JP2003340208A - Water cleaning method and apparatus therefor - Google Patents

Water cleaning method and apparatus therefor

Info

Publication number
JP2003340208A
JP2003340208A JP2002150433A JP2002150433A JP2003340208A JP 2003340208 A JP2003340208 A JP 2003340208A JP 2002150433 A JP2002150433 A JP 2002150433A JP 2002150433 A JP2002150433 A JP 2002150433A JP 2003340208 A JP2003340208 A JP 2003340208A
Authority
JP
Japan
Prior art keywords
water
floc
polymer
coagulant
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002150433A
Other languages
Japanese (ja)
Other versions
JP4004854B2 (en
Inventor
Norio Makita
則夫 槙田
Toshiyuki Yasunaga
利幸 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002150433A priority Critical patent/JP4004854B2/en
Publication of JP2003340208A publication Critical patent/JP2003340208A/en
Application granted granted Critical
Publication of JP4004854B2 publication Critical patent/JP4004854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water cleaning method which provides an excellent turbidity removing effect even at the time of low turbidity when a polymeric flocculant is used, eliminating the problem of over-blocking generable when the polymeric flocculant is used and enabling stable water cleaning treatment, and an apparatus therefor. <P>SOLUTION: An inorganic flocculant is injected in raw water and the polymeric flocculant is succeedingly injected therein to perform flocculation and sedimentation treatment, and filter treatment is subsequently performed. In this water cleaning treatment method, the drift current of flocs after the injection of the polymeric flocculant is measured and the injection amount of the polymeric flocculant is controlled on the basis of the measured result. In this water cleaning treatment method, flocs formed by flocculation and sedimentation treatment is returned. The water cleaning treatment apparatus is also disclosed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子凝集剤を使
用した好適な浄水処理方法及び装置に関するものであ
り、より詳しくは高分子凝集剤を使用した場合に起こる
ろ過閉塞を防止することができ、高分子凝集剤を使用す
る凝集沈殿工程において優れた凝集処理効果を得ること
ができる方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suitable method and apparatus for purifying water using a polymer flocculant, and more particularly to preventing filtration clogging that occurs when a polymer flocculant is used. The present invention relates to a method and an apparatus capable of obtaining an excellent coagulation treatment effect in a coagulation-sedimentation step using a polymer coagulant.

【0002】[0002]

【従来の技術】従来より、浄水処理においては、懸濁物
質を含有する被処理水(以下「原水」ともいう)に硫酸
バンドやポリ塩化アルミニウム(PAC)等の無機凝集
剤を注入し、懸濁物質を取り込んだ凝集フロックを形成
させ、この凝集フロックを沈降分離させることによっ
て、懸濁物質を除去していた。しかしながら、近年、湖
沼や河川の富栄養化が進み藻類が増殖するようになっ
た。これらの藻類は凝集性が悪く、砂ろ過処理にも悪影
響を与える。増殖した藻類を凝集させるには多量の無機
凝集剤を必要とし、無機凝集剤を多量に添加することに
より処理水が酸性になるため、飲料水としては適さなく
なる。また無機凝集剤に由来する汚泥の発生量も増加
し、この汚泥の処理に費用が増大する問題も生じてい
る。
2. Description of the Related Art Conventionally, in water purification treatment, an inorganic coagulant such as a sulfuric acid band or polyaluminum chloride (PAC) is injected into water to be treated (hereinafter also referred to as “raw water”) containing suspended substances, and suspended. The suspended substance was removed by forming aggregate flocs incorporating turbid substances and allowing the aggregate flocs to settle. However, in recent years, eutrophication of lakes and rivers has progressed and algae have grown. These algae have poor cohesive properties and adversely affect the sand filtration process. A large amount of inorganic coagulant is required to coagulate the grown algae, and the addition of a large amount of inorganic coagulant makes the treated water acidic, which makes it unsuitable as drinking water. Further, the amount of sludge derived from the inorganic coagulant also increases, and there is a problem that the cost of treating this sludge increases.

【0003】浄水処理において無機凝集剤による凝集フ
ロックの沈降性を改良するために、アニオン系高分子凝
集剤を併用することが検討されているが、次のような問
題点が指摘されている。即ち、浄水処理において注入さ
れた高分子凝集剤は、生成フロックとともに固液分離さ
れ大部分は取り除かれるが、一部が微細フロックととも
に処理水側に残存する。この残存した高分子凝集剤が後
工程の砂ろ過塔内のろ材に吸着し、ろ過閉塞を起こして
しまう恐れがある。
In order to improve the settling property of flocs caused by an inorganic flocculant in water purification treatment, it has been studied to use an anionic polymer flocculant together, but the following problems have been pointed out. That is, the polymer coagulant injected in the water purification process is solid-liquid separated together with the generated flocs and most of it is removed, but a part thereof remains on the treated water side together with the fine flocs. This residual polymer coagulant may be adsorbed on the filter material in the sand filtration tower in the subsequent step and cause filter clogging.

【0004】高分子凝集剤による閉塞を防止する手段と
しては、凝集薬封鎖剤を注入する方法、無機凝集剤注入
後のフロックの形成度合を測定し、フロック形成度合に
応じて高分子凝集剤の注入率を決定する方法、排水処理
においてフロック生成槽内の流動電流を測定し、測定し
た流動電流に基づいて凝集剤の余剰量あるいは不足量を
求め、凝集剤の注入量を制御する方法等がある。
As means for preventing clogging by a polymer flocculant, a method of injecting a coagulant blocking agent, a degree of floc formation after injection of an inorganic flocculant is measured, and the degree of flocculation of the polymer flocculant is measured according to the degree of floc formation. A method of determining the injection rate, measuring the flowing current in the floc generation tank during wastewater treatment, obtaining the surplus amount or deficiency of the coagulant based on the measured flowing current, and controlling the injection amount of the coagulant, etc. is there.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記方
法にも以下のような問題点がある。凝集薬封鎖剤を注入
する方法は、処理コストの上昇を招く恐れがある。無機
凝集剤注入後のフロックの形成度合を測定し、フロック
形成度合に応じて高分子凝集剤の注入率を決定する方法
では、懸濁物質と無機凝集剤の結合が良好に行われた微
細フロックが形成されたとしても、高分子凝集剤が有効
に粗大フロックの凝集に使われなければ、ろ過閉塞の恐
れは依然として残るので、無機凝集剤注入後のフロック
の形成度合の管理だけでは不十分である。更に、フロッ
ク生成槽内の流動電流を測定し、測定した流動電流に基
づいて、凝集剤の注入量を制御する方法では、懸濁物質
と凝集剤が過不足なく反応し、電気的に中性になるよう
に凝集剤量をコントロールすることを目的としている
が、浄水処理においては、電気的に中和となる点が必ず
しも良好な処理結果が得られるわけではなく、当該公報
には処理水濁度やろ過への影響については何ら示唆され
ていない。
However, the above method also has the following problems. The method of injecting the coagulant blocking agent may increase the processing cost. In the method of measuring the degree of floc formation after injection of the inorganic flocculant and determining the injection rate of the polymer flocculant according to the degree of floc formation, the fine floc in which the suspended substance and the inorganic flocculant are well bonded is used. Even if the coagulant is formed, if the polymer coagulant is not effectively used for coagulation of the coarse floc, the risk of filter clogging still remains, so it is not enough to manage the degree of floc formation after injection of the inorganic coagulant. is there. Further, in the method of measuring the flowing current in the floc generation tank and controlling the injection amount of the coagulant based on the measured flowing current, the suspended substance and the coagulant react with each other in just proportion and electrically neutral The purpose is to control the amount of coagulant so that, in the water purification treatment, good neutralization results are not always obtained in terms of electrical neutralization. There is no suggestion of any effect on the degree or filtration.

【0006】そこで、本発明者らは上述の問題点に鑑
み、高分子凝集剤を使用した場合に低濁度時においても
優れた濁度除去効果が得られ、かつ高分子凝集剤を使用
した場合に起り得るろ過閉塞の問題を解消し、安定的な
浄水処理が可能な方法を開発すべく鋭意検討した結果、
本発明を完成するに至った。
In view of the above-mentioned problems, the present inventors have obtained an excellent effect of removing turbidity even when the turbidity is low when a polymer flocculant is used, and use the polymer flocculant. As a result of diligent study to solve the problem of filtration blockage that may occur in some cases and to develop a method capable of stable water purification treatment,
The present invention has been completed.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下の構成からなる。 (1)被処理水に無機凝集剤を注入し、続いて高分子凝
集剤を注入することにより凝集沈殿処理を行い、引き続
きろ過処理を行う浄水処理方法において、高分子凝集剤
の注入後の凝集フロックの流動電流を測定し、その測定
結果に基づき高分子凝集剤の注入量を制御することを特
徴とする浄水処理方法。 (2)被処理水に無機凝集剤を注入し、続いて高分子凝
集剤を注入することにより凝集沈殿処理を行い、引き続
きろ過処理を行う浄水処理方法において、高分子凝集剤
注入前の凝集フロックの流動電流を測定し、次いで高分
子凝集剤の注入後の凝集フロックの流動電流を測定し、
その測定結果に基づき高分子凝集剤の注入量を制御する
ことを特徴とする浄水処理方法。 (3)被処理水に無機凝集剤を注入し、続いて高分子凝
集剤を注入することにより凝集沈殿処理を行い、引き続
きろ過処理を行う浄水処理方法において、凝集沈殿処理
で生成したフロックを無機凝集剤を注入する前の被処理
水に返送することを特徴とする浄水処理方法。
In order to solve the above problems, the present invention has the following constitution. (1) In a water purification method in which an inorganic coagulant is injected into the water to be treated, and then a polymer coagulant is injected to perform coagulation-sedimentation treatment, followed by filtration treatment, coagulation after injection of the polymer coagulant. A water purification method characterized by measuring the flow current of flocs and controlling the injection amount of the polymer flocculant based on the measurement result. (2) In a water purification method in which an inorganic coagulant is injected into the water to be treated, and then a polymer coagulant is injected to perform coagulation-sedimentation treatment, followed by filtration treatment, coagulation flocs before injection of the polymer coagulant. Of the flocculant floc after injection of the polymer flocculant,
A water purification method characterized in that the injection amount of a polymer coagulant is controlled based on the measurement result. (3) In the water purification method in which an inorganic coagulant is injected into the water to be treated, and then a polymer coagulant is injected to perform the coagulation-sedimentation treatment, and subsequently the filtration treatment is performed, the flocs generated by the coagulation-sedimentation treatment are inorganic. A water purification method characterized by returning the coagulant to the water to be treated before it is injected.

【0008】(4)浄化処理を施す被処理水を受け入
れ、無機凝集剤の注入手段を有する凝集混合槽と、前記
凝集混合槽で生成された微細フロックに高分子凝集剤を
注入してフロックの巨大化と強固化を行うフロック形成
槽と、巨大化フロックを固液分離する沈殿池と、固液分
離された沈殿処理水として系外へ排出する砂ろ過塔を有
する浄水処理装置において、高分子凝集剤の注入後のフ
ロック形成槽内の巨大フロックの流動電流、又は高分子
凝集剤注入前の微細フロックと高分子凝集剤注入後の前
記巨大フロックの流動電流を測定する流動電流計と、該
流動電流計の測定結果に基づいて高分子凝集剤の注入量
を制御する高分子凝集剤注入制御手段とを有することを
特徴とする浄水処理装置。
(4) A flocculant which receives the water to be treated and has a flocculant mixing tank having an inorganic coagulant injection means and a polymer flocculant is injected into the fine flocs produced in the flocculation mixing tank. In a water purification device that has a floc formation tank for enlarging and strengthening, a settling tank for solid-liquid separation of enlarging flocs, and a sand filtration tower for discharging the solid-liquid separated sedimentation treated water to the outside of the system, polymer A flowing current meter for measuring a flowing current of a giant floc in a floc formation tank after injecting a flocculant, or a flowing current of a fine floc before injecting a polymer flocculant and a flowing current of the giant floc after injecting a polymer flocculant, and A water purification treatment device, comprising: a polymer coagulant injection control means for controlling an injection amount of the polymer coagulant based on a measurement result of a streaming ammeter.

【0009】(5)浄化処理を施す被処理水を受け入
れ、無機凝集剤注入手段を有する凝集混合槽と、該凝集
混合槽で生成された微細フロックに高分子凝集剤を注入
してフロックの巨大化と強固化を行うフロック形成槽
と、巨大化フロックを固液分離する沈殿池と、固液分離
された沈殿処理水として系外へ排出する砂ろ過塔を有す
る浄水処理装置において、フロック形成槽及び/又は沈
殿池の沈降フロックを凝集混和槽及び/又は被処理水へ
返送する手段を有することを特徴とする浄水処理装置。
(5) Coagulation mixing tank having an inorganic coagulant injecting means for receiving water to be treated for purification treatment, and macro flocculant by injecting a polymer coagulant into fine flocs produced in the coagulation mixing tank A floc formation tank that has a floc formation tank for solidification and solidification, a sedimentation tank for solid-liquid separation of giant flocs, and a sand filtration tower that discharges the solid-liquid separated precipitation treatment water to the outside of the system. And / or a means for returning the settling flocs of the settling tank to the coagulation / mixing tank and / or the water to be treated.

【0010】[0010]

【発明の実施の形態】以下、本発明を具体的に説明す
る。本発明が適用できる浄水処理設備としては、実用化
されている通常の設備が対象であり、例えば横流式沈殿
設備を有する浄水施設、高速凝集沈殿設備を有する浄水
設備が挙げられる。高速凝集沈殿設備としてはスラリー
循環型、スラッジ・ブランケット型いずれも適用可能で
ある。なお、実施の形態を説明するための全図におい
て、同一は機能を有する構成要素は同一符号を用いて示
す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The water purification equipment to which the present invention can be applied is an ordinary equipment that has been put into practical use, and examples thereof include water purification equipment having a cross-flow type precipitation equipment and water purification equipment having a high-speed coagulation sedimentation equipment. Both slurry circulation type and sludge / blanket type can be applied as the high-speed coagulation / sedimentation facility. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments.

【0011】図1は本発明の一実施態様を示す図であ
る。図は横流式沈殿設備を有する浄水施設の例である。
原水1は、原水導入管2を通って凝集混和槽3に送られ
る。凝集混和槽3には無機凝集剤4が注入され、ここで
急速撹拌されることで原水中の濁質分は無機凝集剤4と
反応し微細なフロック(マイクロフロック)となる。
FIG. 1 is a diagram showing an embodiment of the present invention. The figure shows an example of a water purification facility with a cross-flow type sedimentation facility.
Raw water 1 is sent to a coagulation and mixing tank 3 through a raw water introduction pipe 2. The inorganic coagulant 4 is injected into the coagulation / mixing tank 3, and the turbidity in the raw water reacts with the inorganic coagulant 4 by rapid agitation here to form fine flocs.

【0012】本発明で使用される無機凝集剤としては、
一般に凝集剤として既に使用されている鉄系又はアルミ
ニウム系無機凝集剤が使用できる。具体的には硫酸バン
ド、ポリ塩化アルミニウム(PAC)、塩化アルミニウ
ム、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄及びこれら
の混合物が挙げられる。これら無機凝集剤の注入量は原
水の水質にもよるが、1〜1000mg/リットルの範
囲である。
The inorganic coagulant used in the present invention includes:
Generally, an iron-based or aluminum-based inorganic coagulant that has already been used as a coagulant can be used. Specific examples thereof include a sulfuric acid band, polyaluminum chloride (PAC), aluminum chloride, polyferric sulfate (polyiron), ferric chloride, and mixtures thereof. The injection amount of these inorganic coagulants depends on the water quality of the raw water, but is in the range of 1 to 1000 mg / liter.

【0013】凝集混和槽3で生成された微細フロックを
含む水6はフロック形成槽7に送られる。フロック形成
槽7では高分子凝集剤が注入され、凝集混和槽3よりも
緩い緩速攪拌されることで微細フロックが高分子凝集剤
により巨大化される。
The water 6 containing fine flocs produced in the flocculation and mixing tank 3 is sent to a floc formation tank 7. In the floc forming tank 7, a polymer flocculant is injected, and the floc is mixed in the flocculation and mixing tank 3 more slowly and slowly, so that the fine flocs are enlarged by the polymer flocculant.

【0014】注入する高分子凝集剤としては公知のアニ
オン系、ノニオン系、カチオン系高分子凝集剤を挙げる
ことができる。アニオン系高分子凝集剤としては、ポリ
アクリルアミド部分加水分解物、アニオン性モノマーの
共重合体、アニオン性モノマーとアクリルアミド等のノ
ニオン性モノマーとの共重合体が挙げられる。アニオン
性モノマーとしてはアクリル酸、メタクリル酸、イタコ
ン酸、マレイン酸、フマル酸、ビニルスルホン酸、アリ
ルスルホン酸、メタリルスルホン酸、スチレンスルホン
酸、2−アリルアミドエタンスルホン酸、2−アクリル
アミド−2−メチルプロパンスルホン酸、2−メタクリ
ルアミドエタンスルホン酸、2−メタクリルアミド−2
−メチルプロパンスルホン酸、2−アクリロイルオキシ
エタンスルホン酸、3−アクリロイルオキシプロパンス
ルホン酸、4−アクリロイルオキシブタンスルホン酸、
2−メタクリロイルオキシエタンスルホン酸、3−メタ
クリロイルオキシプロパンスルホン酸、4−メタクリロ
イルオキシブタンスルホン酸、及びこれらのアルカリ金
属、アルカリ土類金属等の金属塩又はアンモニウム塩が
挙げられる。これらアニオン性モノマーは単独で用いて
もよく、2種以上を組み合わせて用いてもよい。ノニオ
ン性モノマーとしてはアクリルアミド、メタクリルアミ
ド、メタアクリロニトリル、酢酸ビニル等が挙げられ
る。これらノニオン性モノマーは単独で用いてもよく、
2種以上を組み合わせて用いてもよい。共重合体として
好ましいものは、アクリルアミド・アクリル酸塩共重合
体、アクリルアミド・2−アクリルアミド−2−メチル
プロパンスルホン酸共重合体である。また、ノニオン系
高分子凝集剤とは、上記のノニオン性モノマーの重合体
又は共重合体であるが、好ましくはポリアクリルアミド
である。
As the polymer coagulant to be injected, known anionic, nonionic and cationic polymer coagulants can be mentioned. Examples of the anionic polymer flocculant include a polyacrylamide partial hydrolyzate, a copolymer of an anionic monomer, and a copolymer of an anionic monomer and a nonionic monomer such as acrylamide. Examples of the anionic monomer include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, 2-allylamide ethane sulfonic acid, 2-acrylamido-2. -Methylpropanesulfonic acid, 2-methacrylamidoethanesulfonic acid, 2-methacrylamido-2
-Methylpropanesulfonic acid, 2-acryloyloxyethanesulfonic acid, 3-acryloyloxypropanesulfonic acid, 4-acryloyloxybutanesulfonic acid,
Examples thereof include 2-methacryloyloxyethanesulfonic acid, 3-methacryloyloxypropanesulfonic acid, 4-methacryloyloxybutanesulfonic acid, and metal salts or ammonium salts of these alkali metals and alkaline earth metals. These anionic monomers may be used alone or in combination of two or more. Examples of the nonionic monomer include acrylamide, methacrylamide, methacrylonitrile, vinyl acetate and the like. These nonionic monomers may be used alone,
You may use it in combination of 2 or more type. Preferred copolymers are acrylamide / acrylic acid salt copolymers and acrylamide / 2-acrylamido-2-methylpropanesulfonic acid copolymers. The nonionic polymer flocculant is a polymer or copolymer of the above nonionic monomers, preferably polyacrylamide.

【0015】高分子凝集剤の注入量は0.05〜0.5
mg/リットルで本発明の目的を達成できるが、最大で
も合計で1mg/リットル以下とすることが好ましい。
また、使用上の規制値が処理水中の残留アクリルアミド
モノマー0.00005mg/リットル以下であること
から、製品中のアクリルアミドモノマーは、理論上0.
005wt%以下にしておくことが重要である。
The injection amount of the polymer coagulant is 0.05 to 0.5.
Although the object of the present invention can be achieved with mg / l, it is preferable that the total is 1 mg / l or less at the maximum.
Further, since the regulated value in use is 0.00005 mg / liter or less of the residual acrylamide monomer in the treated water, the acrylamide monomer in the product is theoretically 0.
It is important to keep it to 005 wt% or less.

【0016】高分子凝集剤により巨大化されてフロック
は、続く沈殿池13で固液分離されることにより大部分
は汚泥として回収される。一般に沈殿池13は内部に傾
斜板や傾斜管が設けられている。固液分離された沈殿処
理水は、砂ろ過塔15に送られろ材で処理されて浄水1
6となる。ろ材としては珪砂やアンスラサイトが最も一
般的である。前述の通りフロックの大部分は沈殿池13
で分離されるが、フロックに捕捉されなかった原水中の
濁質分や、沈殿池13で沈降しなかったフロックが、砂
ろ過塔15内のろ材でろ過される。無機凝集剤のみで凝
集されたフロックは、無機凝集剤自体の粘度はそれほど
高くないのでろ材に粘着することはなく、またろ材に粘
着しても逆洗で容易にフロックは除去できる。一方、高
分子凝集剤で凝集されたフロックは、高分子凝集剤の有
する粘度の影響でろ材に粘着してしまい、ろ過閉塞を起
こしてしまう。
Most of the flocs, which have been enlarged by the polymer flocculant, are recovered as sludge by solid-liquid separation in the subsequent settling tank 13. Generally, the sedimentation tank 13 is provided with an inclined plate and an inclined pipe inside. The precipitated treated water that has undergone solid-liquid separation is sent to the sand filtration tower 15 where it is treated with a filter medium and purified water 1
It becomes 6. Quartz sand and anthracite are the most common filter media. As mentioned above, most of the flocs are sedimentation tank 13
The turbid matter in the raw water that was not captured by the flocs and the flocs that did not settle in the settling tank 13 are separated by the filter medium in the sand filtration tower 15 although they are separated by. The floc aggregated only with the inorganic coagulant does not adhere to the filter medium because the viscosity of the inorganic coagulant itself is not so high, and even if it adheres to the filter medium, the floc can be easily removed by backwashing. On the other hand, the flocs aggregated with the polymer flocculant adhere to the filter medium due to the viscosity of the polymer flocculant, and cause filter clogging.

【0017】本発明の最も大きな特徴は、高分子凝集剤
を使用した場合に発生し得るろ過閉塞の問題を解消する
ために、高分子凝集剤の注入後の凝集フロックの流動電
流を測定し、その測定結果に基づき高分子凝集剤の注入
量を制御する点にある。流動電流の測定は流動電流計1
1を用いて行う。
The most important feature of the present invention is to measure the streaming current of the floc after the injection of the polymer coagulant in order to solve the problem of filtration blockage which may occur when the polymer coagulant is used. The point is to control the injection amount of the polymer coagulant based on the measurement result. Flow current is measured by flow ammeter 1
1 is used.

【0018】流動電流計11の概略図を図2に示す。シ
リンダー20内部にモーター22により上下に動くピス
トン21が備え付けてある。ピストン21はシリンダー
20の内壁との間には所定のクリアランスがある。試水
入口23から入ったフロックを含む試水は、ピストン2
1の上下運動によって上述のクリアランス内でせん断力
が加えられ、このせん断力により、凝集フロック表面に
付いているコロイド粒子は凝集フロックと引き離され
る。この時に発生する流動電流を、増幅整流回路25で
凝集フロック表面の荷電密度に応じた流動電流値として
検出することができる。例えばポリ塩化アルミニウム
(PAC)で凝集したフロックは、凝集フロック表面に
多量の水酸化アルミニウムの凝集物質が付着しているの
で、正の荷電粒子が多く存在することになる。従って、
無機凝集剤で凝集した後の流動電流値は、原水と比較し
て高くなる(正側になる)。また、無機凝集剤の注入量
に比例して流動電流値は高くなる。
A schematic diagram of the streaming ammeter 11 is shown in FIG. A piston 21 that is moved up and down by a motor 22 is provided inside the cylinder 20. There is a predetermined clearance between the piston 21 and the inner wall of the cylinder 20. The sample water containing the flocs that entered from the sample water inlet 23 is the piston 2
A shearing force is applied within the above-mentioned clearance by the vertical movement of 1, and the shearing force causes the colloidal particles attached to the surface of the floc to be separated from the floc. The flowing current generated at this time can be detected by the amplifying rectifier circuit 25 as a flowing current value corresponding to the charge density on the floc surface. For example, in flocs aggregated with polyaluminum chloride (PAC), a large amount of aggregated substances of aluminum hydroxide are attached to the surface of the aggregated flocs, so that many positively charged particles are present. Therefore,
The flow current value after coagulation with the inorganic coagulant is higher than that of raw water (on the positive side). Further, the flowing current value increases in proportion to the injection amount of the inorganic coagulant.

【0019】一方、アニオン系の高分子凝集剤を用いて
生成したフロックは、凝集フロックの表面にアニオン系
物質である高分子凝集剤が付着しているので、負の荷電
が多くなる。このため、流動電流値は無機凝集剤で凝集
した後の流動電流値よりは低くなる(負側になる)。従
って、高分子凝集剤注入後の凝集フロックの流動電流値
を測定すれば、高分子凝集剤の過不足を判定できること
になる。流動電流値は高分子凝集剤の注入率に比例して
低くなる。また、流動電流値は高分子凝集剤が有するア
ニオン性の強度に比例して低くなる。つまり、同じ高分
子凝集剤注入量であれば、アニオン性の強い高分子凝集
剤は流動電流値の低下が大きく、ノニオンやアニオン性
の弱い高分子凝集剤は流動電流値の低下は小さい。
On the other hand, the floc produced by using the anionic polymer flocculant has a large amount of negative charges because the polymer flocculant which is an anionic substance adheres to the surface of the floc. For this reason, the streaming current value becomes lower (becomes negative) than the streaming current value after aggregation with the inorganic coagulant. Therefore, by measuring the flowing current value of the floc after the injection of the polymer flocculant, it is possible to determine the excess or deficiency of the polymer flocculant. The streaming current value decreases in proportion to the injection rate of the polymer flocculant. Further, the streaming current value decreases in proportion to the anionic strength of the polymer coagulant. That is, if the injection amount of the polymer coagulant is the same, the flow current value of the polymer coagulant having a strong anionic property is largely decreased, and the flow current value of the nonionic or the polymer coagulant having a weak anionic property is small.

【0020】流動電流による高分子凝集剤の注入量の制
御において、最適な管理が可能な流動電流値は原水性
状、無機凝集剤の種類及び注入量、高分子凝集剤の種類
及び注入量によって変動するので一概には言えないが、
高分子凝集剤を注入してろ過閉塞がなく安定した運転が
できている状態の流動電流値(安定値)を予め把握して
おき、この安定値よりも5割程度流動電流値が低下した
場合には、高分子凝集剤が過剰であると判定できる。従
って、このような状態で運転を継続した場合には、余剰
の高分子凝集剤を含む凝集フロックがろ過池に流出し、
急激にろ過閉塞を起こすことになる。この場合には、流
動電流値を安定値に近付けるように高分子凝集剤の注入
量を低下させる必要がある。
In controlling the injection amount of the polymer coagulant by the flow current, the flow current value that can be optimally controlled varies depending on the raw water state, the type and injection amount of the inorganic coagulant, and the type and injection amount of the polymer coagulant. I can not say unequivocally because it does,
When the flowing current value (stable value) in the state where the polymer coagulant is injected and there is no filtration blockage and stable operation is possible in advance, and the flowing current value drops by about 50% from this stable value It can be determined that the polymer coagulant is excessive. Therefore, when the operation is continued in such a state, the floc of flocs containing the excess polymer flocculant flows out to the filtration pond,
It will cause a sudden filter blockage. In this case, it is necessary to reduce the injection amount of the polymer coagulant so that the streaming current value approaches the stable value.

【0021】また、本発明においては、高分子凝集剤注
入前後の流動電流の比較で、高分子凝集剤の注入量を制
御することも可能である。この場合も最適な管理が可能
な流動電流値は、原水性状、無機凝集剤の種類及び注入
量、高分子凝集剤の種類及び注入量によって変動するの
で一概には言えないが、高分子凝集剤注入前の流動電流
値と比較して2倍程度流動電流値が低下した場合には、
高分子凝集剤が過剰であると判定できる。
Further, in the present invention, it is possible to control the injection amount of the polymer coagulant by comparing the streaming currents before and after the polymer coagulant injection. Even in this case, the streaming current value that can be optimally controlled varies depending on the raw water state, the type and injection amount of the inorganic coagulant, and the type and injection amount of the polymer coagulant. When the flowing current value decreases about twice as much as the flowing current value before injection,
It can be determined that the polymer flocculant is excessive.

【0022】一方、原水の濁度が低いときには濁質分が
少ないのでフロック生成のための核が少なくなり、フロ
ック相互の衝突回数が減少し、高分子凝集剤を併用した
としても濁度低減の効果が見られない場合がある。更に
は、フロック生成のための核が少ないことにより、フロ
ック形成に寄与できなかった残留高分子凝集剤が増加
し、これもろ過閉塞を起こす原因になると考えられてい
る。
On the other hand, when the turbidity of the raw water is low, the turbidity is small, so the number of nuclei for floc formation is reduced, the number of collisions of the flocs with each other is reduced, and the turbidity can be reduced even if a polymer flocculant is used in combination. The effect may not be seen. Furthermore, it is considered that the number of nuclei for floc formation is small and the amount of residual polymer coagulant that could not contribute to the formation of flocs increases, which also causes filtration clogging.

【0023】本発明のもう一つの最も大きな特徴は、上
述のろ過閉塞防止と濁度低減の両方を達成することを目
的として、凝集沈殿処理で生成したフロックを凝集沈殿
処理前の原水に返送することを特徴とすることにある。
返送されるフロックが、高分子凝集剤の注入後にフロッ
ク形成槽で生成したフロックであるか、高分子凝集剤の
注入後にフロック形成槽で生成したフロックを、沈殿池
で沈降させたもの(以下、沈殿フロックと称す)である
ことが好ましい。これらのフロックは、すでに高分子凝
集剤を表面に保持し凝集能力も残存しているので、フロ
ックを返送しない場合と比較して、フロック相互が衝突
してより巨大化したフロックを形成する能力を有する。
また、フロック相互の衝突回数が増えるので、巨大化し
ないで沈殿池で沈殿しないまま、砂ろ過塔まで到達する
微細フロックの量も激減し、ろ過継続時間の短縮を防ぐ
ことができる。また、新たに注入する高分子凝集剤の量
を低減させる効果が期待できる。
Another most important feature of the present invention is that flocs produced in the coagulation sedimentation treatment are returned to the raw water before the coagulation sedimentation treatment in order to achieve both the above-mentioned prevention of filter clogging and reduction of turbidity. It is to be characterized.
The returned flocs are flocs produced in the floc formation tank after the injection of the polymer flocculant, or flocs produced in the floc formation tank after the injection of the polymer flocculant are sedimented in the sedimentation tank (hereinafter, (Referred to as precipitation flocs). Since these flocs already retain the polymeric flocculant on the surface and still have the ability to flocculate, the ability of the flocs to collide with each other to form a larger floc is compared to the case where the flocs are not returned. Have.
In addition, since the number of collisions between the flocs increases, the amount of fine flocs reaching the sand filtration tower can be drastically reduced without being made huge and without being settled in the sedimentation basin, so that it is possible to prevent the duration of filtration from being shortened. In addition, the effect of reducing the amount of newly injected polymer coagulant can be expected.

【0024】なお、沈殿フロックを返送させる場合に
は、沈殿池で完全に沈殿・濃縮された沈殿フロックの返
送は避けた方が良い。完全に沈殿・濃縮した沈殿フロッ
クでは返送する際に目的とする濁質濃度に調整すること
が困難で、かえって新たに注入する無機凝集剤や高分子
凝集剤の量が多くなってしまうことがある。また、濃縮
されることで、フロック表面に保持されている高分子凝
集剤の有効な部分が全く無くなってしまい、フロック形
成能力も無くなってしまう。
When returning the settling flocs, it is better to avoid sending back the settling flocs completely settled and concentrated in the settling tank. When the flocs are completely precipitated and concentrated, it is difficult to adjust the concentration of the suspended matter to the target when returning, and the amount of inorganic coagulant or polymer coagulant newly injected may increase. . Further, by concentrating, the effective part of the polymer flocculant retained on the surface of the flocs disappears completely, and the floc forming ability also disappears.

【0025】フロックの返送場所は原水、高分子凝集剤
を注入する前のいずれも可能である。フロックは、例え
ば図3のフロック返送管18aを利用してフロック形成
槽7または沈殿池13からそれぞれ原水導入管2や凝集
混和槽3に返送することができる。特に、原水濁度が低
く濁質分が少ない場合には原水に返送することが有効で
ある。返送するフロック量は特に限定されないが、凝集
混和槽3やフロック形成槽7でのフロック状態、或いは
沈殿処理水の濁度をモニタリングすることで最適な条件
を設定すれば良い。
The flock may be returned to either the raw water or before the polymer flocculant is injected. The flocs can be returned to the raw water introduction pipe 2 and the coagulation / mixing tank 3 from the flocculation tank 7 or the settling tank 13 using the floc return pipe 18a shown in FIG. 3, for example. In particular, when the turbidity of raw water is low and the suspended matter is small, it is effective to return the raw water. The amount of flocs to be returned is not particularly limited, but optimal conditions may be set by monitoring the floc state in the flocculation and mixing tank 3 and the floc formation tank 7, or the turbidity of the precipitated treated water.

【0026】また、本発明を実施する場合において、返
送フロックにカオリン等の粘土質無機微粒子や微細砂を
混合すると、フロックがより強固でかつ重量を有するも
のになるので、除濁効果がより発揮されるので好まし
い。これら粘土質無機微粒子や微細砂を混合する場所と
しては、フロック返送管18a、18bの途中であれば
どこでも良いが、引抜いたフロックを原水導入管2や凝
集混和槽3に返送する直前が好ましい。また、フロック
返送管18a、18bではなく原水導入管2や凝集混和
槽3に返送する地点に別途、粘土質無機微粒子や微細砂
を注入する手段を設けることも可能である。
When practicing the present invention, if clay particles such as kaolin or fine sand or fine sand are mixed with the returned flocs, the flocs become stronger and heavier, so that the turbidity-eliminating effect is more exerted. Therefore, it is preferable. The clay inorganic fine particles and the fine sand may be mixed in any place in the flock return pipes 18a and 18b, but immediately before returning the extracted flocs to the raw water introduction pipe 2 or the coagulation / mixing tank 3. It is also possible to separately provide a means for injecting clay inorganic fine particles or fine sand at the point of returning to the raw water introducing pipe 2 or the coagulating and mixing tank 3 instead of the flock returning pipes 18a and 18b.

【0027】[0027]

【実施例】以下、実施例により本発明をより具体的に説
明する。実験は図1の装置を用いて行った。
The present invention will be described in more detail with reference to the following examples. The experiment was performed using the apparatus shown in FIG.

【0028】(実施例1)なお、実験条件は下記の通り
である。 原水流量:100m3/日(湖沼水) 原水濁度:11〜15度 原水pH:7.6〜8.3 無機凝集剤:PAC 40〜100mg/リットル 高分子凝集剤:中アニオン系高分子凝集剤0.1〜0.
5mg/リットル 凝集混和槽:有効容積200リットル×2槽 フロック形成槽:有効容積1200リットル×2槽 沈殿池=7000リットル、傾斜板付き 砂ろ過塔:ろ過速度150m/日 ろ層構成:アンスラサイト層高400mm、珪砂層高4
00mm
(Example 1) The experimental conditions are as follows. Raw water flow rate: 100 m 3 / day (lake water) Raw water turbidity: 11 to 15 degrees Raw water pH: 7.6 to 8.3 Inorganic flocculant: PAC 40 to 100 mg / liter Polymeric flocculant: Medium Anionic polymer flocculation Agent 0.1 to 0.
5 mg / liter coagulation mixing tank: Effective volume 200 liters x 2 tanks Flock forming tank: Effective volume 1200 liters x 2 tanks Sedimentation tank = 7000 liters, sand filter tower with sloping plate: Filtration speed 150 m / day filtration layer composition: Anthracite layer Height 400mm, silica sand layer height 4
00 mm

【0029】図1の装置において、無機凝集剤(PA
C)を60mg/リットル凝集混和槽に注入し、急速攪
拌を行いマイクロフロックを形成させた後、フロック形
成槽流入直前に高分子凝集剤を所定量注入して緩速撹拌
を行った。流動電流値は凝集混和槽出口と沈殿池流入直
後に行った。各高分子凝集剤注入量における流動電流
値、処理水濁度及びろ過継続時間を第1表に記載する。
In the apparatus of FIG. 1, the inorganic coagulant (PA
C) was injected into a coagulation / mixing tank of 60 mg / liter, and rapid stirring was performed to form microflocs. Then, a predetermined amount of a polymer flocculant was injected immediately before flowing into the floc forming tank, and slow stirring was performed. The flowing current value was measured immediately after the coagulation and mixing tank outlet and the inflow to the sedimentation tank. Table 1 shows the streaming current value, treated water turbidity, and filtration duration at each polymer coagulant injection amount.

【0030】高分子凝集剤注入量が0.1mg/リット
ル及び0.3mg/リットルの場合は、沈殿池流入直後
の流動電流値はそれぞれ−18〜−20mV、−20〜
−24mVで、高分子凝集剤注入量を増加した方が低い
値となった。これらの場合のろ過継続時間はそれぞれ4
8時間、46時間であり、高分子凝集剤を注入しない場
合(48時間)と差は無く、ろ過池の状態は安定してい
た。また、高分子凝集剤注入量を0.5mg/リットル
にした場合には、流動電流値は−33〜−35mVとな
り、ろ過継続時間は32時間と著しく短縮され、高分子
凝集剤量は過剰であると判断した。
When the injection amount of the polymer flocculant was 0.1 mg / liter and 0.3 mg / liter, the flow current values immediately after the inflow into the sedimentation tank were -18 to -20 mV and -20 to 20 mV, respectively.
At -24 mV, the higher the coagulant injection amount, the lower the value. The filtration duration in each of these cases is 4
It was 8 hours and 46 hours, which was not different from the case where the polymer coagulant was not injected (48 hours), and the state of the filter basin was stable. Further, when the injection amount of the polymer coagulant was set to 0.5 mg / liter, the streaming current value was −33 to −35 mV, the filtration continuation time was significantly shortened to 32 hours, and the polymer coagulant amount was excessive. I decided it was.

【0031】以上の結果から明らかなように、流動電流
値が安定値よりも5割程度流動電流値が低下した場合に
は、高分子凝集剤が過剰となりろ過継続時間が短くなっ
た。従って、高分子凝集剤により形成した凝集フロック
の流動電流値を測定することで、ろ過継続時間の短縮を
未然に防止できることがわかる。
As is clear from the above results, when the streaming current value was lower than the stable value by about 50%, the polymer coagulant was excessive and the filtration duration was shortened. Therefore, it is understood that the reduction of the filtration duration can be prevented by measuring the flowing current value of the floc formed by the polymer flocculant.

【0032】[0032]

【表1】 [Table 1]

【0033】(実施例2)実験は図3の装置を用いて行
った。なお、実験条件は下記の通りである。 原水流量:100m3/日(湖沼水) 原水濁度:10〜14度 原水pH:7.5〜8.2 無機凝集剤:液体硫酸バンド 40〜100mg/リッ
トル 高分子凝集剤:弱アニオン系高分子凝集剤0.1〜0.
5mg/リットル 凝集混和槽:有効容積200リットル×2槽 フロック形成槽:有効容積1200リットル×2槽 沈殿池:7000リットル、傾斜板付き 砂ろ過塔:ろ過速度150m/日 ろ層構成:アンスラサイト層高400mm、珪砂層高4
00mm
Example 2 The experiment was carried out using the apparatus shown in FIG. The experimental conditions are as follows. Raw water flow rate: 100 m 3 / day (lake water) Raw water turbidity: 10 to 14 degree Raw water pH: 7.5 to 8.2 Inorganic coagulant: Liquid sulfuric acid band 40 to 100 mg / liter Polymeric coagulant: Weak anion high Molecular flocculant 0.1-0.
5 mg / liter coagulation / mixing tank: Effective volume 200 liters x 2 tanks Flock forming tank: Effective volume 1200 liters x 2 tanks Sedimentation tank: 7000 liters, sand filtration tower with inclined plate: Filtration speed 150 m / day filtration layer composition: Anthracite layer Height 400mm, silica sand layer height 4
00 mm

【0034】図3の装置において、無機凝集剤(液体硫
酸バンド)を80mg/リットル凝集混和槽に注入し、
急速撹拌を行いマイクロフロックを形成させた後、フロ
ック形成槽流入直前に、高分子凝集剤を0.3mg/リ
ットル注入して緩速撹拌を行った。また、沈殿池流入直
後の沈殿フロックを、毎分10リットルの割合で凝集混
和槽の2槽目に返送した。処理水濁度及びろ過継続時間
を第2表に記載する。
In the apparatus shown in FIG. 3, an inorganic coagulant (liquid sulfuric acid band) was injected into an 80 mg / liter coagulation / mixing tank,
After rapid stirring to form microflocs, 0.3 mg / liter of a polymer flocculant was injected just before the flow into the floc formation tank, and slow stirring was performed. Immediately after entering the settling tank, the settling flocs were returned to the second coagulation and mixing tank at a rate of 10 liters per minute. Table 2 shows the treated water turbidity and filtration duration.

【0035】実施例3〜4、比較例1〜2 フロックの引抜場所や返送場所或いは返送量を第2表に
示すように変更した以外は、実施例2と同様に試験を行
った。また、フロックの引抜きを実施しなかった場合
(比較例1)、高分子凝集剤を注入しなかった場合(比
較例2)の実験も行った。結果を第2表に併記する。第
2表に示す結果から明らかなように、本発明のフロック
を返送する方法では沈殿処理水の濁度が低下し、かつろ
過継続時間が延長できることがわかる。
Examples 3 to 4 and Comparative Examples 1 to 2 Tests were carried out in the same manner as in Example 2 except that the pulling out place, returning place or returning amount of flocs were changed as shown in Table 2. Further, an experiment was carried out in the case where the flocs were not extracted (Comparative Example 1) and the polymer coagulant was not injected (Comparative Example 2). The results are also shown in Table 2. As is clear from the results shown in Table 2, it can be seen that the method for returning flocs of the present invention reduces the turbidity of the precipitation-treated water and can extend the filtration duration.

【0036】[0036]

【表2】 [Table 2]

【0037】実施例5、比較例3 実施例2又は比較例1において、高分子凝集剤注入量を
0.1mg/リットルに変更した以外は、同様の実験を
繰返した。結果を第3表に示す。第3表に示す結果から
明らかなように、本発明の方法では高分子凝集剤注入量
を低下させても沈殿処理水の濁度が低下し、かつろ過継
続時間が延長できる(実施例5と比較例1との比較)こ
とがわかる。
Example 5, Comparative Example 3 The same experiment as in Example 2 or Comparative Example 1 was repeated except that the polymer coagulant injection amount was changed to 0.1 mg / liter. The results are shown in Table 3. As is clear from the results shown in Table 3, in the method of the present invention, even if the injection amount of the polymer coagulant is decreased, the turbidity of the precipitation-treated water is decreased and the filtration duration time can be extended (Example 5 and (Comparison with Comparative Example 1).

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【発明の効果】本発明によれば、高分子凝集剤の注入後
の凝集フロックの流動電流を測定し、その測定結果に基
づき高分子凝集剤の注入量を制御することで、浄水処理
において問題となる高分子凝集剤に起因するろ過閉塞を
未然に防止することができ、砂ろ過塔の寿命を延長する
ことが可能となり、一方、高分子凝集剤を使用している
ことで、沈殿処理水や浄水の濁度を低下させるなどの多
大な効果を奏する。また、本発明によれば、高分子凝集
剤の注入後の凝集沈殿処理で生成したフロックを返送す
ること、浄水処理において問題となる高分子凝集剤に起
因するろ過閉塞を未然に防止することができ、かつ原水
の低濁度時の凝集不良の問題も解決できることなど多大
な効果を奏する。
EFFECTS OF THE INVENTION According to the present invention, the flow current of coagulation flocs after the injection of the polymer flocculant is measured, and the injection amount of the polymer coagulant is controlled based on the measurement result, which causes a problem in water purification It is possible to prevent the filter clogging due to the polymer coagulant, which can be prolonged, and extend the life of the sand filtration tower. On the other hand, the use of the polymer coagulant allows the precipitated treated water to be treated. It has great effects such as reducing the turbidity of water and purified water. Further, according to the present invention, it is possible to return the flocs generated in the coagulation-sedimentation treatment after the injection of the polymer coagulant, and prevent the filter clogging caused by the polymer coagulant which is a problem in the water purification treatment. It is possible to solve the problem of poor coagulation when the raw water has a low turbidity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の凝集沈殿処理装置を示す概
略説明図である。
FIG. 1 is a schematic explanatory view showing a coagulation-sedimentation treatment apparatus of Example 1 of the present invention.

【図2】本発明に係る流動電流計の概略説明断面図であ
る。
FIG. 2 is a schematic explanatory sectional view of a streaming ammeter according to the present invention.

【図3】本発明の実施例2の凝集沈殿処理装置の概略説
明図である。
FIG. 3 is a schematic explanatory diagram of a coagulation-sedimentation treatment apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 原水 2 原水導入管 3 凝集混和槽 4 無機凝集剤 5 無機凝集剤貯留槽 6 微細フロック含有水 7 フロック形成槽 8 高分子凝集剤 9 高分子凝集剤貯留槽 10 フロック引抜管 11 流動電流計 12 巨大フロック含有水 13 沈殿池 14 上澄水 15 砂ろ過塔 16 浄水 17 浄水排出管 18a フロック返送管 18b フロック返送管 20 シリンダー 21 ピストン 22 モーター 23 試水入口 24 試水出口 25 増幅整流回路 1 raw water 2 Raw water introduction pipe 3 coagulation mixing tank 4 Inorganic coagulant 5 Inorganic flocculant storage tank 6 Water containing fine flock 7 Flock forming tank 8 Polymer flocculants 9 Polymer flocculant storage tank 10 Flock drawn tube 11 Flow ammeter 12 Giant floc-containing water 13 settling pond 14 clear water 15 sand filtration tower 16 clean water 17 Clean water discharge pipe 18a Flock return pipe 18b Flock return pipe 20 cylinders 21 pistons 22 motor 23 Sample water inlet 24 Sample water outlet 25 Amplifying rectifier circuit

フロントページの続き Fターム(参考) 4D015 BA12 BA21 BA23 BA25 BB09 BB12 CA14 DA03 DA04 DA06 DA13 DA16 DB02 DB08 DB12 DB22 DB30 EA03 EA07 EA32 FA02 FA16 Continued front page    F-term (reference) 4D015 BA12 BA21 BA23 BA25 BB09                       BB12 CA14 DA03 DA04 DA06                       DA13 DA16 DB02 DB08 DB12                       DB22 DB30 EA03 EA07 EA32                       FA02 FA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被処理水に無機凝集剤を注入し、続いて
高分子凝集剤を注入することにより凝集沈殿処理を行
い、引き続きろ過処理を行う浄水処理方法において、高
分子凝集剤の注入後の凝集フロックの流動電流を測定
し、その測定結果に基づき高分子凝集剤の注入量を制御
することを特徴とする浄水処理方法。
1. In a water purification method in which an inorganic coagulant is injected into water to be treated, followed by injecting a polymer coagulant to perform coagulation-sedimentation treatment, and subsequently filtration treatment, after injection of the polymer coagulant. A method for purifying water, characterized in that the flowing current of the floc of flocculation is measured, and the injection amount of the polymer flocculant is controlled based on the measurement result.
【請求項2】 被処理水に無機凝集剤を注入し、続いて
高分子凝集剤を注入することにより凝集沈殿処理を行
い、引き続きろ過処理を行う浄水処理方法において、高
分子凝集剤注入前の凝集フロックの流動電流を測定し、
次いで高分子凝集剤の注入後の凝集フロックの流動電流
を測定し、その測定結果に基づき高分子凝集剤の注入量
を制御することを特徴とする浄水処理方法。
2. A water purification method in which an inorganic coagulant is injected into water to be treated, and then a polymer coagulant is injected to perform coagulation-sedimentation treatment, followed by filtration treatment. Measure the flowing current of floc,
Next, a flowing water current of the floc after the injection of the polymer flocculant is measured, and the injection amount of the polymer flocculant is controlled based on the measurement result.
【請求項3】 被処理水に無機凝集剤を注入し、続いて
高分子凝集剤を注入することにより凝集沈殿処理を行
い、引き続きろ過処理を行う浄水処理方法において、凝
集沈殿処理で生成したフロックを無機凝集剤を注入する
前の被処理水に返送することを特徴とする浄水処理方
法。
3. A floc produced by the coagulation-sedimentation process in a water purification method in which an inorganic coagulant is injected into the water to be treated, and then a polymer coagulant is injected to perform the coagulation-sedimentation process, followed by filtration. Is returned to the water to be treated before the inorganic coagulant is injected.
【請求項4】 浄化処理を施す被処理水を受け入れ、無
機凝集剤の注入手段を有する凝集混合槽と、前記凝集混
合槽で生成された微細フロックに高分子凝集剤を注入し
てフロックの巨大化と強固化を行うフロック形成槽と、
巨大化フロックを固液分離する沈殿池と、固液分離され
た沈殿処理水として系外へ排出する砂ろ過塔を有する浄
水処理装置において、高分子凝集剤の注入後のフロック
形成槽内の巨大フロックの流動電流、又は高分子凝集剤
注入前の微細フロックと高分子凝集剤注入後の前記巨大
フロックの流動電流を測定する流動電流計と、該流動電
流計の測定結果に基づいて高分子凝集剤の注入量を制御
する高分子凝集剤注入制御手段とを有することを特徴と
する浄水処理装置。
4. A floc giant by injecting a water to be treated for purification treatment, a coagulation mixing tank having an inorganic coagulant injection means, and a polymer flocculant injected into the fine flocs produced in the coagulation mixing tank. A floc formation tank that strengthens and strengthens
In a water purification device that has a sedimentation tank for solid-liquid separation of large flocs and a sand filtration tower that discharges the solid-liquid separated sedimentation treated water to the outside of the system, a huge flocculation tank inside the floc formation tank after injection of polymer flocculant A flow ammeter for measuring the flow current of a floc, or a flow current of a fine floc before injection of a polymer flocculant and a flow current of the giant floc after injection of a polymer flocculant, and polymer flocculation based on the measurement result of the flow ammeter A water purification apparatus comprising: a polymer coagulant injection control means for controlling the injection amount of the agent.
【請求項5】 浄化処理を施す被処理水を受け入れ、無
機凝集剤注入手段を有する凝集混合槽と、該凝集混合槽
で生成された微細フロックに高分子凝集剤を注入してフ
ロックの巨大化と強固化を行うフロック形成槽と、巨大
化フロックを固液分離する沈殿池と、固液分離された沈
殿処理水として系外へ排出する砂ろ過塔を有する浄水処
理装置において、フロック形成槽及び/又は沈殿池の沈
降フロックを凝集混和槽及び/又は被処理水へ返送する
手段を有することを特徴とする浄水処理装置。
5. A floc is enlarged by injecting a water to be treated to be purified, a coagulation mixing tank having an inorganic coagulant injection means, and a polymer flocculant injected into the fine flocs produced in the coagulation mixing tank. In a water purification apparatus having a floc formation tank for solidifying and a flocculation tank, a sedimentation tank for solid-liquid separation of giant flocs, and a sand filtration tower for discharging the solid-liquid separated precipitation treatment water to the outside of the system, a floc formation tank and a And / or a means for returning the settling flocs of the settling tank to the coagulation and mixing tank and / or the water to be treated.
JP2002150433A 2002-05-24 2002-05-24 Water purification method and apparatus Expired - Fee Related JP4004854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150433A JP4004854B2 (en) 2002-05-24 2002-05-24 Water purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150433A JP4004854B2 (en) 2002-05-24 2002-05-24 Water purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2003340208A true JP2003340208A (en) 2003-12-02
JP4004854B2 JP4004854B2 (en) 2007-11-07

Family

ID=29768291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150433A Expired - Fee Related JP4004854B2 (en) 2002-05-24 2002-05-24 Water purification method and apparatus

Country Status (1)

Country Link
JP (1) JP4004854B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041410A1 (en) * 2007-09-28 2009-04-02 Hitachi Plant Technologies, Ltd. Coagulating apparatus
JP2010194520A (en) * 2009-02-27 2010-09-09 Tosoh Corp Salt water refining method
JP2010214360A (en) * 2009-02-17 2010-09-30 Toshiba Corp Solid separation system
JP2013022503A (en) * 2011-07-20 2013-02-04 Nishihara Environment Co Ltd Polluted water treatment system and polluted water treatment method
JP2013049056A (en) * 2012-10-23 2013-03-14 Hitachi Plant Technologies Ltd Polluted water purification system and ship
JP2013188653A (en) * 2012-03-12 2013-09-26 Toshiba Corp Method of forming aggregated product
JP2016147213A (en) * 2015-02-10 2016-08-18 株式会社東芝 Flocculant injection support device and flocculant injection system
JP2017094245A (en) * 2015-11-19 2017-06-01 水ing株式会社 Water treatment method and water treatment device
JP2017113671A (en) * 2015-12-22 2017-06-29 水ing株式会社 Method for treating water purification sludge and water purification sludge treatment device
JP2018153729A (en) * 2017-03-16 2018-10-04 水ing株式会社 Water treatment agent, water treatment method, and water treatment device
JP2020069448A (en) * 2018-10-31 2020-05-07 水ing株式会社 Water purification treatment method and water purification treatment device
CN112047448A (en) * 2020-09-28 2020-12-08 杨剑飞 Flocculating agent for sewage treatment and preparation method thereof
WO2021020125A1 (en) * 2019-07-26 2021-02-04 栗田工業株式会社 Flocculation processing device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041410A1 (en) * 2007-09-28 2009-04-02 Hitachi Plant Technologies, Ltd. Coagulating apparatus
JP2009082826A (en) * 2007-09-28 2009-04-23 Hitachi Plant Technologies Ltd Coagulating apparatus
KR101176897B1 (en) 2007-09-28 2012-08-30 가부시키가이샤 히타치플랜트테크놀로지 Flocculation device
JP2010214360A (en) * 2009-02-17 2010-09-30 Toshiba Corp Solid separation system
JP2010194520A (en) * 2009-02-27 2010-09-09 Tosoh Corp Salt water refining method
JP2013022503A (en) * 2011-07-20 2013-02-04 Nishihara Environment Co Ltd Polluted water treatment system and polluted water treatment method
JP2013188653A (en) * 2012-03-12 2013-09-26 Toshiba Corp Method of forming aggregated product
JP2013049056A (en) * 2012-10-23 2013-03-14 Hitachi Plant Technologies Ltd Polluted water purification system and ship
JP2016147213A (en) * 2015-02-10 2016-08-18 株式会社東芝 Flocculant injection support device and flocculant injection system
JP2017094245A (en) * 2015-11-19 2017-06-01 水ing株式会社 Water treatment method and water treatment device
JP2017113671A (en) * 2015-12-22 2017-06-29 水ing株式会社 Method for treating water purification sludge and water purification sludge treatment device
JP2018153729A (en) * 2017-03-16 2018-10-04 水ing株式会社 Water treatment agent, water treatment method, and water treatment device
JP7068773B2 (en) 2017-03-16 2022-05-17 水ing株式会社 Water treatment agent, water treatment method and water treatment equipment
JP2020069448A (en) * 2018-10-31 2020-05-07 水ing株式会社 Water purification treatment method and water purification treatment device
JP7142540B2 (en) 2018-10-31 2022-09-27 水ing株式会社 Water purification method and water purification device
WO2021020125A1 (en) * 2019-07-26 2021-02-04 栗田工業株式会社 Flocculation processing device
JP2021020158A (en) * 2019-07-26 2021-02-18 栗田工業株式会社 Coagulation treatment device
CN112047448A (en) * 2020-09-28 2020-12-08 杨剑飞 Flocculating agent for sewage treatment and preparation method thereof

Also Published As

Publication number Publication date
JP4004854B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
AU2008290085B2 (en) Method of flocculating sedimentation treatment
JP4223870B2 (en) Water purification method
JP2003340208A (en) Water cleaning method and apparatus therefor
JP3814853B2 (en) Coagulation sedimentation equipment
WO2011030485A1 (en) Flocculation precipitation treatment method
JP7068773B2 (en) Water treatment agent, water treatment method and water treatment equipment
JP4176915B2 (en) Solid-liquid separator
JP7083274B2 (en) Water treatment method and water treatment equipment
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP4446418B2 (en) Coagulation precipitation system
JP7142540B2 (en) Water purification method and water purification device
JP2003145168A (en) Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JP2002066568A (en) Water treating method and apparatus
JP2021186793A (en) Water purification method and water purification apparatus
JP4800463B2 (en) Filtration device
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JP2000317466A (en) Flocculating and separating device
JP6197016B2 (en) Water purification method and water purification device
JP7117101B2 (en) Water treatment method and device
JP2000300912A (en) Solid-liquid separation apparatus and flocculation condition determining method
CN209853930U (en) Water treatment device
JP2002113472A (en) High-speed coagulating sedimentation method for suspended water and its device
JP6798867B2 (en) Wastewater treatment method and wastewater treatment equipment
JP2005034712A (en) Method and apparatus for treating rainwater-mixed water
JP4228394B2 (en) Water treatment method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Ref document number: 4004854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees