sulfur dioxide copolymer, polydimethyldiallylammonium salt, polydimethyldiallylammonium salt / acrylamide copolymer, polydimethyldiallylammonium salt / diallylamine hydrochloride derivative copolymer, allylamine salt polymer, etc. Can be mentioned.
[0018]
Specific examples of the condensed polyamine include a condensate of alkylene dichloride and alkylene polyamine, a condensate of aniline and formalin, a condensate of alkylene diamine and epichlorohydrin, a condensate of ammonia and epichlorohydrin, and the like. Examples of the alkylene diamine condensed with epichlorohydrin include dimethylamine, diethylamine, methylpropylamine, methylbutylamine, and dibutylamine.
[0019]
The above-mentioned inorganic flocculant and organic coagulant may be used alone or in the form of a mixture when used, but such a mixture may be used in the form of an aqueous solution previously diluted with water. When used as a mixture, care must be taken because a precipitate may precipitate depending on the combination. The order of adding the inorganic flocculant and organic coagulant to the raw water is not particularly limited.
[0020]
Next, in the method of the present invention, a polymer flocculant is further added to enlarge the flocs to perform the aggregation precipitation treatment. Even when an inorganic flocculant or an organic flocculant is added and agglomerated, flocs of a certain size are formed, but the sedimentation of flocs and the quality of treated water are not sufficient. Examples of the polymer flocculant used include known anionic, nonionic and cationic polymer flocculants.
[0021]
Examples of the anionic polymer flocculant include polyacrylamide partial hydrolyzate, a copolymer of an anionic monomer, and a copolymer of an anionic monomer and a nonionic monomer such as acrylamide. Anionic monomers include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, vinyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, 2-allylamidoethanesulfonic acid, 2-acrylamido-2-methylpropane sulfone Acid, 2-methallylamidoethanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid, 2-acryloyloxyethanesulfonic acid, 3-acryloyloxypropanesulfonic acid, 4-acryloyloxybutanesulfonic acid, 2-methacryloyl Examples thereof include oxyethanesulfonic acid, 3-methacryloyloxypropanesulfonic acid, 4-methacryloyloxybutanesulfonic acid, and metal salts or ammonium salts of these alkali metals and alkaline earth metals. These anionic monomers may be used alone or in combination of two or more.
[0022]
Nonionic monomers include acrylamide, methacrylamide, methacrylonitrile, vinyl acetate and the like. These nonionic monomers may be used alone or in combination of two or more. As the copolymer, an acrylamide / acrylate copolymer and an acrylamide / 2-acrylamido-2-methylpropanesulfonic acid copolymer are preferable.
[0023]
Next, the nonionic polymer flocculant is a polymer or copolymer of the above nonionic monomer, preferably polyacrylamide.
[0024]
Furthermore, the cationic polymer flocculant has a cationic monomer as an essential component, and is a copolymer of a cationic monomer or a copolymer of a cationic monomer and the above nonionic monomer. Examples of the cationic monomer include dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, or a neutralized salt or quaternary salt thereof. A cationic polymer flocculant containing an amidine unit in the molecule is also possible.
Moreover, what can be used equivalent to the cationic polymer flocculant of the present invention includes a so-called amphoteric polymer flocculant obtained by copolymerizing a cationic monomer unit, an anionic monomer unit and a nonionic monomer unit.
[0025]
In addition, when the turbidity of the wastewater is high, the cationic polymer flocculant is added in the previous stage, and the anionic or nonionic polymer flocculant is added in the subsequent stage, thereby increasing the turbidity effect, The turbidity of is reduced. One type of polymer flocculant can be used alone, or two or more types can be used in combination. In general, the polymer flocculant is used as an aqueous solution, and its dissolution concentration is about 0.01 to 0.5%. The addition amount of the polymer flocculant may be in the range of 0.1 to 1 mg / liter, which is an addition amount in a normal coagulation precipitation treatment.
[0026]
As the granular material, sand (so-called micro sand) is generally used. Sand can be either natural or artificial. That is, it may be made of garnet, basalt, metal oxide, iron oxide, pumice, ion exchange resin, zeolite or the like in addition to sand and micro sand. These may be chemically or biologically active or inactive. These granular materials have an average particle diameter of 20 to 300 μm, preferably 80 to 200 μm. The specific gravity is preferably that whose apparent specific gravity is close to that of activated carbon.
[0027]
One of the major features of the present invention is that it contains at least activated carbon as a granular material. By using activated carbon, it is possible to remove turbidity and chromaticity derived from algae, which has been difficult with conventional treatment with microsand. In addition, since the amount of microsand injected can be reduced, the problem of the destruction of the aggregated floc caused by the microsand and the accompanying increase in turbidity can be solved.
[0028]
As the activated carbon used as part of the granular material in the present invention, fresh charcoal may be used, but used granular activated carbon as described below can also be used. That is, although an activated carbon adsorption facility is added to the advanced water purification treatment facility, the activated carbon filled in the activated carbon adsorption tower is usually regenerated in 2 to 3 years or replaced with new coal. In this invention, the used granular activated carbon with which such activated carbon adsorption equipment is filled can be used.
[0029]
In the present invention, the used granular activated carbon may be used as it is, but it may be used in a desired shape by applying it to a crusher in a regeneration facility. Since the activated carbon used in the activated carbon adsorption facility can be used, the present invention also has a secondary effect of saving a large amount of expenses required for disposing of industrial waste.
[0030]
The activated carbon used in the present invention has an important shape, and the average particle size of the activated carbon is 20 to 2000 μm, more preferably 50 to 1000 μm, and the packing density is 0.4 to 0.7 g / ml, more preferably By setting the concentration to 0.45 to 0.6 g / milliliter, turbidity and chromaticity derived from algae can be efficiently removed. If the average particle size of the activated carbon is less than 20 μm, it may not be taken into the flocs, float in the sedimentation basin, and flow out to the treated water side. On the other hand, if the average particle size exceeds 2000 μm, the number of pores that are effectively used is relatively reduced, which is not economical. In addition, when the packing density of the activated carbon is less than 0.4 g / milliliter, there is a risk of sedimentation in a rapid stirring tank or a mixing tank. On the other hand, when it exceeds 0.7 g / milliliter, mixing with raw water is not performed quickly, and the activated carbons are agglomerated, which is not preferable. Furthermore, the use ratio of the activated carbon with respect to the granular material is preferably 1: 0.01 to 1:10 by volume ratio.
[0031]
The activated carbon is usually injected almost simultaneously with the particulate matter, but may be injected into any of the raw water landing well (not shown), the rapid stirring tank, and the mixing tank (pond). What is necessary is just to change an injection | pouring place suitably according to raw | natural water quality or treated water quality. The injected activated carbon is taken into agglomerated floc and sent to a separating means, preferably a cyclone, as precipitated sludge. Activated carbon is discharged together with the waste sludge when it is separated by centrifugal separation in a cyclone, etc., but a part is circulated and used together with sand and reinjected into the mixing tank (pond). When drainage sludge is mechanically dewatered, the dewaterability is improved by the influence of activated carbon mixed in the sludge, and the moisture content of the sludge cake can be reduced.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[0033]
Example 1
(Experimental device)
Using the apparatus shown in FIG. 1, experiments were conducted using the lake water having the properties shown in Table 1 as raw water. Polyaluminum chloride (PAC) as an inorganic flocculant was poured into a rapid stirring tank, a polymer flocculant (molecular weight: 13 million, anionic polyacrylamide) was used as a mixing tank, and silica sand having an average particle diameter of 100 μm was used as a granular material. . In addition, used activated carbon (dry product particle size 1000 μm, dry product packing density 0.55 g / milliliter) in the water purification plant was poured into a rapid stirring tank.
[0034]
[Table 1]
[0035]
(Experimental conditions)
The treatment experiment was conducted under the operating conditions described in Table 2 below.
(Experimental result)
The experimental results are shown in Table 3.
[0036]
[Table 2]
[0037]
Example 2
The experiment was performed in the same manner as in Example 1 except that the injection site of the activated carbon was changed to the raw water landing well. The results are shown in Table 3.
[0038]
Example 3
The experiment was performed in the same manner as in Example 1 except that the activated carbon used in Example 1 was crushed. The properties of the activated carbon after crushing were an average particle diameter of 0.8 mm and a packing density of 0.65 g / ml. The results are shown in Table 3.
[0039]
Comparative Example 1
The experiment was performed in the same manner as in Example 1 except that the activated carbon was not injected. The results are shown in Table 3.
[0040]
[Table 3]
[0041]
【The invention's effect】
According to the present invention, it is possible to reduce the size of the settling tank by increasing the sedimentation speed by adding granular materials, and use a combination of a large specific gravity such as sand and a small specific gravity such as activated carbon as the granular material. As a result, the huge flocs in which the particulate matter is entangled with the polymer flocculant are lighter than the enlarged flocs that use only sand as the particulate matter. Even if agitation is performed, the flocs once generated are not destroyed, so that the treated water turbidity does not increase. Furthermore, the turbidity and chromaticity of the raw water are greatly reduced due to the adsorption action of the activated carbon, and the excellent effect of greatly increasing the algae removal rate of the raw water on which the algae have grown is also exhibited.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an apparatus showing a flow of one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF
19 Wastewater sludge 20
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003182882A JP4223870B2 (en) | 2003-06-26 | 2003-06-26 | Water purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003182882A JP4223870B2 (en) | 2003-06-26 | 2003-06-26 | Water purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005013892A JP2005013892A (en) | 2005-01-20 |
JP4223870B2 true JP4223870B2 (en) | 2009-02-12 |
Family
ID=34183149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003182882A Expired - Lifetime JP4223870B2 (en) | 2003-06-26 | 2003-06-26 | Water purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4223870B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103848487A (en) * | 2012-11-30 | 2014-06-11 | 南通京源水工自动化设备有限公司 | Grid stirring flocculation reaction device |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4163146B2 (en) * | 2004-05-14 | 2008-10-08 | 株式会社Sawa Club | Aggregation treatment method |
JP2006212569A (en) * | 2005-02-04 | 2006-08-17 | Nippon Steel Corp | Slurry concentrating method |
JP5512068B2 (en) | 2006-03-24 | 2014-06-04 | 三菱レイヨン株式会社 | Water treatment method |
JP5457620B2 (en) * | 2006-09-27 | 2014-04-02 | 日環特殊株式会社 | Sludge volume reduction carbonization device and method and organic waste water treatment system |
FR2910822B1 (en) * | 2006-12-29 | 2009-02-27 | Otv Sa | METHOD AND INSTALLATION FOR WATER TREATMENT THROUGH FLOCCULATION AND DECANTATION |
JP4933473B2 (en) * | 2008-03-31 | 2012-05-16 | 水ing株式会社 | Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof |
JP4653826B2 (en) | 2008-08-22 | 2011-03-16 | 株式会社東芝 | Solid-liquid separator |
JP5464315B2 (en) * | 2008-09-24 | 2014-04-09 | 栗田工業株式会社 | Sludge dewatering method |
US7648637B1 (en) * | 2009-01-29 | 2010-01-19 | Otv S.A. | Water treatment method by ballasted flocculation, settling, and prior adsorbent contact |
FR2958927B1 (en) * | 2010-04-20 | 2012-05-25 | Otv Sa | METHOD FOR WATER TREATMENT BY FLOCCULATION USING A FLOCCULANT AGENT OF NATURAL ORIGIN |
JP6106947B2 (en) * | 2012-05-07 | 2017-04-05 | 月島機械株式会社 | Water purification method |
KR101398996B1 (en) | 2013-06-20 | 2014-05-28 | 지에스건설 주식회사 | Water treatment system and method using rapid coagulation and sedimentation with active carbon |
JP2016052654A (en) * | 2015-10-05 | 2016-04-14 | 月島機械株式会社 | Water purification method |
JP2018038965A (en) * | 2016-09-07 | 2018-03-15 | 清水建設株式会社 | Water treatment system and method |
JP2018038964A (en) * | 2016-09-07 | 2018-03-15 | 清水建設株式会社 | Water treatment system and method |
JP6820510B2 (en) * | 2016-10-11 | 2021-01-27 | 清水建設株式会社 | Water treatment system and water treatment method |
JP2018061925A (en) * | 2016-10-11 | 2018-04-19 | 清水建設株式会社 | Water treatment system and water treatment method |
CN107721120A (en) * | 2017-11-16 | 2018-02-23 | 安徽佳明环保科技股份有限公司 | A kind of Treatment of Sludge intelligent integral equipment |
JP7137419B2 (en) * | 2018-09-27 | 2022-09-14 | オルガノ株式会社 | Water treatment device and water treatment method |
KR102073881B1 (en) * | 2019-09-18 | 2020-02-05 | 선일종합수처리 주식회사 | Treatment method of leachates from landfill and device thereof |
CN110902955A (en) * | 2019-12-05 | 2020-03-24 | 江苏润垚环保科技有限公司 | Sewage treatment and purification device and method thereof |
-
2003
- 2003-06-26 JP JP2003182882A patent/JP4223870B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103848487A (en) * | 2012-11-30 | 2014-06-11 | 南通京源水工自动化设备有限公司 | Grid stirring flocculation reaction device |
Also Published As
Publication number | Publication date |
---|---|
JP2005013892A (en) | 2005-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4223870B2 (en) | Water purification method | |
US6896815B2 (en) | Methods for removing heavy metals from water using chemical precipitation and field separation methods | |
US20020088758A1 (en) | Method and apparatus for treatment of water and wastewater | |
JP3814853B2 (en) | Coagulation sedimentation equipment | |
JP4707752B2 (en) | Water treatment method and water treatment system | |
JP4004854B2 (en) | Water purification method and apparatus | |
JP4073116B2 (en) | Coagulation sedimentation equipment | |
JP4522297B2 (en) | Method and apparatus for treating wastewater containing inorganic suspended particles | |
JP4416144B2 (en) | Coagulation precipitation method and apparatus | |
JP4272122B2 (en) | Coagulated water treatment method and apparatus | |
JP4428696B2 (en) | Excess sludge treatment method | |
JP4446418B2 (en) | Coagulation precipitation system | |
JP2019198806A (en) | Water treatment method, and water treatment device | |
CN215559636U (en) | Wastewater treatment system | |
JP7142540B2 (en) | Water purification method and water purification device | |
US20130075341A1 (en) | Method for clarifying industrial wastewater | |
JP3496773B2 (en) | Advanced treatment method and apparatus for organic wastewater | |
JP6825999B2 (en) | Operation method of coagulation sedimentation device and coagulation sedimentation device | |
JP3939970B2 (en) | Coal storage wastewater treatment method | |
JP2001104712A (en) | Flocculation/precipitation equipment and method of water treatment using the same | |
JP4800463B2 (en) | Filtration device | |
JP3901392B2 (en) | Coagulation sedimentation equipment | |
JP4800461B2 (en) | Backwashing method in filtration equipment | |
JP4228394B2 (en) | Water treatment method and system | |
Licsko | On the types of bond developing between the aluminium and iron (III) hydroxides and organic substances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060608 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080813 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4223870 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |