JP4800463B2 - Filtration device - Google Patents

Filtration device Download PDF

Info

Publication number
JP4800463B2
JP4800463B2 JP2000073303A JP2000073303A JP4800463B2 JP 4800463 B2 JP4800463 B2 JP 4800463B2 JP 2000073303 A JP2000073303 A JP 2000073303A JP 2000073303 A JP2000073303 A JP 2000073303A JP 4800463 B2 JP4800463 B2 JP 4800463B2
Authority
JP
Japan
Prior art keywords
water
filter medium
backwashing
flocculant
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000073303A
Other languages
Japanese (ja)
Other versions
JP2001259318A (en
Inventor
邦雄 海老江
友明 宮ノ下
透 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000073303A priority Critical patent/JP4800463B2/en
Publication of JP2001259318A publication Critical patent/JP2001259318A/en
Application granted granted Critical
Publication of JP4800463B2 publication Critical patent/JP4800463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、凝集剤を添加した凝集処理を行った凝集処理水をろ材層へ通過させろ過処理を行うろ過装置に関する。
【0002】
【従来の技術】
河川水などを原水として浄水や工業用水を製造する場合や、排水処理等において、懸濁物質の分離のために凝集沈殿処理およびろ過処理が広く採用されている。すなわち、凝集沈殿処理では、まず原水に対しアルミ系の凝集剤等を添加混合して、原水中の懸濁物質を粗大フロック化する。そして、この粗大フロックを沈殿池に導入して沈殿処理することで、懸濁質の大部分を除去する。次に、この沈殿池で得られた上澄み水(凝集沈殿処理水)をろ過装置でさらに処理し、残留する微細懸濁物をさらに除去する。このようにして、清澄な処理水を得ている。
【0003】
ここで、ろ過装置においては、ろ材が所定量の懸濁質を捕捉すると、ろ過抵抗が上昇し、またフロックの流出が大きくなるため、逆洗を行う。この逆洗は、逆洗水(通常は処理水)をろ過装置に逆流させ、捕捉した懸濁質を除去してろ材を再生することによって行う。
【0004】
ところが、この逆洗を行った直後において、処理水中の懸濁物質(微細フロック)が増加し、十分なろ過が行えない場合が多い。
【0005】
これは、通常のろ過処理においては、アルミ系の凝集剤を用いた場合は、ろ材の表面に薄く水酸化アルミニウムが付着し、これが微細な凝集フロックの除去に貢献しているが、逆洗によってこの付着物が除去されるため、逆洗直後の処理水が悪化するものと考えられる。
【0006】
そこで、逆洗水に凝集剤を添加して逆洗を行うことが提案されている。このような逆洗により、逆洗の際に凝集剤がろ材中に供給され、ろ材表面のたとえば、水酸化アルミニウムの付着が助長される。従って、逆洗直後においても、微細フロックの除去を十分なものにできると考えられる。
【0007】
【発明が解決しようとする課題】
ところが、この逆洗水に凝集剤を添加した場合においても、逆洗終了直後の処理水中の懸濁物質量はそれほど改善できないことがわかった。これは、逆洗時において、凝集剤を添加しても、この凝集剤をろ材全体に付着させることが難しいからである。すなわち、凝集剤ろ過層の下部(出口付近)において捕捉される確率が高く、従ってろ過層の下部のろ材にのみ上記付着物が形成されてしまう。また、洗浄排水中のアルミニウム濃度が上昇してしまうため、そのまま放流できないという問題もある。
【0008】
また、逆洗直後に凝集剤の添加量を多くすることも考えられるが、この場合には、表面近くのろ材にのみに付着の形成が行われ、ろ材全体に付着物を形成することができない。そこで、ろ過直後において処理水の悪化を防げなかった。
【0009】
さらに、最近では、クリプトスポリジウムなどの病原性原虫を除去する目的で、非常に精密なろ過が求めれらている。そこで、逆洗直後における懸濁物質の流出をさらに減少したいという要求もある。
【0010】
本発明は、上記課題に鑑みなされたものであり、逆洗直後から良好なろ過処理が行えるろ過装置の逆洗方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、凝集剤を添加した凝集処理を行った凝集処理水をろ材層へ通過させろ過処理を行うろ過装置において、逆洗水をろ材層へ逆方向に流通し、ろ材層を逆洗する逆洗手段と、ろ材層の表面に洗浄水を供給し、ろ材層の表面を洗浄する表面洗浄手段と、水にポリ塩化アルミニウムを凝集剤として添加し、pHを5.0±0.5の範囲内に制御して、ろ材表面に水酸化アルミニウムの被覆を形成するためのコーティング水を生成するコーティング水生成手段と、を有し、前記コーティング水生成手段によって生成されたコーティング水を逆洗手段および表面洗浄手段に供給し、ろ材層に対し順方向および逆方向の両方からコーティング水を供給し、ろ材層のろ材表面に水酸化アルミニウムの被膜を形成することを特徴とする。
【0012】
このように、逆洗手段による逆洗において、コーティング水をろ材層に供給することで、逆方向に流れるコーティング水とろ材を接触することができる。さらに、コーティング水を表面洗浄手段から供給することで、ろ材層に対し順方向でコーディング水を供給して、ろ材とコーティング水を接触させることができる。このように、両方向に流れるコーティング水とろ材を接触させることでろ材層の全体のろ材とコーティング水を効果的に接触させることができ、ろ材表面に凝集剤の被膜を効果的に形成することができる。従って、逆洗終了直後からろ材の懸濁物吸着能力が十分高く、良好な処理水を得ることができる。
【0013】
また、前記コーティング水生成手段は、ポリ塩化アルミニウムを40〜80mg/lとなるように添加し、そのpHが5.0±0.5の範囲内に制御してコーティング水を生成することが好適である。このようなコーティング水をろ材と接触することによって、ろ材表面のゼータ電位を0〜−10mV程度にすることができ、その後のろ過を効果的に行うことができる。なおポリ塩化アルミニウム(PAC)は、通常Alとして10%を含むものが市販されているが、本発明における40〜80mg/lというのは、上述した濃度のPACを逆洗水1リットルあたり40〜80mgの割合で添加する意味であり、この場合Alとしては2.12〜4.24mg/lの添加量となる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
【0015】
図1は、本実施形態に係る凝集分離装置の全体構成を示す図である。河川水、湖沼水などの原水は、まず混和槽10に流入される。この混和槽10には、凝集剤貯槽12からの凝集剤が凝集剤ポンプ14によって供給される。凝集剤は、無機アルミニウム系の凝集剤が好ましく、特にPAC(ポリ塩化アルミニウム)が好ましい。そして、混和槽10には、攪拌機16が設けられており、原水と凝集剤が急速攪拌される。この混和槽10において、凝集剤が混和された凝集剤混和水は、凝集槽18に流入する。この凝集槽18には、緩速攪拌機20が配置されており、凝集剤混和水が緩速攪拌され、凝集フロックの合体、粗大化が図られる。
【0016】
次に、凝集槽18からの緩速攪拌後の凝集剤混和水は、傾斜板沈殿槽22に流入する。この傾斜板沈殿槽22は、仕切板22aにより入口側と出口側に仕切られており、入口側に槽深の深い沈殿部22bが形成されている。そして、この沈殿部22bの下部は、沈殿汚泥を貯留する汚泥貯留部22cになっている。また、出口側には多数の傾斜板22dが配置されて傾斜板沈殿部22eが形成されている。凝集剤混和水は沈殿部22bに流入され、ここで沈殿処理された後、仕切板22aの下を通過して、傾斜板沈殿部22eを上向流で通過する。そして、この傾斜板沈殿部22eの傾斜板22dを通過する際にさらに沈殿処理がなされ、スラッジが槽底へ向けて沈殿する。傾斜板沈殿部22eの槽底は、汚泥貯留部22cに向けて深くなるように傾斜しているため、沈殿スラッジは重力により汚泥貯留部22cに移動する。そして、傾斜板沈殿部22eを通過した上澄みが傾斜板沈殿槽22から排出される。なお、傾斜板沈殿槽22の汚泥貯留部22cに沈殿した汚泥は、適宜引き抜かれ別途処分される。
【0017】
このような凝集沈殿処理により、傾斜板沈殿槽22からの沈殿処理水は、懸濁固形物のかなりの部分は除去されたものになっている。この沈殿処理水は、ろ過器24に流入される。このろ過器24は、アンスラサイトのろ過層24bと、砂のろ過層24aの二層のろ過層を有する重力式の急速ろ過器である。なお、場合によっては、沈殿処理水に追加の凝集剤注入あるいは凝集助剤注入を行いラインミキサーにて撹拌し、ろ過器24に供給してもよく、またろ過器は圧力式ろ過器であってもよい。
【0018】
ろ過層24bのろ材としてアンスラサイト以外のろ材を使用してもよいし、またこのろ過層24b自体を省略してもよい。また、ろ過層24aについて、砂に代えガーネットなどを利用したり、砂及びガーネットを多層とすることも好適である。
【0019】
そして、このろ過器24のろ過処理水は、処理水タンク26に貯留された後、配水される。
【0020】
また、この処理水タンク26内の処理水は、逆洗ポンプ28によりろ過器24の底部に供給できるようになっている。そこで、ろ過器24に処理水を上向流で供給し、ろ過器24内のろ過層を逆洗できるようになっている。
【0021】
すなわち、通水を継続していくと、次第にろ過層に捕捉される懸濁物質が増加しろ材が飽和して、ろ過器24はそれ以上懸濁物質を捕捉できなくなる。これは、ろ過抵抗の上昇や、処理水濁度の上昇等によって検出できる。そこで、ろ材が完全に飽和する前に、洗浄によりろ材の再生を行う。
【0022】
この洗浄のタイミングは、経験的に得られる時間に基づくタイマー設定や、差圧計によるろ過抵抗の設定により行われる。さらに、逆洗は、ろ過水を用いた逆流水洗浄や、逆流水洗浄に表面洗浄あるいは空気洗浄を組み合わせて行われる。
【0023】
ここで、本実施形態においては、この逆洗ポンプ28からろ過器24に至る逆洗水のラインに、凝集剤貯槽30からの凝集剤が凝集剤ポンプ32により添加される。この凝集剤としては、上述の凝集剤貯槽12と同様に通常PACが利用され、凝集剤貯槽12からの凝集剤を添加するように構成してもよい。さらに、酸貯槽34からの酸(酸性溶液、例えば硫酸)が酸ポンプ36によって添加されるように構成されている。
【0024】
このようにして、本実施形態においては、通常の逆洗に加え、凝集剤を含む逆洗水(コーティング水)による逆洗が行われ、これによってろ材表面に凝集剤の被膜が構成される。すなわち、所定pHに調整され、所定量の凝集剤が添加された逆洗水を所定量だけろ過器24に通水し、これによってろ材表面に凝集剤の被膜が形成される。
【0025】
また、逆洗水をろ過器24底部に供給するラインには、分岐ラインが接続され、この分岐ラインは、ろ過器24の表面洗浄ノズル38に接続されている。この表面洗浄ノズル38は、逆洗工程の初期において、ここから水を噴出して、ろ材層表面をたたき、固形物を捕捉したろ材層の表面を崩すためののもである。
【0026】
そして、本実施形態においては、この表面洗浄ノズル38に、凝集剤および酸が添加されたコーティング水が供給できるようになっている。また、逆洗水をろ過器24の底部に供給するラインにはバルブ40、分岐ラインにはバルブ42が設けられ、これらバルブを切り替えることによって、コーティング水をろ過器24底部に供給するか、表面洗浄ノズル38に供給するか、その両方に供給するかを切り替えられるようになっている。
【0027】
なお、逆洗ポンプ28、凝集剤ポンプ32、酸ポンプ36、バルブ40,42は、コントローラ44によって制御される。特に、逆洗ラインにpHメータおよび流量計を設け、その検出結果をコントローラ44に供給することが好適であり、これによってコントローラ44が、これら検出結果に基づいて凝集剤ポンプ32および酸ポンプ36の駆動を制御して、逆洗水のpH、凝集剤の添加量が所定量となるように制御することができる。また、コーティング水をいずれのルートで、どれだけの水量流すかも制御できる。
【0028】
このような所定pHに調整され、所定量の凝集剤が添加された逆洗水および表面洗浄水を所定量だけろ過器24に通水することによってろ材表面に適切な凝集剤の被膜が形成され、ろ過器24におけるろ過層24aのろ材のゼータ電位が0〜−10mVになるように制御される。すなわち、PACであれば、水酸化アルミニウムがろ材表面上に付着することで、ろ材のゼータ電位が上昇する。また、酸の添加によってもゼータ電位が変化するため酸の添加量も調整する。これによって、ろ材表面のゼータ電位が0〜−10mVに制御される。
【0029】
ここで、ろ材のゼータ電位は、ろ材表面への凝集剤(例えば、水酸化アルミニウム)の付着状態を示している。そこで、このろ材のゼータ電位を所定値(0〜−10mV)とすることによって、ろ材の表面状態を微細フロックを捕捉しやすい状態に調整することができる。そして、上述のようにして調整した逆洗水によりろ材の表面に水酸化アルミニウムを確実に付着させることで、逆洗後のろ過において、当初より微細フロックの流出を防止して、良好な水質の処理水を得ることができる。
【0030】
また、本実施形態では、次のような手順で逆洗を行う。(i)ろ過器24内の処理水を排出し、水位を少なくともろ材層の表面より下にする。そして、逆洗ポンプ28を駆動して、表面洗浄ノズル38から処理水を噴出させ、ろ材表面をたたく。LV=6m/h×4分。なお、この場合バルブ40を閉じ、バルブ42を開く。(ii)次に、バルブ42を閉じ、バルブ40を開いてろ過処理水を逆流させる逆洗を行う。例えば、LV(空塔線速度)=40m/h×8分。なお、空気逆洗を組み合わせてもよい。このような表洗と逆洗を終了し、ろ材層を調整した後、(iii)次に凝集剤(PAC)および酸(硫酸)を添加した逆洗水による逆洗を行う。LV=40m/h×0.6分。時間は、ろ材層の空隙容量に対し、1.5〜2.5倍の範囲となるように設定する。(iv)次に凝集剤(例えばPAC)および酸を添加した水を表面洗浄ノズル38に供給して、順方向にコーティング水をろ材層中に通す6m/h×1.4分。この場合の通水量は、ろ材層の空隙容量の0.5倍量程度でよい。
【0031】
このようにして、ゼータ電位調整剤としての凝集剤および酸を添加した逆洗水による逆洗を短時間行い、その後休止時間をおくという間欠的な逆洗を行う。これによって、凝集剤とろ材が十分混合されるとともに、接触のための時間が得られ、ろ材表面に水酸化アルミニウムが十分に付着される。
【0032】
特に、本実施形態の凝集剤および酸を添加したコーティング水は、凝集剤としてPAC(有効成分Alを10%含む液体)を利用し、その添加量を40〜80mg/Lとする。そして、そのコーティング水のpHは5.0±0.5とし、これを逆洗と表面ノズルからのトータルの水量として、ろ過器24におけるろ材の空隙体積の1.5〜2.5倍量とする。このようなコーティング水のろ材への流通によって、上述したようなろ材のゼータ電位を0〜−10mVに調整する処理を行うことができる。なお、コーティング水の通水量をさらに多くしてもろ材のゼータ電位制御に悪影響はない。しかし、意味のない逆洗を行うことになり、エネルギーおよび凝集剤などの浪費となるため上述のような範囲に制御することが好ましい。
【0033】
上述のように、本実施形態では、ろ材のゼータ電位が0〜−10mVになるように逆洗水への凝集剤添加量を調整する。このゼータ電位は、固体と液体の界面を横切って存在する電気的ポテンシャルを示すものであり、水中の懸濁物質についての表面荷電を示す。通常、河川水等に含まれる懸濁物質(粘度成分や藻類等)は負に帯電しており、懸濁物質が各々負に帯電していることから電気的に反発し、凝集しにくい状態になっている。凝集剤は、この電位の中和をまず行い反発力を弱め、その後に集塊化つまり凝集を行う。従って、凝集フロックのゼータ電位は中和点つまりゼロに近い方が望ましい。通常、原水中の懸濁物質のゼータ電位は−20mV以下で、凝集フロックのゼータ電位は−10mV以上となっている。
【0034】
ここで、浄水処理で一般に用いられる凝集沈殿・急速ろ過法において、急速ろ過器より、特にろ過開始直後に微小なフロックが流出することが知られている。この微小なフロックのゼータ電位は、−15mV以下と低く、凝集が十分に行われていないことが知られている。
【0035】
ろ材も水中の懸濁物質と同様にそのままでは負に帯電しており、ろ材のゼータ電位を−10mV以上にすることによって、ろ材表面への凝集剤水酸化物の付着を十分なものにできる。そして、この付着物を形成することで、フロックの捕捉能力を改善し、処理水中の懸濁物質濃度の上昇を防止することができる。なお、ゼータ電位を0mV以上にするのは、経済的ではなく、また洗浄排水中のアルミニウム濃度が高くなるので、好ましくない。
【0036】
本実施形態においては、凝集剤としてPAC(有効成分Alを10%含む液体)を利用し、その添加量を40〜80mg/Lとする。そして、その逆洗水のpHは5.0±0.5とし、これをトータルの水量として、ろ過器24におけるろ材の空隙体積の1.5〜2.5倍量とする。このような逆洗水のろ材への流通によって、ろ材のゼータ電位を0〜−10mVに調整する処理を行っている。
【0037】
上述した実施態様では、凝集剤を添加していない処理水による通常の表洗、逆洗が終了した後沈静し、次いで処理水に凝集剤を添加したコーティング水で逆洗及び表洗を行ったが、場合によっては通常の表洗、逆洗を同時に行い、そして本表洗と逆洗を続行中に、その後半に、処理水に凝集剤を添加してコーティング水とし、本コーティング水で表洗、逆洗を行って、ろ材のゼータ電位を調整してもよい。
【0038】
また上述した実施態様では、処理水で表洗、逆洗する場合、逆洗ポンプ28を用いたが、処理水槽を高位置に設置し、水頭差によって表洗、逆洗してさしつかえない。この場合は水頭差で表洗、逆洗する配管中に凝集剤を添加してコーティング水と生成できるようにしておく。
【0039】
【実施例】
図1の装置を用いて実験を行った。
【0040】
「実験条件」
・原水流量:3000m/D
・混和槽:滞留時間4分、G値250〜400s−1
・沈殿池:上向流式傾斜板付き沈殿池、滞留時間40分、上昇速度5cm/min
・ろ過器仕様:φ5000mm×5000mm×H4000mm(ろ過面積25m
・ろ過速度(LV):5m/h(120m/d)
・ろ材:ケイ砂 比重2.5、空隙率45%、有効径0.6mm、均等係数1.4、ろ層高600mm
・通水時間:48時間(タイマーにより洗浄開始)
・原水濁度:8〜30度
・原水pH:7.2〜7.5
・ろ過処理水pH:6.9〜7.3
・凝集剤:PAC10〜30mg/l
・目標処理水濁度:0.1度未満
・洗浄条件:
(i)表面洗浄:LV=6m/h×4分、水量=25m×6m/h×(4÷60)=10m/回
(ii)水逆洗:LV=40m/h×8分
水量=25m×40m/h×(8÷60)=133.3m/回
(iii)コーティング水逆洗:LV=40m/h×0.6分、水量=25m×40m/h×(0.6分÷60分)=10m/回、ろ材空隙容量=25m×0.6m×0.45=6.75m、1.5倍量通水として、6.75m×1.5=10.1m/回
逆洗水:ろ過水を用いる。pHは、5.0±0.5に調整。
PAC:40〜80mg/Lとなるように調整。
(iv)表洗コーティング:LV=6m/h×1.4分、水量=25m×6m/h×(1.4分÷60分)=3.5m/回、ろ材空隙容量=25m×0.6m×0.45=6.75m、0.5倍量通水として、6.75m×0.5=3.4m/回、
ろ過水を用いる。pHは、5.0±0.5に調整。
PAC:40〜80mg/Lとなるように調整。
【0041】
「実験結果」
濁度8度の原水に凝集剤としてPACを10mg/L添加し、pHを7.0に調整するために酸として硫酸を加え、混和槽10にて攪拌機16を用いて混和を行い、凝集槽18にて緩速撹拌を行い、傾斜板沈殿槽(傾斜板無しでもよい)22にて沈殿処理を行った後、ろ過器24に供給して処理水を得た。
【0042】
ろ過器24は、ある程度通水を行っていくと、濁質によりろ材の間隙が飽和し、通水を継続できなくなる。このろ過が継続できなくなるまでの時間は、ろ過器流入水中の濁質濃度や通水速度などによって異なり、通常は24〜72時間程度であるが、本実験では48時間毎に逆洗を行った。
【0043】
そして、逆洗工程において、上述のようなPAC60mg/Lと硫酸を注入してpH5±0.5のコーティング水による逆洗および表洗を行った。このような処理により、逆洗直後においても、処理水の悪化はなく、目標濁度を継続して維持できることが確認できた。
【0044】
【発明の効果】
以上説明したように、本発明によれば、逆洗手段による逆洗において、コーティング水をろ材層に供給することで、逆方向に流れるコーティング水とろ材を接触することができる。さらに、コーティング水を表面洗浄手段から供給することで、ろ材層に対し順方向でコーディング水を供給して、ろ材とコーティング水を接触させることができる。このように、両方向に流れるコーティング水とろ材を接触させることでろ材層の全体のろ材とコーティング水を効果的に接触させることができ、ろ材表面に凝集剤の被膜を効果的に形成することができる。従って、逆洗終了直後からろ材の懸濁物吸着能力が十分高く、良好な処理水を得ることができる。
【0045】
また、ポリ塩化アルミニウムを40〜80mg/lとなるように添加し、そのpHが5.0±0.5の範囲内に制御してコーティング水を用いることによって、ろ材表面のゼータ電位を0〜−10mV程度にすることができ、その後のろ過を効果的に行うことができる。
【図面の簡単な説明】
【図1】 実施形態の装置の構成を示す図である。
【符号の説明】
10 混和槽、18 凝集槽、22 傾斜板沈殿槽、24 ろ過器、30 凝集剤貯槽、32 凝集剤ポンプ、38 表面洗浄ノズル、40,42 バルブ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filtration apparatus for performing a filtration treatment by passing agglomeration treated water to which a flocculant has been added through a filter medium layer.
[0002]
[Prior art]
In the case of producing purified water or industrial water using river water or the like as raw water, or in wastewater treatment or the like, coagulation sedimentation treatment and filtration treatment are widely used for separation of suspended substances. That is, in the coagulation sedimentation treatment, first, an aluminum-based coagulant or the like is added to and mixed with the raw water to make the suspended substances in the raw water coarse. And this coarse floc is introduce | transduced into a sedimentation basin, and most of suspended solids are removed by carrying out a sedimentation process. Next, the supernatant water (coagulation precipitation treated water) obtained in this sedimentation basin is further treated with a filtration device to further remove the remaining fine suspension. In this way, clear treated water is obtained.
[0003]
Here, in the filtration device, when the filter medium captures a predetermined amount of suspended solids, the filtration resistance increases and the outflow of flocs increases, so backwashing is performed. This backwashing is performed by allowing backwashing water (usually treated water) to flow back through the filtration device and removing the trapped suspended matter to regenerate the filter medium.
[0004]
However, immediately after the backwashing, suspended substances (fine flocs) in the treated water increase, and sufficient filtration cannot be performed in many cases.
[0005]
This is because in normal filtration treatment, when an aluminum-based flocculant is used, aluminum hydroxide thinly adheres to the surface of the filter medium, which contributes to the removal of fine flocculent flocs. Since this deposit is removed, it is thought that the treated water immediately after backwashing deteriorates.
[0006]
Therefore, it has been proposed to perform a backwash by adding a flocculant to the backwash water. By such backwashing, a flocculant is supplied into the filter medium during backwashing, and adhesion of, for example, aluminum hydroxide on the filter medium surface is promoted. Accordingly, it is considered that fine floc can be sufficiently removed even immediately after back washing.
[0007]
[Problems to be solved by the invention]
However, even when a flocculant is added to the backwash water, it has been found that the amount of suspended solids in the treated water immediately after the end of backwash cannot be improved so much. This is because even when a flocculant is added during backwashing, it is difficult to adhere the flocculant to the entire filter medium. That is, the probability of being trapped in the lower part of the flocculant filtration layer (near the outlet) is high, and thus the above deposit is formed only on the filter medium at the lower part of the filtration layer. Moreover, since the aluminum density | concentration in washing | cleaning waste_water | drain raises, there also exists a problem that it cannot discharge as it is.
[0008]
It is also conceivable to increase the amount of flocculant added immediately after backwashing, but in this case, adhesion is formed only on the filter medium near the surface, and deposits cannot be formed on the entire filter medium. . Therefore, the deterioration of the treated water could not be prevented immediately after filtration.
[0009]
Furthermore, recently, in order to remove pathogenic protozoa such as Cryptosporidium, very precise filtration is required. Therefore, there is a demand for further reducing the outflow of suspended solids immediately after backwashing.
[0010]
This invention is made | formed in view of the said subject, and it aims at providing the backwashing method of the filtration apparatus which can perform a favorable filtration process immediately after backwashing.
[0011]
[Means for Solving the Problems]
The present invention is a filtration device for performing a filtration treatment by passing the agglomerated water added with a flocculant to the filter medium layer, and circulating the backwash water in the reverse direction to the filter medium layer to backwash the filter medium layer. Back washing means, surface washing means for supplying washing water to the surface of the filter medium layer, washing the surface of the filter medium layer, and adding polyaluminum chloride as a flocculant to the water , the pH is 5.0 ± 0.5 Coating water generating means for generating coating water for forming a coating of aluminum hydroxide on the surface of the filter medium by controlling within the range, and means for backwashing the coating water generated by the coating water generating means And supplying to the surface cleaning means, supplying coating water from both the forward and reverse directions to the filter medium layer, and forming a film of aluminum hydroxide on the filter medium surface of the filter medium layer.
[0012]
Thus, in the backwashing by the backwashing means, the coating water flowing in the reverse direction and the filter medium can be contacted by supplying the coating water to the filter medium layer. Furthermore, by supplying the coating water from the surface cleaning means, it is possible to supply the coding water in the forward direction to the filter medium layer so that the filter medium and the coating water are brought into contact with each other. In this way, by bringing the coating water flowing in both directions into contact with the filter medium, the entire filter medium of the filter medium layer can be effectively brought into contact with the coating water, and a flocculant film can be effectively formed on the surface of the filter medium. it can. Therefore, immediately after the end of backwashing, the filter medium has a sufficiently high suspension adsorbing ability, and good treated water can be obtained.
[0013]
The coating water generation means preferably adds polyaluminum chloride so as to be 40 to 80 mg / l, and controls the pH within a range of 5.0 ± 0.5 to generate coating water. It is. By contacting such coating water with the filter medium, the zeta potential on the surface of the filter medium can be reduced to about 0 to -10 mV, and subsequent filtration can be performed effectively. Polyaluminum chloride (PAC) is usually commercially available containing 10% as Al 2 O 3 , but 40-80 mg / l in the present invention means 1 liter of backwash water from the above-mentioned concentration of PAC. In this case, the amount of Al added is 2.12 to 4.24 mg / l.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0015]
FIG. 1 is a diagram showing the overall configuration of the coagulation / separation apparatus according to the present embodiment. Raw water such as river water and lake water is first introduced into the mixing tank 10. The mixing tank 10 is supplied with the flocculant from the flocculant storage tank 12 by the flocculant pump 14. The flocculant is preferably an inorganic aluminum flocculant, and particularly preferably PAC (polyaluminum chloride). The mixing tank 10 is provided with a stirrer 16 so that the raw water and the flocculant are rapidly stirred. In this mixing tank 10, the coagulant-mixed water in which the coagulant is mixed flows into the coagulation tank 18. A slow stirrer 20 is disposed in the coagulation tank 18, and the coagulant admixture water is slowly stirred to coalesce and coarsen the coagulation flocs.
[0016]
Next, the coagulant-mixed water after slow stirring from the coagulation tank 18 flows into the inclined plate settling tank 22. The inclined plate settling tank 22 is divided into an inlet side and an outlet side by a partition plate 22a, and a settling portion 22b having a deep tank depth is formed on the inlet side. And the lower part of this sedimentation part 22b is the sludge storage part 22c which stores sedimentation sludge. A large number of inclined plates 22d are arranged on the outlet side to form inclined plate precipitation portions 22e. The flocculant-mixed water flows into the precipitation portion 22b, where it is precipitated, and then passes under the partition plate 22a and passes upward through the inclined plate precipitation portion 22e. Then, when passing through the inclined plate 22d of the inclined plate settling portion 22e, further precipitation processing is performed, and sludge is precipitated toward the tank bottom. Since the tank bottom of the inclined plate sedimentation part 22e is inclined deeper toward the sludge storage part 22c, the sediment sludge moves to the sludge storage part 22c by gravity. Then, the supernatant that has passed through the inclined plate settling portion 22e is discharged from the inclined plate settling tank 22. In addition, the sludge settled in the sludge storage part 22c of the inclined plate sedimentation tank 22 is suitably extracted and disposed of separately.
[0017]
By such a coagulation sedimentation process, a considerable part of the suspended solids is removed from the sedimentation water from the inclined plate sedimentation tank 22. This precipitated treated water is introduced into the filter 24. The filter 24 is a gravitational rapid filter having two filtration layers of an anthracite filtration layer 24b and a sand filtration layer 24a. In some cases, additional flocculant or coagulant aid may be injected into the precipitation-treated water, stirred with a line mixer, and supplied to the filter 24. The filter is a pressure filter. Also good.
[0018]
A filter medium other than anthracite may be used as the filter medium for the filter layer 24b, or the filter layer 24b itself may be omitted. Moreover, it is also suitable for the filtration layer 24a to use garnet or the like instead of sand, or to make the sand and garnet multilayer.
[0019]
Then, the filtered water of the filter 24 is distributed in the treated water tank 26 and then distributed.
[0020]
The treated water in the treated water tank 26 can be supplied to the bottom of the filter 24 by the backwash pump 28. Therefore, the treated water is supplied to the filter 24 in an upward flow so that the filtration layer in the filter 24 can be backwashed.
[0021]
That is, as the water flow continues, the suspended substance trapped in the filtration layer gradually increases, the filter medium is saturated, and the filter 24 cannot capture the suspended substance any more. This can be detected by an increase in filtration resistance, an increase in treated water turbidity, or the like. Therefore, the filter medium is regenerated by washing before the filter medium is completely saturated.
[0022]
The timing of this cleaning is performed by setting a timer based on empirically obtained time or setting a filtration resistance by a differential pressure gauge. Further, the backwashing is performed by combining backwashing using filtered water or backwashing with surface washing or air washing.
[0023]
Here, in this embodiment, the flocculant from the flocculant storage tank 30 is added by the flocculant pump 32 to the backwash water line from the backwash pump 28 to the filter 24. As this flocculant, PAC is usually used similarly to the flocculant storage tank 12 described above, and the flocculant from the flocculant storage tank 12 may be added. Further, an acid (acid solution such as sulfuric acid) from the acid storage tank 34 is added by the acid pump 36.
[0024]
Thus, in this embodiment, in addition to normal backwashing, backwashing with backwashing water (coating water) containing a flocculant is performed, and thereby a flocculant film is formed on the surface of the filter medium. That is, a predetermined amount of backwash water adjusted to a predetermined pH and added with a predetermined amount of flocculant is passed through the filter 24, whereby a flocculant film is formed on the surface of the filter medium.
[0025]
A branch line is connected to a line for supplying backwash water to the bottom of the filter 24, and this branch line is connected to the surface cleaning nozzle 38 of the filter 24. This surface cleaning nozzle 38 is for ejecting water from here in the initial stage of the backwashing process, hitting the surface of the filter medium layer, and destroying the surface of the filter medium layer capturing the solid matter.
[0026]
In this embodiment, the surface cleaning nozzle 38 can be supplied with coating water to which a flocculant and an acid have been added. Further, a valve 40 is provided in the line for supplying backwash water to the bottom of the filter 24, and a valve 42 is provided in the branch line. By switching these valves, the coating water is supplied to the bottom of the filter 24, or the surface. The supply to the cleaning nozzle 38 or to both of them can be switched.
[0027]
The backwash pump 28, the flocculant pump 32, the acid pump 36, and the valves 40 and 42 are controlled by the controller 44. In particular, it is preferable to provide a pH meter and a flow meter in the backwash line and supply the detection result to the controller 44, so that the controller 44 can control the flocculant pump 32 and the acid pump 36 based on the detection result. By controlling the driving, the pH of the backwash water and the amount of the flocculant added can be controlled to be a predetermined amount. In addition, it is possible to control how much coating water flows through which route.
[0028]
An appropriate flocculant film is formed on the surface of the filter medium by passing a predetermined amount of backwash water and surface washing water adjusted to a predetermined pH and added with a predetermined amount of flocculant through the filter 24. The zeta potential of the filter medium of the filtration layer 24a in the filter 24 is controlled to be 0 to -10 mV. That is, in the case of PAC, the zeta potential of the filter medium increases due to the aluminum hydroxide adhering to the filter medium surface. Further, since the zeta potential is changed by the addition of acid, the amount of acid added is also adjusted. Thereby, the zeta potential on the surface of the filter medium is controlled to 0 to -10 mV.
[0029]
Here, the zeta potential of the filter medium indicates the adhesion state of the flocculant (for example, aluminum hydroxide) to the filter medium surface. Therefore, by setting the zeta potential of the filter medium to a predetermined value (0 to -10 mV), the surface state of the filter medium can be adjusted to a state in which fine flocs can be easily captured. And by attaching the aluminum hydroxide to the surface of the filter medium with the backwash water adjusted as described above, in the filtration after the backwash, the fine floc is prevented from flowing out from the beginning, and the water quality is good. Treated water can be obtained.
[0030]
Moreover, in this embodiment, backwashing is performed in the following procedure. (I) The treated water in the filter 24 is discharged and the water level is at least lower than the surface of the filter medium layer. Then, the backwash pump 28 is driven to discharge the treated water from the surface cleaning nozzle 38 and strike the surface of the filter medium. LV = 6 m / h × 4 minutes. In this case, the valve 40 is closed and the valve 42 is opened. (Ii) Next, the valve 42 is closed, the valve 40 is opened, and backwashing is performed to reversely flow the filtered water. For example, LV (empty linear velocity) = 40 m / h × 8 minutes. Air backwashing may be combined. After finishing such surface washing and backwashing and adjusting the filter medium layer, (iii) Next, backwashing with backwashing water to which a flocculant (PAC) and an acid (sulfuric acid) are added is performed. LV = 40 m / h × 0.6 minutes. The time is set to be in the range of 1.5 to 2.5 times the void volume of the filter medium layer. (Iv) Next, water to which a flocculant (for example, PAC) and an acid are added is supplied to the surface cleaning nozzle 38, and the coating water is passed through the filter medium layer in the forward direction at 6 m / h × 1.4 minutes. In this case, the water flow rate may be about 0.5 times the void volume of the filter medium layer.
[0031]
In this way, intermittent backwashing is performed in which backwashing with a backwashing water to which a flocculant and an acid as a zeta potential adjusting agent are added is performed for a short time, and then a rest period is set. As a result, the flocculant and the filter medium are sufficiently mixed, a time for contact is obtained, and the aluminum hydroxide is sufficiently adhered to the surface of the filter medium.
[0032]
In particular, the coating water to which the flocculant and the acid are added according to the present embodiment uses PAC (a liquid containing 10% of the active ingredient Al 2 O 3 ) as the flocculant, and the addition amount is 40 to 80 mg / L. And the pH of the coating water is 5.0 ± 0.5, and this is the total amount of water from the backwash and the surface nozzle, and the amount of the pore volume of the filter medium in the filter 24 is 1.5 to 2.5 times the amount. To do. By such distribution of the coating water to the filter medium, it is possible to perform a process for adjusting the zeta potential of the filter medium as described above to 0 to -10 mV. Note that even if the amount of coating water passed is increased, there is no adverse effect on the zeta potential control of the filter medium. However, meaningless backwashing is performed, and energy and coagulant are wasted. Therefore, it is preferable to control within the above range.
[0033]
As described above, in this embodiment, the amount of flocculant added to the backwash water is adjusted so that the zeta potential of the filter medium is 0 to −10 mV. This zeta potential indicates the electrical potential that exists across the solid-liquid interface and indicates the surface charge for suspended matter in water. Normally, suspended substances (viscosity components, algae, etc.) contained in river water are negatively charged, and each suspended substance is negatively charged. It has become. The aggregating agent first neutralizes this potential to weaken the repulsive force, and then agglomerates or aggregates. Therefore, it is desirable that the zeta potential of the aggregate floc is closer to the neutral point, that is, zero. Usually, the zeta potential of suspended substances in raw water is −20 mV or less, and the zeta potential of aggregated floc is −10 mV or more.
[0034]
Here, in the coagulation sedimentation / rapid filtration method generally used in water purification treatment, it is known that minute floc flows out from the rapid filter, particularly immediately after the start of filtration. It is known that the zeta potential of this minute floc is as low as −15 mV or less and aggregation is not sufficiently performed.
[0035]
The filter medium is negatively charged as it is in the suspended substance in water. By setting the zeta potential of the filter medium to −10 mV or more, the adhesion of the flocculant hydroxide to the filter medium surface can be made sufficient. And by forming this deposit | attachment, the capture | acquisition ability of a floc can be improved and the raise of the suspended solid concentration in a treated water can be prevented. It is not preferable to set the zeta potential to 0 mV or more because it is not economical and the aluminum concentration in the cleaning wastewater becomes high.
[0036]
In this embodiment, PAC (a liquid containing 10% of the active ingredient Al 2 O 3 ) is used as the flocculant, and the amount added is 40 to 80 mg / L. The pH of the backwash water is 5.0 ± 0.5, and this is the total amount of water, which is 1.5 to 2.5 times the void volume of the filter medium in the filter 24. By such circulation of the backwash water to the filter medium, the zeta potential of the filter medium is adjusted to 0 to -10 mV.
[0037]
In the above-described embodiment, normal surface washing with treated water to which no flocculant is added and backwashing are completed, and then the liquid is settled, and then backwashing and surface washing are performed with coating water in which flocculant is added to the treated water. However, in some cases, normal surface washing and backwashing are performed at the same time, and while the main surface washing and backwashing are continued, a flocculant is added to the treated water to form coating water in the latter half. The zeta potential of the filter medium may be adjusted by washing and backwashing.
[0038]
In the embodiment described above, the backwash pump 28 is used for surface washing and backwashing with treated water. However, the treated water tank may be installed at a high position, and may be washed and backwashed depending on the water head difference. In this case, a flocculant is added to the pipe to be surface-washed and back-washed with a water head difference so that it can be generated as coating water.
[0039]
【Example】
Experiments were performed using the apparatus of FIG.
[0040]
"Experimental conditions"
・ Raw water flow rate: 3000m 3 / D
Mixing tank: residence time 4 minutes, G value 250 to 400 s −1
・ Sedimentation basin: Sedimentation basin with upward flow type inclined plate, residence time 40 minutes, rising speed 5 cm / min
・ Filter specifications: φ5000mm × 5000mm × H4000mm (filtration area 25m 2 )
-Filtration rate (LV): 5 m / h (120 m / d)
Filter medium: Silica sand Specific gravity 2.5, porosity 45%, effective diameter 0.6mm, uniformity coefficient 1.4, filter layer height 600mm
・ Water flow time: 48 hours (Washing starts with a timer)
-Raw water turbidity: 8-30 degrees-Raw water pH: 7.2-7.5
・ Filtered water pH: 6.9 to 7.3
-Flocculant: PAC 10-30 mg / l
・ Target treatment water turbidity: less than 0.1 degree ・ Cleaning conditions:
(I) Surface cleaning: LV = 6 m / h × 4 minutes, water amount = 25 m 2 × 6 m / h × (4 ÷ 60) = 10 m 3 / times (ii) Water backwashing: LV = 40 m / h × 8 minutes = 25 m 2 × 40 m / h × (8 ÷ 60) = 133.3 m 3 / times (iii) Coating water backwashing: LV = 40 m / h × 0.6 minutes, amount of water = 25 m 2 × 40 m / h × (0 .6 minutes ÷ 60 minutes) = 10 m 3 / time, filter medium void volume = 25 m 2 × 0.6 m × 0.45 = 6.75 m 3 , and 1.5 times the water flow, 6.75 m 3 × 1.5 = 10.1 m 3 / times backwash water: filtered water is used. Adjust the pH to 5.0 ± 0.5.
PAC: Adjusted to be 40-80 mg / L.
(Iv) Surface wash coating: LV = 6 m / h × 1.4 minutes, water amount = 25 m 2 × 6 m / h × (1.4 minutes ÷ 60 minutes) = 3.5 m 3 / time, filter medium void volume = 25 m 2 × 0.6 m × 0.45 = 6.75 m 3 , 0.5 times the water flow, 6.75 m 3 × 0.5 = 3.4 m 3 / time,
Use filtered water. Adjust the pH to 5.0 ± 0.5.
PAC: Adjusted to be 40-80 mg / L.
[0041]
"Experimental result"
Add 10 mg / L of PAC as a flocculant to raw water with a turbidity of 8 degrees, add sulfuric acid as an acid in order to adjust the pH to 7.0, and mix using the stirrer 16 in the mixing tank 10. The mixture was gently stirred at 18 and subjected to precipitation treatment in an inclined plate settling tank (may be without an inclined plate) 22 and then supplied to a filter 24 to obtain treated water.
[0042]
If the filter 24 performs water flow to some extent, the gap between the filter media is saturated due to the turbidity, and the water flow cannot be continued. The time until the filtration cannot be continued depends on the turbidity concentration in the inflow water of the filter, the water flow rate, and the like, and is usually about 24 to 72 hours. In this experiment, backwashing was performed every 48 hours. .
[0043]
In the back washing step, PAC 60 mg / L and sulfuric acid as described above were injected to perform back washing and surface washing with pH 5 ± 0.5 coating water. By such treatment, it was confirmed that the treated water was not deteriorated immediately after backwashing and the target turbidity could be maintained continuously.
[0044]
【The invention's effect】
As described above, according to the present invention, in the backwashing by the backwashing means, the coating water flowing in the reverse direction and the filter medium can be contacted by supplying the coating water to the filter medium layer. Furthermore, by supplying the coating water from the surface cleaning means, it is possible to supply the coding water in the forward direction to the filter medium layer so that the filter medium and the coating water are brought into contact with each other. In this way, by bringing the coating water flowing in both directions into contact with the filter medium, the entire filter medium of the filter medium layer can be effectively brought into contact with the coating water, and a flocculant film can be effectively formed on the surface of the filter medium. it can. Therefore, immediately after the end of backwashing, the filter medium has a sufficiently high suspension adsorbing ability, and good treated water can be obtained.
[0045]
Further, by adding polyaluminum chloride so as to be 40 to 80 mg / l, and controlling the pH within a range of 5.0 ± 0.5 and using coating water, the zeta potential on the surface of the filter medium is set to 0 to 0. It can be about -10 mV, and subsequent filtration can be performed effectively.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an apparatus according to an embodiment.
[Explanation of symbols]
10 Mixing tank, 18 Coagulation tank, 22 Inclined plate sedimentation tank, 24 Filter, 30 Coagulant storage tank, 32 Coagulant pump, 38 Surface cleaning nozzle, 40, 42 Valve.

Claims (2)

凝集剤を添加した凝集処理を行った凝集処理水をろ材層へ通過させろ過処理を行うろ過装置において、
逆洗水をろ材層へ逆方向に流通し、ろ材層を逆洗する逆洗手段と、
ろ材層の表面に洗浄水を供給し、ろ材層の表面を洗浄する表面洗浄手段と、
水にポリ塩化アルミニウムを凝集剤として添加し、pHを5.0±0.5の範囲内に制御して、ろ材表面に水酸化アルミニウムの被覆を形成するためのコーティング水を生成するコーティング水生成手段と、
を有し、
前記コーティング水生成手段によって生成されたコーティング水を逆洗手段および表面洗浄手段に供給し、ろ材層に対し順方向および逆方向の両方からコーティング水を供給し、ろ材層のろ材表面に水酸化アルミニウムの被膜を形成することを特徴とするろ過装置。
In the filtration device that passes the flocculated water subjected to the flocculation treatment with the addition of the flocculating agent to the filter medium layer and performs the filtration treatment,
A backwashing means for circulating backwashing water in the reverse direction to the filter medium layer, and backwashing the filter medium layer;
Surface cleaning means for supplying cleaning water to the surface of the filter medium layer and cleaning the surface of the filter medium layer;
Coating water generation that adds polyaluminum chloride as a flocculant to water and controls the pH within a range of 5.0 ± 0.5 to generate coating water for forming a coating of aluminum hydroxide on the filter medium surface Means,
Have
The coating water generated by the coating water generating means is supplied to the backwashing means and the surface cleaning means, the coating water is supplied from both the forward direction and the reverse direction to the filter medium layer, and aluminum hydroxide is applied to the filter medium surface of the filter medium layer. The filtration apparatus characterized by forming the film of this.
請求項1に記載の装置において、
前記コーティング水生成手段は、ポリ塩化アルミニウムを40〜80mg/lとなるように添加して前記コーティング水を生成することを特徴とするろ過装置。
The apparatus of claim 1.
The said coating water production | generation means adds the polyaluminum chloride so that it may become 40-80 mg / l, and produces | generates the said coating water, The filtration apparatus characterized by the above-mentioned.
JP2000073303A 2000-03-16 2000-03-16 Filtration device Expired - Lifetime JP4800463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000073303A JP4800463B2 (en) 2000-03-16 2000-03-16 Filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000073303A JP4800463B2 (en) 2000-03-16 2000-03-16 Filtration device

Publications (2)

Publication Number Publication Date
JP2001259318A JP2001259318A (en) 2001-09-25
JP4800463B2 true JP4800463B2 (en) 2011-10-26

Family

ID=18591563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000073303A Expired - Lifetime JP4800463B2 (en) 2000-03-16 2000-03-16 Filtration device

Country Status (1)

Country Link
JP (1) JP4800463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102453863B1 (en) * 2022-03-23 2022-10-12 주식회사 로펜 Physicochemical water treatment process using microfiber filter coated with coagulant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103122A (en) * 2001-09-28 2003-04-08 Daicen Membrane Systems Ltd Filtering method
JP4549000B2 (en) * 2001-12-06 2010-09-22 Idec株式会社 Water purification equipment for suspended solids

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161B2 (en) * 1988-12-19 1995-01-11 株式会社メルス技研 Pretreatment method for diatomaceous earth filter aid
JP3824034B2 (en) * 1997-07-07 2006-09-20 栗田工業株式会社 Filtration device backwash method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102453863B1 (en) * 2022-03-23 2022-10-12 주식회사 로펜 Physicochemical water treatment process using microfiber filter coated with coagulant
US11613476B1 (en) 2022-03-23 2023-03-28 Ropen Co., Ltd. Physicochemical water treatment process using microfiber filter coated with coagulant
WO2023182600A1 (en) * 2022-03-23 2023-09-28 주식회사 로펜 Physicochemical water treatment process using microfiber filter medium coated with coagulant

Also Published As

Publication number Publication date
JP2001259318A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US6582605B2 (en) Method of treating industrial waste waters
JP5489982B2 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
JP4223870B2 (en) Water purification method
JP4176915B2 (en) Solid-liquid separator
JP4004854B2 (en) Water purification method and apparatus
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
JP3409322B2 (en) Pure water production method
JP4800463B2 (en) Filtration device
JP2005118608A (en) Water treatment method
JP2002126788A (en) Suspension treatment apparatus
WO1999033541A1 (en) Coagulation precipitator
JP4800461B2 (en) Backwashing method in filtration equipment
JP4800462B2 (en) Filtration method
JPH06304411A (en) Cohesive sedimentation and treatment apparatus therefor
JP7142540B2 (en) Water purification method and water purification device
JP3891739B2 (en) Operation method of membrane filtration device
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JP2004025011A (en) Method of treating muddy water
JP2002119808A (en) Method and device for filtering by precoat membrane
JP2002066568A (en) Water treating method and apparatus
JP5068279B2 (en) Softening device and operation method thereof
JP3854471B2 (en) Water purification equipment
JP2001038109A (en) Back washing method in filter device
WO2021117542A1 (en) Water softener
JPH10202010A (en) Water treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4800463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term