JP3901392B2 - Coagulation sedimentation equipment - Google Patents

Coagulation sedimentation equipment Download PDF

Info

Publication number
JP3901392B2
JP3901392B2 JP13854699A JP13854699A JP3901392B2 JP 3901392 B2 JP3901392 B2 JP 3901392B2 JP 13854699 A JP13854699 A JP 13854699A JP 13854699 A JP13854699 A JP 13854699A JP 3901392 B2 JP3901392 B2 JP 3901392B2
Authority
JP
Japan
Prior art keywords
tank
flow rate
low
intermediate receiving
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13854699A
Other languages
Japanese (ja)
Other versions
JP2000325705A (en
Inventor
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP13854699A priority Critical patent/JP3901392B2/en
Publication of JP2000325705A publication Critical patent/JP2000325705A/en
Application granted granted Critical
Publication of JP3901392B2 publication Critical patent/JP3901392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原水中の懸濁物質を凝集沈澱により汚泥と処理水とに分離する凝集沈澱装置に関し、とくに、沈澱工程後の沈澱物の搬送ラインの構造の改良に関する。
【0002】
【従来の技術】
原水中に懸濁している物質(以下、SS[Suspended Solid] と称することもある。)を沈澱により分離除去する装置が知られている。従来の原水中のSSを除去するための凝集沈澱装置として、原水に単に凝集剤を添加して凝集物を沈澱させ、凝集物を汚泥として引き抜くとともに上部から処理水を導出するようにした装置はよく知られている。
【0003】
このような一般的な凝集沈澱装置では、凝集物の沈澱に長時間を要し、沈澱槽としても極めて大型のものが要求されることから、より効率よく凝集沈澱を行わせるようにした凝集沈澱装置が提案されている。
【0004】
たとえばフランス特許第1411792号には、凝集槽において、原水に凝集剤とともに粒状物(代表的には、砂)を添加し、凝集槽内を攪拌して、原水中のSSを比重の大きい粒状物を含んだ比較的大きなフロックとして凝集させ、沈澱槽において凝集槽から導入された被処理水中のフロックを沈澱させて処理水と分離する凝集沈澱装置が開示されている。沈澱槽から引き抜かれた沈澱フロックは、分離器としてのサイクロンにより汚泥と粒状物とに分離され、分離された粒状物は凝集槽に戻されて循環使用される。
【0005】
この凝集沈澱装置は、たとえば図2のように構成されている。図2においては、原水101にたとえば無機凝集剤102が添加されてラインミキサー103により混合され、凝集槽104で高分子凝集剤105とともに粒状物としての砂106が添加され、凝集槽104内で攪拌機107で攪拌されつつ原水中のSSが凝集され、砂106を含む比重の大きな沈澱しやすいフロックに成長される。成長した砂含有のフロックを含む被処理水が沈澱槽108に導入されるので、フロックはより効率よく迅速に沈澱し、沈澱物109はより短時間で処理水110と分離できるようになる。沈澱槽108の底部に沈澱した沈澱物109は汚泥引抜ポンプ111により引き抜かれ、引き抜きライン112(輸送管)を通してサイクロン113に送られ、サイクロン113での遠心分離によって汚泥114と砂106とに分離され、分離された砂106が凝集槽104に戻されて循環使用されるようになっている。
【0006】
【発明が解決しようとする課題】
ところが、上記のような凝集沈澱装置においては、沈澱槽108から引き抜かれた、砂106を含む沈澱物は、サイクロン113を用いて汚泥114と砂106とに遠心分離されるため、高流速でサイクロン113に送られる必要がある。また、輸送のための汚泥引き抜きポンプ111には、高い吐出圧でかつ、高流速で吐出できるポンプを使用する必要がある。
【0007】
そのため、砂106を含む沈澱物は、引き抜きライン112中を、高圧、高流速でサイクロン113に輸送されることになる。砂106を含む沈澱物がポンプ111や引き抜きライン112の管内を高圧、高流速で輸送されると、砂106による研磨作用が起こり、ポンプ111のシール部分やインペラ、引き抜きライン112の曲がり管部分等では、摩耗が進行し、望ましくない損傷が比較的短期間のうちに発生するおそれがある。その結果、特にこれらの部位における部品の交換頻度が高くなり、メンテナンス作業上、ランニングコスト上問題となっている。
【0008】
管の摩耗に対しては、硬度の高い材質を用いるなどの対策も考えられるが、設備費の高騰を招くとともに、損傷に至るまでの時間が多少延長されるだけで、根本的な解決策にはならない。
【0009】
そこで本発明の課題は、上記のような問題点に着目し、沈澱槽からの沈澱物の引き抜き分離ラインの構成を根本的に改良し、摩耗、損傷の発生を抑制してその寿命を大幅に延長し、部品の交換頻度および交換量を大幅に低減してメンテナンスの容易化、ランニングコストの低減を達成できる凝集沈澱装置を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の凝集沈澱装置は、原水中の懸濁物質を凝集剤と粒状物の添加により凝集させる凝集槽と、凝集槽から導入される被処理水中の凝集物を沈澱させ処理水と沈澱物とに分離する沈澱槽と、沈澱槽から沈澱物を引き抜き、引き抜かれた沈澱物を汚泥と粒状物とに分離するサイクロンを備え、分離された粒状物を凝集槽に戻す引き抜き分離ラインとを備えた凝集沈澱装置において、引き抜き分離ライン中に、中間受け槽を設けるとともに、引き抜き分離ラインの沈澱槽から中間受け槽までを低流速流路に、中間受け槽からサイクロンまでを高流速流路に構成し、かつ、低流速流路には低速輸送用ポンプを、高流速流路には高速輸送用ポンプを、それぞれ設け、両ポンプによって低流速流路と高流速流路との間に流速差をもたせたことを特徴とするものからなる。
【0011】
上記低流速流路における流速と高流速流路における流速との比としては、1:2以上であることが好ましく、より好ましくは1:3以上、さらに好ましくは1:5以上である。また、低流速流路における管内流速としては、1.5m/s以下であることが好ましく、より好ましくは1m/s以下、さらに好ましくは0.5m/s以下、とくに好ましくは0.1m/s以下である。
【0012】
中間受け槽の形態は特に限定しないが、大気開放型の槽からなることが好ましい。大気開放型の中間受け槽とすることで、その上下流側に位置する低流速流路と高流速流路との縁を一旦完全に切ることができるので、各流路が互いに影響し合うことなく、各流路をそれぞれ独立に望ましい流速の流路に構成できる。
【0013】
各流路においてそれぞれ好ましい流速とするために、低流速流路には低速輸送用ポンプが、高流速流路には高速輸送用ポンプが、各々設けられる。低速輸送用ポンプには、上記のような低流速流路における望ましい管内流速を達成できるポンプが選択され、高速輸送用ポンプには、基本的には、サイクロンでの遠心分離が可能な流速を達成できるポンプが選択される。
【0014】
凝集フロック生成用に用いる粒状物としては、代表的には砂を使用することができ、とくに粒径を揃えたものが好ましい。また、凝集剤としては、通常、無機凝集剤と高分子凝集剤を使用することができる。無機凝集剤は、原水中の懸濁物質を効率よく凝集させることができ、高分子凝集剤は、無機凝集剤によって生成した微細な凝集フロックをさらにポリマーを絡めてより大きなフロックへと成長させる。この成長したフロック内に、比重の大きい砂等からなる粒状物が混在し、全体として比重(密度)の大きい沈澱しやすいフロックが形成されることになる。
【0015】
上記のような本発明に係る凝集沈澱装置においては、沈澱槽からの引き抜き分離ライン中に中間受け槽が設けられ、引き抜き分離ラインが中間受け槽の部分で一旦分割されて、沈澱槽から中間受け槽までが低流速流路に、中間受け槽からサイクロンまでが高流速流路に構成される。低流速流路においては、粒状物含有の沈澱物が低速で輸送されるから、従来問題であった、ポンプの摩耗や輸送管の管内摩耗が大幅に軽減される。また、高流速流路においては、基本的にはサイクロンでの遠心分離に必要な流速が要求されるが、引き抜き分離ライン全長が中間受け槽の部分で一旦分割されていることから、この高流速流路は容易に短い管に構成され、しかも、実質的に直管のみで構成することも可能である。したがって、高い管内流速は要求されるものの、高圧は必要でなく、従来の圧力に比べ、大幅に低下させた圧力でよくなる。その結果、高流速流路においても、ポンプの摩耗や輸送管の管内摩耗の大幅な低減が可能になる。すなわち、引き抜き分離ラインの全体にわたって、粒状物輸送に起因する摩耗の低減が可能になる。
【0016】
したがって、引き抜き分離ラインの各部の寿命は大幅に延長され、部品の交換頻度や配管等の交換量は格段に低減され、メンテナンスが大幅に容易化されるとともに、装置のランニングコストも大幅に低減される。
【0017】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態について、図面を参照して説明する。
図1は、本発明の一実施態様に係る凝集沈澱装置1を示している。凝集沈澱装置1は、凝集槽2と、それに隣接配置された沈澱槽3を備えている。凝集槽2には、原水供給ライン4を介して原水5が供給され、本実施態様では、無機凝集剤6がライン注入される。無機凝集剤6の注入位置の下流側には、スタティックミキサー等からなるラインミキサー7が介装されており、注入された凝集剤が原水に良好に混合されるようになっている。ただし、この無機凝集剤6は、凝集槽2に直接投入することも可能である。
【0018】
凝集槽2には、高分子凝集剤8と粒状物としての砂9が添加される。この高分子凝集剤8は、ライン注入することも可能であり、たとえば、上記ミキサー7の下流側でライン注入することができる。凝集槽2には、モータ10によって駆動される攪拌機11が設けられており、攪拌機11による攪拌によって原水中の懸濁物質が、無機凝集剤6、高分子凝集剤8、砂9を含むフロックとして凝集される。
【0019】
無機凝集剤6としては、たとえばポリ塩化アルミニウム(PAC)、塩化第二鉄、硫酸第二鉄を使用でき、高分子凝集剤8としては、たとえばノニオン性、アニオン性あるいは両性の高分子凝集剤を用いることができる。アニオン性の高分子凝集剤としては、たとえば、アクリル酸またはその塩の重合物、アクリル酸またはその塩とアクリルアミドとの共重合物、アクリルアミドと2−アクリルアミド−2メチルプロパンスルホン酸塩の共重合物、アクリル酸またはその塩とアクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸塩の3元共重合物、ポリアクリルアミドの部分加水分解物などが挙げられるが、特にこれらに限定されるものではない。ノニオン性の高分子凝集剤としては、代表的なものとしてポリアクリルアミドが挙げられるが、特にこれに限定されるものではない。両性の高分子凝集剤としては、たとえば、ジメチルアミノエチル(メタ)アクリレートの3級塩および4級塩(塩化メチル塩等)等の少なくとも1種のカチオン性単量体と、アクリル酸およびその塩(ナトリウム、カルシウム等の塩類)、2−アクリルアミド−2−メチルプロパンスルホン酸塩(ナトリウム、カルシウム等の塩類)等の少なくとも1種のアニオン性単量体の共重合物、あるいは、上記の少なくとも1種のカチオン性単量体および上記の少なくとも1種のアニオン性単量体とアクリルアミド等の少なくとも1種のノニオン性単量体との三元もしくは四元以上の共重合物等が挙げられるが、特にこれらに限定されるものではない。高分子凝集剤の分子量の範囲は特に限定されないが、500万〜2000万の範囲が好ましい。これらの高分子凝集剤は、単独で又は混合物として用いることができる。高分子凝集剤の添加量は、一般的に経済的な観点から0.3〜2mg/l程度である。
【0020】
この凝集槽2内での凝集においては、無機凝集剤6が懸濁物質を凝集させて微細なフロックを生成させ、それに高分子凝集剤8が絡まってより大きなフロックに成長させ、成長したフロックには比重の大きい粒状物としての砂9が含有され、全体として比較的大きな、比重の大きい沈澱しやすいフロックに成長する。
【0021】
成長した凝集フロックを含む被処理水は、本実施態様では、水中ぜき12(もぐりぜき)を介して沈澱槽3へと導入される。この水中ぜき12の代わりに越流ぜきを用いてもよい。沈澱槽3では、導入水中の凝集フロックが下方に沈澱され、沈澱物13は上方の処理水14に対して分離される。沈澱槽3内の上部には、複数の傾斜板15が並設されており、処理水14とともにフロック(沈澱物)が流出するのを抑制している。
【0022】
沈澱槽3の底部には、沈澱槽3からスラリー状の沈澱物13を引き抜き、引き抜かれた沈澱物13を、サイクロン16による遠心分離によって、汚泥17と砂9とに分離し、分離された砂9を凝集槽2に戻す引き抜き分離ライン18が接続されている。分離された砂9は、再び凝集槽2内に戻されて循環使用される。
【0023】
この引き抜き分離ライン18中には、一旦輸送されてきた沈澱物13を収容する中間受け槽19が設けられている。そして、沈澱槽3から中間受け槽19までは、管内流速のより遅い低流速流路20に、中間受け槽19からサイクロン16までは、管内流速のより速い高流速流路21に、それぞれ構成されている。この流速差は、低流速流路20に設けた低速輸送用ポンプ22と、高流速流路21に設けた高速輸送用ポンプ23によってもたらされる。
【0024】
低流速流路20における流速と高流速流路21における流速との比としては、前述の如く、1:2以上であることが好ましく、より好ましくは1:3以上、さらに好ましくは1:5以上である。また、低流速流路20における管内流速としては、1.5m/s以下であることが好ましく、より好ましくは1m/s以下、さらに好ましくは0.5m/s以下、とくに好ましくは0.1m/s以下である。たとえば、後述の実施例に示すように、低流速流路20における管内流速が0.05m/s程度に、高流速流路21における管内流速が、従来流速と同じ3m/s程度に設定されることが好ましい。
【0025】
中間受け槽19は、本実施態様では大気開放型の槽に構成されているが、密閉型の槽に構成することも可能である。この中間受け槽19の配設位置は、極力サイクロン16に近い位置が好ましい。サイクロン16に近接した位置に中間受け槽19を配置することで、高流速流路21の流路長を短く抑えることができ、場合によっては、高流速流路21を実質的に短い直管のみで構成することも可能になる。
【0026】
上記のように構成された凝集沈澱装置1においては、沈澱槽3から引き抜かれた沈澱物13は、まず、低速輸送用ポンプ22により、低流速流路20中を低管内流速をもって中間受け槽19へと輸送される。低流速でよいので、低流速流路20中における管内摩耗は大幅に軽減され、低速輸送用ポンプ22におけるシール部や本体部の摩耗も小さく抑えられる。
【0027】
また、高流速流路21における管内流速は、基本的には、サイクロン16での遠心分離に必要な流速が要求される。しかし、引き抜き分離ライン18が中間受け槽19で一旦縁が切られ、中間受け槽19からサイクロン16に至る高流速流路21は短い流路でよいので、高流速で輸送しても、輸送に要する負荷は比較的低く抑えられ、したがって、発生する圧力も比較的低く抑えられる。すなわち、この高流速流路21においては、サイクロン16での遠心分離に必要な高流速を達成しつつ、比較的低圧に保つことが可能になる。その結果、高流速流路21における管内摩耗もまた大幅に軽減され、高速輸送用ポンプ23におけるシール部や本体部の摩耗も小さく抑えられることになる。
【0028】
本発明による効果を確認するために、図1に示した本発明に係る装置および図2に示した従来装置を用いて、以下のような条件で実験を行った。
【0029】
実験条件
〔従来装置と本発明に係る装置での共通条件〕
・原水流量:300m3 /day(12.5m3 /h)
・沈澱槽負荷:処理水上昇速度50m/h
・凝集用砂:ケイ砂、比重2.5、有効径0.1mm、凝集槽内添加量20g/l
・原水濁度:12度
・原水pH:7.1
・無機凝集剤:PAC 10mg/l
・高分子凝集剤:アニオン系有機高分子 1mg/l
(ポリアクリルアミド系アニオン性ポリマー)
・汚泥引き抜き量:原水流量に対して5%(10.4リットル/min)
【0030】
〔従来装置における汚泥輸送条件〕
・砂分離装置:サイクロン
・汚泥輸送装置:高速砂輸送ポンプ、砂輸送量5.2リットル/min、
管内流速3m/s
・高速砂輸送管長:6m
【0031】
〔本発明に係る装置における汚泥輸送条件〕
・砂分離装置:サイクロン
・中間受け槽:汚泥滞留時間1min
・低流速流路:低速砂輸送ポンプ、輸送量5.2リットル/min、
管内流速0.05m/s
・高流速流路:高速砂輸送ポンプ、輸送量5.2リットル/min、
管内流速3/s、輸送管長1m
【0032】
上記条件で実験を実施し、主として管の交換量(長さの累計)について、本発明装置と従来装置とを比較した。結果を表1に示す。表1から分かるように、本発明装置においては、管の交換量が大幅に低減した。また、ポンプシール部の交換頻度、ポンプ本体(インペラ等)の交換頻度についても、本発明装置では大幅に低減できた。
【0033】
【表1】

Figure 0003901392
【0034】
【発明の効果】
以上説明したように、本発明の凝集沈澱装置によれば、引き抜き分離ラインに中間受け槽を設けてラインを分割し、沈澱槽から中間受け槽までを低流速流路に、中間受け槽からサイクロンまでを高流速流路に構成し、低流速流路には低速輸送用ポンプを、高流速流路には高速輸送用ポンプを、それぞれ設け、両ポンプによって低流速流路と高流速流路との間に流速差をもたせたので、低流速流路においては管、ポンプの摩耗を著しく低減でき、高流速流路においても圧力を低下させて管、ポンプの摩耗を大幅に低減でき、引き抜き分離ライン全体として、摩耗の発生を低減して、各部の交換頻度、交換量を大幅に低減することができる。その結果、メンテナンスの容易化はもちろんのこと、ランニングコストの大幅な低減を達成できる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る凝集沈澱装置の全体構成図である。
【図2】従来の凝集沈澱装置の概略構成図である。
【符号の説明】
1 凝集沈澱装置
2 凝集槽
3 沈澱槽
4 原水供給ライン
5 原水
6 無機凝集剤
7 ラインミキサー
8 高分子凝集剤
9 粒状物としての砂
10 モータ
11 攪拌機
12 せき
13 沈澱物
14 処理水
15 傾斜板
16 サイクロン
17 汚泥
18 引き抜き分離ライン
19 中間受け槽
20 低流速流路
21 高流速流路
22 低速輸送用ポンプ
23 高速輸送用ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coagulating sedimentation apparatus that separates suspended substances in raw water into sludge and treated water by coagulating sedimentation, and more particularly, to an improvement in the structure of a sediment transport line after the precipitation process.
[0002]
[Prior art]
An apparatus for separating and removing substances suspended in raw water (hereinafter sometimes referred to as SS [Suspended Solid]) by precipitation is known. As a conventional coagulating sedimentation apparatus for removing SS in raw water, an apparatus that simply adds a coagulant to raw water to precipitate the aggregate, pulls the aggregate as sludge, and derives treated water from the top is well known.
[0003]
In such a general coagulation precipitation apparatus, it takes a long time to precipitate the coagulum, and a very large sedimentation tank is required. Therefore, the coagulation precipitation can be performed more efficiently. A device has been proposed.
[0004]
For example, in French Patent No. 1411792, in a flocculation tank, a granular material (typically sand) is added to the raw water together with a flocculating agent, and the inside of the flocculating tank is stirred to form a granular material having a high specific gravity in the raw water. There is disclosed a coagulation-precipitation apparatus for agglomerating as a relatively large floc containing water and precipitating the floc in the water to be treated introduced from the coagulation tank in the precipitation tank to separate it from the treated water. The sediment floc extracted from the sedimentation tank is separated into sludge and particulates by a cyclone as a separator, and the separated particulates are returned to the agglomeration tank and recycled.
[0005]
This coagulation sedimentation apparatus is configured as shown in FIG. 2, for example. In FIG. 2, for example, the inorganic flocculant 102 is added to the raw water 101 and mixed by the line mixer 103, and the sand 106 as a granular material is added together with the polymer flocculant 105 in the flocculant tank 104. The SS in the raw water is agglomerated while being stirred at 107, and grows into a floc that contains sand 106 and has a large specific gravity and is likely to precipitate. Since the treated water containing the grown flocs containing sand is introduced into the sedimentation tank 108, the flocs settle more efficiently and quickly, and the precipitate 109 can be separated from the treated water 110 in a shorter time. The sediment 109 deposited on the bottom of the sedimentation tank 108 is extracted by the sludge extraction pump 111, sent to the cyclone 113 through the extraction line 112 (transport pipe), and separated into the sludge 114 and the sand 106 by centrifugal separation in the cyclone 113. The separated sand 106 is returned to the agglomeration tank 104 for circulation.
[0006]
[Problems to be solved by the invention]
However, in the above coagulating sedimentation apparatus, the sediment containing the sand 106 drawn out from the sedimentation tank 108 is centrifuged into the sludge 114 and the sand 106 using the cyclone 113, so that the cyclone is produced at a high flow rate. 113 need to be sent. Further, it is necessary to use a pump capable of discharging at a high discharge pressure and a high flow rate as the sludge extraction pump 111 for transportation.
[0007]
Therefore, the sediment containing the sand 106 is transported to the cyclone 113 through the drawing line 112 at a high pressure and a high flow rate. When the sediment containing the sand 106 is transported in the pipes of the pump 111 and the extraction line 112 at a high pressure and a high flow rate, a sanding action occurs by the sand 106, and the seal part of the pump 111, the impeller, the bent pipe part of the extraction line 112, etc. Then, wear progresses and undesirable damage may occur in a relatively short period of time. As a result, the frequency of replacement of parts particularly in these parts is increased, which is a problem in terms of maintenance work and running cost.
[0008]
For pipe wear, measures such as using a material with high hardness can be considered, but this will lead to a rise in equipment costs and a slight increase in the time to damage. Must not.
[0009]
Therefore, the object of the present invention is to focus on the above-mentioned problems and fundamentally improve the configuration of the drawing and separating line for the sediment from the sedimentation tank, thereby suppressing the occurrence of wear and damage and greatly extending its service life. An object of the present invention is to provide a coagulating sedimentation apparatus that can be extended to greatly reduce the frequency and amount of replacement of parts, thereby facilitating maintenance and reducing running costs.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the coagulation sedimentation apparatus of the present invention comprises a coagulation tank for coagulating suspended substances in raw water by adding a coagulant and particulates, and an aggregate in the water to be treated introduced from the coagulation tank. A sedimentation tank that settles and separates into treated water and sediment, and a cyclone that pulls the sediment from the sedimentation tank and separates the extracted sediment into sludge and particulates, and the separated particulates into the agglomeration tank In a coagulation sedimentation apparatus equipped with a drawing separation line to be returned, an intermediate receiving tank is provided in the drawing separation line, and from the sedimentation tank to the intermediate receiving tank of the drawing separation line to a low flow path, from the intermediate receiving tank to the cyclone. Is configured as a high flow rate channel , and a low speed flow rate pump is provided in the low flow rate channel, and a high speed transport pump is provided in the high flow rate channel. Flow between Consisting of those wherein the remembering difference.
[0011]
The ratio of the flow rate in the low flow rate channel to the flow rate in the high flow rate channel is preferably 1: 2 or more, more preferably 1: 3 or more, and even more preferably 1: 5 or more. In addition, the pipe flow rate in the low flow rate channel is preferably 1.5 m / s or less, more preferably 1 m / s or less, still more preferably 0.5 m / s or less, and particularly preferably 0.1 m / s. It is as follows.
[0012]
Although the form of an intermediate | middle receiving tank is not specifically limited, It is preferable to consist of an air | atmosphere open type tank. By using an intermediate receiving tank that is open to the atmosphere, the edges of the low flow path and the high flow path located on the upstream and downstream sides of the intermediate receiving tank can be completely cut once, so that each flow path affects each other. In addition, each channel can be independently configured to have a desired flow rate.
[0013]
In order to obtain a preferable flow rate in each channel, a low-speed transport pump is provided in the low-flow rate channel, and a high-speed transport pump is provided in the high-flow rate channel. For the low-speed transport pump, a pump that can achieve the desired in-pipe flow rate in the low flow path as described above is selected, and for the high-speed transport pump, basically, a flow rate capable of being centrifuged in a cyclone is achieved. A possible pump is selected.
[0014]
As the granular material used for the production of the aggregated floc, sand can be typically used, and those having a uniform particle size are particularly preferable. As the flocculant, an inorganic flocculant and a polymer flocculant can be usually used. The inorganic flocculant can efficiently agglomerate suspended substances in the raw water, and the polymer flocculant further grows the fine flocculent flocs generated by the inorganic flocculant into larger flocs by entanglement with the polymer. In the grown floc, granular materials made of sand or the like having a large specific gravity are mixed, and flocs having a large specific gravity (density) and easy to precipitate are formed as a whole.
[0015]
In the coagulating sedimentation apparatus according to the present invention as described above, an intermediate receiving tank is provided in the drawing separation line from the precipitation tank, and the drawing separation line is once divided at the intermediate receiving tank, and the intermediate receiving tank is separated from the precipitation tank. Up to the tank is configured as a low flow path, and from the intermediate receiving tank to the cyclone is configured as a high flow path. In the low flow rate channel, the precipitate containing the particulate matter is transported at a low speed, so that the wear of the pump and the wear in the transport pipe, which have been problems in the past, are greatly reduced. The high flow rate flow path basically requires a flow rate required for the centrifugal separation in the cyclone. However, since the entire length of the extraction separation line is once divided at the intermediate receiving tank, The flow path is easily configured as a short tube, and can be configured substantially only as a straight tube. Therefore, although a high flow velocity in the pipe is required, a high pressure is not necessary, and a pressure greatly reduced as compared with the conventional pressure is sufficient. As a result, it is possible to significantly reduce the wear of the pump and the wear in the transport pipe even in the high flow rate flow path. That is, it is possible to reduce the wear caused by the transportation of the particulate matter over the entire drawing separation line.
[0016]
Therefore, the service life of each part of the pull-out separation line is greatly extended, the frequency of parts replacement and the amount of pipe replacement are greatly reduced, maintenance is greatly facilitated, and the running cost of the equipment is also greatly reduced. The
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a coagulating sedimentation apparatus 1 according to an embodiment of the present invention. The coagulation precipitation apparatus 1 includes a coagulation tank 2 and a precipitation tank 3 disposed adjacent thereto. Raw water 5 is supplied to the coagulation tank 2 via the raw water supply line 4, and in this embodiment, the inorganic flocculant 6 is line-injected. A line mixer 7 composed of a static mixer or the like is interposed downstream of the injection position of the inorganic flocculant 6 so that the injected flocculant is well mixed with the raw water. However, the inorganic flocculant 6 can be directly fed into the agglomeration tank 2.
[0018]
A polymer flocculant 8 and sand 9 as a granular material are added to the agglomeration tank 2. The polymer flocculant 8 can be line-injected. For example, the polymer flocculant 8 can be line-injected downstream of the mixer 7. The agglomeration tank 2 is provided with a stirrer 11 driven by a motor 10, and suspended matter in the raw water is a floc containing inorganic flocculant 6, polymer flocculant 8, and sand 9 by stirring by the stirrer 11. Aggregated.
[0019]
As the inorganic flocculant 6, for example, polyaluminum chloride (PAC), ferric chloride, and ferric sulfate can be used. As the polymer flocculant 8, for example, nonionic, anionic or amphoteric polymer flocculants are used. Can be used. Examples of the anionic polymer flocculant include a polymer of acrylic acid or a salt thereof, a copolymer of acrylic acid or a salt thereof and acrylamide, and a copolymer of acrylamide and 2-acrylamido-2-methylpropanesulfonate. , A terpolymer of acrylic acid or a salt thereof, acrylamide and 2-acrylamido-2-methylpropanesulfonate, a partial hydrolyzate of polyacrylamide, and the like, but is not particularly limited thereto. A typical example of the nonionic polymer flocculant includes polyacrylamide, but is not particularly limited thereto. Examples of amphoteric polymer flocculants include at least one cationic monomer such as dimethylaminoethyl (meth) acrylate tertiary salt and quaternary salt (such as methyl chloride salt), acrylic acid and salts thereof. (Salts such as sodium and calcium), copolymers of at least one anionic monomer such as 2-acrylamido-2-methylpropanesulfonate (salts such as sodium and calcium), or at least one of the above Examples of the cationic monomer and terpolymer or quaternary copolymer of at least one anionic monomer and at least one nonionic monomer such as acrylamide, In particular, it is not limited to these. The molecular weight range of the polymer flocculant is not particularly limited, but a range of 5 million to 20 million is preferable. These polymer flocculants can be used alone or as a mixture. The addition amount of the polymer flocculant is generally about 0.3 to 2 mg / l from an economical viewpoint.
[0020]
In the agglomeration in the agglomeration tank 2, the inorganic flocculant 6 agglomerates the suspended substance to generate fine flocs, and the polymer flocculant 8 is entangled to grow into larger flocs. The sand contains sand 9 as a granular material having a high specific gravity, and grows into a floc that is relatively large and has a high specific gravity and tends to precipitate.
[0021]
In this embodiment, the water to be treated containing the grown floc flocs is introduced into the sedimentation tank 3 through the underwater fountain 12 (moguri zuki). Instead of this underwater basin 12, an overflow basin may be used. In the sedimentation tank 3, the aggregated floc in the introduced water is precipitated downward, and the precipitate 13 is separated from the treated water 14 above. A plurality of inclined plates 15 are juxtaposed in the upper part of the settling tank 3 to prevent the floc (precipitate) from flowing out together with the treated water 14.
[0022]
At the bottom of the settling tank 3, the slurry-like precipitate 13 is drawn from the settling tank 3, and the drawn precipitate 13 is separated into sludge 17 and sand 9 by centrifugal separation using a cyclone 16. A drawing separation line 18 for returning 9 to the agglomeration tank 2 is connected. The separated sand 9 is returned to the agglomeration tank 2 and recycled.
[0023]
In the drawing / separation line 18, an intermediate receiving tank 19 for storing the precipitate 13 once transported is provided. The sedimentation tank 3 to the intermediate receiving tank 19 are configured as a low flow path 20 with a slower pipe flow rate, and the intermediate receiving tank 19 to the cyclone 16 are configured as a high flow path 21 with a higher pipe flow rate. ing. This flow velocity difference is brought about by a low-speed transport pump 22 provided in the low flow passage 20 and a high-speed transport pump 23 provided in the high flow passage 21.
[0024]
As described above, the ratio of the flow rate in the low flow rate channel 20 to the flow rate in the high flow rate channel 21 is preferably 1: 2 or more, more preferably 1: 3 or more, and even more preferably 1: 5 or more. It is. The pipe flow rate in the low flow rate channel 20 is preferably 1.5 m / s or less, more preferably 1 m / s or less, still more preferably 0.5 m / s or less, particularly preferably 0.1 m / s. s or less. For example, as shown in the examples described later, the in-tube flow rate in the low flow rate channel 20 is set to about 0.05 m / s, and the in-pipe flow rate in the high flow rate channel 21 is set to about 3 m / s, which is the same as the conventional flow rate. It is preferable.
[0025]
In the present embodiment, the intermediate receiving tank 19 is configured as an air-released tank, but may be configured as a sealed tank. The arrangement position of the intermediate receiving tank 19 is preferably a position as close to the cyclone 16 as possible. By disposing the intermediate receiving tank 19 at a position close to the cyclone 16, the flow length of the high flow passage 21 can be kept short, and in some cases, the high flow passage 21 is made only of a substantially short straight pipe. It is also possible to configure with.
[0026]
In the coagulating sedimentation apparatus 1 configured as described above, the sediment 13 drawn out from the sedimentation tank 3 is first transferred to the intermediate receiving tank 19 with a low pipe flow rate in the low flow path 20 by the low-speed transport pump 22. To be transported to. Since a low flow rate is sufficient, the wear in the pipe in the low flow channel 20 is greatly reduced, and the wear of the seal portion and the main body portion of the low-speed transport pump 22 is also kept small.
[0027]
Further, the pipe flow velocity in the high flow velocity channel 21 is basically required to be a flow velocity necessary for the centrifugal separation in the cyclone 16. However, since the drawing separation line 18 is once cut at the intermediate receiving tank 19 and the high flow rate flow path 21 from the intermediate receiving tank 19 to the cyclone 16 may be a short flow path, even if transported at a high flow speed, The required load is kept relatively low, and therefore the generated pressure is kept relatively low. That is, in the high flow rate channel 21, it is possible to maintain a relatively low pressure while achieving a high flow rate necessary for the centrifugal separation in the cyclone 16. As a result, in-pipe wear in the high flow passage 21 is also greatly reduced, and wear of the seal portion and the main body in the high-speed transport pump 23 is suppressed to a small level.
[0028]
In order to confirm the effect of the present invention, an experiment was performed using the apparatus according to the present invention shown in FIG. 1 and the conventional apparatus shown in FIG. 2 under the following conditions.
[0029]
Experimental conditions (common conditions between the conventional apparatus and the apparatus according to the present invention)
· Raw water flow rate: 300m 3 /day(12.5m 3 / h)
-Precipitation tank load: treated water rising speed 50 m / h
Aggregation sand: silica sand, specific gravity 2.5, effective diameter 0.1 mm, addition amount in the aggregation tank 20 g / l
-Raw water turbidity: 12 degrees-Raw water pH: 7.1
Inorganic flocculant: PAC 10 mg / l
・ Polymer flocculant: Anionic organic polymer 1mg / l
(Polyacrylamide anionic polymer)
-Sludge extraction amount: 5% (10.4 liters / min) with respect to the raw water flow rate
[0030]
[Conditions for sludge transportation in conventional equipment]
・ Sand separator: Cyclone ・ Sludge transport device: High-speed sand transport pump, sand transport amount 5.2 liter / min,
Pipe flow velocity 3m / s
・ High speed sand transport pipe length: 6m
[0031]
[Sludge transport conditions in the apparatus according to the present invention]
・ Sand separator: Cyclone ・ Intermediate receiving tank: Sludge residence time 1 min
・ Low flow path: Low speed sand transport pump, transport volume 5.2 liters / min,
Pipe flow rate 0.05m / s
・ High flow rate channel: High speed sand transport pump, transport rate 5.2 liters / min,
Pipe flow velocity 3 / s, transport pipe length 1m
[0032]
The experiment was performed under the above conditions, and the apparatus of the present invention was compared with the conventional apparatus mainly with respect to the exchange amount of the pipe (total length). The results are shown in Table 1. As can be seen from Table 1, in the apparatus of the present invention, the amount of tube replacement was greatly reduced. In addition, the replacement frequency of the pump seal part and the replacement frequency of the pump body (impeller, etc.) can also be greatly reduced in the present invention device.
[0033]
[Table 1]
Figure 0003901392
[0034]
【The invention's effect】
As described above, according to the coagulation sedimentation apparatus of the present invention, an intermediate receiving tank is provided in the drawing separation line to divide the line, and from the precipitation tank to the intermediate receiving tank is a low flow rate channel, and from the intermediate receiving tank to the cyclone. Is configured as a high flow rate channel, a low speed flow rate pump is provided in the low flow rate channel, and a high speed flow rate pump is provided in the high flow rate channel. Since there was a flow rate difference between the two, the wear of pipes and pumps can be significantly reduced in the low flow path, and the pressure in the high flow path can be reduced to greatly reduce wear of the pipes and pumps. As a whole line, the occurrence of wear can be reduced, and the replacement frequency and replacement amount of each part can be greatly reduced. As a result, not only maintenance can be facilitated, but also the running cost can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a coagulation precipitation apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a conventional coagulation precipitation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coagulation precipitation apparatus 2 Coagulation tank 3 Precipitation tank 4 Raw water supply line 5 Raw water 6 Inorganic flocculant 7 Line mixer 8 Polymer flocculant 9 Sand as granular material 10 Motor 11 Stirrer 12 Cough 13 Precipitate 14 Treated water 15 Inclined plate 16 Cyclone 17 Sludge 18 Drawing separation line 19 Intermediate receiving tank 20 Low flow path 21 High flow path 22 Low speed transport pump 23 High speed transport pump

Claims (6)

原水中の懸濁物質を凝集剤と粒状物の添加により凝集させる凝集槽と、凝集槽から導入される被処理水中の凝集物を沈澱させ処理水と沈澱物とに分離する沈澱槽と、沈澱槽から沈澱物を引き抜き、引き抜かれた沈澱物を汚泥と粒状物とに分離するサイクロンを備え、分離された粒状物を凝集槽に戻す引き抜き分離ラインとを備えた凝集沈澱装置において、引き抜き分離ライン中に、中間受け槽を設けるとともに、引き抜き分離ラインの沈澱槽から中間受け槽までを低流速流路に、中間受け槽からサイクロンまでを高流速流路に構成し、かつ、低流速流路には低速輸送用ポンプを、高流速流路には高速輸送用ポンプを、それぞれ設け、両ポンプによって低流速流路と高流速流路との間に流速差をもたせたことを特徴とする凝集沈澱装置。A flocculation tank for flocculating suspended solids in raw water by adding a flocculant and particulates; a precipitation tank for precipitating agglomerates in the water to be treated introduced from the flocculation tank and separating them into treated water and precipitates; In a coagulating sedimentation apparatus, comprising a cyclone for extracting the sediment from the tank and separating the extracted sediment into sludge and particulates, and a withdrawal separation line for returning the separated particulates to the coagulation tank. In addition, an intermediate receiving tank is provided , and a low flow rate channel is configured from the sedimentation tank to the intermediate receiving tank of the drawing separation line, and a high flow rate channel is configured from the intermediate receiving tank to the cyclone. Is equipped with a low-speed transport pump and a high-speed transport pump in the high-flow-rate channel, and both pumps have a flow-rate difference between the low- and high-flow-rate channels. apparatus. 低流速流路における流速と高流速流路における流速との比が1:2以上である、請求項1の凝集沈澱装置。  The coagulation precipitation apparatus of Claim 1 whose ratio of the flow rate in a low flow rate channel and the flow rate in a high flow rate channel is 1: 2 or more. 低流速流路における管内流速が1.5m/s以下である、請求項1または2の凝集沈澱装置。  The coagulation precipitation apparatus of Claim 1 or 2 whose in-pipe flow velocity in a low flow rate flow path is 1.5 m / s or less. 中間受け槽が大気開放型の槽からなる、請求項1ないし3のいずれかに記載の凝集沈澱装置。  The coagulating sedimentation apparatus according to any one of claims 1 to 3, wherein the intermediate receiving tank is an open-air tank. 粒状物が砂である、請求項1ないし4のいずれかに記載の凝集沈澱装置。The agglomeration precipitation apparatus according to any one of claims 1 to 4 , wherein the granular material is sand . 凝集剤が無機凝集剤と高分子凝集剤を含む、請求項1ないし5のいずれかに記載の凝集沈澱装置。 6. The coagulation precipitation apparatus according to claim 1 , wherein the coagulant includes an inorganic coagulant and a polymer coagulant .
JP13854699A 1999-05-19 1999-05-19 Coagulation sedimentation equipment Expired - Fee Related JP3901392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13854699A JP3901392B2 (en) 1999-05-19 1999-05-19 Coagulation sedimentation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13854699A JP3901392B2 (en) 1999-05-19 1999-05-19 Coagulation sedimentation equipment

Publications (2)

Publication Number Publication Date
JP2000325705A JP2000325705A (en) 2000-11-28
JP3901392B2 true JP3901392B2 (en) 2007-04-04

Family

ID=15224691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13854699A Expired - Fee Related JP3901392B2 (en) 1999-05-19 1999-05-19 Coagulation sedimentation equipment

Country Status (1)

Country Link
JP (1) JP3901392B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535419B2 (en) * 2001-05-31 2010-09-01 オルガノ株式会社 Coagulation sedimentation equipment
JP3954055B2 (en) * 2004-09-30 2007-08-08 株式会社西原環境テクノロジー Coagulation separation device

Also Published As

Publication number Publication date
JP2000325705A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP4061196B2 (en) Method and plant for concentrating sludge obtained from water treatment by flocculation-decantation using stabilized floc
JP6265822B2 (en) Coagulation sedimentation apparatus and coagulation sedimentation method
JP4223870B2 (en) Water purification method
CN107108289B (en) Improved ballasted purge system
JP3814853B2 (en) Coagulation sedimentation equipment
JP4707752B2 (en) Water treatment method and water treatment system
JP3773169B2 (en) High speed biological treatment method and apparatus for organic wastewater
JP4073116B2 (en) Coagulation sedimentation equipment
JP4416144B2 (en) Coagulation precipitation method and apparatus
JP3866054B2 (en) Aggregation precipitation apparatus and control method thereof
JP3901392B2 (en) Coagulation sedimentation equipment
JP2014237123A (en) Coagulation sedimentation equipment and method
JP7083274B2 (en) Water treatment method and water treatment equipment
JP3870354B2 (en) Coagulation sedimentation equipment
JP3901391B2 (en) Coagulation sedimentation equipment
JP4535419B2 (en) Coagulation sedimentation equipment
JP4446418B2 (en) Coagulation precipitation system
JP2002085907A (en) Flocculating and settling apparatus
JP3866053B2 (en) Coagulation sedimentation apparatus and operation method thereof
JP2000334209A (en) Sand addition flocculating and settling device
JP2003145168A (en) Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JP2002113472A (en) High-speed coagulating sedimentation method for suspended water and its device
JP2001104712A (en) Flocculation/precipitation equipment and method of water treatment using the same
JP2019000760A (en) Method for operation of coagulator and coagulator
KR200235516Y1 (en) apparatus have a rapid deposition of a cohesive reaction for sewage disposal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees