JP4446418B2 - Coagulation precipitation system - Google Patents

Coagulation precipitation system Download PDF

Info

Publication number
JP4446418B2
JP4446418B2 JP2000250670A JP2000250670A JP4446418B2 JP 4446418 B2 JP4446418 B2 JP 4446418B2 JP 2000250670 A JP2000250670 A JP 2000250670A JP 2000250670 A JP2000250670 A JP 2000250670A JP 4446418 B2 JP4446418 B2 JP 4446418B2
Authority
JP
Japan
Prior art keywords
stage
tank
coagulation
precipitation
turbidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000250670A
Other languages
Japanese (ja)
Other versions
JP2002058907A (en
Inventor
治雄 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000250670A priority Critical patent/JP4446418B2/en
Publication of JP2002058907A publication Critical patent/JP2002058907A/en
Application granted granted Critical
Publication of JP4446418B2 publication Critical patent/JP4446418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、原水中の懸濁物質を凝集沈澱により汚泥と処理水とに分離する凝集沈澱システムに関し、とくに高濁度の原水の処理に好適な凝集沈澱システムに関する。
【0002】
【従来の技術】
原水中に懸濁している物質(以下、SS〔Suspended Solid〕と称することもある。)を沈澱により分離除去する装置が知られている。従来の原水中のSSを除去するための凝集沈澱装置として、原水に単に凝集剤を添加して凝集物を沈澱させ、凝集物を汚泥として引き抜くとともに上部から処理水を導出するようにした装置はよく知られている。
【0003】
このような一般的な凝集沈澱装置では、凝集物の沈澱に長時間を要し、沈澱槽としても極めて大型のものが要求されることから、より効率よく凝集沈澱を行わせるようにした凝集沈澱装置が先に本出願人により提案されている。
【0004】
例えば特願平11−130978号にて、原水に凝集剤とともに粒状物として砂を添加し、原水中のSSを比重の大きい粒状物を含んだ比較的大きなフロックとして凝集させ、沈澱槽において凝集槽から導入された被処理水中のフロックを沈降させて処理水と分離する凝集沈澱装置を提案した。沈澱槽から引き抜かれた沈澱フロックは、サイクロン等の分離器により汚泥と粒状物とに分離され、分離された粒状物は凝集槽に戻されて循環使用される。
【0005】
この先に提案した凝集沈澱装置は、例えば図4に示すように構成されている。図4に示す凝集沈澱装置においては、原水5に無機凝集剤6と高分子凝集剤7がライン4にて注入された後、ミキサー8を介して凝集槽2に導入され、凝集槽2では粒状物としての砂9が添加されて、モータ10で駆動される攪拌機11で攪拌されつつフロック13が成長される。成長したフロックを含有する被処理水は、越流ぜき12を通して沈澱槽3に導入され、沈降するフロックと反転上昇流としての処理水14とに分離される。処理水14は、例えば沈澱槽3内の上部に配置された傾斜板15を介して外部へ排出される。沈澱した汚泥は汚泥引抜きポンプ17によって引き抜かれ、ライン16を介してサイクロン等の分離器18に送られ、該分離器18によって、汚泥19と、循環使用される粒状物(砂9)とに分離される。また、凝集効果を高めるために汚泥19の一部がバルブ21、22の操作により汚泥返送ライン20を介して返送される場合もある。
【0006】
上記のような凝集沈澱装置においては、粒状物とともに凝集したフロックは、粒状物を含まないフロックに比較してその密度が大きいために非常に速い沈降速度が得られ、沈澱槽における線速度(LV)が50m/h以上という高流速の処理も可能となる。従って沈澱槽を小さなものとすることができる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のような凝集沈澱装置を用いて高濁度(例えば、数百度以上)の原水を処理しようとする場合には、沈澱槽へのSS負荷が増大しすぎることがあり、そのため処理水質が悪化してしまうおそれがあるという問題点がある。
【0008】
そこで本発明の課題は、原水が高濁度となった場合でも、良好にかつ効率的に凝集沈澱を行うことができる処理システムを提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る凝集沈澱システムは、原水中の懸濁物質を凝集剤と粒状物の添加によりフロックとして凝集させる凝集槽と、凝集槽からの被処理水中のフロックを沈降させ処理水とフロックとに分離する沈澱槽とを備えた凝集沈澱装置を2段直列に配置し、原水濁度に応じて1段目または2段目の凝集沈澱装置による処理を省略するバイパスラインが前記1段目または2段目の凝集沈澱装置に対して設けられたことを特徴とするものからなる。
【0010】
上記凝集沈澱システムにおいては、原水の濁度が低く、1段処理で十分と考えられる場合には、従前と同様の1段処理に切り替えるようにすることできる。すなわち、1段目または2段目の凝集沈澱装置に対し、原水濁度に応じて1段処理と2段処理とに選択的に切替可能なバイパスラインを設けておき、1段処理を行う場合にはバイパスラインに通して1段目または2段目の凝集沈澱装置による処理を省略する構成とする
【0011】
上記凝集沈澱システムにおいては、1段目の処理は、2段目で安定した処理が行えるようにするための、原水の濁度低減手段、つまり2段目の被処理水を導入前に濁度を予め低減しておく手段と考えることができるので、1段目における線速度(LV)を比較的高くしても別段問題は生じない。むしろシステム全体の処理速度の向上を考慮すると、1段目における線速度は高く設定されている方が好ましい。つまり、1段目沈澱槽における線速度が2段目沈澱槽における線速度よりも高く設定されていることが好ましい。
【0012】
また、上記凝集沈澱システムにおいては、1段目凝集槽と2段目凝集槽に互いに異なる凝集剤を添加するようにすることもできる。
【0013】
このような本発明に係る凝集沈澱システムにおいては、原水濁度上昇時でも1段目の凝集沈澱装置により濁度の低減が行えるので、2段目の凝集沈澱装置の負荷を大幅に低減でき、該2段目凝集沈澱装置での処理を、常時安定して行うことができる。
【0014】
また、原水の濁度に応じて1段処理と2段処理とを選択的に切り替えることにより、原水の濁度に応じた最も効率のよい処理を行うことができる。つまり、原水の濁度が高い場合には、本発明に係る2段処理とし、原水の濁度が低い場合には、従前と同様の1段処理に切り替えることができる。
【0015】
また、1段目沈澱槽処理の線速度を2段目のそれよりも速くしておくことにより、とくに1段目の沈澱槽の断面積を低減することができ、それを介してシステム全体の小型化をはかることが可能になる。
【0016】
さらに、1段目と2段目に互いに異なる凝集剤、例えば、イオン性や分子量等が異なる高分子を使うことにより、1段目、2段目それぞれに最適な凝集を行うことができるので、システム全体としての処理性能をより高めることができる。また、1段目において、鉄−シリカ系無機凝集剤等の、モノマー(例えば、アクリルアミドモノマー)を含まない高分子凝集剤を用いれば、モノマーを含む有機高分子凝集剤の総注入量を低く抑えることが可能となり、処理水中への好ましくないモノマーの含有量の抑制をはかることができる。
【0017】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る凝集沈澱システムの全体の処理フローを示しており、図2は、図1のフローにおいて2段直列に配置される凝集沈澱装置の一例を示している。
【0018】
図2に示す凝集沈澱装置1は、基本的には図4に示した装置と同じ構成を有しているので、図4に示した各部材、各部位と対応するものに図4と同一の符号を付すことにより説明を省略する。但し本発明に係るシステムは、とくに高濁度の原水に対する処理に有効なものであるから、図4に示した汚泥返送ライン20およびそのための切替バルブ21、22は不要であり、省略することができる。
【0019】
図1に示す凝集沈澱システム31においては、図2に示したような凝集沈澱装置1(図1では1a、1bで表してある)が2段直列に配置されている。供給されてきた原水32は、まず原水濁度計33によって、濁度が測定される。本実施態様では、測定された濁度に応じて、その測定値が予め定められた所定濁度(例えば200度)以下の場合は、1段処理にて良好な処理水が得られるので、弁34を閉じて1段目の凝集沈澱装置1aへは通水せず、弁35を開いてバイパスライン36を介して2段目の凝集沈澱装置1bのみに原水を通水する。原水濁度測定値が所定濁度以上となった場合は、1段処理にて良好な処理水を得ることが困難となるので、弁34、35を切り替え1段目の凝集沈澱装置1aへ原水を通水し、その濁度を2段目において良好な処理が可能なレベルまで低減する。そして、1段目処理水を、2段目の凝集沈澱装置1bに導水し、最終的に濁度が低減された良好な処理水37を得る。なお、バイパスラインを2段目の凝集沈澱装置1bに対して設けることも可能であるが、1段目処理を2段目処理の前処理とする考え方からは、1段目の凝集沈澱装置1aに対しバイパスライン36を設ける方が好ましい。
【0020】
上記の1段処理と2段処理の切替は、例えば図3に示すように行われる。すなわち、ステップS1で原水の濁度を測定し、原水濁度が所定濁度(例えば200度)以上の場合には(ステップS2)、1段目の凝集沈澱装置1a(設計LV:例えば90m/h)に通水し(ステップS3)、しかる後に2段目の凝集沈澱装置1b(設計LV:例えば25m/h)に通水して(ステップS4)、2段処理した処理水を得る。測定した原水の濁度が所定濁度(例えば200度)未満である場合には(ステップS5)、1段目の凝集沈澱装置1aを通さずにバイパスさせ、直接2段目の凝集沈澱装置1bに通水して処理水を得る。
【0021】
各凝集沈澱装置1a、1bにおいて添加する無機凝集剤6としては、例えばポリ塩化アルミニウム(PAC)、塩化第二鉄、硫酸第二鉄、鉄−シリカ系凝集剤を使用でき、高分子凝集剤としては、例えばノニオン性、アニオン性、両性の有機高分子凝集剤を使用でき、さらには無機凝集剤と高分子凝集剤の作用を併有する無機高分子凝集剤、例えば鉄−シリカ系高分子凝集剤を用いることができる。上記アニオン性の高分子凝集剤としては、例えば、アクリル酸またはその塩の重合物、アクリル酸またはその塩とアクリルアミドとの共重合物、アクリルアミドと2−アクリルアミド−2メチルプロパンスルホン酸塩の共重合物、アクリル酸またはその塩とアクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸塩の3元共重合物、ポリアクリルアミドの部分加水分解物などが挙げられるが、特にこれらに限定されるものではない。ノニオン性の高分子凝集剤としては、代表的なものとしてポリアクリルアミドが挙げられるが、特にこれに限定されるものではない。両性の高分子凝集剤としては、例えば、ジメチルアミノエチル(メタ)アクリレートの3級塩および4級塩(塩化メチル塩等)等の少なくとも1種のカチオン性単量体と、アクリル酸およびその塩(ナトリウム、カルシウム等の塩類)、2−アクリルアミド−2−メチルプロパンスルホン酸塩(ナトリウム、カルシウム等の塩類)等の少なくとも1種のアニオン性単量体の共重合物、あるいは、上記の少なくとも1種のカチオン性単量体および上記の少なくとも1種のアニオン性単量体とアクリルアミド等の少なくとも1種のノニオン性単量体との三元もしくは四元以上の共重合物等が挙げられるが、特にこれらに限定されるものではない。高分子凝集剤の分子量の範囲は特に限定されないが、500万〜2000万の範囲が好ましい。これらの高分子凝集剤は、単独で又は混合物として用いることができる。高分子凝集剤の添加量は、一般的に経済的な観点から0.3〜2mg/L程度である。
【0022】
また、上記のような凝集剤の添加においては、各段で異なる凝集剤を用いることも可能である。例えば1段目では無機高分子凝集剤のみを添加し、2段目では無機凝集剤と有機高分子凝集剤を添加するといった方法が挙げられる。
【0023】
1段目及び2段目の沈澱槽における線速度(LV)については、前述の如く1段目処理は2段目処理の前処理と位置づけることができるので、最終処理用の2段目よりも大きなLVに設定することができる。
【0024】
また、凝集に使用する粒状物としては、代表的には砂(例えば珪砂)を使用することができ、とくに粒径を揃えたものが好ましい。
【0025】
【実施例】
実験1
本発明による効果を確認するため、まず次のような実験1を行った。懸濁物質としてカオリンを用い、濁度を1000度に調整した人工濁水を準備し、この人工濁水に対し、1系列は2段処理(実施例1〜3)、もう1系列は1段処理(比較例1〜3)にて処理を行い、それぞれの処理水濁度を測定した。
【0026】
各実施例及び比較例の運転条件は以下の通りであり、実施例1〜3、比較例1〜3における各運転の条件を表1に示す。

Figure 0004446418
【0027】
【表1】
Figure 0004446418
【0028】
上記実験の結果、処理水濁度測定結果は表2に示すようになった。
【0029】
【表2】
Figure 0004446418
【0030】
表1、表2に示したように、濁度1000度の人工濁水を濁度1度以下(浄水処理における凝集沈澱処理水の一般的目標値)にまで処理するには、実施例では1段目沈澱槽LV=104m/h、2段目沈澱槽LV=33m/hで処理すればよいのに対し(実施例3)、比較例では沈澱槽LV=8m/hまで下げる必要があった(比較例1)。
この場合の処理量1m3 /h当りの沈澱槽総断面積は、実施例3では0.04m2 、比較例1では0.13m2 となり、本発明の有効性が確認できた。
【0031】
実験2
実験1の実施例3と同様の実験機及び人工濁水を用いて、1段目と2段目の薬品注入条件を変えて、より具体的には2段目の高分子凝集剤の種類を変更して、運転を実施した。この実施例4の運転条件は表3の通りである。
【0032】
【表3】
Figure 0004446418
【0033】
上記実験2の結果、処理水濁度測定結果は表4のようになった。
【0034】
【表4】
Figure 0004446418
【0035】
この実施例4と、前述の実施例3の結果との比較から判るように、1段目と2段目で異なる高分子凝集剤を使用することにより、処理水質をさらに向上させることができた。
【0036】
このように、本発明に係る凝集沈澱システムでは、次のようなことが明らかになった。すなわち、一般に、凝集沈澱装置においては凝集槽や沈澱槽の断面積(換言すれば、原水の流速)が大きい方が(流速の遅い方が)処理水質は良くなる。したがって、1段処理の場合の凝集沈澱装置(従前装置)の断面積が、本発明に係る2段処理の場合の総断面積と同じであれば、同等の処理水質が得られるようにも思える。しかし実際には、前記実施例と比較例との比較からも明らかなように、2段処理の方が処理水質が良くなり、同等の処理水質を得るには、前記実施例3と比較例1との比較からも判るように、2段処理の方が単位処理量当たりの総断面積は少なくて済む。つまり、本発明に係る2段処理システムは、格別の効果を奏する。
【0037】
【発明の効果】
以上説明したように、本発明の凝集沈澱システムによれば、凝集沈澱装置を2段直列に配置することにより、常時良好な処理水を得ることができる。また、原水濁度上昇時のみ2段処理を行うことにより、エネルギーの浪費を抑えることができる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る凝集沈澱システムの概略構成図である。
【図2】図1のシステムにおける各凝集沈澱装置の一例を示す概略構成図である。
【図3】図1のシステムの運転切替条件の一例を示すフローチャートである。
【図4】本出願人より先に提案された凝集沈澱装置の概略構成図である。
【符号の説明】
1 凝集沈澱装置
1a 1段目凝集沈澱装置
1b 2段目凝集沈澱装置
2 凝集槽
3 沈澱槽
4 原水供給ライン
5 原水
6 無機凝集剤
7 高分子凝集剤
8 ミキサー
9 粒状物としての砂
10 モータ
11 攪拌機
12 越流ぜき
13 成長したフロック
14 処理水
15 傾斜板
16 引抜ライン
17 汚泥引抜ポンプ
18 分離器としてのサイクロン
19 汚泥
31 凝集沈澱システム
32 原水
33 原水濁度計
34、35 弁
36 バイパスライン
37 処理水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coagulation sedimentation system that separates suspended substances in raw water into sludge and treated water by coagulation sedimentation, and more particularly to a coagulation sedimentation system suitable for treatment of raw water with high turbidity.
[0002]
[Prior art]
There is known an apparatus for separating and removing a substance suspended in raw water (hereinafter sometimes referred to as SS [Suspended Solid]) by precipitation. As a conventional coagulating sedimentation apparatus for removing SS in raw water, an apparatus that simply adds a coagulant to raw water to precipitate the aggregate, pulls the aggregate as sludge, and derives treated water from the top is well known.
[0003]
In such a general coagulation precipitation apparatus, it takes a long time to precipitate the coagulum, and a very large sedimentation tank is required. Therefore, the coagulation precipitation can be performed more efficiently. An apparatus has been previously proposed by the applicant.
[0004]
For example, in Japanese Patent Application No. 11-130978, sand is added to raw water as a granular material together with a flocculant, and SS in the raw water is agglomerated as a relatively large floc containing granular material having a large specific gravity. We proposed a coagulating sedimentation device that settles the flocs in the water to be treated introduced from the water and separates it from the treated water. The sediment floc extracted from the sedimentation tank is separated into sludge and particulates by a separator such as a cyclone, and the separated particulates are returned to the agglomeration tank for circulation.
[0005]
The previously proposed agglomeration precipitation apparatus is configured as shown in FIG. 4, for example. In the coagulation precipitation apparatus shown in FIG. 4, the inorganic coagulant 6 and the polymer coagulant 7 are injected into the raw water 5 through the line 4 and then introduced into the coagulation tank 2 through the mixer 8. Sand 9 as an object is added, and the floc 13 is grown while being stirred by a stirrer 11 driven by a motor 10. The treated water containing the grown floc is introduced into the settling tank 3 through the overflow basin 12 and separated into the floc that settles and the treated water 14 as an inverted upflow. The treated water 14 is discharged to the outside through, for example, an inclined plate 15 disposed at the upper part in the precipitation tank 3. The settled sludge is extracted by a sludge extraction pump 17 and sent to a separator 18 such as a cyclone via a line 16, and the separator 18 separates the sludge 19 and the particulate matter (sand 9) used for circulation. Is done. Further, in order to enhance the agglomeration effect, a part of the sludge 19 may be returned via the sludge return line 20 by operating the valves 21 and 22.
[0006]
In the coagulation precipitation apparatus as described above, the floc aggregated together with the particulate matter has a higher density than the floc not containing the particulate matter, and thus a very high sedimentation speed is obtained. The linear velocity (LV) in the precipitation tank is obtained. ) Can be processed at a high flow rate of 50 m / h or more. Therefore, the precipitation tank can be made small.
[0007]
[Problems to be solved by the invention]
However, when the raw water having high turbidity (for example, several hundred degrees or more) is to be treated using the coagulating sedimentation apparatus as described above, the SS load on the sedimentation tank may increase too much, and therefore the quality of the treated water There is a problem that may deteriorate.
[0008]
Then, the subject of this invention is providing the processing system which can perform coagulation precipitation favorable and efficiently, even when raw | natural water becomes high turbidity.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the coagulation sedimentation system according to the present invention comprises a coagulation tank that aggregates suspended substances in raw water as flocs by adding a flocculant and particulates, and a floc in the water to be treated from the coagulation tank. By-pass coagulating sedimentation equipment equipped with a sedimentation tank that settles and separates into treated water and flocs is arranged in series, bypassing the treatment by the first or second coagulation sedimentation apparatus depending on the raw water turbidity A line is provided for the first-stage or second-stage coagulating sedimentation apparatus .
[0010]
In the coagulating sedimentation system, the turbidity of the raw water is low, where considered sufficient in one step process, it can be switched to a similar one-step process as before. That is , when the first-stage or second-stage coagulating sedimentation apparatus is provided with a bypass line that can be selectively switched between the first-stage treatment and the second-stage treatment according to the raw water turbidity, In this case, the treatment by the first-stage or second-stage coagulating sedimentation apparatus is omitted through the bypass line .
[0011]
In the above coagulation sedimentation system, the first stage treatment is turbidity before introducing the turbidity reducing means of raw water, that is, the second stage treated water, in order to enable stable treatment in the second stage. Therefore, even if the linear velocity (LV) at the first stage is relatively high, no other problem arises. Rather, considering the improvement in the processing speed of the entire system, it is preferable that the linear velocity at the first stage is set high. That is, it is preferable that the linear velocity in the first stage precipitation tank is set higher than the linear velocity in the second stage precipitation tank.
[0012]
In the coagulation precipitation system, different coagulants can be added to the first stage coagulation tank and the second stage coagulation tank.
[0013]
In such a coagulation precipitation system according to the present invention, the turbidity can be reduced by the first stage coagulation precipitation apparatus even when the raw water turbidity rises, so the load of the second stage coagulation precipitation apparatus can be greatly reduced, The treatment in the second-stage agglomeration precipitation apparatus can be performed stably at all times.
[0014]
Moreover, the most efficient process according to the turbidity of raw water can be performed by selectively switching between the first stage process and the second stage process according to the turbidity of the raw water. That is, when the turbidity of the raw water is high, the two-stage process according to the present invention can be performed, and when the turbidity of the raw water is low, the process can be switched to the same one-stage process as before.
[0015]
In addition, by making the linear velocity of the first stage precipitation tank process higher than that of the second stage, it is possible to reduce the cross-sectional area of the first stage precipitation tank. It is possible to reduce the size.
[0016]
Furthermore, by using different coagulants in the first stage and the second stage, for example, polymers having different ionicity and molecular weight, etc., optimal aggregation can be performed in each of the first stage and the second stage. The processing performance of the entire system can be further increased. In the first stage, if a polymer flocculant containing no monomer (for example, acrylamide monomer) such as an iron-silica inorganic flocculant is used, the total injection amount of the organic polymer flocculant containing the monomer is kept low. This makes it possible to suppress the content of undesirable monomers in the treated water.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall processing flow of a coagulation precipitation system according to an embodiment of the present invention, and FIG. 2 shows an example of a coagulation precipitation apparatus arranged in two stages in the flow of FIG. .
[0018]
2 has basically the same configuration as that of the apparatus shown in FIG. 4, so that the members corresponding to the members and parts shown in FIG. 4 are the same as those in FIG. The description will be omitted by attaching the reference numerals. However, since the system according to the present invention is particularly effective for the treatment of raw water with high turbidity, the sludge return line 20 and the switching valves 21 and 22 therefor shown in FIG. 4 are unnecessary and can be omitted. it can.
[0019]
In the coagulation precipitation system 31 shown in FIG. 1, coagulation precipitation apparatuses 1 (shown as 1a and 1b in FIG. 1) as shown in FIG. 2 are arranged in two stages in series. The raw water 32 that has been supplied is first measured for turbidity by a raw water turbidimeter 33. In this embodiment, according to the measured turbidity, when the measured value is equal to or less than a predetermined turbidity (for example, 200 degrees), good treated water can be obtained by one-stage treatment. 34 is closed and water is not passed through the first stage coagulating sedimentation apparatus 1a, but the valve 35 is opened, and the raw water is passed through the bypass line 36 only to the second stage coagulating sedimentation apparatus 1b. When the raw water turbidity measurement value is equal to or higher than the predetermined turbidity, it is difficult to obtain good treated water by the first stage treatment, so the valves 34 and 35 are switched to the first stage coagulation sedimentation apparatus 1a. Water is passed through, and the turbidity is reduced to a level where good treatment is possible in the second stage. Then, the first-stage treated water is introduced into the second-stage coagulating sedimentation apparatus 1b to finally obtain good treated water 37 with reduced turbidity. In addition, although it is possible to provide a bypass line for the second stage coagulating sedimentation apparatus 1b, from the idea that the first stage processing is a pretreatment of the second stage processing, the first stage coagulating precipitation apparatus 1a. However, it is preferable to provide the bypass line 36.
[0020]
The switching between the first-stage process and the second-stage process is performed as shown in FIG. 3, for example. That is, the turbidity of raw water is measured in step S1, and when the raw water turbidity is equal to or higher than a predetermined turbidity (for example, 200 degrees) (step S2), the first-stage coagulating sedimentation apparatus 1a (design LV: 90 m / for example) h) (step S3), and then passed through the second-stage coagulating sedimentation apparatus 1b (design LV: for example, 25 m / h) (step S4) to obtain treated water that has been treated in two stages. When the measured turbidity of the raw water is less than a predetermined turbidity (for example, 200 degrees) (step S5), the raw water is bypassed without passing through the first-stage coagulation sedimentation apparatus 1a, and directly the second-stage coagulation precipitation apparatus 1b. To obtain treated water.
[0021]
As the inorganic flocculant 6 added in each of the coagulation / precipitation apparatuses 1a and 1b, for example, polyaluminum chloride (PAC), ferric chloride, ferric sulfate, iron-silica flocculant can be used, and as the polymer flocculant Can use, for example, nonionic, anionic and amphoteric organic polymer flocculants, and furthermore, inorganic polymer flocculants having both functions of inorganic flocculants and polymer flocculants, such as iron-silica polymer flocculants Can be used. Examples of the anionic polymer flocculant include a polymer of acrylic acid or a salt thereof, a copolymer of acrylic acid or a salt thereof and acrylamide, and a copolymer of acrylamide and 2-acrylamido-2-methylpropanesulfonate. Products, acrylic acid or salts thereof, terpolymers of acrylamide and 2-acrylamido-2-methylpropane sulfonate, and polyacrylamide partial hydrolysates, but are not particularly limited thereto. . A typical example of the nonionic polymer flocculant includes polyacrylamide, but is not particularly limited thereto. Examples of amphoteric polymer flocculants include, for example, at least one cationic monomer such as dimethylaminoethyl (meth) acrylate tertiary salt and quaternary salt (such as methyl chloride salt), acrylic acid and salts thereof. (Salts such as sodium and calcium), copolymers of at least one anionic monomer such as 2-acrylamido-2-methylpropanesulfonate (salts such as sodium and calcium), or at least one of the above Examples of the cationic monomer and terpolymer or quaternary copolymer of at least one anionic monomer and at least one nonionic monomer such as acrylamide, In particular, it is not limited to these. The molecular weight range of the polymer flocculant is not particularly limited, but a range of 5 million to 20 million is preferable. These polymer flocculants can be used alone or as a mixture. The addition amount of the polymer flocculant is generally about 0.3 to 2 mg / L from an economical viewpoint.
[0022]
Further, in the addition of the flocculant as described above, it is possible to use a different flocculant at each stage. For example, only the inorganic polymer flocculant is added in the first stage, and the inorganic flocculant and the organic polymer flocculant are added in the second stage.
[0023]
As for the linear velocity (LV) in the first and second stage precipitation tanks, as described above, the first stage process can be positioned as a pre-process for the second stage process, so that it is more than the second stage for the final process. It can be set to a large LV.
[0024]
Moreover, as a granular material used for agglomeration, sand (for example, silica sand) can be typically used, and those having a uniform particle diameter are particularly preferable.
[0025]
【Example】
Experiment 1
In order to confirm the effect of the present invention, the following experiment 1 was first performed. Prepared artificial turbid water with turbidity adjusted to 1000 degrees using kaolin as a suspended substance. One series is treated in two stages (Examples 1 to 3), and the other series is treated in one stage ( It processed in Comparative Examples 1-3), and measured each process water turbidity.
[0026]
The operating conditions of each Example and Comparative Example are as follows, and Table 1 shows the operating conditions in Examples 1 to 3 and Comparative Examples 1 to 3.
Figure 0004446418
[0027]
[Table 1]
Figure 0004446418
[0028]
As a result of the above experiment, the results of measurement of the treated water turbidity are as shown in Table 2.
[0029]
[Table 2]
Figure 0004446418
[0030]
As shown in Tables 1 and 2, in order to treat artificial turbid water with a turbidity of 1000 degrees to a turbidity of 1 degree or less (general target value of coagulated sediment treated water in water purification treatment) In the comparative example, it was necessary to lower the precipitation tank LV to 8 m / h, whereas the second precipitation tank LV may be processed in the second precipitation tank LV = 33 m / h (Example 3). Comparative Example 1).
Precipitation tank total cross-sectional area of the throughput 1 m 3 / per h in this case, Embodiment 3 In 0.04 m 2, Comparative Example 1, 0.13 m 2, and the efficacy of the present invention was confirmed.
[0031]
Experiment 2
Using the same experimental machine and artificial muddy water as in Example 3 of Experiment 1, the chemical injection conditions for the first and second stages were changed, and more specifically, the type of the polymer coagulant for the second stage was changed. Then, driving was carried out. The operating conditions of Example 4 are as shown in Table 3.
[0032]
[Table 3]
Figure 0004446418
[0033]
As a result of the experiment 2, the measured water turbidity measurement results are shown in Table 4.
[0034]
[Table 4]
Figure 0004446418
[0035]
As can be seen from a comparison between the results of Example 4 and Example 3 described above, the quality of the treated water could be further improved by using different polymer flocculants in the first and second stages. .
[0036]
Thus, the following things became clear in the coagulation precipitation system concerning the present invention. That is, in general, in the coagulation sedimentation apparatus, the treated water quality is improved when the cross-sectional area of the coagulation tank or the sedimentation tank (in other words, the flow rate of the raw water) is large (the flow rate is low). Therefore, if the cross-sectional area of the coagulating sedimentation apparatus (previous apparatus) in the case of the one-stage treatment is the same as the total cross-sectional area in the case of the two-stage treatment according to the present invention, it seems that equivalent treated water quality can be obtained. . However, in practice, as is clear from the comparison between the example and the comparative example, the quality of the treated water is better in the two-stage treatment, and in order to obtain an equivalent treated water quality, the example 3 and the comparative example 1 are used. As can be seen from the comparison, the total cross-sectional area per unit processing amount is smaller in the two-stage processing. That is, the two-stage processing system according to the present invention has a special effect.
[0037]
【The invention's effect】
As described above, according to the coagulation sedimentation system of the present invention, it is possible to always obtain good treated water by arranging the coagulation sedimentation devices in two stages in series. Moreover, waste of energy can be suppressed by performing the two-stage treatment only when the raw water turbidity increases.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a coagulation precipitation system according to an embodiment of the present invention.
2 is a schematic configuration diagram showing an example of each coagulating sedimentation apparatus in the system of FIG.
3 is a flowchart showing an example of an operation switching condition of the system of FIG.
FIG. 4 is a schematic configuration diagram of an agglomeration precipitation apparatus previously proposed by the present applicant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coagulation precipitation apparatus 1a First stage aggregation precipitation apparatus 1b Second stage aggregation precipitation apparatus 2 Coagulation tank 3 Precipitation tank 4 Raw water supply line 5 Raw water 6 Inorganic flocculant 7 Polymer flocculant 8 Mixer 9 Sand 10 as particulate matter Motor 11 Stirrer 12 Overflow head 13 Grown floc 14 Treated water 15 Inclined plate 16 Extraction line 17 Sludge extraction pump 18 Cyclone 19 as separator 19 Sludge 31 Coagulation sedimentation system 32 Raw water 33 Raw water turbidimeter 34, 35 Valve 36 Bypass line 37 Treated water

Claims (4)

原水中の懸濁物質を凝集剤と粒状物の添加によりフロックとして凝集させる凝集槽と、凝集槽からの被処理水中のフロックを沈降させ処理水とフロックとに分離する沈澱槽とを備えた凝集沈澱装置を2段直列に配置し、原水濁度に応じて1段目または2段目の凝集沈澱装置による処理を省略するバイパスラインが前記1段目または2段目の凝集沈澱装置に対して設けられたことを特徴とする凝集沈澱システム。Agglomeration tank that aggregates suspended substances in raw water as flocs by adding a flocculant and particulates, and an agglomeration unit that includes a sedimentation tank that settles flocs in water to be treated from the aggregation tank and separates them into treated water and flocs The bypass line is arranged in two stages in series, and the bypass line that omits the treatment by the first or second stage coagulating sedimentation apparatus according to the raw water turbidity is connected to the first stage or second stage coagulating sedimentation apparatus. A coagulating sedimentation system characterized by being provided . 予め定められた所定濁度以下の場合に、前記バイパスラインが前記1段目または2段目の凝集沈澱装置による処理を省略することにより、1段処理と2段処理と選択的に切替える、請求項1に記載の凝集沈澱システム。 If the predetermined predetermined turbidity below, by omitting the processing of the bypass line is due to coagulating sedimentation apparatus of the first stage or the second stage, selectively switching the one-stage process and the two-stage process obtain, coagulating sedimentation system according to claim 1. 1段目沈澱槽における線速度が2段目沈澱槽における線速度よりも高く設定されている、請求項1または2の凝集沈澱システム。  The coagulation precipitation system of Claim 1 or 2 with which the linear velocity in a 1st stage precipitation tank is set higher than the linear velocity in a 2nd stage precipitation tank. 1段目凝集槽と2段目凝集槽に互いに異なる凝集剤が添加されている、請求項1ないし3のいずれかに記載の凝集沈澱システム。  The coagulation precipitation system according to any one of claims 1 to 3, wherein different coagulants are added to the first stage coagulation tank and the second stage coagulation tank.
JP2000250670A 2000-08-22 2000-08-22 Coagulation precipitation system Expired - Lifetime JP4446418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250670A JP4446418B2 (en) 2000-08-22 2000-08-22 Coagulation precipitation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250670A JP4446418B2 (en) 2000-08-22 2000-08-22 Coagulation precipitation system

Publications (2)

Publication Number Publication Date
JP2002058907A JP2002058907A (en) 2002-02-26
JP4446418B2 true JP4446418B2 (en) 2010-04-07

Family

ID=18740200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250670A Expired - Lifetime JP4446418B2 (en) 2000-08-22 2000-08-22 Coagulation precipitation system

Country Status (1)

Country Link
JP (1) JP4446418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102366680A (en) * 2011-08-23 2012-03-07 浙江省海洋开发研究院 Seawater coagulation turbidity removing system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2822080B1 (en) * 2001-03-15 2004-10-29 Vivendi Water Systems PROCESS AND PLANT FOR TREATING WATER BY MEASURED FLOCCULATION AND GRAVITY SEPARATION WITH VARIABLE MODE OF OPERATION
JP2010046627A (en) * 2008-08-22 2010-03-04 Toshiba Corp Water-purifying pretreatment system
JP4878638B2 (en) * 2009-10-14 2012-02-15 シャープ株式会社 Water purifier
CA2788623C (en) * 2010-02-25 2016-12-06 Veolia Water Solutions & Technologies Support Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
JP2011031244A (en) * 2010-11-08 2011-02-17 Toshiba Corp Water-cleaning pretreatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102366680A (en) * 2011-08-23 2012-03-07 浙江省海洋开发研究院 Seawater coagulation turbidity removing system

Also Published As

Publication number Publication date
JP2002058907A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
JP4223870B2 (en) Water purification method
JP3814853B2 (en) Coagulation sedimentation equipment
JP3773169B2 (en) High speed biological treatment method and apparatus for organic wastewater
JP5423256B2 (en) Sludge dewatering method and sludge dewatering device
JP4073116B2 (en) Coagulation sedimentation equipment
JP4446418B2 (en) Coagulation precipitation system
JP4416144B2 (en) Coagulation precipitation method and apparatus
JP2003340208A (en) Water cleaning method and apparatus therefor
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP3866054B2 (en) Aggregation precipitation apparatus and control method thereof
JP3509169B2 (en) Dewatering method by sludge granulation and concentration
JP4535419B2 (en) Coagulation sedimentation equipment
JP2019198806A (en) Water treatment method, and water treatment device
JP3559822B2 (en) Water treatment method and apparatus
US20130075341A1 (en) Method for clarifying industrial wastewater
JP3591077B2 (en) Sludge dewatering method
JP2004290926A (en) Flocculation precipitation apparatus
JP7142540B2 (en) Water purification method and water purification device
JP3866053B2 (en) Coagulation sedimentation apparatus and operation method thereof
JPH04371300A (en) Sludge treating device
JP2003145168A (en) Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JP6825999B2 (en) Operation method of coagulation sedimentation device and coagulation sedimentation device
JP3482973B2 (en) Sewage coagulation method
KR20170040964A (en) An apparatus for water treatment using precipitation and dehydration of sludge and a method for water treatment using thereof
JP3870354B2 (en) Coagulation sedimentation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4446418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term