JP4004854B2 - Water purification method and apparatus - Google Patents

Water purification method and apparatus Download PDF

Info

Publication number
JP4004854B2
JP4004854B2 JP2002150433A JP2002150433A JP4004854B2 JP 4004854 B2 JP4004854 B2 JP 4004854B2 JP 2002150433 A JP2002150433 A JP 2002150433A JP 2002150433 A JP2002150433 A JP 2002150433A JP 4004854 B2 JP4004854 B2 JP 4004854B2
Authority
JP
Japan
Prior art keywords
polymer flocculant
anionic polymer
flocculant
injection
flocs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002150433A
Other languages
Japanese (ja)
Other versions
JP2003340208A (en
Inventor
則夫 槙田
利幸 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002150433A priority Critical patent/JP4004854B2/en
Publication of JP2003340208A publication Critical patent/JP2003340208A/en
Application granted granted Critical
Publication of JP4004854B2 publication Critical patent/JP4004854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子凝集剤を使用した好適な浄水処理方法及び装置に関するものであり、より詳しくは高分子凝集剤を使用した場合に起こるろ過閉塞を防止することができ、高分子凝集剤を使用する凝集沈殿工程において優れた凝集処理効果を得ることができる方法及び装置に関するものである。
【0002】
【従来の技術】
従来より、浄水処理においては、懸濁物質を含有する被処理水(以下「原水」ともいう)に硫酸バンドやポリ塩化アルミニウム(PAC)等の無機凝集剤を注入し、懸濁物質を取り込んだ凝集フロックを形成させ、この凝集フロックを沈降分離させることによって、懸濁物質を除去していた。
しかしながら、近年、湖沼や河川の富栄養化が進み藻類が増殖するようになった。これらの藻類は凝集性が悪く、砂ろ過処理にも悪影響を与える。増殖した藻類を凝集させるには多量の無機凝集剤を必要とし、無機凝集剤を多量に添加することにより処理水が酸性になるため、飲料水としては適さなくなる。また無機凝集剤に由来する汚泥の発生量も増加し、この汚泥の処理に費用が増大する問題も生じている。
【0003】
浄水処理において無機凝集剤による凝集フロックの沈降性を改良するために、アニオン系高分子凝集剤を併用することが検討されているが、次のような問題点が指摘されている。
即ち、浄水処理において注入された高分子凝集剤は、生成フロックとともに固液分離され大部分は取り除かれるが、一部が微細フロックとともに処理水側に残存する。この残存した高分子凝集剤が後工程の砂ろ過塔内のろ材に吸着し、ろ過閉塞を起こしてしまう恐れがある。
【0004】
高分子凝集剤による閉塞を防止する手段としては、凝集薬封鎖剤を注入する方法、無機凝集剤注入後のフロックの形成度合を測定し、フロック形成度合に応じて高分子凝集剤の注入率を決定する方法、排水処理においてフロック生成槽内の流動電流を測定し、測定した流動電流に基づいて凝集剤の余剰量あるいは不足量を求め、凝集剤の注入量を制御する方法等がある。
【0005】
【発明が解決しようとする課題】
しかしながら、上記方法にも以下のような問題点がある。凝集薬封鎖剤を注入する方法は、処理コストの上昇を招く恐れがある。無機凝集剤注入後のフロックの形成度合を測定し、フロック形成度合に応じて高分子凝集剤の注入率を決定する方法では、懸濁物質と無機凝集剤の結合が良好に行われた微細フロックが形成されたとしても、高分子凝集剤が有効に粗大フロックの凝集に使われなければ、ろ過閉塞の恐れは依然として残るので、無機凝集剤注入後のフロックの形成度合の管理だけでは不十分である。更に、フロック生成槽内の流動電流を測定し、測定した流動電流に基づいて、凝集剤の注入量を制御する方法では、懸濁物質と凝集剤が過不足なく反応し、電気的に中性になるように凝集剤量をコントロールすることを目的としているが、浄水処理においては、電気的に中和となる点が必ずしも良好な処理結果が得られるわけではなく、当該公報には処理水濁度やろ過への影響については何ら示唆されていない。
【0006】
そこで、本発明者らは上述の問題点に鑑み、高分子凝集剤を使用した場合に低濁度時においても優れた濁度除去効果が得られ、かつ高分子凝集剤を使用した場合に起り得るろ過閉塞の問題を解消し、安定的な浄水処理が可能な方法を開発すべく鋭意検討した結果、本発明を完成するに至った。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下の構成からなる。
(1)被処理水に無機凝集剤を注入して微細なフロックを形成し、続いてアニオン系高分子凝集剤を注入することによりフロックを巨大化し凝集沈殿処理を行い、引き続きろ過処理を行う浄水処理方法において、アニオン系高分子凝集剤を注入してろ過閉塞なく安定した運転ができている状態の巨大化した凝集フロックの流動電流を測定して該電流値を安定値として予め求めた後、アニオン系高分子凝集剤の注入後の巨大フロックの流動電流を測定し、前記安定値からの流動電流値の低下の度合に基づいて、アニオン系高分子凝集剤の注入量が過剰であると判定し、その判定結果に基づいてアニオン系高分子凝集剤の注入量を制御することを特徴とする浄水処理方法。
(2)前記安定値からの流動電流値の低下の度合が安定値の5割低下したときに、アニオン系高分子凝集剤が過剰であると判定し、その判定結果に基づいてアニオン系高分子凝集剤の注入量を制御することを特徴とする前記(1)記載の浄水処理方法。
(3)被処理水に無機凝集剤を注入して微細なフロックを形成し、続いてアニオン系高分子凝集剤を注入することによりフロックを巨大化し凝集沈殿処理を行い、引き続きろ過処理を行う浄水処理方法において、アニオン系高分子凝集剤注入前の微細なフロックの流動電流を測定し、次いで該アニオン系高分子凝集剤の注入後の凝集フロックの流動電流を測定し、前記アニオン系高分子凝集剤注入前の流動電流値に対する前記アニオン系高分子凝集剤注入後の流動電流値の低下度合に基づいて、アニオン系高分子凝集剤の注入量が過剰であると判定し、その判定結果に基づいてアニオン系高分子凝集剤の注入量を制御することを特徴とする浄水処理方法。
【0008】
(4)前記アニオン系高分子凝集剤注入前の流動電流値に対する前記アニオン系高分子凝集剤注入後の流動電流値の低下度合が、注入前の2倍に低下したときに、アニオン系高分子凝集剤の注入量が過剰であると判定し、その判定結果に基づいてアニオン系高分子凝集剤の注入量を制御することを特徴とする前記(3)記載の浄水処理方法。
【0010】
【発明の実施の形態】
以下、本発明を具体的に説明する。
本発明が適用できる浄水処理設備としては、実用化されている通常の設備が対象であり、例えば横流式沈殿設備を有する浄水施設、高速凝集沈殿設備を有する浄水設備が挙げられる。高速凝集沈殿設備としてはスラリー循環型、スラッジ・ブランケット型いずれも適用可能である。
なお、実施の形態を説明するための全図において、同一は機能を有する構成要素は同一符号を用いて示す。
【0011】
図1は本発明の一実施態様を示す図である。図は横流式沈殿設備を有する浄水施設の例である。原水1は、原水導入管2を通って凝集混和槽3に送られる。凝集混和槽3には無機凝集剤4が注入され、ここで急速撹拌されることで原水中の濁質分は無機凝集剤4と反応し微細なフロック(マイクロフロック)となる。
【0012】
本発明で使用される無機凝集剤としては、一般に凝集剤として既に使用されている鉄系又はアルミニウム系無機凝集剤が使用できる。具体的には硫酸バンド、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄及びこれらの混合物が挙げられる。これら無機凝集剤の注入量は原水の水質にもよるが、1〜1000mg/リットルの範囲である。
【0013】
凝集混和槽3で生成された微細フロックを含む水6はフロック形成槽7に送られる。フロック形成槽7では高分子凝集剤が注入され、凝集混和槽3よりも緩い緩速攪拌されることで微細フロックが高分子凝集剤により巨大化される。
【0014】
注入する高分子凝集剤としては公知のアニオン系、ノニオン系、カチオン系高分子凝集剤を挙げることができる。アニオン系高分子凝集剤としては、ポリアクリルアミド部分加水分解物、アニオン性モノマーの共重合体、アニオン性モノマーとアクリルアミド等のノニオン性モノマーとの共重合体が挙げられる。アニオン性モノマーとしてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アリルアミドエタンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、2−メタクリルアミドエタンスルホン酸、2−メタクリルアミド−2−メチルプロパンスルホン酸、2−アクリロイルオキシエタンスルホン酸、3−アクリロイルオキシプロパンスルホン酸、4−アクリロイルオキシブタンスルホン酸、2−メタクリロイルオキシエタンスルホン酸、3−メタクリロイルオキシプロパンスルホン酸、4−メタクリロイルオキシブタンスルホン酸、及びこれらのアルカリ金属、アルカリ土類金属等の金属塩又はアンモニウム塩が挙げられる。これらアニオン性モノマーは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ノニオン性モノマーとしてはアクリルアミド、メタクリルアミド、メタアクリロニトリル、酢酸ビニル等が挙げられる。これらノニオン性モノマーは単独で用いてもよく、2種以上を組み合わせて用いてもよい。共重合体として好ましいものは、アクリルアミド・アクリル酸塩共重合体、アクリルアミド・2−アクリルアミド−2−メチルプロパンスルホン酸共重合体である。また、ノニオン系高分子凝集剤とは、上記のノニオン性モノマーの重合体又は共重合体であるが、好ましくはポリアクリルアミドである。
【0015】
高分子凝集剤の注入量は0.05〜0.5mg/リットルで本発明の目的を達成できるが、最大でも合計で1mg/リットル以下とすることが好ましい。また、使用上の規制値が処理水中の残留アクリルアミドモノマー0.00005mg/リットル以下であることから、製品中のアクリルアミドモノマーは、理論上0.005wt%以下にしておくことが重要である。
【0016】
高分子凝集剤により巨大化されてフロックは、続く沈殿池13で固液分離されることにより大部分は汚泥として回収される。一般に沈殿池13は内部に傾斜板や傾斜管が設けられている。
固液分離された沈殿処理水は、砂ろ過塔15に送られろ材で処理されて浄水16となる。ろ材としては珪砂やアンスラサイトが最も一般的である。前述の通りフロックの大部分は沈殿池13で分離されるが、フロックに捕捉されなかった原水中の濁質分や、沈殿池13で沈降しなかったフロックが、砂ろ過塔15内のろ材でろ過される。無機凝集剤のみで凝集されたフロックは、無機凝集剤自体の粘度はそれほど高くないのでろ材に粘着することはなく、またろ材に粘着しても逆洗で容易にフロックは除去できる。一方、高分子凝集剤で凝集されたフロックは、高分子凝集剤の有する粘度の影響でろ材に粘着してしまい、ろ過閉塞を起こしてしまう。
【0017】
本発明の最も大きな特徴は、高分子凝集剤を使用した場合に発生し得るろ過閉塞の問題を解消するために、高分子凝集剤の注入後の凝集フロックの流動電流を測定し、その測定結果に基づき高分子凝集剤の注入量を制御する点にある。流動電流の測定は流動電流計11を用いて行う。
【0018】
流動電流計11の概略図を図2に示す。シリンダー20内部にモーター22により上下に動くピストン21が備え付けてある。ピストン21はシリンダー20の内壁との間には所定のクリアランスがある。試水入口23から入ったフロックを含む試水は、ピストン21の上下運動によって上述のクリアランス内でせん断力が加えられ、このせん断力により、凝集フロック表面に付いているコロイド粒子は凝集フロックと引き離される。この時に発生する流動電流を、増幅整流回路25で凝集フロック表面の荷電密度に応じた流動電流値として検出することができる。例えばポリ塩化アルミニウム(PAC)で凝集したフロックは、凝集フロック表面に多量の水酸化アルミニウムの凝集物質が付着しているので、正の荷電粒子が多く存在することになる。従って、無機凝集剤で凝集した後の流動電流値は、原水と比較して高くなる(正側になる)。また、無機凝集剤の注入量に比例して流動電流値は高くなる。
【0019】
一方、アニオン系の高分子凝集剤を用いて生成したフロックは、凝集フロックの表面にアニオン系物質である高分子凝集剤が付着しているので、負の荷電が多くなる。このため、流動電流値は無機凝集剤で凝集した後の流動電流値よりは低くなる(負側になる)。従って、高分子凝集剤注入後の凝集フロックの流動電流値を測定すれば、高分子凝集剤の過不足を判定できることになる。流動電流値は高分子凝集剤の注入率に比例して低くなる。また、流動電流値は高分子凝集剤が有するアニオン性の強度に比例して低くなる。つまり、同じ高分子凝集剤注入量であれば、アニオン性の強い高分子凝集剤は流動電流値の低下が大きく、ノニオンやアニオン性の弱い高分子凝集剤は流動電流値の低下は小さい。
【0020】
流動電流による高分子凝集剤の注入量の制御において、最適な管理が可能な流動電流値は原水性状、無機凝集剤の種類及び注入量、高分子凝集剤の種類及び注入量によって変動するので一概には言えないが、高分子凝集剤を注入してろ過閉塞がなく安定した運転ができている状態の流動電流値(安定値)を予め把握しておき、この安定値よりも5割程度流動電流値が低下した場合には、高分子凝集剤が過剰であると判定できる。従って、このような状態で運転を継続した場合には、余剰の高分子凝集剤を含む凝集フロックがろ過池に流出し、急激にろ過閉塞を起こすことになる。この場合には、流動電流値を安定値に近付けるように高分子凝集剤の注入量を低下させる必要がある。
【0021】
また、本発明においては、高分子凝集剤注入前後の流動電流の比較で、高分子凝集剤の注入量を制御することも可能である。この場合も最適な管理が可能な流動電流値は、原水性状、無機凝集剤の種類及び注入量、高分子凝集剤の種類及び注入量によって変動するので一概には言えないが、高分子凝集剤注入前の流動電流値と比較して2倍程度流動電流値が低下した場合には、高分子凝集剤が過剰であると判定できる。
【0022】
一方、原水の濁度が低いときには濁質分が少ないのでフロック生成のための核が少なくなり、フロック相互の衝突回数が減少し、高分子凝集剤を併用したとしても濁度低減の効果が見られない場合がある。更には、フロック生成のための核が少ないことにより、フロック形成に寄与できなかった残留高分子凝集剤が増加し、これもろ過閉塞を起こす原因になると考えられている。
【0023】
本発明のもう一つの最も大きな特徴は、上述のろ過閉塞防止と濁度低減の両方を達成することを目的として、凝集沈殿処理で生成したフロックを凝集沈殿処理前の原水に返送することを特徴とすることにある。
返送されるフロックが、高分子凝集剤の注入後にフロック形成槽で生成したフロックであるか、高分子凝集剤の注入後にフロック形成槽で生成したフロックを、沈殿池で沈降させたもの(以下、沈殿フロックと称す)であることが好ましい。これらのフロックは、すでに高分子凝集剤を表面に保持し凝集能力も残存しているので、フロックを返送しない場合と比較して、フロック相互が衝突してより巨大化したフロックを形成する能力を有する。また、フロック相互の衝突回数が増えるので、巨大化しないで沈殿池で沈殿しないまま、砂ろ過塔まで到達する微細フロックの量も激減し、ろ過継続時間の短縮を防ぐことができる。また、新たに注入する高分子凝集剤の量を低減させる効果が期待できる。
【0024】
なお、沈殿フロックを返送させる場合には、沈殿池で完全に沈殿・濃縮された沈殿フロックの返送は避けた方が良い。完全に沈殿・濃縮した沈殿フロックでは返送する際に目的とする濁質濃度に調整することが困難で、かえって新たに注入する無機凝集剤や高分子凝集剤の量が多くなってしまうことがある。また、濃縮されることで、フロック表面に保持されている高分子凝集剤の有効な部分が全く無くなってしまい、フロック形成能力も無くなってしまう。
【0025】
フロックの返送場所は原水、高分子凝集剤を注入する前のいずれも可能である。フロックは、例えば図3のフロック返送管18aを利用してフロック形成槽7または沈殿池13からそれぞれ原水導入管2や凝集混和槽3に返送することができる。特に、原水濁度が低く濁質分が少ない場合には原水に返送することが有効である。
返送するフロック量は特に限定されないが、凝集混和槽3やフロック形成槽7でのフロック状態、或いは沈殿処理水の濁度をモニタリングすることで最適な条件を設定すれば良い。
【0026】
また、本発明を実施する場合において、返送フロックにカオリン等の粘土質無機微粒子や微細砂を混合すると、フロックがより強固でかつ重量を有するものになるので、除濁効果がより発揮されるので好ましい。これら粘土質無機微粒子や微細砂を混合する場所としては、フロック返送管18a、18bの途中であればどこでも良いが、引抜いたフロックを原水導入管2や凝集混和槽3に返送する直前が好ましい。また、フロック返送管18a、18bではなく原水導入管2や凝集混和槽3に返送する地点に別途、粘土質無機微粒子や微細砂を注入する手段を設けることも可能である。
【0027】
【実施例】
以下、実施例により本発明をより具体的に説明する。実験は図1の装置を用いて行った。
【0028】
(実施例1)
なお、実験条件は下記の通りである。
原水流量:100m3/日(湖沼水)
原水濁度:11〜15度
原水pH:7.6〜8.3
無機凝集剤:PAC 40〜100mg/リットル
高分子凝集剤:中アニオン系高分子凝集剤0.1〜0.5mg/リットル
凝集混和槽:有効容積200リットル×2槽
フロック形成槽:有効容積1200リットル×2槽
沈殿池=7000リットル、傾斜板付き
砂ろ過塔:ろ過速度150m/日
ろ層構成:アンスラサイト層高400mm、珪砂層高400mm
【0029】
図1の装置において、無機凝集剤(PAC)を60mg/リットル凝集混和槽に注入し、急速攪拌を行いマイクロフロックを形成させた後、フロック形成槽流入直前に高分子凝集剤を所定量注入して緩速撹拌を行った。流動電流値は凝集混和槽出口と沈殿池流入直後に行った。各高分子凝集剤注入量における流動電流値、処理水濁度及びろ過継続時間を第1表に記載する。
【0030】
高分子凝集剤注入量が0.1mg/リットル及び0.3mg/リットルの場合は、沈殿池流入直後の流動電流値はそれぞれ−18〜−20mV、−20〜−24mVで、高分子凝集剤注入量を増加した方が低い値となった。これらの場合のろ過継続時間はそれぞれ48時間、46時間であり、高分子凝集剤を注入しない場合(48時間)と差は無く、ろ過池の状態は安定していた。また、高分子凝集剤注入量を0.5mg/リットルにした場合には、流動電流値は−33〜−35mVとなり、ろ過継続時間は32時間と著しく短縮され、高分子凝集剤量は過剰であると判断した。
【0031】
以上の結果から明らかなように、流動電流値が安定値よりも5割程度流動電流値が低下した場合には、高分子凝集剤が過剰となりろ過継続時間が短くなった。従って、高分子凝集剤により形成した凝集フロックの流動電流値を測定することで、ろ過継続時間の短縮を未然に防止できることがわかる。
【0032】
【表1】

Figure 0004004854
【0033】
(実施例2)
実験は図3の装置を用いて行った。
なお、実験条件は下記の通りである。
原水流量:100m3/日(湖沼水)
原水濁度:10〜14度
原水pH:7.5〜8.2
無機凝集剤:液体硫酸バンド 40〜100mg/リットル
高分子凝集剤:弱アニオン系高分子凝集剤0.1〜0.5mg/リットル
凝集混和槽:有効容積200リットル×2槽
フロック形成槽:有効容積1200リットル×2槽
沈殿池:7000リットル、傾斜板付き
砂ろ過塔:ろ過速度150m/日
ろ層構成:アンスラサイト層高400mm、珪砂層高400mm
【0034】
図3の装置において、無機凝集剤(液体硫酸バンド)を80mg/リットル凝集混和槽に注入し、急速撹拌を行いマイクロフロックを形成させた後、フロック形成槽流入直前に、高分子凝集剤を0.3mg/リットル注入して緩速撹拌を行った。また、沈殿池流入直後の沈殿フロックを、毎分10リットルの割合で凝集混和槽の2槽目に返送した。処理水濁度及びろ過継続時間を第2表に記載する。
【0035】
実施例3〜4、比較例1〜2
フロックの引抜場所や返送場所或いは返送量を第2表に示すように変更した以外は、実施例2と同様に試験を行った。また、フロックの引抜きを実施しなかった場合(比較例1)、高分子凝集剤を注入しなかった場合(比較例2)の実験も行った。結果を第2表に併記する。
第2表に示す結果から明らかなように、本発明のフロックを返送する方法では沈殿処理水の濁度が低下し、かつろ過継続時間が延長できることがわかる。
【0036】
【表2】
Figure 0004004854
【0037】
実施例5、比較例3
実施例2又は比較例1において、高分子凝集剤注入量を0.1mg/リットルに変更した以外は、同様の実験を繰返した。結果を第3表に示す。
第3表に示す結果から明らかなように、本発明の方法では高分子凝集剤注入量を低下させても沈殿処理水の濁度が低下し、かつろ過継続時間が延長できる(実施例5と比較例1との比較)ことがわかる。
【0038】
【表3】
Figure 0004004854
【0039】
【発明の効果】
本発明によれば、高分子凝集剤の注入後の凝集フロックの流動電流を測定し、その測定結果に基づき高分子凝集剤の注入量を制御することで、浄水処理において問題となる高分子凝集剤に起因するろ過閉塞を未然に防止することができ、砂ろ過塔の寿命を延長することが可能となり、一方、高分子凝集剤を使用していることで、沈殿処理水や浄水の濁度を低下させるなどの多大な効果を奏する。
また、本発明によれば、高分子凝集剤の注入後の凝集沈殿処理で生成したフロックを返送すること、浄水処理において問題となる高分子凝集剤に起因するろ過閉塞を未然に防止することができ、かつ原水の低濁度時の凝集不良の問題も解決できることなど多大な効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例1の凝集沈殿処理装置を示す概略説明図である。
【図2】本発明に係る流動電流計の概略説明断面図である。
【図3】本発明の実施例2の凝集沈殿処理装置の概略説明図である。
【符号の説明】
1 原水
2 原水導入管
3 凝集混和槽
4 無機凝集剤
5 無機凝集剤貯留槽
6 微細フロック含有水
7 フロック形成槽
8 高分子凝集剤
9 高分子凝集剤貯留槽
10 フロック引抜管
11 流動電流計
12 巨大フロック含有水
13 沈殿池
14 上澄水
15 砂ろ過塔
16 浄水
17 浄水排出管
18a フロック返送管
18b フロック返送管
20 シリンダー
21 ピストン
22 モーター
23 試水入口
24 試水出口
25 増幅整流回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a suitable water purification treatment method and apparatus using a polymer flocculant, and more specifically, can prevent filtration clogging that occurs when a polymer flocculant is used. The present invention relates to a method and an apparatus capable of obtaining an excellent coagulation treatment effect in the coagulation sedimentation step used.
[0002]
[Prior art]
Conventionally, in water purification treatment, an inorganic flocculant such as a sulfate band or polyaluminum chloride (PAC) is injected into water to be treated containing suspended solids (hereinafter also referred to as “raw water”), and suspended solids are taken in. Suspended substances were removed by forming agglomerated floc and allowing the agglomerated floc to settle and separate.
However, in recent years, eutrophication of lakes and rivers has progressed, and algae have grown. These algae have poor cohesiveness and have an adverse effect on sand filtration. In order to agglutinate the grown algae, a large amount of an inorganic flocculant is required. By adding a large amount of the inorganic flocculant, the treated water becomes acidic, which makes it unsuitable as drinking water. In addition, the amount of sludge generated from the inorganic flocculant is increased, and there is a problem that the cost for processing this sludge increases.
[0003]
The use of an anionic polymer flocculant in combination with an anionic polymer flocculant in order to improve the sedimentation property of the flocs by an inorganic flocculant in water purification treatment has been pointed out.
In other words, the polymer flocculant injected in the water purification treatment is solid-liquid separated together with the generated floc and is mostly removed, but a part remains on the treated water side along with the fine floc. The remaining polymer flocculant may be adsorbed on the filter medium in the sand filtration tower in the subsequent step and cause clogging of the filter.
[0004]
As means for preventing clogging with the polymer flocculant, the method of injecting the flocculant sequestering agent, the floc formation rate after the inorganic flocculant injection is measured, and the injection rate of the polymer flocculant is determined according to the degree of floc formation There are a method of determining, a method of measuring the flow current in the floc generating tank in the wastewater treatment, obtaining the surplus or deficiency of the flocculant based on the measured flow current, and controlling the injection amount of the flocculant.
[0005]
[Problems to be solved by the invention]
However, the above method also has the following problems. The method of injecting the coagulant sequestering agent may increase the processing cost. By measuring the degree of floc formation after injection of the inorganic flocculant and determining the injection rate of the polymer flocculant according to the degree of floc formation, the fine flocs in which the suspended solid and the inorganic flocculant are well bonded However, if the polymer flocculant is not used effectively for coarse floc aggregation, the risk of filtration clogging still remains, so it is not sufficient to control the degree of floc formation after the inorganic flocculant injection. is there. Furthermore, in the method of measuring the flow current in the floc generation tank and controlling the injection amount of the flocculant based on the measured flow current, the suspended solid and the flocculant react without excess or deficiency and are electrically neutral. Is intended to control the amount of the flocculant so that, in the water purification treatment, the point of being neutralized electrically does not necessarily give a good treatment result. There is no suggestion about the effect on temperature or filtration.
[0006]
Therefore, in view of the above-mentioned problems, the present inventors can obtain an excellent turbidity removing effect even when the turbidity is low when a polymer flocculant is used, and occur when a polymer flocculant is used. The present invention was completed as a result of intensive investigations aimed at solving the problem of the obtained filtration blockage and developing a method capable of stable water purification treatment.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configuration.
(1) Purified water in which an inorganic flocculant is injected into the water to be treated to form fine flocs, and then an anionic polymer flocculant is injected to enlarge the flocs for coagulation and precipitation, followed by filtration. In the treatment method, after anionic polymer flocculant is injected and the flow current value of a huge flocculent floc in a state where stable operation can be performed without clogging is measured, the current value is obtained as a stable value in advance. The flow current of the giant floc after the injection of the anionic polymer flocculant is measured, and the injection amount of the anionic polymer flocculant is excessive based on the degree of decrease in the flow current value from the stable value. A water purification method characterized by determining and controlling the injection amount of the anionic polymer flocculant based on the determination result .
(2) When the degree of decrease in flowing current value from the stable value is reduced by 50% of the stable value, it is determined that the anionic polymer flocculant is excessive, and the anionic polymer is determined based on the determination result. The water purification method according to (1), wherein the amount of the flocculant injected is controlled.
(3) Purified water in which an inorganic flocculant is injected into the water to be treated to form fine flocs, and then an anionic polymer flocculant is injected to enlarge the flocs for coagulation and precipitation, followed by filtration. In the treatment method, the flow current of fine flocs before the injection of the anionic polymer flocculant is measured, and then the flow current of the flocs flocs after the injection of the anionic polymer flocculant is measured. Based on the degree of decrease in the flow current value after the anionic polymer flocculant injection relative to the flow current value before the agent injection, it is determined that the anionic polymer flocculant injection amount is excessive, and based on the determination result And a water purification method characterized by controlling the injection amount of the anionic polymer flocculant.
[0008]
(4) When the degree of decrease in the flow current value after the injection of the anionic polymer flocculant with respect to the flow current value before the injection of the anionic polymer flocculant is reduced to twice that before the injection, the anionic polymer The water purification method according to (3), wherein the amount of the flocculant injected is determined to be excessive, and the amount of the anionic polymer flocculant injected is controlled based on the determination result.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
The water purification treatment equipment to which the present invention can be applied is a normal equipment that has been put to practical use, and examples thereof include a water purification facility having a cross-flow type precipitation facility and a water purification facility having a high-speed coagulation precipitation facility. Either a slurry circulation type or a sludge / blanket type can be applied as the high-speed coagulating sedimentation equipment.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments.
[0011]
FIG. 1 is a diagram showing an embodiment of the present invention. The figure shows an example of a water purification facility with a cross-flow type precipitation facility. The raw water 1 is sent to the coagulation mixing tank 3 through the raw water introduction pipe 2. An inorganic flocculant 4 is injected into the agglomeration mixing tank 3, and the turbidity in the raw water reacts with the inorganic flocculant 4 to form fine flocs (micro flocs) by rapid stirring.
[0012]
As the inorganic flocculant used in the present invention, iron-based or aluminum-based inorganic flocculants that are already used as flocculants can be used. Specific examples include a sulfuric acid band, polyaluminum chloride (PAC), aluminum chloride, polyferric sulfate (polyiron), ferric chloride, and mixtures thereof. The injection amount of these inorganic flocculants is in the range of 1 to 1000 mg / liter, although it depends on the quality of raw water.
[0013]
The water 6 containing fine flocs generated in the coagulation mixing tank 3 is sent to the floc forming tank 7. A polymer flocculant is injected into the floc-forming tank 7, and the fine flocs are enlarged by the polymer flocculant by stirring more slowly than the flocculent mixing tank 3.
[0014]
Examples of the polymer flocculant to be injected include known anionic, nonionic, and cationic polymer flocculants. Examples of the anionic polymer flocculant include polyacrylamide partial hydrolyzate, a copolymer of an anionic monomer, and a copolymer of an anionic monomer and a nonionic monomer such as acrylamide. As anionic monomers, acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, 2-allylamide ethane sulfonic acid, 2-acrylamide-2 -Methylpropanesulfonic acid, 2-methacrylamideamidoethanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid, 2-acryloyloxyethanesulfonic acid, 3-acryloyloxypropanesulfonic acid, 4-acryloyloxybutanesulfonic acid, Examples include 2-methacryloyloxyethanesulfonic acid, 3-methacryloyloxypropanesulfonic acid, 4-methacryloyloxybutanesulfonic acid, and metal salts or ammonium salts of these alkali metals and alkaline earth metals. . These anionic monomers may be used alone or in combination of two or more. Nonionic monomers include acrylamide, methacrylamide, methacrylonitrile, vinyl acetate and the like. These nonionic monomers may be used alone or in combination of two or more. As the copolymer, an acrylamide / acrylate copolymer and an acrylamide / 2-acrylamido-2-methylpropanesulfonic acid copolymer are preferable. The nonionic polymer flocculant is a polymer or copolymer of the above nonionic monomer, preferably polyacrylamide.
[0015]
The amount of the polymer flocculant injected can be 0.05 to 0.5 mg / liter to achieve the object of the present invention, but it is preferable that the total amount is 1 mg / liter or less at the maximum. Moreover, since the regulation value in use is 0.00005 mg / liter or less of the residual acrylamide monomer in the treated water, it is theoretically important that the acrylamide monomer in the product is 0.005 wt% or less.
[0016]
The flocs, which have been made huge by the polymer flocculant, are solid-liquid separated in the subsequent sedimentation basin 13 so that most of them are recovered as sludge. In general, the sedimentation basin 13 is provided with an inclined plate and an inclined pipe.
The precipitation-treated water that has been subjected to the solid-liquid separation is sent to the sand filtration tower 15 to be treated with a filter medium to become purified water 16. Silica sand and anthracite are the most common filter media. As described above, most of the flocs are separated in the sedimentation basin 13, but the turbid matter in the raw water not captured by the flocs and the flocs that have not settled in the sedimentation basin 13 are the filter media in the sand filtration tower 15. Filtered. The floc aggregated only with the inorganic flocculant does not stick to the filter medium because the viscosity of the inorganic flocculant itself is not so high, and even if it adheres to the filter medium, the floc can be easily removed by backwashing. On the other hand, the floc aggregated with the polymer flocculant sticks to the filter medium due to the viscosity of the polymer flocculant, causing filtration clogging.
[0017]
The greatest feature of the present invention is to measure the flow current of the flocs flocs after injection of the polymer flocculant in order to eliminate the problem of filtration clogging that may occur when using the polymer flocculant, and the measurement results Therefore, the injection amount of the polymer flocculant is controlled. The flowing current is measured using a flowing current meter 11.
[0018]
A schematic diagram of the flow ammeter 11 is shown in FIG. A piston 21 that moves up and down by a motor 22 is provided inside the cylinder 20. The piston 21 has a predetermined clearance between the inner wall of the cylinder 20. The sample water including the floc entered from the sample water inlet 23 is subjected to a shearing force within the above-described clearance by the vertical movement of the piston 21, and the colloidal particles attached to the aggregated floc surface are separated from the aggregated floc by this shearing force. It is. The flowing current generated at this time can be detected by the amplification rectifier circuit 25 as a flowing current value corresponding to the charge density on the surface of the aggregated floc. For example, flocs aggregated with polyaluminum chloride (PAC) have a large amount of positively charged particles because a large amount of aluminum hydroxide aggregates adhere to the surface of the aggregated flocs. Therefore, the flow current value after agglomeration with the inorganic flocculant is higher than that of the raw water (on the positive side). Further, the flowing current value increases in proportion to the injection amount of the inorganic flocculant.
[0019]
On the other hand, flocs generated using an anionic polymer flocculant are more negatively charged because the polymer flocculant, which is an anionic substance, adheres to the surface of the flocs. For this reason, the flowing current value becomes lower (becomes negative) than the flowing current value after aggregation with the inorganic flocculant. Therefore, by measuring the flow current value of the flocs after injection of the polymer flocculant, it is possible to determine whether the polymer flocculant is excessive or insufficient. The flowing current value decreases in proportion to the injection rate of the polymer flocculant. Further, the flowing current value decreases in proportion to the anionic strength of the polymer flocculant. That is, at the same polymer flocculant injection amount, a strong anionic polymer flocculant has a large decrease in flowing current value, and a nonionic or weak anionic polymer flocculant has a small decrease in flowing current value.
[0020]
In controlling the injection amount of the polymer flocculant by the flowing current, the flow current value that can be optimally controlled varies depending on the raw aqueous state, the type and amount of the inorganic flocculant, the type and amount of the polymer flocculant, Although it cannot be said, the flow current value (stable value) in a state in which the polymer flocculant is injected and the filter is not clogged and the operation is stable is grasped in advance, and the flow is about 50% from this stable value. When the current value decreases, it can be determined that the polymer flocculant is excessive. Therefore, when the operation is continued in such a state, agglomeration floc containing an excessive polymer flocculant flows out to the filtration basin, and suddenly clogs the filter. In this case, it is necessary to reduce the injection amount of the polymer flocculant so that the flowing current value approaches the stable value.
[0021]
In the present invention, it is also possible to control the injection amount of the polymer flocculant by comparing the flow current before and after the polymer flocculant injection. In this case, the flow current value that can be optimally controlled varies depending on the raw aqueous state, the type and amount of the inorganic flocculant, and the type and amount of the polymer flocculant. When the flowing current value is reduced by about twice as much as the flowing current value before injection, it can be determined that the polymer flocculant is excessive.
[0022]
On the other hand, when the turbidity of the raw water is low, the amount of turbidity is small, so there are fewer nuclei for floc formation, the number of flocs colliding with each other is reduced, and even if a polymer flocculant is used together, the effect of turbidity reduction is seen It may not be possible. Furthermore, since there are few nuclei for floc formation, the residual polymer flocculant that could not contribute to floc formation increases, which is also considered to cause filtration clogging.
[0023]
Another most significant feature of the present invention is that flocs generated by the coagulation sedimentation treatment are returned to the raw water before the coagulation sedimentation treatment for the purpose of achieving both the above-mentioned filtration blockage prevention and turbidity reduction. It is to do.
The floc to be returned is the floc generated in the floc forming tank after the injection of the polymer flocculant, or the floc generated in the floc forming tank after the injection of the polymer flocculant is settled in the sedimentation basin (hereinafter, (Referred to as precipitation floc). Since these flocs already retain the polymer flocculant on the surface and the coagulation ability remains, compared to the case where the flocs are not returned, the flocs collide with each other to form a larger floc. Have. In addition, since the number of collisions between flocs increases, the amount of fine flocs that reach the sand filtration tower without drastically becoming sedimented in the sedimentation basin is drastically reduced, and shortening of the filtration continuation time can be prevented. In addition, an effect of reducing the amount of the polymer flocculant to be newly injected can be expected.
[0024]
When returning sedimentation floc, it is better to avoid returning sedimentation floc that has been completely precipitated and concentrated in the sedimentation basin. Completely precipitated / concentrated sediment floc is difficult to adjust to the desired turbidity concentration when returned, and may increase the amount of inorganic flocculant or polymer flocculant newly injected. . Moreover, by concentrating, the effective part of the polymer flocculant currently hold | maintained on the floc surface will be lose | eliminated, and the floc formation capability will also be lose | eliminated.
[0025]
The floc can be returned to either the raw water or before the polymer flocculant is injected. The floc can be returned to the raw water introduction pipe 2 and the coagulation mixing tank 3 from the flock formation tank 7 or the sedimentation tank 13 by using, for example, the floc return pipe 18a of FIG. In particular, when the raw water turbidity is low and the turbidity content is low, it is effective to return the raw water to the raw water.
The amount of floc to be returned is not particularly limited, but an optimal condition may be set by monitoring the floc state in the flocculation / mixing tank 3 and the floc-forming tank 7 or the turbidity of the precipitated treated water.
[0026]
Further, in the case of carrying out the present invention, mixing clay inorganic fine particles such as kaolin or fine sand with the return floc makes the floc stronger and heavier, so that the turbidity effect is more exhibited. preferable. The place where the clay inorganic fine particles and the fine sand are mixed may be anywhere in the middle of the floc return pipes 18a and 18b, but is preferably just before the drawn floc is returned to the raw water introduction pipe 2 or the coagulation mixing tank 3. In addition, it is possible to provide means for injecting clay mineral fine particles and fine sand separately at the point of return to the raw water introduction pipe 2 and the coagulation mixing tank 3 instead of the flock return pipes 18a and 18b.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. The experiment was performed using the apparatus shown in FIG.
[0028]
Example 1
The experimental conditions are as follows.
Raw water flow rate: 100m 3 / day (lake water)
Raw water turbidity: 11-15 degrees Raw water pH: 7.6-8.3
Inorganic flocculant: PAC 40-100 mg / liter Polymer flocculant: Medium anionic polymer flocculant 0.1-0.5 mg / liter Aggregation mixing tank: Effective volume 200 liters x 2 tanks Flock forming tank: Effective volume 1200 liters × 2 tank sedimentation basin = 7000 liters, sand filtration tower with inclined plate: filtration rate 150 m / day filter layer configuration: anthracite layer height 400 mm, quartz sand layer height 400 mm
[0029]
In the apparatus of FIG. 1, an inorganic flocculant (PAC) is injected into a 60 mg / liter agglomeration mixing tank, and after rapid stirring to form micro flocs, a predetermined amount of polymer flocculant is injected immediately before the floc formation tank is introduced. The mixture was stirred slowly. The flow current value was measured immediately after the agglomeration mixing tank outlet and the sedimentation tank flow. The flow current value, the treated water turbidity, and the filtration duration in each polymer flocculant injection amount are shown in Table 1.
[0030]
When the polymer flocculant injection amount is 0.1 mg / liter and 0.3 mg / liter, the flow current values immediately after flowing into the settling basin are −18 to −20 mV and −20 to −24 mV, respectively. Increasing the amount resulted in a lower value. The filtration durations in these cases were 48 hours and 46 hours, respectively, and there was no difference from the case where the polymer flocculant was not injected (48 hours), and the state of the filtration basin was stable. In addition, when the polymer flocculant injection amount is 0.5 mg / liter, the flowing current value is −33 to −35 mV, the filtration duration is remarkably shortened to 32 hours, and the polymer flocculant amount is excessive. Judged that there was.
[0031]
As is clear from the above results, when the flowing current value decreased by about 50% from the stable value, the polymer flocculant became excessive and the filtration duration time was shortened. Therefore, it can be understood that the shortening of the filtration continuation time can be prevented beforehand by measuring the flow current value of the flocs formed by the polymer flocculant.
[0032]
[Table 1]
Figure 0004004854
[0033]
(Example 2)
The experiment was performed using the apparatus shown in FIG.
The experimental conditions are as follows.
Raw water flow rate: 100m 3 / day (lake water)
Raw water turbidity: 10-14 degrees Raw water pH: 7.5-8.2
Inorganic flocculant: liquid sulfuric acid band 40-100 mg / liter Polymer flocculant: weak anionic polymer flocculant 0.1-0.5 mg / liter flocculent mixing tank: effective volume 200 liters x 2 tanks floc forming tank: effective volume 1200 liters x 2 tank sedimentation basin: 7000 liters, sand filtration tower with inclined plate: filtration rate 150 m / day filter layer configuration: anthracite layer height 400 mm, quartz sand layer height 400 mm
[0034]
In the apparatus of FIG. 3, an inorganic flocculant (liquid sulfuric acid band) is injected into an 80 mg / liter agglomeration mixing tank, and after rapid stirring to form micro flocs, the polymer flocculant is reduced to 0 immediately before entering the floc forming tank. Slow stirring was performed by injecting 3 mg / liter. Moreover, the sedimentation flock immediately after flowing into the sedimentation tank was returned to the second tank of the agglomeration mixing tank at a rate of 10 liters per minute. The treated water turbidity and filtration duration are listed in Table 2.
[0035]
Examples 3-4, Comparative Examples 1-2
The test was performed in the same manner as in Example 2 except that the flock drawing location, return location, and return amount were changed as shown in Table 2. In addition, experiments were also conducted when the floc was not drawn (Comparative Example 1) and when the polymer flocculant was not injected (Comparative Example 2). The results are also shown in Table 2.
As is apparent from the results shown in Table 2, it can be seen that the method for returning floc of the present invention reduces the turbidity of the precipitated treated water and extends the filtration duration.
[0036]
[Table 2]
Figure 0004004854
[0037]
Example 5, Comparative Example 3
In Example 2 or Comparative Example 1, the same experiment was repeated except that the polymer flocculant injection amount was changed to 0.1 mg / liter. The results are shown in Table 3.
As is apparent from the results shown in Table 3, in the method of the present invention, even when the polymer flocculant injection amount is reduced, the turbidity of the precipitated treated water is reduced and the filtration duration can be extended (Example 5 and Comparison with Comparative Example 1 is understood.
[0038]
[Table 3]
Figure 0004004854
[0039]
【The invention's effect】
According to the present invention, by measuring the flow current of the flocculation flocs after the injection of the polymer flocculant, and controlling the injection amount of the polymer flocculant based on the measurement result, the polymer flocculation which is a problem in water purification treatment Filtering blockage caused by the agent can be prevented and the life of the sand filtration tower can be extended. On the other hand, the use of the polymer flocculant enables the turbidity of the treated and purified water. It has a great effect such as lowering.
In addition, according to the present invention, it is possible to return flocs generated by the coagulation sedimentation treatment after the injection of the polymer coagulant, and to prevent filtration clogging caused by the polymer coagulant which is a problem in water purification treatment. It has a great effect such as being able to solve the problem of poor aggregation at the time of low turbidity of raw water.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic explanatory view showing a coagulation sedimentation processing apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a schematic cross-sectional view of a flow ammeter according to the present invention.
FIG. 3 is a schematic explanatory diagram of a coagulation sedimentation processing apparatus according to Embodiment 2 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water 2 Raw water introduction pipe 3 Coagulation mixing tank 4 Inorganic flocculant 5 Inorganic flocculant storage tank 6 Fine floc containing water 7 Flock formation tank 8 Polymer flocculant 9 Polymer flocculant storage tank 10 Flock extraction pipe 11 Flow current meter 12 Water containing huge flock 13 Precipitation pond 14 Supernatant water 15 Sand filtration tower 16 Purified water 17 Purified water discharge pipe 18a Flock return pipe 18b Flock return pipe 20 Cylinder 21 Piston 22 Motor 23 Sample water inlet 24 Sample water outlet 25 Amplification rectifier circuit

Claims (4)

被処理水に無機凝集剤を注入して微細なフロックを形成し、続いてアニオン系高分子凝集剤を注入することによりフロックを巨大化し凝集沈殿処理を行い、引き続きろ過処理を行う浄水処理方法において、アニオン系高分子凝集剤を注入してろ過閉塞なく安定した運転ができている状態の巨大化した凝集フロックの流動電流を測定して該電流値を安定値として予め求めた後、アニオン系高分子凝集剤の注入後の巨大フロックの流動電流を測定し、前記安定値からの流動電流値の低下の度合に基づいて、アニオン系高分子凝集剤の注入量が過剰であると判定し、その判定結果に基づいてアニオン系高分子凝集剤の注入量を制御することを特徴とする浄水処理方法。In the water purification treatment method in which an inorganic flocculant is injected into the water to be treated to form fine flocs, and then an anionic polymer flocculant is injected to enlarge the flocs for flocculation and precipitation, followed by filtration. The anionic polymer flocculant is injected to measure the flow current value of the huge flocculent floc in a state where stable operation can be performed without clogging the filtration, and the current value is obtained in advance as a stable value. Measure the flow current of the giant floc after injection of the polymer flocculant, and based on the degree of decrease in the flow current value from the stable value, it is determined that the injection amount of the anionic polymer flocculant is excessive, A water purification method characterized by controlling the injection amount of an anionic polymer flocculant based on the determination result . 前記安定値からの流動電流値の低下の度合が安定値の5割低下したときに、アニオン系高分子凝集剤が過剰であると判定し、その判定結果に基づいてアニオン系高分子凝集剤の注入量を制御することを特徴とする請求項1記載の浄水処理方法。When the degree of decrease in the flowing current value from the stable value is reduced by 50% of the stable value, it is determined that the anionic polymer flocculant is excessive, and the anionic polymer flocculant is determined based on the determination result. The water purification method according to claim 1, wherein an injection amount is controlled. 被処理水に無機凝集剤を注入して微細なフロックを形成し、続いてアニオン系高分子凝集剤を注入することによりフロックを巨大化し凝集沈殿処理を行い、引き続きろ過処理を行う浄水処理方法において、アニオン系高分子凝集剤注入前の微細なフロックの流動電流を測定し、次いで該アニオン系高分子凝集剤の注入後の凝集フロックの流動電流を測定し、前記アニオン系高分子凝集剤注入前の流動電流値に対する前記アニオン系高分子凝集剤注入後の流動電流値の低下度合に基づいて、アニオン系高分子凝集剤の注入量が過剰であると判定し、その判定結果に基づいてアニオン系高分子凝集剤の注入量を制御することを特徴とする浄水処理方法。In the water purification treatment method, injecting an inorganic flocculant into the water to be treated to form fine flocs, and then injecting an anionic polymer flocculant to enlarge the flocs for coagulation and precipitation, followed by filtration Measuring the flow current of fine flocs before the injection of the anionic polymer flocculant, and then measuring the flow current of the flocs flocs after the injection of the anionic polymer flocculant. Based on the degree of decrease in the flow current value after the injection of the anionic polymer flocculant with respect to the flow current value of the anionic polymer flocculant, it is determined that the injection amount of the anionic polymer flocculant is excessive, and the anionic system based on the determination result A water purification method characterized by controlling the amount of polymer flocculant injected. 前記アニオン系高分子凝集剤注入前の流動電流値に対する前記アニオン系高分子凝集剤注入後の流動電流値の低下度合が、注入前の2倍に低下したときに、アニオン系高分子凝集剤の注入量が過剰であると判定し、その判定結果に基づいてアニオン系高分子凝集剤の注入量を制御することを特徴とする請求項3記載の浄水処理方法。When the degree of decrease in the flow current value after the injection of the anionic polymer flocculant with respect to the flow current value before the injection of the anionic polymer flocculant is doubled before the injection, The water purification method according to claim 3, wherein the injection amount is determined to be excessive, and the injection amount of the anionic polymer flocculant is controlled based on the determination result.
JP2002150433A 2002-05-24 2002-05-24 Water purification method and apparatus Expired - Fee Related JP4004854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150433A JP4004854B2 (en) 2002-05-24 2002-05-24 Water purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150433A JP4004854B2 (en) 2002-05-24 2002-05-24 Water purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2003340208A JP2003340208A (en) 2003-12-02
JP4004854B2 true JP4004854B2 (en) 2007-11-07

Family

ID=29768291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150433A Expired - Fee Related JP4004854B2 (en) 2002-05-24 2002-05-24 Water purification method and apparatus

Country Status (1)

Country Link
JP (1) JP4004854B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5318389B2 (en) 2007-09-28 2013-10-16 株式会社日立製作所 Coagulation equipment
JP4869393B2 (en) * 2009-02-17 2012-02-08 株式会社東芝 Solid matter separation system
JP2010194520A (en) * 2009-02-27 2010-09-09 Tosoh Corp Salt water refining method
JP5826545B2 (en) * 2011-07-20 2015-12-02 株式会社西原環境 Polluted water treatment system and polluted water treatment method
JP5755589B2 (en) * 2012-03-12 2015-07-29 株式会社東芝 Aggregate formation method
JP5431559B2 (en) * 2012-10-23 2014-03-05 株式会社日立製作所 Polluted water purification system and ship
JP6301850B2 (en) * 2015-02-10 2018-03-28 株式会社東芝 Flocculant injection support device and flocculant injection system
JP6197016B2 (en) * 2015-11-19 2017-09-13 水ing株式会社 Water purification method and water purification device
JP6197021B2 (en) * 2015-12-22 2017-09-13 水ing株式会社 Water purification method and water purification facility
JP7068773B2 (en) * 2017-03-16 2022-05-17 水ing株式会社 Water treatment agent, water treatment method and water treatment equipment
JP7142540B2 (en) * 2018-10-31 2022-09-27 水ing株式会社 Water purification method and water purification device
JP6881515B2 (en) * 2019-07-26 2021-06-02 栗田工業株式会社 Coagulation processing equipment
JP7545811B2 (en) 2020-03-25 2024-09-05 Ube三菱セメント株式会社 Thickener, slurry treatment system, wastewater treatment system, and thickener control method
CN112047448A (en) * 2020-09-28 2020-12-08 杨剑飞 Flocculating agent for sewage treatment and preparation method thereof

Also Published As

Publication number Publication date
JP2003340208A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP4004854B2 (en) Water purification method and apparatus
JP4223870B2 (en) Water purification method
JP5489982B2 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
JP3945541B2 (en) Physicochemical treatment method of runoff water for consumption, especially surface water
JP4707752B2 (en) Water treatment method and water treatment system
JP5173538B2 (en) Water treatment method
JP2017087090A (en) Water treatment method and water treatment equipment
JP2018153729A (en) Water treatment agent, water treatment method, and water treatment device
JP4516152B1 (en) Coagulation precipitation treatment method
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP7515308B2 (en) Water purification method and water purification device
JP4176915B2 (en) Solid-liquid separator
JP2000317220A (en) Flocculating and settling device
JP7083274B2 (en) Water treatment method and water treatment equipment
JP7142540B2 (en) Water purification method and water purification device
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JP2002066568A (en) Water treating method and apparatus
JP2002355507A (en) Flocculating and settling equipment and its controlling method
JP7117101B2 (en) Water treatment method and device
JP5068279B2 (en) Softening device and operation method thereof
JP2003145168A (en) Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JPH03137987A (en) Treatment of waste water
JP4800463B2 (en) Filtration device
JP3854471B2 (en) Water purification equipment
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Ref document number: 4004854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees