JP6825999B2 - Operation method of coagulation sedimentation device and coagulation sedimentation device - Google Patents

Operation method of coagulation sedimentation device and coagulation sedimentation device Download PDF

Info

Publication number
JP6825999B2
JP6825999B2 JP2017115106A JP2017115106A JP6825999B2 JP 6825999 B2 JP6825999 B2 JP 6825999B2 JP 2017115106 A JP2017115106 A JP 2017115106A JP 2017115106 A JP2017115106 A JP 2017115106A JP 6825999 B2 JP6825999 B2 JP 6825999B2
Authority
JP
Japan
Prior art keywords
water
treated
settling tank
polymer flocculant
flocs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017115106A
Other languages
Japanese (ja)
Other versions
JP2019000760A (en
Inventor
臨太郎 前田
臨太郎 前田
井坂 和一
和一 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2017115106A priority Critical patent/JP6825999B2/en
Publication of JP2019000760A publication Critical patent/JP2019000760A/en
Application granted granted Critical
Publication of JP6825999B2 publication Critical patent/JP6825999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、造粒型の凝集沈殿装置の運転方法および造粒型の凝集沈殿装置に関する。 The present invention relates to a method for operating a granulation type coagulation sedimentation device and a granulation type coagulation sedimentation device.

水処理装置の1つとして、用水処理や排水処理などに凝集沈殿装置が広く用いられている。凝集沈殿装置は、原水に含まれる懸濁物質を凝集させて沈殿槽内で沈殿させ、原水を汚泥と処理水とに分離するものである。すなわち、沈殿槽に供給される原水は、汚泥による流動層(スラッジブランケット)を通過する際に、原水中の懸濁物質やフロックがスラッジブランケットに捕捉され、ろ過された上澄み液が処理水として得られることになる。 As one of the water treatment devices, a coagulation sedimentation device is widely used for water treatment and wastewater treatment. The coagulation sedimentation device aggregates suspended substances contained in raw water and precipitates them in a settling tank, and separates the raw water into sludge and treated water. That is, when the raw water supplied to the settling tank passes through the fluidized bed (sludge blanket) due to sludge, suspended substances and flocs in the raw water are captured by the sludge blanket, and the filtered supernatant is obtained as treated water. Will be.

このような凝集沈殿装置の中でも、凝集剤が添加された原水を沈殿槽内で撹拌翼により撹拌して凝集フロックを形成し、さらに衝突や転がり運動を繰り返すことでこの凝集フロックの粒径を次第に増大させて球状のペレットを形成する造粒型の凝集沈殿装置が知られている。造粒型の凝集沈殿装置では、高密度で沈降速度が速いペレットが流動層(ペレットブランケット)を形成することで、より高速での処理が可能になるとともに、沈殿槽内の通水線速度(LV)を大きくして沈殿槽の小型化も実現することができる。 Among such coagulation and sedimentation devices, raw water to which a coagulant is added is stirred in a settling tank by a stirring blade to form coagulation flocs, and further collision and rolling motions are repeated to gradually increase the particle size of the coagulation flocs. A granulation type coagulation-precipitation device that is increased to form spherical pellets is known. In the granulation type coagulation sedimentation device, pellets with high density and high sedimentation speed form a fluidized bed (pellet blanket), which enables higher speed processing and the water flow velocity in the sedimentation tank (pellet blanket). The LV) can be increased to reduce the size of the settling tank.

造粒型の凝集沈殿装置では、沈殿槽内の高濃度の汚泥が撹拌翼に付着して塊になると、撹拌作用が阻害されて造粒効率が低下するおそれがある。特に、凝集剤として2種類の高分子凝集剤(例えば、カチオン系高分子凝集剤とアニオン系高分子凝集剤、両性高分子凝集剤とアニオン系高分子凝集剤)を併用して高強度のペレットを形成する場合、凝集フロックは他の物体に付着しやすく、汚泥が撹拌翼に固着しやすくなる。そこで、造粒型の凝集沈殿装置では、沈殿槽内での高濃度の汚泥の付着・固着を抑制するための方法がいくつか提案されている(例えば、特許文献1参照)。 In the granulation type coagulation sedimentation device, if high-concentration sludge in the settling tank adheres to the stirring blade and becomes a lump, the stirring action may be hindered and the granulation efficiency may decrease. In particular, high-strength pellets in which two types of polymer flocculants (for example, a cationic polymer flocculant and an anionic polymer flocculant, and an amphoteric polymer flocculant and an anionic polymer flocculant) are used in combination as a flocculant. When forming a polymer, the aggregated flocs tend to adhere to other objects, and sludge tends to adhere to the stirring blade. Therefore, in the granulation type coagulation sedimentation device, some methods for suppressing the adhesion / adhesion of high-concentration sludge in the sedimentation tank have been proposed (see, for example, Patent Document 1).

特許第2723809号公報Japanese Patent No. 2723809

用水処理や排水処理などの現場では、例えば、何らかの原因によって原水の供給が停止され、それにより、凝集沈殿装置の定常運転(凝集沈殿処理)を停止せざるを得ない場合がある。このとき、沈殿槽内を流動していた汚泥は底部に堆積するが、装置の停止時間が長くなると、これらが互いに固着してしまい、運転再開時に撹拌翼に過大なトルクが作用することがある。その結果、運転を正常に再開できないおそれがあり、ひいては撹拌翼が破損するおそれもある。さらに、互いに固着した汚泥が沈殿槽内で塊になり、運転再開時に、沈殿槽内にこれらを避けるような偏流が発生し、それにより舞い上がったフロックが処理水に流出することもある。これまでの汚泥固着対策は、特許文献1に記載されているように定常運転時のものがほとんどであり、このような装置の運転停止による汚泥の固着を抑制するための対策は行われていないのが現状である。 At sites such as irrigation water treatment and wastewater treatment, for example, the supply of raw water may be stopped for some reason, and as a result, the steady operation (coagulation sedimentation treatment) of the coagulation sedimentation device may have to be stopped. At this time, the sludge flowing in the settling tank is deposited on the bottom, but if the stop time of the device is long, these stick to each other, and an excessive torque may be applied to the stirring blade when the operation is restarted. .. As a result, the operation may not be restarted normally, and the stirring blade may be damaged. Further, sludge adhering to each other becomes agglomerates in the settling tank, and when the operation is restarted, a drift that avoids these is generated in the settling tank, and the floating flocs may flow out to the treated water. Most of the sludge sticking measures so far have been taken during steady operation as described in Patent Document 1, and no measures have been taken to suppress sludge sticking due to the shutdown of such a device. is the current situation.

そこで、本発明の目的は、原水の供給停止に伴う沈殿槽内での汚泥の固着を抑制する凝集沈殿装置の運転方法および凝集沈殿装置を提供することである。 Therefore, an object of the present invention is to provide an operation method of a coagulation sedimentation device and a coagulation sedimentation device that suppress the adhesion of sludge in the settling tank due to the suspension of supply of raw water.

上述した目的を達成するために、本発明の凝集沈殿装置の運転方法は、被処理水に含まれる懸濁物質を沈殿槽内で凝集させて沈殿させ、被処理水を汚泥と処理水とに分離する凝集沈殿装置の運転方法であって、沈殿槽に被処理水が供給されている間、沈殿槽内の被処理水を連続的に撹拌して被処理水中に形成されたフロックを造粒し、造粒されたフロックによる流動層を形成する工程と、沈殿槽への被処理水の供給が停止されている間、流動層を形成していた沈殿槽内の造粒されたフロックを間欠的に撹拌する工程と、を含んでいる。 In order to achieve the above-mentioned object, the operation method of the coagulation sedimentation device of the present invention agglomerates and precipitates suspended substances contained in the water to be treated in a settling tank, and separates the water to be treated into sludge and treated water. This is a method of operating a coagulation sedimentation device that separates, and while the water to be treated is being supplied to the settling tank, the water to be treated in the settling tank is continuously stirred to granulate the flocs formed in the water to be treated. Then, while the step of forming the fluidized layer by the granulated flocs and the supply of the water to be treated to the settling tank are stopped, the granulated flocs in the settling tank forming the fluidized layer are intermittently formed. includes to a step of stirring, the.

また、本発明の凝集沈殿装置は、被処理水に含まれる懸濁物質を沈殿槽内で凝集させて沈殿させ、被処理水を汚泥と処理水とに分離する凝集沈殿装置であって、沈殿槽への被処理水の供給中には、沈殿槽内の被処理水を連続的に撹拌して被処理水中に形成されたフロックを造粒し、造粒されたフロックによる流動層を形成し、沈殿槽への被処理水の供給停止中には、流動層を形成していた沈殿槽内の造粒されたフロックを間欠的に撹拌する撹拌手段を有している。 Further, the coagulation sedimentation device of the present invention is a coagulation sedimentation device that coagulates and precipitates suspended substances contained in water to be treated in a settling tank and separates the water to be treated into sludge and treated water. During the supply of the water to be treated to the tank, the water to be treated in the settling tank is continuously stirred to granulate the flocs formed in the water to be treated, and a fluidized layer is formed by the granulated flocs. While the supply of water to be treated to the settling tank is stopped, there is a stirring means for intermittently stirring the granulated flocs in the settling tank that formed the fluidized layer .

このような凝集沈殿装置の運転方法および凝集沈殿装置によれば、被処理水(原水)の供給が停止されている間、沈殿槽内での汚泥の固着を抑制できるだけでなく、沈殿槽内の造粒物の破壊を最小限に抑えることで、原水の供給再開時に得られる処理水の水質の悪化を最小限に抑えることもできる。 According to the operation method of the coagulation sedimentation device and the coagulation sedimentation device, not only can sludge sticking in the settling tank be suppressed while the supply of water to be treated (raw water) is stopped, but also in the settling tank. By minimizing the destruction of the granulated product, it is possible to minimize the deterioration of the quality of the treated water obtained when the supply of raw water is resumed.

以上、本発明によれば、原水の供給停止に伴う沈殿槽内での汚泥の固着を抑制することができる。 As described above, according to the present invention, it is possible to suppress the sticking of sludge in the settling tank due to the suspension of the supply of raw water.

本発明の一実施形態に係る凝集沈殿装置の概略構成図である。It is a schematic block diagram of the coagulation sedimentation apparatus which concerns on one Embodiment of this invention. 本実施形態に係る凝集沈殿装置の一変形例を示す概略構成図である。It is a schematic block diagram which shows one modification of the coagulation sedimentation apparatus which concerns on this embodiment. 本実施形態に係る凝集沈殿装置の他の変形例を示す概略構成図である。It is a schematic block diagram which shows the other modification of the coagulation sedimentation apparatus which concerns on this embodiment.

以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る凝集沈殿装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of a coagulation sedimentation device according to an embodiment of the present invention.

凝集沈殿装置1は、含有する懸濁物質を凝集させて沈殿させることで原水(被処理水)を汚泥と上澄み液(処理水)とに分離する造粒型の凝集沈殿装置であり、反応槽10と、沈殿槽20と、処理水槽30とを有している。 The coagulation sedimentation device 1 is a granulation type coagulation sedimentation device that separates raw water (treated water) into sludge and supernatant liquid (treated water) by coagulating and precipitating the suspended substances contained in the reaction tank. It has a settling tank 20, a settling tank 20, and a treated water tank 30.

反応槽10は、原水供給ラインL1を介して原水タンク(図示せず)に接続されている。反応槽10には、反応槽10内の原水に無機凝集剤を添加する無機凝集剤添加ライン11、第1の高分子凝集剤を添加する第1の高分子凝集剤添加ライン12、および、pH調整剤を添加するpH調整剤添加ライン13がそれぞれ接続されている。また、反応槽10には、反応槽10内の原水を撹拌する撹拌機14が設けられている。さらに、反応槽10には原水移送ラインL2が接続され、原水移送ラインL2には、バルブV1と、原水移送ラインL2を流れる原水に第2の高分子凝集剤を添加する第2の高分子凝集剤添加ライン15が接続されている。 The reaction tank 10 is connected to a raw water tank (not shown) via a raw water supply line L1. In the reaction vessel 10, an inorganic flocculant addition line 11 for adding an inorganic flocculant to the raw water in the reaction vessel 10, a first polymer flocculant addition line 12 for adding a first polymer flocculant, and a pH. Each of the pH adjuster addition lines 13 to which the adjuster is added is connected. Further, the reaction tank 10 is provided with a stirrer 14 for stirring the raw water in the reaction tank 10. Further, a raw water transfer line L2 is connected to the reaction tank 10, and a valve V1 and a second polymer flocculant for adding a second polymer flocculant to the raw water flowing through the raw water transfer line L2 are connected to the raw water transfer line L2. The agent addition line 15 is connected.

沈殿槽20は、原水移送ラインL2を介して反応槽10に接続され、各凝集剤が添加された原水を受け入れるものである。沈殿槽20には、沈殿層20内の原水を撹拌する撹拌機(撹拌手段)21が設けられている。この撹拌機21の作用により、沈殿槽20内には、後述するように、造粒されたフロック(ペレット)による流動層(ペレットブランケット)Aと、懸濁物質やフロックが除去された清澄な上澄み液(処理水)Bが形成される。沈殿槽20内の上部には、その処理水Bを集水するための集水槽22が設けられ、集水槽22には、集水槽22にオーバーフローした処理水Bを外部に取り出すための処理水移送ラインL3が接続されている。 The settling tank 20 is connected to the reaction tank 10 via the raw water transfer line L2, and receives the raw water to which each coagulant is added. The settling tank 20 is provided with a stirrer (stirring means) 21 for stirring the raw water in the settling layer 20. By the action of the stirrer 21, the fluidized bed (pellet blanket) A made of granulated flocs (pellets) and the clear supernatant from which suspended substances and flocs have been removed are contained in the settling tank 20 as described later. Liquid (treated water) B is formed. A water collecting tank 22 for collecting the treated water B is provided in the upper part of the settling tank 20, and the treated water transfer for taking out the treated water B overflowing to the water collecting tank 22 to the outside is provided in the water collecting tank 22. Line L3 is connected.

沈殿槽20の側面には、開口部23を介して沈殿槽20の内部と連通する濃縮部24が設けられている。濃縮部24は、沈殿槽20内の余剰汚泥(ペレットブランケットAの上部で浮遊しているペレット)をオーバーフローさせ、その内部で沈降させて濃縮させるものである。濃縮部24の下部には、濃縮部24に堆積した濃縮汚泥(高濃度に濃縮されたペレット)Cを引き抜くための汚泥引き抜きラインL4が接続され、汚泥引き抜きラインL4には汚泥引き抜きポンプ(図示せず)が設けられている。なお、濃縮部24の位置は、図示した例に限定されるものではなく、例えば、沈殿槽20の下部であってもよい。 On the side surface of the settling tank 20, a concentrating section 24 that communicates with the inside of the settling tank 20 via the opening 23 is provided. The concentrating unit 24 overflows the excess sludge (pellets floating on the upper part of the pellet blanket A) in the settling tank 20 and setstles the sludge inside the sludge to concentrate the sludge. A sludge extraction line L4 for extracting concentrated sludge (pellets concentrated to a high concentration) C accumulated in the concentration unit 24 is connected to the lower part of the concentration unit 24, and a sludge extraction pump (shown) is connected to the sludge extraction line L4. Sludge) is provided. The position of the concentrating unit 24 is not limited to the illustrated example, and may be, for example, the lower part of the settling tank 20.

処理水槽30は、処理水移送ラインL3を介して沈殿槽20(集水槽22)に接続され、沈殿槽20で分離された処理水を貯留するものである。処理水槽30の下部には、沈殿槽20から取り出されて処理水槽30に貯留された処理水Bを外部に排出するための処理水排出ラインL5が接続されている。処理水排出ラインL5には、処理水排出ポンプ31とバルブV2とが設けられている。処理水排出ラインL5の、処理水排出ポンプ31とバルブV2との間には、バルブV3を介して、処理水槽30内の処理水を原水移送ラインL2に還流させる処理水還流ラインL6が接続されている。処理水還流ラインL6は、第2の高分子凝集剤添加ライン15との接続部の上流側で原水移送ラインL2に接続されている。 The treated water tank 30 is connected to the settling tank 20 (water collecting tank 22) via the treated water transfer line L3, and stores the treated water separated in the settling tank 20. A treated water discharge line L5 for discharging the treated water B taken out from the settling tank 20 and stored in the treated water tank 30 to the outside is connected to the lower part of the treated water tank 30. The treated water discharge line L5 is provided with a treated water discharge pump 31 and a valve V2. A treated water recirculation line L6 for recirculating the treated water in the treated water tank 30 to the raw water transfer line L2 is connected between the treated water discharge pump 31 and the valve V2 of the treated water discharge line L5 via the valve V3. ing. The treated water recirculation line L6 is connected to the raw water transfer line L2 on the upstream side of the connection portion with the second polymer flocculant addition line 15.

ここで、本実施形態の凝集沈殿装置1の定常運転(凝集沈殿処理)時の動作について説明する。 Here, the operation of the coagulation sedimentation device 1 of the present embodiment during steady operation (coagulation sedimentation treatment) will be described.

懸濁物質を含む原水は、原水供給ラインL1を通じて反応槽10に供給される。反応槽10に供給された原水には、無機凝集剤添加ライン11を通じて無機凝集剤が添加され、第1の高分子凝集剤添加ライン12を通じて第1の高分子凝集剤が添加される。また、必要に応じて、pH調整剤添加ライン13を通じてpH調整剤が添加される。こうして、反応槽10では、無機凝集剤および第1の高分子凝集剤が原水に添加されることで、原水中の懸濁物質の凝集反応が開始され、フロックが形成される。このとき、撹拌機14により原水が撹拌されることで、懸濁物質の凝集反応は促進される。 The raw water containing the suspended substance is supplied to the reaction vessel 10 through the raw water supply line L1. The inorganic flocculant is added to the raw water supplied to the reaction tank 10 through the inorganic flocculant addition line 11, and the first polymer flocculant is added through the first polymer flocculant addition line 12. If necessary, the pH adjuster is added through the pH adjuster addition line 13. In this way, in the reaction tank 10, the inorganic flocculant and the first polymer flocculant are added to the raw water to initiate the agglutination reaction of the suspended substances in the raw water, and flocs are formed. At this time, the agglutination reaction of the suspended substance is promoted by stirring the raw water by the stirrer 14.

この凝集過程のフロックを含む原水が、原水移送ラインL2を通じて沈殿槽20に供給される。このとき、原水移送ラインL2を流れる原水には、第2の高分子凝集剤添加ライン15を通じて第2の高分子凝集剤が添加され、原水と共に沈殿槽20に供給される。原水が沈殿槽20内に供給されると、原水中の微細なフロックは、撹拌機21により連続的に撹拌され、第2の高分子凝集剤による凝集反応が促進されると共に、衝突や転がり運動を繰り返すことで粒径が次第に増大して、球状のペレットに造粒される。こうして、沈殿槽20内の下部には、ペレットによる流動層であるペレットブランケットAが形成される。 The raw water containing the flocs in the aggregation process is supplied to the settling tank 20 through the raw water transfer line L2. At this time, the second polymer flocculant is added to the raw water flowing through the raw water transfer line L2 through the second polymer flocculant addition line 15, and is supplied to the settling tank 20 together with the raw water. When the raw water is supplied into the settling tank 20, the fine flocs in the raw water are continuously agitated by the stirrer 21 to promote the agglutination reaction by the second polymer flocculant, and also collide and roll. By repeating the above steps, the particle size gradually increases and the pellets are granulated into spherical pellets. In this way, a pellet blanket A, which is a fluidized bed of pellets, is formed in the lower part of the settling tank 20.

その後、原水移送ラインL2から供給される原水は、ペレットブランケットAを通過する間に懸濁物質やフロックがペレットブランケットAに捕捉され、ろ過された上澄み液(処理水)Bとなって沈殿槽20の上部に上昇する。そして、処理水Bは、集水槽22をオーバーフローすると、処理水移送ラインL3を通じて取り出されて処理水槽30に貯留される。処理水槽30に貯留された処理水は、処理水排出ポンプ31により、処理水排出ラインL5を通じて外部に排出される。一方で、ペレットブランケットAの界面が開口部23の下端の高さを上回ると、ペレットブランケットAの上部のペレットが濃縮部24にオーバーフローし、沈降して濃縮される。そして、濃縮部20に堆積した濃縮汚泥Cは、必要に応じて、汚泥引き抜きラインL4を通じて外部に引き抜かれる。 After that, in the raw water supplied from the raw water transfer line L2, suspended substances and flocs are trapped in the pellet blanket A while passing through the pellet blanket A, and the filtered supernatant liquid (treated water) B becomes the settling tank 20. Ascend to the top of. Then, when the treated water B overflows the water collecting tank 22, it is taken out through the treated water transfer line L3 and stored in the treated water tank 30. The treated water stored in the treated water tank 30 is discharged to the outside by the treated water discharge pump 31 through the treated water discharge line L5. On the other hand, when the interface of the pellet blanket A exceeds the height of the lower end of the opening 23, the pellets on the upper part of the pellet blanket A overflow to the concentrating section 24, settle and concentrate. Then, the concentrated sludge C accumulated in the concentrating section 20 is drawn out to the outside through the sludge drawing line L4, if necessary.

原水に添加される無機凝集剤としては、例えば、ポリ塩化アルミニウム(PAC)などのアルミニウム系凝集剤や、塩化第二鉄などの鉄系凝集剤、または、これらの混合物が挙げられ、pH調整剤としては、例えば、塩酸、硫酸などの酸剤や、水酸化ナトリウム、水酸化カルシウムなどのアルカリ剤が挙げられる。 Examples of the inorganic flocculant added to the raw water include an aluminum-based flocculant such as polyaluminum chloride (PAC), an iron-based flocculant such as ferric chloride, or a mixture thereof, and a pH adjuster. Examples thereof include acid agents such as hydrochloric acid and sulfuric acid, and alkaline agents such as sodium hydroxide and calcium hydroxide.

また、第1の高分子凝集剤としては、例えば、カチオン系高分子凝集剤や両性高分子凝集剤などが挙げられ、カチオン系高分子凝集剤が好適に用いられる。カチオン系高分子凝集剤としては、例えば、ジメチルアミノエチルアクリレート・塩化メチル四級塩(DAA)や、ジメチルアミノエチルメタアクリレート塩化メチル4級塩(DAM)などの重合物が挙げられる。カチオン系高分子凝集剤の分子量は、例えば、700万以上であることが好ましく、1000万以上であることがより好ましい。第2の高分子凝集剤としては、アニオン系高分子凝集剤が好適に用いられ、アニオン系高分子凝集剤としては、例えば、アクリルアミドとアクリル酸の重合物などが挙げられる。アニオン系高分子凝集剤の分子量は、例えば、1000万以上であることが好ましく、1500万以上であることがより好ましい。 Further, examples of the first polymer flocculant include a cationic polymer flocculant and an amphoteric polymer flocculant, and a cationic polymer flocculant is preferably used. Examples of the cationic polymer flocculant include polymers such as dimethylaminoethyl acrylate / methyl methyl chloride quaternary salt (DAA) and dimethylaminoethyl methacrylate quaternary salt (DAM). The molecular weight of the cationic polymer flocculant is, for example, preferably 7 million or more, and more preferably 10 million or more. As the second polymer flocculant, an anionic polymer flocculant is preferably used, and examples of the anionic polymer flocculant include a polymer of acrylamide and acrylic acid. The molecular weight of the anionic polymer flocculant is, for example, preferably 10 million or more, and more preferably 15 million or more.

なお、無機凝集剤および第1の高分子凝集剤と原水とをそれぞれ確実に混合するために、2つの反応槽を設け、一方の反応槽において無機凝集剤の添加および撹拌を行い、他方の反応槽において第1の高分子凝集剤の添加および撹拌を行うようになっていてもよい。この場合、pH調整剤は、無機凝集剤が添加される反応槽に添加されるようになっていることが好ましい。また、無機凝集剤および第1の高分子凝集剤と原水との反応が短時間で済むような場合、反応槽を省略して、配管内を流れる原水に無機凝集剤および第1の高分子凝集剤を直接添加し、撹拌機の代わりにラインミキサーなどで短時間撹拌するようになっていてもよい。 In order to surely mix the inorganic flocculant, the first polymer flocculant and the raw water, two reaction tanks are provided, and the inorganic flocculant is added and stirred in one reaction tank, and the other reaction is carried out. The first polymer flocculant may be added and stirred in the tank. In this case, the pH adjuster is preferably added to the reaction vessel to which the inorganic flocculant is added. When the reaction between the inorganic flocculant and the first polymer flocculant and the raw water is completed in a short time, the reaction tank is omitted and the inorganic flocculant and the first polymer flocculant are aggregated in the raw water flowing in the pipe. The agent may be added directly and stirred for a short time with a line mixer or the like instead of the stirrer.

ところで、本実施形態の凝集沈殿装置1では、例えば、何らかの要因によって原水タンク(図示せず)内の水位が所定の水位を下回ったときなど、原水供給ラインL1からの原水の供給が停止される場合には、定常運転(凝集沈殿処理)を停止せざるを得ないことがある。このとき、沈殿槽20内を流動していた汚泥(ペレット)は底部に堆積するが、装置の停止時間が長くなると、これらが互いに固着してしまい、運転再開時に撹拌機21の撹拌翼に過大なトルクが作用することがある。その結果、運転が正常に再開できないおそれがあり、ひいては撹拌翼が破損するおそれもある。さらに、互いに固着した汚泥が沈殿槽内で塊になり、運転再開時に、沈殿槽内にこれらを避けるような偏流が発生し、それにより舞い上がったフロックが処理水に流出することもある。 By the way, in the coagulation sedimentation device 1 of the present embodiment, the supply of raw water from the raw water supply line L1 is stopped, for example, when the water level in the raw water tank (not shown) falls below a predetermined water level for some reason. In some cases, the steady operation (coagulation and precipitation treatment) may have to be stopped. At this time, the sludge (pellets) flowing in the settling tank 20 is deposited on the bottom, but if the stop time of the device is long, these stick to each other and become excessive on the stirring blade of the stirrer 21 when the operation is restarted. Torque may act. As a result, the operation may not be restarted normally, and the stirring blade may be damaged. Further, sludge adhering to each other becomes agglomerates in the settling tank, and when the operation is restarted, a drift that avoids these is generated in the settling tank, and the floating flocs may flow out to the treated water.

このような装置の運転停止による汚泥の固着を抑制するためには、例えば、運転停止時にも撹拌機21だけを連続運転させることが考えられる。しかしながら、沈殿槽20内への原水の供給が停止された状態で撹拌機21を連続運転させると、沈殿槽20内のペレット(造粒物)に継続的に過大な圧力がかかることで、造粒物が破壊されてしまい、運転再開時に得られる処理水の水質が悪化したり不安定になったりすることがある。 In order to suppress the sticking of sludge due to the shutdown of such a device, for example, it is conceivable to continuously operate only the stirrer 21 even when the operation is stopped. However, if the stirrer 21 is continuously operated while the supply of raw water into the settling tank 20 is stopped, the pellets (granulated matter) in the settling tank 20 are continuously subjected to excessive pressure, resulting in formation. The granules may be destroyed, and the quality of the treated water obtained when the operation is restarted may deteriorate or become unstable.

そこで、本実施形態では、沈殿槽20への原水の供給が停止され、装置の定常運転が停止されている間、撹拌機21を間欠的に動作させて沈殿槽20内の造粒物を間欠的に撹拌する間欠撹拌工程を実行するようになっている。これにより、撹拌による造粒物の破壊を最小限に抑えつつ、原水の供給停止に伴う沈殿槽20内での汚泥の固着を効果的に抑制することができる。 Therefore, in the present embodiment, while the supply of raw water to the settling tank 20 is stopped and the steady operation of the apparatus is stopped, the stirrer 21 is operated intermittently to intermittently operate the granules in the settling tank 20. The intermittent stirring step of stirring is performed. As a result, it is possible to effectively suppress the sticking of sludge in the settling tank 20 due to the suspension of the supply of raw water, while minimizing the destruction of the granulated product due to stirring.

間欠撹拌工程において、撹拌間隔に特に制限はなく、原水の供給が停止されてから沈殿槽20内で汚泥の固着が発生するまでの時間に応じて、最適な撹拌間隔を選択することができる。通常、原水の供給が停止されてから数時間ほどで沈殿槽20内の汚泥の固着は発生するが、そのような場合、1時間に1回程度の頻度で撹拌を行うようになっていればよい。一方で、凝集処理中の凝集剤の添加量が多い場合や、高密度で沈降速度が速く、高強度の造粒物が形成される場合には、沈殿槽20内の汚泥の固着が進行しやすくなるため、より短い時間間隔で撹拌を行うことが好ましい。例えば、カチオン系高分子凝集剤(第1の高分子凝集剤)とアニオン系高分子凝集剤(第2の高分子凝集剤)を併用する場合、粒径が大きく高密度で沈降速度が速い造粒物を形成するためには、カチオン系高分子凝集剤のカチオン基比率(共重合するノニオン性モノマーとカチオン性モノマーとの合計のモル量に占めるカチオン性モノマーのモル比)が30モル%以下であることが好ましく、15モル%以下であることがより好ましく、8モル%以下であることがさらに好ましい。これは、上述のようなカチオン基比率では、フロックを粗大化するために必要とされるノニオン鎖による水素結合部分の割合が多く、かつアニオン性物質やアニオン系高分子凝集剤のアニオン性官能基との強い架橋構造を得るために十分なカチオン基を含んでいるためである。このような場合には、上述したように、沈殿槽20内の汚泥の固着が進行しやすくなるため、例えば、10〜30分に1回程度の頻度で撹拌を行うことが好ましい。 In the intermittent stirring step, the stirring interval is not particularly limited, and the optimum stirring interval can be selected according to the time from when the supply of raw water is stopped until the sludge sticks in the settling tank 20. Normally, sludge sticking in the settling tank 20 occurs several hours after the supply of raw water is stopped, but in such a case, if stirring is performed at a frequency of about once an hour. Good. On the other hand, when the amount of the coagulant added during the coagulation treatment is large, or when a high-density, high-settling, high-strength granulated product is formed, the sludge in the settling tank 20 is fixed. It is preferable to stir at shorter time intervals because it becomes easier. For example, when a cationic polymer flocculant (first polymer flocculant) and an anionic polymer flocculant (second polymer flocculant) are used in combination, the particle size is large, the density is high, and the sedimentation rate is high. In order to form granules, the ratio of cationic groups of the cationic polymer flocculant (the molar ratio of the cationic monomer to the total molar amount of the copolymerizing nonionic monomer and the cationic monomer) is 30 mol% or less. Is more preferable, 15 mol% or less is more preferable, and 8 mol% or less is further preferable. This is because, in the above-mentioned cationic group ratio, the ratio of the hydrogen bond portion by the nonionic chain required for coarsening the flocs is large, and the anionic functional group of the anionic substance or the anionic polymer flocculant. This is because it contains a sufficient cation group to obtain a strong crosslinked structure with. In such a case, as described above, the sludge in the settling tank 20 is likely to be fixed, so that it is preferable to perform stirring at a frequency of, for example, about once every 10 to 30 minutes.

1回ごとの撹拌時間は、撹拌速度や汚泥性状にもよるが、撹拌機21の撹拌翼が沈殿槽20内で確実に1回転以上できる時間であれば特に限定されるものではない。本実施形態の造粒型の凝集沈殿装置1では、撹拌機21による撹拌速度が数rpmから数十rpmと速いため、撹拌時間も数秒から数十秒であればよい。なお、間欠撹拌時の撹拌速度は、定常運転(凝集沈殿処理)時の撹拌速度と同じでなくてもよく、例えば、造粒物の強度が強く、汚泥の固着が進行しやすい場合には、定常運転時よりも速い撹拌速度であってもよい。あるいは、造粒物の強度が弱く、撹拌によって造粒物が破壊される可能性がある場合には、定常運転時よりも遅い撹拌速度であってもよい。 The stirring time for each time depends on the stirring speed and sludge properties, but is not particularly limited as long as the stirring blade of the stirrer 21 can surely make one or more rotations in the settling tank 20. In the granulation type coagulation / precipitation device 1 of the present embodiment, the stirring speed by the stirrer 21 is as fast as several rpm to several tens of rpm, so that the stirring time may be several seconds to several tens of seconds. The stirring speed during intermittent stirring does not have to be the same as the stirring speed during steady operation (coagulation and precipitation treatment). For example, when the strength of the granulated product is strong and sludge sticking easily progresses, The stirring speed may be faster than that during steady operation. Alternatively, if the strength of the granulated product is weak and there is a possibility that the granulated product may be destroyed by stirring, the stirring speed may be slower than that during steady operation.

原水の供給停止が長期間にわたり、間欠撹拌が長期間実行されると、撹拌による造粒物の破壊が懸念され、運転再開時に得られる処理水の水質の悪化が懸念される。そこで、間欠撹拌工程では、撹拌による造粒物の破壊をできるだけ軽減するために、沈殿槽20内の造粒物を流動させながら撹拌を行うことが好ましく、すなわち、原水以外の水を沈殿槽20に通水しながら撹拌を行うことが好ましい。 If the supply of raw water is stopped for a long period of time and intermittent stirring is performed for a long period of time, there is a concern that the granules may be destroyed by the stirring, and that the quality of the treated water obtained when the operation is restarted may be deteriorated. Therefore, in the intermittent stirring step, in order to reduce the destruction of the granulated product due to stirring as much as possible, it is preferable to perform stirring while flowing the granulated product in the settling tank 20, that is, water other than raw water is used in the settling tank 20. It is preferable to stir while passing water through the water.

通水に用いる水としては、一定の水質基準を満たす原水以外の水(例えば水道水など)であれば特に制限はないが、沈殿槽20内の処理水よりも塩濃度が低い水(例えば純水など)は、造粒物の溶解を引き起こすために好ましくない。そのため、凝集沈殿装置1の外部からの配管を設置する必要がない点などからも、沈殿槽20から取り出した処理水を用いることが好ましい。本実施形態では、原水移送ラインL2のバルブV1を閉鎖して処理水還流ラインL6のバルブV3を開放し、処理水排出ポンプ31を作動させることで、沈殿槽20から処理水槽30に取り出した処理水を、処理水還流ラインL6から原水移送ラインL2を通じて沈殿槽20に還流させることができる。あるいは、処理水槽30が設けられていない場合にも、図2に示すように、沈殿槽20の上部と原水移送ラインL2を処理水還流ラインL6で接続し、処理水還流ラインL6に処理水還流ポンプ25を設置することで、同様に処理水を循環させることができる。沈殿槽20への通水量は、定常運転時の原水供給流量と同じでなくてもよいが、造粒物を確実に流動させるためには、定常運転時の原水供給流量と同じであることが好ましい。 The water used for water flow is not particularly limited as long as it is water other than raw water that meets certain water quality standards (for example, tap water), but the salt concentration is lower than that of the treated water in the settling tank 20 (for example, pure water). Water, etc.) is not preferred as it causes dissolution of the granules. Therefore, it is preferable to use the treated water taken out from the settling tank 20 from the viewpoint that it is not necessary to install a pipe from the outside of the coagulation settling device 1. In the present embodiment, the valve V1 of the raw water transfer line L2 is closed, the valve V3 of the treated water recirculation line L6 is opened, and the treated water discharge pump 31 is operated to take out the treated water from the settling tank 20 to the treated water tank 30. Water can be refluxed from the treated water reflux line L6 to the settling tank 20 through the raw water transfer line L2. Alternatively, even when the treated water tank 30 is not provided, as shown in FIG. 2, the upper part of the settling tank 20 and the raw water transfer line L2 are connected by the treated water recirculation line L6, and the treated water recirculate to the treated water recirculation line L6. By installing the pump 25, the treated water can be circulated in the same manner. The amount of water flowing to the settling tank 20 does not have to be the same as the raw water supply flow rate during steady operation, but in order to ensure the flow of the granulated product, it must be the same as the raw water supply flow rate during steady operation. preferable.

これに加え、間欠撹拌工程における造粒物の破壊を最大限に抑制するためには、沈殿槽20に通水する水に高分子凝集剤を添加することが好ましい。これにより、撹拌によって破壊される造粒物の再凝集を促進して、運転再開時により清澄な処理水を得ることができる。 In addition to this, in order to suppress the destruction of the granules in the intermittent stirring step to the maximum, it is preferable to add a polymer flocculant to the water passing through the settling tank 20. As a result, the reaggregation of the granules destroyed by stirring can be promoted, and clearer treated water can be obtained when the operation is restarted.

このとき使用する高分子凝集剤に特に制限はないが、定常運転時に原水に添加される高分子凝集剤と同一の高分子凝集剤を用いることが好ましい。本実施形態では、定常運転時に原水に対して2種類の高分子凝集剤が段階的に添加されるが、間欠撹拌時に使用する高分子凝集剤としては、そのどちらであってもよい。ただし、定常運転時に2種類の高分子凝集剤を併用する場合、一般に、先に添加される高分子凝集剤によってフロック核が形成され、後から添加される高分子凝集剤によってフロック同士が接着されて、フロックの粗大化(造粒)が行われる。例えば、先にカチオン系高分子凝集剤が添加され、後からアニオン系高分子凝集剤が添加される場合、カチオン系高分子凝集剤によって水和水の少ない緻密に調質された繊維状フロックが形成された後、アニオン系高分子凝集剤によってフロック同士が接着されて、フロックの粗大化が行われる。このため、間欠撹拌時には、定常運転時に原水に添加される2種類の高分子凝集剤のうち、後から添加される高分子凝集剤を用いることが好ましい。本実施形態では、処理水還流ラインL6が第2の高分子凝集剤添加ライン15との接続部の上流側で原水移送ラインL2に接続されていることで、間欠撹拌時に第2の高分子凝集剤を沈殿槽20に添加することができる。 The polymer flocculant used at this time is not particularly limited, but it is preferable to use the same polymer flocculant as the polymer flocculant added to the raw water during steady operation. In the present embodiment, two types of polymer flocculants are added stepwise to the raw water during steady operation, and either of them may be used as the polymer flocculant used during intermittent stirring. However, when two types of polymer flocculants are used together during steady operation, the flocs are generally formed by the polymer flocculants added first, and the flocs are adhered to each other by the polymer flocculants added later. Then, the flocs are coarsened (granulated). For example, when the cationic polymer flocculant is added first and the anionic polymer flocculant is added later, the fibrous flocs that are densely tempered with less hydrated water by the cationic polymer flocculant are produced. After being formed, the flocs are adhered to each other by an anionic polymer flocculant to coarsen the flocs. Therefore, at the time of intermittent stirring, it is preferable to use the polymer flocculant added later among the two types of polymer flocculants added to the raw water during steady operation. In the present embodiment, the treated water recirculation line L6 is connected to the raw water transfer line L2 on the upstream side of the connection portion with the second polymer coagulant addition line 15, so that the second polymer coagulation occurs during intermittent stirring. The agent can be added to the settling tank 20.

なお、原水の供給停止に伴う間欠撹拌の実施は、本実施形態のような定常運転時に2種類の高分子凝集剤を併用する構成に限定されず、当然のことながら、1種類の高分子凝集剤を使用する場合にも適用可能である。その場合にも、間欠撹拌工程においては、定常運転時に原水に添加される高分子凝集剤と同一の高分子凝集剤を用いることが好ましく、カチオン系高分子凝集剤やアニオン系高分子凝集剤の他、例えば、ノニオン系高分子凝集剤や両性高分子凝集剤などを用いることもできる。 The implementation of intermittent stirring due to the suspension of the supply of raw water is not limited to the configuration in which two types of polymer flocculants are used in combination during steady operation as in the present embodiment, and as a matter of course, one type of polymer flocculant is used. It is also applicable when using agents. Even in that case, in the intermittent stirring step, it is preferable to use the same polymer flocculant as the polymer flocculant added to the raw water during steady operation, and it is preferable to use a cationic polymer flocculant or an anionic polymer flocculant. In addition, for example, a nonionic polymer flocculant, an amphoteric polymer flocculant, or the like can also be used.

間欠撹拌時に添加される高分子凝集剤の添加量は、撹拌によって破壊される部分を再凝集させるだけの添加量であればよく、例えば、定常運転時に必要な添加量の1/10程度であってもよい。あるいは、制御の複雑化を回避するために、定常運転時に必要な添加量と同じであってもよい。ただし、添加量が多すぎると、フロックの再凝集を過度に促進して汚泥の固着を進めてしまうおそれがあるため、間欠撹拌工程での高分子凝集剤の添加量は、10mg/Lを限度とすることが好ましい。 The amount of the polymer flocculant added during intermittent stirring may be an amount sufficient to reaggregate the portion destroyed by stirring, for example, about 1/10 of the amount required during steady operation. You may. Alternatively, the addition amount may be the same as that required during steady operation in order to avoid complication of control. However, if the amount added is too large, the reaggregation of flocs may be excessively promoted and the sludge may be fixed. Therefore, the amount of the polymer flocculant added in the intermittent stirring step is limited to 10 mg / L. Is preferable.

また、原水の供給停止に伴う間欠撹拌の実施は、特定の構成を有する沈殿槽に限定して適用されるものではなく、様々な構成の沈殿槽に適用可能であることは言うまでもない。例えば、図3に示すように、上述した複数の撹拌翼を有する撹拌機21に加えて、凝集フロックの撹拌翼への付着や固着をより抑制するために沈殿槽20の内周面に複数の固定翼26が取り付けられている構成にも適用可能である。 Further, it goes without saying that the implementation of intermittent stirring due to the suspension of the supply of raw water is not limited to the settling tank having a specific configuration, and can be applied to the settling tank having various configurations. For example, as shown in FIG. 3, in addition to the above-mentioned stirrer 21 having a plurality of stirring blades, a plurality of a plurality of coagulated flocs are formed on the inner peripheral surface of the settling tank 20 in order to further suppress adhesion and sticking to the stirring blades. It can also be applied to a configuration in which a fixed wing 26 is attached.

次に、具体的な実施例を挙げて、本発明をより詳細に説明する。 Next, the present invention will be described in more detail with reference to specific examples.

(実施例1)
本実施例では、図1に示す凝集沈殿装置を用いて、沈殿層内に所定の高さのペレットブランケットが形成されるまで定常運転を行い、その後、原水の供給を停止し、定常運転を4時間停止した後、定常運転を再開したときの処理水濁度を測定した。反応槽として、容積が200Lのものを用い、沈殿槽として容積が39Lのものを用いた。被処理水(原水)として、500mg/Lのカオリン懸濁液を用いた。
(Example 1)
In this embodiment, the coagulation sedimentation apparatus shown in FIG. 1 is used to perform steady operation until a pellet blanket having a predetermined height is formed in the sedimentation layer, and then the supply of raw water is stopped and steady operation is performed. The treated water turbidity was measured when the steady operation was restarted after the time was stopped. A reaction vessel having a volume of 200 L was used, and a settling vessel having a volume of 39 L was used. As the water to be treated (raw water), a 500 mg / L kaolin suspension was used.

定常運転時、それぞれ原水に対し、無機凝集剤として、150mg/Lの濃度でポリ塩化アルミニウム(PAC)を添加し、第1の高分子凝集剤として、0.5mg/Lの濃度でカチオン基比率が5モル%のカチオン系高分子凝集剤を添加し、pH調整剤として、反応槽内の原水のpHが7になるような添加量で5%濃度の水酸化ナトリウムを添加し、第2の高分子凝集剤として、1.0mg/Lの濃度でアニオン基比率が4モル%のアニオン系高分子凝集剤を添加した。沈殿槽への通水量(沈殿槽に供給する原水の流量)を830L/h(通水LVを20m/h)とし、沈殿槽内の原水の撹拌速度を10rpmとした。なお、定常運転時の処理水濁度は0.39度であった。 During steady operation, polyaluminum chloride (PAC) was added to the raw water at a concentration of 150 mg / L as an inorganic flocculant, and the cation group ratio was 0.5 mg / L as the first polymer flocculant. 5 mol% of the cationic polymer flocculant was added, and 5% concentration of sodium hydroxide was added as a pH adjuster in an amount such that the pH of the raw water in the reaction vessel became 7, and the second As the polymer flocculant, an anionic polymer flocculant having an anion group ratio of 4 mol% was added at a concentration of 1.0 mg / L. The amount of water flowing through the settling tank (flow rate of raw water supplied to the settling tank) was 830 L / h (water flow LV was 20 m / h), and the stirring speed of the raw water in the settling tank was 10 rpm. The treated water turbidity during steady operation was 0.39 degrees.

定常運転の停止中には間欠撹拌工程を行い、沈殿槽内の造粒物を間欠的に撹拌した。撹拌間隔を1時間に1回(計3回)とし、1回ごとの撹拌時間を30秒間とし、撹拌速度を定常運転時と同じ10rpmとした。間欠撹拌工程では、沈殿槽への通水や高分子凝集剤の添加は行っていない。 While the steady operation was stopped, an intermittent stirring step was performed to intermittently stir the granules in the settling tank. The stirring interval was once an hour (three times in total), the stirring time for each stirring was 30 seconds, and the stirring speed was 10 rpm, which was the same as in steady operation. In the intermittent stirring step, water is not passed through the settling tank and no polymer flocculant is added.

(実施例2)
間欠撹拌工程において、定常運転時と同じ通水量で沈殿槽に処理水を通水しながら撹拌を行った以外、実施例1と同様の条件で処理水濁度の測定を行った。
(Example 2)
In the intermittent stirring step, the treated water turbidity was measured under the same conditions as in Example 1 except that the treated water was stirred while passing the treated water through the settling tank with the same amount of water flow as in the steady operation.

(実施例3)
間欠撹拌工程において、沈殿槽への通水時にアニオン系高分子凝集剤を0.2mg/Lの濃度で処理水に添加したこと以外、実施例2と同様の条件で処理水濁度の測定を行った。
(Example 3)
In the intermittent stirring step, the treated water turbidity was measured under the same conditions as in Example 2 except that an anionic polymer flocculant was added to the treated water at a concentration of 0.2 mg / L when the water was passed through the settling tank. went.

(比較例1)
定常運転の停止中にも定常運転時と同じ撹拌速度で沈殿槽内の撹拌を継続的に行ったこと以外、実施例1と同様の条件で処理水濁度の測定を行った。
(Comparative Example 1)
The treated water turbidity was measured under the same conditions as in Example 1 except that the settling tank was continuously stirred at the same stirring speed as during the steady operation even when the steady operation was stopped.

(比較例2)
定常運転の停止中に沈殿槽内の撹拌を行わなかったこと以外、実施例1と同様の条件で処理水濁度の測定を試みた。
(Comparative Example 2)
An attempt was made to measure the treated water turbidity under the same conditions as in Example 1 except that the settling tank was not agitated while the steady operation was stopped.

表1に、実施例1〜3および比較例1,2における測定結果を示す。 Table 1 shows the measurement results of Examples 1 to 3 and Comparative Examples 1 and 2.

Figure 0006825999
Figure 0006825999

比較例2では、定常運転を4時間停止した後、撹拌機に最大トルク(0.98N・m)を超える負荷がかかってしまい、撹拌機を作動させることができず、定常運転を再開することができなかった。このため、処理水濁度を測定することができなかったが、これは、原水の供給停止時に沈殿槽内の撹拌を行わなかったことで、沈殿槽内で汚泥が固着したためであると考えられる。これに対し、実施例1〜3および比較例1では、定常運転が正常に再開されていることから、原水の供給停止時に沈殿槽内の撹拌を行ったことにより沈殿槽内での汚泥の固着が抑制されていることがわかる。一方で、実施例1〜3と比較例1を比較すると、実施例1〜3では、原水の供給停止前の定常運転時に比べて水質の悪化は見られているものの、その程度は比較例1に比べてわずかであり、撹拌による造粒物の破壊が最小限に抑えられていることが確認された。また、実施例1〜3の中では、実施例3、実施例2、実施例1の順に良好な結果が得られており、これは、間欠撹拌工程における沈殿槽への通水と高分子凝集剤の添加による効果であると考えられる。 In Comparative Example 2, after the steady operation was stopped for 4 hours, a load exceeding the maximum torque (0.98 Nm) was applied to the stirrer, the stirrer could not be operated, and the steady operation was restarted. I couldn't. Therefore, the treated water turbidity could not be measured, but it is considered that this is because the sludge adhered in the settling tank because the agitation in the settling tank was not performed when the supply of raw water was stopped. .. On the other hand, in Examples 1 to 3 and Comparative Example 1, since the steady operation was normally restarted, the sludge was fixed in the settling tank by stirring in the settling tank when the supply of raw water was stopped. Can be seen to be suppressed. On the other hand, when Examples 1 to 3 and Comparative Example 1 are compared, in Examples 1 to 3, the water quality is deteriorated as compared with the steady operation before the supply of raw water is stopped, but the degree of deterioration is observed in Comparative Example 1. It was confirmed that the destruction of the granules due to stirring was minimized. Further, in Examples 1 to 3, good results were obtained in the order of Example 3, Example 2, and Example 1, which were water flow to the settling tank and polymer aggregation in the intermittent stirring step. It is considered that this is the effect of adding the agent.

1 凝集沈殿装置
10 反応槽
11 無機凝集剤添加ライン
12 第1の高分子凝集剤添加ライン
13 pH調整剤添加ライン
14 撹拌機
15 第2の高分子凝集剤添加ライン
20 沈殿槽
21 撹拌機
22 集水槽
23 開口部
24 濃縮部
25 処理水還流ポンプ
30 処理水槽
31 処理水排出ポンプ
L1 原水供給ライン
L2 原水移送ライン
L3 処理水移送ライン
L4 汚泥引き抜きライン
L5 処理水排出ライン
L6 処理水還流ライン
V1,V2,V3 バルブ
1 Coagulation and sedimentation device 10 Reaction tank 11 Inorganic coagulant addition line 12 First polymer coagulant addition line 13 pH adjuster addition line 14 Stirrer 15 Second polymer coagulant addition line 20 Sedimentation tank 21 Stirrer 22 Collection Water tank 23 Opening 24 Concentrator 25 Treated water recirculation pump 30 Treated water tank 31 Treated water discharge pump L1 Raw water supply line L2 Raw water transfer line L3 Treated water transfer line L4 Sludge extraction line L5 Treated water discharge line L6 Treated water recirculation line V1, V2 , V3 valve

Claims (11)

被処理水に含まれる懸濁物質を沈殿槽内で凝集させて沈殿させ、前記被処理水を汚泥と処理水とに分離する凝集沈殿装置の運転方法であって、
前記沈殿槽に前記被処理水が供給されている間、前記沈殿槽内の前記被処理水を連続的に撹拌して該被処理水中に形成されたフロックを造粒し、該造粒されたフロックによる流動層を形成する工程と、
前記沈殿槽への前記被処理水の供給が停止されている間、前記流動層を形成していた前記沈殿槽内の前記造粒されたフロックを間欠的に撹拌する工程と、を含む、凝集沈殿装置の運転方法。
It is an operation method of a coagulation sedimentation device that aggregates and precipitates suspended substances contained in water to be treated in a settling tank and separates the water to be treated into sludge and treated water.
While the water to be treated was supplied to the settling tank, the water to be treated in the settling tank was continuously stirred to granulate the flocs formed in the water to be treated , and the granulated. The process of forming a fluidized bed with flocs and
Wherein while said to sedimentation tank supply treated water is stopped, and a step of intermittently agitating the granulated flocs in the settling tank, which had formed the fluidized layer, aggregation How to operate the settling device.
前記造粒されたフロックを間欠的に撹拌する工程が、前記被処理水以外の水を前記沈殿槽に通水しながら、前記造粒されたフロックを撹拌することを含む、請求項1に記載の凝集沈殿装置の運転方法。 The first aspect of the present invention, wherein the step of intermittently stirring the granulated flocs includes stirring the granulated flocs while passing water other than the water to be treated through the settling tank. How to operate the coagulation sedimentation device. 前記被処理水以外の水が、前記沈殿槽から取り出した前記処理水である、請求項2に記載の凝集沈殿装置の運転方法。 The method for operating a coagulation sedimentation device according to claim 2, wherein the water other than the water to be treated is the treated water taken out from the settling tank. 前記被処理水以外の水に高分子凝集剤を添加する、請求項2または3に記載の凝集沈殿装置の運転方法。 The method for operating a coagulation / precipitation device according to claim 2 or 3, wherein a polymer flocculant is added to water other than the water to be treated. 前記高分子凝集剤の添加量が10mg/L以下である、請求項4に記載の凝集沈殿装置の運転方法。 The method for operating a coagulation-precipitating device according to claim 4, wherein the amount of the polymer flocculant added is 10 mg / L or less. 前記沈殿槽に供給される前記被処理水に高分子凝集剤を添加する工程を含み、
前記被処理水以外の水に添加される前記高分子凝集剤が、前記被処理水に添加される前記高分子凝集剤と同一の高分子凝集剤である、請求項4または5に記載の凝集沈殿装置の運転方法。
A step of adding a polymer flocculant to the water to be treated supplied to the settling tank is included.
The aggregation according to claim 4 or 5, wherein the polymer flocculant added to water other than the water to be treated is the same polymer flocculant as the polymer flocculant added to the water to be treated. How to operate the settling device.
前記高分子凝集剤を添加する工程が、複数種類の前記高分子凝集剤を段階的に添加することを含み、
前記被処理水以外の水に添加される前記高分子凝集剤が、前記複数種類の高分子凝集剤のうち最後に被処理水に添加される高分子凝集剤と同一の高分子凝集剤である、請求項6に記載の凝集沈殿装置の運転方法。
The step of adding the polymer flocculant includes stepwise addition of a plurality of types of the polymer flocculant.
The polymer flocculant added to water other than the water to be treated is the same polymer flocculant as the polymer flocculant finally added to the water to be treated among the plurality of types of polymer flocculants. , The method of operating the coagulation sedimentation apparatus according to claim 6.
前記複数種類の高分子凝集剤が、カチオン系高分子凝集剤とアニオン系高分子凝集剤とを含む、請求項7に記載の凝集沈殿装置の運転方法。 The plurality of types of polymer flocculant, and a cationic polymer flocculant and A anion polymer flocculant, operating method of coagulating sedimentation apparatus according to claim 7. 前記カチオン系高分子凝集剤のカチオン基比率が8モル%以下である、請求項8に記載の凝集沈殿装置の運転方法。 The method for operating a coagulation-precipitating device according to claim 8, wherein the ratio of cation groups of the cationic polymer flocculant is 8 mol% or less. 前記造粒されたフロックを間欠的に撹拌する工程が、前記沈殿槽内で回転する撹拌翼と、前記沈殿槽の内周面に取り付けられた固定翼とにより、前記造粒されたフロックを撹拌することを含む、請求項1から9のいずれか1項に記載の凝集沈殿装置の運転方法。 In the step of intermittently stirring the granulated flocs, the granulated flocs are agitated by the stirring blades rotating in the settling tank and the fixed blades attached to the inner peripheral surface of the settling tank. The method for operating a coagulation sedimentation apparatus according to any one of claims 1 to 9, which comprises the above. 被処理水に含まれる懸濁物質を沈殿槽内で凝集させて沈殿させ、前記被処理水を汚泥と処理水とに分離する凝集沈殿装置であって、
前記沈殿槽への前記被処理水の供給中には、前記沈殿槽内の前記被処理水を連続的に撹拌して該被処理水中に形成されたフロックを造粒し、該造粒されたフロックによる流動層を形成し、前記沈殿槽への前記被処理水の供給停止中には、前記流動層を形成していた前記沈殿槽内の前記造粒されたフロックを間欠的に撹拌する撹拌手段を有する凝集沈殿装置。
A coagulation and sedimentation device that aggregates and precipitates suspended substances contained in water to be treated in a settling tank and separates the water to be treated into sludge and treated water.
During the supply of the water to be treated to the settling tank, the water to be treated in the settling tank was continuously stirred to granulate the flocs formed in the water to be treated, and the granulated. A fluidized bed is formed by flocs, and while the supply of the water to be treated to the settling tank is stopped, the granulated flocs in the settling tank forming the fluidized bed are intermittently stirred. Coagulation sedimentation device with means.
JP2017115106A 2017-06-12 2017-06-12 Operation method of coagulation sedimentation device and coagulation sedimentation device Active JP6825999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017115106A JP6825999B2 (en) 2017-06-12 2017-06-12 Operation method of coagulation sedimentation device and coagulation sedimentation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115106A JP6825999B2 (en) 2017-06-12 2017-06-12 Operation method of coagulation sedimentation device and coagulation sedimentation device

Publications (2)

Publication Number Publication Date
JP2019000760A JP2019000760A (en) 2019-01-10
JP6825999B2 true JP6825999B2 (en) 2021-02-03

Family

ID=65007268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115106A Active JP6825999B2 (en) 2017-06-12 2017-06-12 Operation method of coagulation sedimentation device and coagulation sedimentation device

Country Status (1)

Country Link
JP (1) JP6825999B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450328B2 (en) * 2018-08-10 2024-03-15 栗田工業株式会社 Coagulation sedimentation device, its control method and sedimentation tank

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473464A (en) * 1977-11-22 1979-06-12 Ebara Infilco Co Ltd Treatment of waste water
JPH07121323B2 (en) * 1991-08-23 1995-12-25 日本エンヂニヤー・サービス株式会社 Wastewater treatment equipment
JP2723809B2 (en) * 1994-09-02 1998-03-09 三恵株式会社 Turbid water treatment equipment
JP2002035503A (en) * 2000-07-27 2002-02-05 Sano:Kk Turbid water treatment apparatus
JP2002205074A (en) * 2000-11-13 2002-07-23 Hymo Corp Treatment method for inorganic particle suspension
JP4099456B2 (en) * 2004-01-30 2008-06-11 株式会社 フルカワ Waste liquid treatment system
JP5540782B2 (en) * 2010-03-09 2014-07-02 栗田工業株式会社 Drug injection device and operation method thereof
JP5713793B2 (en) * 2011-05-10 2015-05-07 オルガノ株式会社 Coagulation sedimentation equipment
JP5851827B2 (en) * 2011-12-22 2016-02-03 オルガノ株式会社 Coagulation sedimentation equipment
JP5900576B1 (en) * 2014-10-24 2016-04-06 栗田工業株式会社 Water treatment method and water treatment apparatus

Also Published As

Publication number Publication date
JP2019000760A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP5907273B2 (en) Water treatment method and apparatus
JP3691768B2 (en) Sludge treatment method
JP6793014B2 (en) Wastewater treatment method and wastewater treatment equipment
JP4223870B2 (en) Water purification method
JP3814853B2 (en) Coagulation sedimentation equipment
JP3787970B2 (en) Sludge dewatering method
JP4937228B2 (en) Coagulation sedimentation equipment
JP2013078730A (en) Method and apparatus for treatment of coagulation precipitation
JP4073116B2 (en) Coagulation sedimentation equipment
JP6825999B2 (en) Operation method of coagulation sedimentation device and coagulation sedimentation device
JP6287009B2 (en) Method and apparatus for treating wastewater containing inorganic ions
WO2019077835A1 (en) Flocculation device and flocculation treatment method
JP5868153B2 (en) Coagulation sedimentation equipment
JP2012045494A (en) Method and device for flocculation precipitation treatment
JP7083274B2 (en) Water treatment method and water treatment equipment
JP7450328B2 (en) Coagulation sedimentation device, its control method and sedimentation tank
JP3866054B2 (en) Aggregation precipitation apparatus and control method thereof
JP7074406B2 (en) Drug addition amount control device and drug addition amount control method
JP2000317214A (en) Flocculating and settling device
JP4446418B2 (en) Coagulation precipitation system
JP7142540B2 (en) Water purification method and water purification device
JP3870354B2 (en) Coagulation sedimentation equipment
JP7117101B2 (en) Water treatment method and device
JP7213125B2 (en) Coagulation-sedimentation device for water containing silica and coagulation-sedimentation treatment method
JP2023132821A (en) Coagulation sedimentation device, water treatment device and coagulation sedimentation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210114

R150 Certificate of patent or registration of utility model

Ref document number: 6825999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250