JP2002355507A - Flocculating and settling equipment and its controlling method - Google Patents

Flocculating and settling equipment and its controlling method

Info

Publication number
JP2002355507A
JP2002355507A JP2001164970A JP2001164970A JP2002355507A JP 2002355507 A JP2002355507 A JP 2002355507A JP 2001164970 A JP2001164970 A JP 2001164970A JP 2001164970 A JP2001164970 A JP 2001164970A JP 2002355507 A JP2002355507 A JP 2002355507A
Authority
JP
Japan
Prior art keywords
sludge
cyclone
tank
raw water
flocculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001164970A
Other languages
Japanese (ja)
Other versions
JP3866054B2 (en
Inventor
Kazuhiko Shimizu
和彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2001164970A priority Critical patent/JP3866054B2/en
Publication of JP2002355507A publication Critical patent/JP2002355507A/en
Application granted granted Critical
Publication of JP3866054B2 publication Critical patent/JP3866054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flocculating and settling equipment which can exhibit desired performance to the whole flocculating and settling system stably by restraining separation efficiency of its cyclone from being deteriorated even when turbidity of raw water becomes high and to provide a control method of the flocculating and settling equipment. SOLUTION: This flocculating and settling equipment provided with a flocculating tank for flocculating the suspended matter in raw water as flocks by adding a granular material and a flocculant, a settling tank for settling the flocks in the water introduced from the flocculating tank and separating the flock-containing water into the treated water and slurry, a sludge withdrawing pump for withdrawing the slurry from the settling tank and the cyclone for separating the withdrawn slurry into sludge and the granular material and returning the separated granular material to the flocculating tank, is characterized in that the pipeline from the upper outlet of the cyclone is branched into a sludge discharging pipeline and a sludge circulating pipeline and the branched sludge circulating pipeline is connected to the suction side of the sludge withdrawing pump.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原水中の懸濁物質
を粒状物と凝集剤を添加して凝集沈澱により汚泥と処理
水とに分離する凝集沈澱装置およびその制御方法に関
し、とくに沈澱槽から抜き出したスラリーをサイクロン
により汚泥と粒状物とに分離するに際し、原水の性状等
に応じて所望のサイクロンの分離性能を維持しつつ、装
置全体として最適な運転が可能な、凝集沈澱装置および
その制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coagulation sedimentation apparatus for separating suspended matter in raw water into sludge and treated water by coagulation sedimentation by adding a particulate matter and a coagulant, and a method for controlling the same. When separating the slurry taken out from the slurry into sludge and particulate matter by a cyclone, while maintaining the desired cyclone separation performance according to the properties of the raw water, etc., it is possible to operate the coagulation sedimentation apparatus optimally as a whole apparatus and the coagulation sedimentation apparatus. It relates to a control method.

【0002】[0002]

【従来の技術】原水中に懸濁している物質(以下、SS
[Suspended Solid] と称することもある。)を沈澱によ
り分離除去する装置が知られている。従来の原水中のS
Sを除去するための凝集沈澱装置として、原水に単に凝
集剤を添加して凝集物を沈澱させ、凝集物を汚泥として
引き抜くとともに上部から処理水を導出するようにした
装置はよく知られている。このような一般的な凝集沈澱
装置では、凝集物の沈澱に長時間を要し、沈澱槽として
も極めて大型のものが要求されることから、より効率よ
く凝集沈澱を行わせるようにした凝集沈澱装置が提案さ
れている。
2. Description of the Related Art Substances suspended in raw water (hereinafter referred to as SS
Sometimes called [Suspended Solid]. Is known. S in conventional raw water
As a coagulation sedimentation apparatus for removing S, an apparatus is known which simply adds a coagulant to raw water to precipitate coagulation, pulls out the coagulation as sludge, and discharges treated water from the upper part. . In such a general coagulation and sedimentation apparatus, it takes a long time to settle the coagulates, and an extremely large sedimentation tank is required. Therefore, the coagulation and sedimentation is more efficiently performed. A device has been proposed.

【0003】たとえば、原水中のSSを除去するための
凝集沈澱装置として、原水に粒径10〜200μm程度
の粒状物(砂)と高分子凝集剤を添加して原水中のSS
ととにフロックを形成させる凝集槽と、凝集槽から流出
するフロックを処理水と分離する沈澱槽と、沈澱槽から
引き抜いたスラリーを砂と汚泥に分離するサイクロンと
から構成された装置が知られている。
For example, as a coagulating sedimentation apparatus for removing SS in raw water, a particulate matter (sand) having a particle size of about 10 to 200 μm and a polymer flocculant are added to raw water to remove SS in raw water.
There is known an apparatus comprising a flocculation tank for forming flocs together, a sedimentation tank for separating flocs flowing out of the flocculation tank from treated water, and a cyclone for separating slurry extracted from the sedimentation tank into sand and sludge. ing.

【0004】この種の凝集沈澱装置は、たとえば図2に
示すように構成される。予備凝集槽101に導入された
原水102に無機凝集剤103を添加して攪拌機104
で攪拌し、その原水に高分子凝集剤105を添加して凝
集槽106に導入し、攪拌機107で攪拌して粒状物
(砂)108とともにフロック109を形成させ、その
被処理水を沈澱槽110に導入して汚泥を沈降分離する
とともに、傾斜板111を介して上部から処理水112
を得る。沈澱槽110の下部から汚泥引抜ポンプ113
によりスラリーを抜き出し、ライン114を介して分離
器としてのサイクロン115に送る。サイクロン115
では、汚泥と砂とに遠心分離され、その上部出口側11
6(本明細書では「サイクロン上流側」と呼ぶ。)か
ら、分離された汚泥117が排出されて後段の汚泥処理
工程に送られるとともに、下部出口側118(本明細書
では「サイクロン下流側」と呼ぶ。)から、分離された
砂108が凝集槽106へと戻されるようになってい
る。
[0004] This type of coagulation and sedimentation apparatus is constructed, for example, as shown in FIG. An inorganic coagulant 103 is added to the raw water 102 introduced into the preliminary coagulation tank 101, and a stirrer 104
And a polymer flocculant 105 is added to the raw water, introduced into a flocculation tank 106, and stirred by a stirrer 107 to form flocs 109 together with the particulate matter (sand) 108. The sludge is settled and separated, and the treated water 112
Get. Sludge extraction pump 113 from the lower part of settling tank 110
To extract the slurry and send it to a cyclone 115 as a separator via a line 114. Cyclone 115
Then, it is centrifuged into sludge and sand, and its upper outlet side 11
6 (referred to as “cyclone upstream side” in this specification), the separated sludge 117 is discharged and sent to the subsequent sludge treatment step, and the lower outlet side 118 (in this specification, “cyclone downstream side”). ), The separated sand 108 is returned to the flocculation tank 106.

【0005】[0005]

【発明が解決しようとする課題】図2に示したような従
来型凝集沈澱装置は、河川水や排水等の濁質やSSを含
む水の凝集沈澱処理に適用することができる。
The conventional coagulation and sedimentation apparatus as shown in FIG. 2 can be applied to the coagulation and sedimentation treatment of water containing turbidity such as river water and wastewater or SS.

【0006】ところで、河川水の原水濁質濃度は、平常
時と降雨時等に大きな差があり、平常時の濁度が数度〜
数十度であるのに比べて降雨時には1000度以上とな
ることもある。また一般に、濁度が高いほどPAC(ポ
リ塩化アルミニウム)等の無機凝集剤を増やす必要があ
る。
Meanwhile, the raw water turbidity concentration of river water has a large difference between normal time and rainy time.
It may be 1000 degrees or more during rainfall compared to several tens degrees. In general, the higher the turbidity, the more it is necessary to increase the amount of an inorganic coagulant such as PAC (polyaluminum chloride).

【0007】このような原水の濁質負荷量の増大や無機
凝集剤添加量の増大が生じると、沈澱槽110で沈澱す
る汚泥スラリーの濃度が増加し、引き抜かれサイクロン
115へ送られる汚泥の濃度が増加するため、サイクロ
ン上流側へと排出される汚泥の濃度も増加する。
When such an increase in the turbidity load of the raw water or the addition of the inorganic flocculant increases, the concentration of the sludge slurry precipitated in the precipitation tank 110 increases, and the concentration of the sludge extracted and sent to the cyclone 115 is increased. As a result, the concentration of sludge discharged upstream of the cyclone also increases.

【0008】たとえば、表1に示すように、原水流量お
よび沈澱槽110からの汚泥引抜量が同じであっても、
原水の濁度が変化すると(通常時〔10度〕、降雨時
〔100度〕、洪水時〔1000度〕)、それに伴って
PAC添加量が増加され、引抜汚泥濃度およびサイクロ
ン上流濃度はともに増加する。
For example, as shown in Table 1, even if the raw water flow rate and the amount of sludge withdrawn from the settling tank 110 are the same,
When the turbidity of the raw water changes (normal [10 degrees], rainfall [100 degrees], flood [1000 degrees]), the amount of PAC added increases accordingly, and both the extracted sludge concentration and the cyclone upstream concentration increase. I do.

【0009】[0009]

【表1】 [Table 1]

【0010】表1におけるようなサイクロン上流側に排
出される汚泥の濃度が上昇すること自体は別段問題な
く、むしろ好ましいことであるが、サイクロン115
は、一般にその分離性能が、入口圧の変動、それに伴う
サイクロン上下流側の流量バランスや、サイクロンに供
給される被分離処理流体、被分離処理流体中の分離され
るべき成分(上記凝集沈澱装置の場合には、とくに汚泥
成分)の濃度に大きく左右され、通常、ある条件に対応
して設計すると、極端に大きな変化には対応できず、大
きな変化が生じると、分離性能が大幅に低下する。した
がって、サイクロン115は、その設計仕様の対応させ
て、極力定流量で運転し、かつ、被分離処理流体中の汚
泥濃度の大きな変動を抑制することが好ましい。
The increase in the concentration of the sludge discharged to the upstream side of the cyclone as shown in Table 1 is not a problem in itself, but is rather preferable.
In general, the separation performance depends on the inlet pressure fluctuation, the flow balance on the upstream and downstream sides of the cyclone, the fluid to be separated supplied to the cyclone, and the component to be separated in the fluid to be separated (the above-mentioned coagulation sedimentation device). In the case of, it depends greatly on the concentration of the sludge component). In general, when designed in accordance with certain conditions, it is not possible to cope with an extremely large change, and when a large change occurs, the separation performance is greatly reduced. . Therefore, it is preferable that the cyclone 115 is operated at a constant flow rate as much as possible in accordance with the design specification and suppresses a large fluctuation of the sludge concentration in the fluid to be separated.

【0011】しかし、表1に示したようにサイクロン1
15に送られる引抜汚泥の濃度が大きく変化する条件で
は、単に図2に示したような系で定流量で汚泥の引抜き
を行うと、サイクロン115に送られる引抜汚泥の濃度
の変化の度合いが大きくなりすぎ、それによってサイク
ロン115の分離性能が大幅に低下するおそれがある。
サイクロン115の分離性能が大幅に低下すると、循環
再使用されるべき砂が大量に流出してしまい、凝集沈澱
処理系全体として安定した運転ができなくなり、処理水
質の悪化や、回収率の低下を招くことにもなる。また、
砂との分離が不十分な分離汚泥が、サイクロン115か
ら後段の汚泥濃縮等の処理工程に送られてしまうので、
後段の処理設備での効率の悪化を招くことにもなる。
However, as shown in Table 1, cyclone 1
Under the condition where the concentration of the extracted sludge sent to the cyclone 115 is largely changed, if the sludge is simply extracted at a constant flow rate in a system as shown in FIG. 2, the degree of change in the concentration of the extracted sludge sent to the cyclone 115 is large. This may lead to a significant decrease in the cyclone 115 separation performance.
If the separation performance of the cyclone 115 is greatly reduced, a large amount of sand to be recycled and re-used will flow out, and the stable operation of the coagulation-sedimentation treatment system as a whole will not be possible. It will also be invited. Also,
Separated sludge that is insufficiently separated from sand is sent from cyclone 115 to a processing step such as sludge concentration at the subsequent stage.
It also leads to a decrease in efficiency in the subsequent processing equipment.

【0012】また、上記問題とは別に、次のような問題
もある。すなわち、凝集沈澱装置全体が小型の場合、通
常サイクロンも小型のものとなるが、サイクロンの入口
孔や下流側孔の径が小さくなると、送られてくる汚泥の
濃度が高くなった場合、分離されるべき成分あるいは分
離された成分によって、これらの部分が閉塞されやすく
なる。閉塞されると、運転不可になるか、分離性能が極
端に低下する。したがって、サイクロンとしては、この
ような閉塞の問題が生じない、比較的大型のものを使用
したいが、装置全体が比較的小型であるにもかかわらず
単にサイクロンに比較的大型のものを採用すると、その
サイクロンの設計流量(サイクロンに送られるべき被処
理流体の流量)も大きくなるので、沈澱槽からの抜出量
が多くなりすぎ、その分処理水の回収率が低下すること
になる。
In addition to the above problems, there are also the following problems. In other words, when the entire coagulation and sedimentation apparatus is small, the cyclone is usually small, but when the diameter of the cyclone inlet hole or downstream hole becomes small, when the concentration of the sent sludge becomes high, it is separated. These components are likely to be blocked by the components to be separated or separated components. If it is blocked, the operation becomes impossible or the separation performance extremely deteriorates. Therefore, as a cyclone, it is desired to use a relatively large cyclone which does not cause such a problem of blockage, but if a relatively large cyclone is simply employed despite the fact that the entire apparatus is relatively small, Since the design flow rate of the cyclone (the flow rate of the fluid to be processed to be sent to the cyclone) is also increased, the amount of the cyclone extracted from the sedimentation tank becomes too large, and the recovery rate of the treated water is reduced accordingly.

【0013】そこで本発明の課題は、上記のような問題
に鑑み、原水の性状等が変化した場合にも、とくに原水
の濁度が高くなった場合にも、サイクロンの分離効率の
低下を抑え、凝集沈澱処理系全体として安定して所望の
性能を発揮することが可能な、凝集沈澱装置およびその
制御方法を提供することにある。
Accordingly, an object of the present invention is to suppress the decrease in cyclone separation efficiency even when the properties of raw water change, especially when the turbidity of raw water increases, in view of the above problems. Another object of the present invention is to provide a coagulation / sedimentation apparatus capable of stably exhibiting desired performance as a whole coagulation / sedimentation treatment system and a control method therefor.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る凝集沈澱装置は、原水中の懸濁物質を
粒状物と凝集剤の添加によりフロックとして凝集させる
凝集槽と、凝集槽からの導入水中のフロックを沈降させ
処理水とスラリーとに分離する沈澱槽と、沈澱槽からス
ラリーを抜き出す汚泥引抜ポンプと、抜き出したスラリ
ーを汚泥と粒状物とに分離し、分離した粒状物を凝集槽
に戻すサイクロンとを備えた凝集沈澱装置において、サ
イクロンの上部出口からのラインを汚泥排出ラインと汚
泥循環ラインとに分岐し、分岐した汚泥循環ラインを汚
泥引抜ポンプの吸い込み側に接続したことを特徴とする
ものからなる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a coagulation / sedimentation apparatus according to the present invention comprises: a coagulation tank for coagulating a suspended substance in raw water as flocs by adding particulate matter and a coagulant; A sedimentation tank for sedimenting floc in the water introduced from the tank to separate it into treated water and slurry, a sludge extraction pump for extracting the slurry from the sedimentation tank, and separating the extracted slurry into sludge and particulate matter; In the coagulation sedimentation apparatus equipped with a cyclone for returning the wastewater to the flocculation tank, the line from the upper outlet of the cyclone was branched into a sludge discharge line and a sludge circulation line, and the branched sludge circulation line was connected to the suction side of the sludge extraction pump Characterized by the following.

【0015】この凝集沈澱装置においては、上記汚泥循
環ラインに流量コントロール弁が設けられていることが
好ましい。
In this coagulation and sedimentation apparatus, it is preferable that a flow control valve is provided in the sludge circulation line.

【0016】また、本発明に係る凝集沈澱装置の制御方
法は、上記のような凝集沈澱装置を制御する方法であっ
て、原水の濁質負荷または/および原水中への無機凝集
剤の添加量に応じて、汚泥循環ラインの流量を制御する
ことを特徴とする方法からなる。
The method for controlling a coagulation / sedimentation apparatus according to the present invention is a method for controlling a coagulation / sedimentation apparatus as described above, wherein the method comprises controlling the coagulation / sedimentation load of raw water or / and the amount of inorganic coagulant added to raw water. And controlling the flow rate of the sludge circulation line according to the method.

【0017】この方法においては、原水の濁度を検知
し、検知した値に応じて、汚泥循環ラインの流量を制御
することができる。また、検知した原水の濁度から添加
すべき無機凝集剤量を求め、濁度と無機凝集剤量に応じ
て、汚泥循環ラインの流量を制御することもできる。
In this method, the turbidity of raw water is detected, and the flow rate of the sludge circulation line can be controlled according to the detected value. Further, the amount of the inorganic flocculant to be added is obtained from the detected turbidity of the raw water, and the flow rate of the sludge circulation line can be controlled according to the turbidity and the amount of the inorganic flocculant.

【0018】このような本発明に係る凝集沈澱装置およ
びその制御方法においては、サイクロンの上部出口から
のラインが汚泥排出ラインと汚泥循環ラインとに分岐さ
れ、分岐した汚泥循環ラインが汚泥引抜ポンプの吸い込
み側へと接続されているので、サイクロンへの供給流量
を実質的に一定に保ちながら、汚泥循環ラインを介して
返送循環される流量分、沈澱槽からの引抜スラリー量を
低減することができる。つまり、サイクロンへの供給流
量を実質的に一定に保ちながら、サイクロンへ供給され
る時間当たりの汚泥量を低減することができる。したが
って、原水の濁度が上がった場合には、上記汚泥循環ラ
インにおける流量を増やし、沈澱槽からの引抜スラリー
量を低減することにより、サイクロンでの処理流量を定
流量に保ちながら、サイクロンで分離処理される被処理
流体中の濁質成分濃度の大幅な上昇を抑えることが可能
になり、所望のサイクロンの分離性能が安定して発揮さ
れることになる。その結果、凝集沈澱系全体の処理が安
定して円滑に行われ、良好な処理水質が維持されるとと
もに回収率の悪化が防止される。
In the coagulating sedimentation apparatus and the method for controlling the same according to the present invention, the line from the upper outlet of the cyclone is branched into a sludge discharge line and a sludge circulation line, and the branched sludge circulation line is connected to the sludge extraction pump. Since it is connected to the suction side, it is possible to reduce the amount of slurry withdrawn from the sedimentation tank by the amount returned and circulated through the sludge circulation line while keeping the supply flow rate to the cyclone substantially constant. . That is, it is possible to reduce the amount of sludge supplied to the cyclone per hour while keeping the supply flow rate to the cyclone substantially constant. Therefore, when the turbidity of the raw water rises, the flow rate in the sludge circulation line is increased, and the amount of slurry withdrawn from the sedimentation tank is reduced. A large increase in the concentration of the turbid component in the fluid to be treated can be suppressed, and the desired cyclone separation performance is stably exhibited. As a result, the treatment of the entire coagulation / sedimentation system is performed stably and smoothly, and the quality of the treated water is maintained and the deterioration of the recovery rate is prevented.

【0019】また、サイクロンの入口流量は、実質的に
常時最適な設計流量に保つことができるので、流量に依
存するサイクロンの分離性能も常時安定して良好な性能
に保たれる。したがって、サイクロン上流側から排出さ
れ、後段の汚泥処理設備に送られる排出汚泥の性状の大
きな変動も抑えられることになり、後段での処理も安定
する。
Further, since the cyclone inlet flow rate can be kept substantially always at the optimal design flow rate, the cyclone separation performance depending on the flow rate is always stably maintained at a good performance. Therefore, large fluctuations in the properties of the discharged sludge discharged from the upstream side of the cyclone and sent to the subsequent sludge treatment facility can be suppressed, and the treatment in the subsequent stage is also stabilized.

【0020】さらに、汚泥循環ラインによる循環汚泥は
再びサイクロンへと供給されることになるので、サイク
ロンの入口流量は比較的大きなものとすることができ、
装置全体が比較的小型の場合にあっても、サイクロンの
サイズとしては比較的大きなものを採用することが可能
になる。その結果、サイクロン部での閉塞等の不都合の
発生も確実に防止される。
Further, since the sludge circulated through the sludge circulation line is supplied to the cyclone again, the inlet flow rate of the cyclone can be made relatively large.
Even when the whole apparatus is relatively small, it is possible to adopt a relatively large cyclone. As a result, occurrence of inconvenience such as blockage in the cyclone portion is reliably prevented.

【0021】[0021]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照して説明する。図1は、本発明の一
実施態様に係る凝集沈澱装置1を示している。図1にお
いて、凝集沈澱装置1は、予備凝集槽2と、凝集槽3
と、それに隣接配置された沈澱槽4を備えている。予備
凝集槽2には、原水導入ライン5を介して原水6が導入
され、無機凝集剤7が添加されて、モータ8で駆動され
る攪拌機9によって攪拌される。原水導入ライン5に
は、本実施態様では、原水6の濁度を検知する濁度計1
0が設けられており、検知した値によって後述の汚泥引
抜分離系における汚泥循環ラインの流量を制御できるよ
うになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a coagulation / sedimentation apparatus 1 according to one embodiment of the present invention. In FIG. 1, a coagulating sedimentation apparatus 1 includes a preliminary coagulating tank 2 and a coagulating tank 3.
And a sedimentation tank 4 disposed adjacent thereto. Raw water 6 is introduced into the preliminary flocculation tank 2 through a raw water introduction line 5, an inorganic flocculant 7 is added, and the raw water 6 is stirred by a stirrer 9 driven by a motor 8. In the present embodiment, a turbidity meter 1 for detecting the turbidity of the raw water 6 is provided in the raw water introduction line 5.
0 is provided, and the flow rate of the sludge circulation line in the later-described sludge extraction / separation system can be controlled by the detected value.

【0022】予備凝集槽2からの原水は、凝集槽3に導
入されるが、そのときに高分子凝集剤11がライン注入
されるようになっている。凝集槽3内には、粒状物とし
ての砂12が添加され、モータ13によって駆動される
攪拌機14による攪拌により、原水の懸濁物質が、無機
凝集剤7、高分子凝集剤11、砂12を含むフロック1
5として凝集される。この凝集においては、無機凝集剤
7が懸濁物質を凝集させて微細なフロックを生成させ、
それに高分子凝集剤11が絡まってより大きなフロック
に成長させ、成長したフロックには比重の大きい粒状物
としての砂12が含有され、全体として比較的大きな、
比重の大きい沈澱しやすいフロックに成長する。
The raw water from the pre-coagulation tank 2 is introduced into the coagulation tank 3, at which time the polymer coagulant 11 is injected into the line. Sand 12 as granular material is added into the flocculation tank 3, and the suspended substance of the raw water is mixed with the inorganic flocculant 7, the polymer flocculant 11, and the sand 12 by stirring by a stirrer 14 driven by a motor 13. Flock 1 including
Aggregated as 5. In this coagulation, the inorganic coagulant 7 coagulates the suspended substance to form fine flocs,
In addition, the polymer flocculant 11 is entangled and grows into a larger floc, and the grown floc contains sand 12 as a particulate matter having a large specific gravity, and is relatively large as a whole.
It grows into flocs with a large specific gravity and easy to precipitate.

【0023】成長した凝集フロック15を含む被処理水
は、越流ぜき16を介して沈澱槽4へと導入される。沈
澱槽4では、導入水中のフロックが下方に沈澱され、沈
澱されたフロックは上方の処理水17に対して分離され
る。沈澱槽4内の上部には、複数の傾斜板18が並設さ
れており、処理水17とともにフロックが流出するのを
抑制している。
The to-be-treated water containing the grown floc 15 is introduced into the settling tank 4 through the overflow 16. In the sedimentation tank 4, the flocs in the introduced water are sedimented downward, and the sedimented flocs are separated from the upper treated water 17. A plurality of inclined plates 18 are arranged in parallel in the upper part in the settling tank 4 to prevent the floc from flowing out together with the treated water 17.

【0024】沈澱槽4の底部には、沈澱されたフロック
を含むスラリーを抜き出すための引抜ライン19が接続
されており、引抜ライン19には、抜き出したスラリー
をサイクロン20に送る汚泥引抜ポンプ21が設けられ
ている。サイクロン20では、送られてきたスラリーを
遠心分離により、サイクロン上流側ライン22に排出さ
れる汚泥23と、サイクロン下流側ライン24へと導出
される砂12とに分離し、分離された砂12は、再び凝
集槽3内に戻されて循環使用される。このサイクロン上
流側ライン22は、汚泥23を後段の汚泥処理設備(た
とえば、汚泥貯槽や脱水機、図示略)へと送る汚泥排出
ライン25と、汚泥循環ライン26とに分岐され、分岐
された汚泥循環ライン26は、汚泥引抜ポンプ21の吸
い込み側に接続されている。
At the bottom of the sedimentation tank 4, a drawing line 19 for extracting slurry containing precipitated floc is connected. The drawing line 19 is provided with a sludge extraction pump 21 for feeding the extracted slurry to a cyclone 20. Is provided. In the cyclone 20, the sent slurry is separated by centrifugation into sludge 23 discharged to the cyclone upstream line 22 and sand 12 led out to the cyclone downstream line 24. The separated sand 12 , Is returned to the coagulation tank 3 and used again. This cyclone upstream line 22 is branched into a sludge discharge line 25 for sending sludge 23 to a subsequent sludge treatment facility (for example, a sludge storage tank and a dehydrator, not shown), and a sludge circulation line 26. The circulation line 26 is connected to the suction side of the sludge extraction pump 21.

【0025】この汚泥循環ライン26には、流量計27
および流量コントロール弁28が設けられており、前述
の濁度計10によって検知された原水6の濁度信号に応
じて、循環される汚泥の流量が制御されるようになって
いる。また、この制御に加え、無機凝集剤7の添加量に
も応じて、汚泥循環流量の制御を行うようにしてもよ
い。たとえば、上記濁度計10で検知した濁度に応じて
無機凝集剤7の添加すべき量を計算し、その濁度と無機
凝集剤7の添加量に応じて汚泥循環ライン26における
汚泥循環流量を制御することもできる。
The sludge circulation line 26 has a flow meter 27
In addition, a flow control valve 28 is provided, and the flow rate of the circulated sludge is controlled according to the turbidity signal of the raw water 6 detected by the turbidity meter 10 described above. In addition to this control, the sludge circulation flow rate may be controlled according to the amount of the inorganic coagulant 7 added. For example, the amount of the inorganic flocculant 7 to be added is calculated in accordance with the turbidity detected by the turbidity meter 10, and the sludge circulation flow rate in the sludge circulation line 26 is calculated in accordance with the turbidity and the amount of the inorganic flocculant 7 added. Can also be controlled.

【0026】上記のように構成された凝集沈澱装置1
は、次のように運転、制御される。予備凝集槽2へと導
入されてくる原水6の濁質負荷として濁度が濁度計10
で検知され、この検知濁度に応じて、汚泥循環ライン2
6における循環汚泥流量が、流量計27で確認されつ
つ、流量コントロール弁28によって制御される。すな
わち、原水6の濁質負荷が増加した場合、その増加の度
合いに応じて、汚泥循環ライン26における循環汚泥流
量が増大されるように制御される。汚泥引抜ポンプ21
の流量は実質的に定流量とされているから、汚泥引抜ポ
ンプ21の吸い込み側に循環汚泥が返送されることによ
り、その返送分、沈澱槽4からの抜き出し流量が低減さ
れることになる。
The coagulation / sedimentation apparatus 1 configured as described above
Is operated and controlled as follows. The turbidity is measured as the turbidity load of the raw water 6 introduced into the preliminary flocculation tank 2 by the turbidimeter 10.
In the sludge circulation line 2 according to the detected turbidity.
The circulating sludge flow rate in 6 is controlled by a flow rate control valve 28 while being checked by a flow meter 27. That is, when the turbidity load of the raw water 6 increases, control is performed such that the circulating sludge flow rate in the sludge circulation line 26 is increased according to the degree of the increase. Sludge extraction pump 21
Is substantially constant, the circulating sludge is returned to the suction side of the sludge withdrawing pump 21, so that the amount of the returned sludge and the flow of the sludge drawn out of the sedimentation tank 4 are reduced.

【0027】したがって、サイクロン20への供給スラ
リー量は、汚泥引抜ポンプ21の吐出流量の一定流量に
保たれつつ、沈澱槽4からの抜き出し流量が低減される
ことになる。その結果、原水6の濁質負荷が増加して
も、サイクロン20へ供給される濁質成分の大きな増加
は抑えられることになり、濁質成分の大きな増加による
サイクロン20の分離性能の低下が抑えられる。しか
も、サイクロン20への供給流量は実質的に一定流量に
保たれるから、流量的にも、サイクロン20は設計通り
の望ましい分離性能を発揮することが可能になる。した
がって、良好なサイクロン20の分離性能が維持され、
分離されるべき砂12が安定して良好に分離されて凝集
槽3へと戻され、排出されるべき汚泥23が安定して良
好に分離されてその一部が後段の汚泥処理設備へと送ら
れる。安定した分離処理が円滑に行われるため、凝集沈
澱装置1全体としての運転が安定し、良好な処理水質が
維持されるとともに、回収率の悪化も防止される。ま
た、後段の汚泥処理設備でも、安定した処理が可能にな
る。
Accordingly, the amount of slurry supplied to the cyclone 20 is kept constant at the discharge flow rate of the sludge extraction pump 21, and the flow rate of the slurry discharged from the sedimentation tank 4 is reduced. As a result, even if the turbidity load of the raw water 6 increases, a large increase in the turbid component supplied to the cyclone 20 is suppressed, and a decrease in the separation performance of the cyclone 20 due to a large increase in the turbid component is suppressed. Can be In addition, since the supply flow rate to the cyclone 20 is maintained at a substantially constant flow rate, the cyclone 20 can exhibit the desired separation performance as designed in terms of flow rate. Therefore, good cyclone 20 separation performance is maintained,
The sand 12 to be separated is stably and satisfactorily separated and returned to the coagulation tank 3, and the sludge 23 to be discharged is stably and satisfactorily separated, and a part thereof is sent to a subsequent sludge treatment facility. Can be Since the stable separation treatment is performed smoothly, the operation of the coagulation and sedimentation apparatus 1 as a whole is stabilized, good water quality of the treated water is maintained, and deterioration of the recovery rate is also prevented. In addition, stable treatment is possible even in the sludge treatment equipment at the subsequent stage.

【0028】また、汚泥循環ライン26による循環汚泥
は再びサイクロン20へと供給されることになるので、
サイクロン20の入口流量は当初から比較的大きなもの
とすることが可能となり、装置全体が比較的小型の場合
にあっても、サイクロン20のサイズとしては比較的大
きなものを採用することが可能になる。その結果、サイ
クロン20部分、つまり、その入口部や下流側への出口
部での閉塞等の不都合の発生も確実に防止される。さら
に、引抜ライン19中を送られるスラリーの濁質成分の
濃度が極端に高くなることが抑えられ、かつ、汚泥引抜
ポンプ21からサイクロン20までのラインの流量は比
較的大流量に保たれるから、引抜ライン19中での閉塞
等の不都合の発生も確実に防止されることになる。
Further, the sludge circulated through the sludge circulation line 26 is supplied to the cyclone 20 again.
The inlet flow rate of the cyclone 20 can be made relatively large from the beginning, and even if the entire apparatus is relatively small, a relatively large cyclone 20 can be used. . As a result, the occurrence of inconvenience such as blockage at the cyclone 20 portion, that is, at the inlet portion or the outlet portion on the downstream side is reliably prevented. Further, the concentration of the turbid component of the slurry sent through the drawing line 19 is suppressed from becoming extremely high, and the flow rate of the line from the sludge drawing pump 21 to the cyclone 20 is maintained at a relatively large flow rate. In addition, the occurrence of inconvenience such as blockage in the drawing line 19 can be reliably prevented.

【0029】なお、本発明に係る凝集沈澱装置およびそ
の制御方法は、河川水等のみでなく、本発明に係る装置
が適用できるもの(たとえば、生物処理水や重金属のア
ルカリ凝集沈澱等)なら何でも適用可能である。
The apparatus for coagulation and sedimentation according to the present invention and the method for controlling the same are not limited to river water and the like, and any apparatus to which the apparatus according to the present invention can be applied (for example, biologically coagulated sedimentation of treated water and heavy metals). Applicable.

【0030】また、本発明において使用する無機凝集剤
や高分子凝集剤の種類はとくに限定されず、無機凝集剤
としては、たとえばポリ塩化アルミニウム(PAC)、
塩化第二鉄、硫酸第二鉄を使用できる。高分子凝集剤と
しては、たとえばノニオン性、アニオン性あるいは両性
の高分子凝集剤を用いることができる。アニオン性の高
分子凝集剤としては、たとえば、アクリル酸またはその
塩の重合物、アクリル酸またはその塩とアクリルアミド
との共重合物、アクリルアミドと2−アクリルアミド−
2メチルプロパンスルホン酸塩の共重合物、アクリル酸
またはその塩とアクリルアミドと2−アクリルアミド−
2−メチルプロパンスルホン酸塩の3元共重合物、ポリ
アクリルアミドの部分加水分解物などが挙げられるが、
特にこれらに限定されるものではない。ノニオン性の高
分子凝集剤としては、代表的なものとしてポリアクリル
アミドが挙げられるが、特にこれに限定されるものでは
ない。両性の高分子凝集剤としては、たとえば、ジメチ
ルアミノエチル(メタ)アクリレートの3級塩および4
級塩(塩化メチル塩等)等の少なくとも1種のカチオン
性単量体と、アクリル酸およびその塩(ナトリウム、カ
ルシウム等の塩類)、2−アクリルアミド−2−メチル
プロパンスルホン酸塩(ナトリウム、カルシウム等の塩
類)等の少なくとも1種のアニオン性単量体の共重合
物、あるいは、上記の少なくとも1種のカチオン性単量
体および上記の少なくとも1種のアニオン性単量体とア
クリルアミド等の少なくとも1種のノニオン性単量体と
の三元もしくは四元以上の共重合物等が挙げられるが、
特にこれらに限定されるものではない。高分子凝集剤の
分子量の範囲は特に限定されないが、500万〜200
0万の範囲が好ましい。これらの高分子凝集剤は、単独
で又は混合物として用いることができる。
The kind of the inorganic coagulant and the high molecular coagulant used in the present invention is not particularly limited. Examples of the inorganic coagulant include polyaluminum chloride (PAC),
Ferric chloride and ferric sulfate can be used. As the polymer flocculant, for example, a nonionic, anionic or amphoteric polymer flocculant can be used. Examples of the anionic polymer coagulant include a polymer of acrylic acid or a salt thereof, a copolymer of acrylic acid or a salt thereof and acrylamide, acrylamide and 2-acrylamide-
2-methylpropanesulfonic acid salt copolymer, acrylic acid or a salt thereof, acrylamide and 2-acrylamide-
Examples include a terpolymer of 2-methylpropanesulfonic acid salt and a partial hydrolyzate of polyacrylamide.
It is not particularly limited to these. A typical nonionic polymer flocculant includes polyacrylamide, but is not particularly limited thereto. Examples of the amphoteric polymer flocculants include tertiary salts of dimethylaminoethyl (meth) acrylate and 4
At least one cationic monomer such as a grade salt (eg, methyl chloride salt), acrylic acid and its salts (eg, salts such as sodium and calcium), and 2-acrylamido-2-methylpropane sulfonate (eg, sodium, calcium). Or a copolymer of at least one anionic monomer such as acrylamide or the like, or at least one cationic monomer and at least one anionic monomer and at least one such as acrylamide. Examples include a ternary or quaternary or higher copolymer with one kind of nonionic monomer,
It is not particularly limited to these. Although the range of the molecular weight of the polymer flocculant is not particularly limited, it is 5,000,000 to 200,000,000.
A range of 10,000 is preferred. These polymer flocculants can be used alone or as a mixture.

【0031】[0031]

【発明の効果】以上説明したように、本発明の凝集沈澱
装置およびその制御方法によれば、サイクロン上流側ラ
インを分岐して分岐した汚泥循環ラインを汚泥引抜ポン
プの吸い込み側に接続し、汚泥引抜ポンプからサイクロ
ンへの供給流量は一定に保ちながら沈澱槽からの抜き出
しスラリー量を、原水の濁度に応じて低減できるように
したので、サイクロンの良好な分離性能を安定して維持
することが可能になり、装置全体としての安定した円滑
な運転が可能になる。したがって、原水の濁度が増加し
た場合にあっても、処理水質の低下、回収率の低下を防
止でき、後段の汚泥処理工程の安定した運転も維持でき
る。
As described above, according to the coagulating sedimentation apparatus and the control method of the present invention, the sludge circulation line branched from the upstream line of the cyclone is connected to the suction side of the sludge extraction pump, and the sludge is removed. The amount of slurry withdrawn from the settling tank can be reduced according to the turbidity of the raw water while keeping the supply flow rate from the drawing pump to the cyclone constant, so that the good cyclone separation performance can be stably maintained. As a result, stable and smooth operation of the entire apparatus becomes possible. Therefore, even when the turbidity of the raw water increases, a decrease in the quality of the treated water and a decrease in the recovery rate can be prevented, and a stable operation of the subsequent sludge treatment process can be maintained.

【0032】さらに、装置全体が比較的小型のものであ
る場合にあっても、サイクロンとしては比較的大型のも
のを採用することが可能になり、サイクロン部および引
抜ラインでの閉塞等の不都合の発生も防止できる。
Further, even when the whole apparatus is relatively small, a relatively large cyclone can be employed, which causes inconvenience such as blockage at the cyclone part and the drawing line. Occurrence can also be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る凝集沈澱装置の全体
構成図である。
FIG. 1 is an overall configuration diagram of a coagulation / sedimentation apparatus according to an embodiment of the present invention.

【図2】従来の凝集沈澱装置の全体構成図である。FIG. 2 is an overall configuration diagram of a conventional coagulation / sedimentation apparatus.

【符号の説明】[Explanation of symbols]

1 凝集沈澱装置 2 予備凝集槽 3 凝集槽 4 沈澱槽 5 原水導入ライン 6 原水 7 無機凝集剤 9 攪拌機 10 濁度計 11 高分子凝集剤 12 粒状物としての砂 14 攪拌機 15 凝集フロック 16 越流ぜき 17 処理水 18 傾斜板 19 汚泥引抜ライン 20 サイクロン 21 汚泥引抜ポンプ 22 サイクロン上流側ライン 23 汚泥 24 サイクロン下流側ライン 25 汚泥排出ライン 26 汚泥循環ライン 27 流量計 28 流量コントロール弁 DESCRIPTION OF SYMBOLS 1 Coagulation settling apparatus 2 Preliminary coagulation tank 3 Coagulation tank 4 Precipitation tank 5 Raw water introduction line 6 Raw water 7 Inorganic coagulant 9 Stirrer 10 Turbidity meter 11 Polymer coagulant 12 Granular sand 14 Stirrer 15 Coagulation floc 16 Overflow 17 Treatment water 18 Inclined plate 19 Sludge extraction line 20 Cyclone 21 Sludge extraction pump 22 Cyclone upstream line 23 Sludge 24 Cyclone downstream line 25 Sludge discharge line 26 Sludge circulation line 27 Flow meter 28 Flow control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B03B 5/28 B03B 5/28 B C02F 1/56 ZAB C02F 1/56 ZABZ 11/00 11/00 Z // E03F 5/14 E03F 5/14 Fターム(参考) 2D063 DB01 DB07 4D015 BA21 BB09 BB12 DA04 DA13 DA16 DB03 DB08 DB12 DB13 DB19 DB30 DC06 DC07 DC08 EA01 EA03 EA32 FA03 FA19 4D059 AA06 BK30 CA28 EB20 4D071 AA53 BB03 CA03 DA20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B03B 5/28 B03B 5/28 B C02F 1/56 ZAB C02F 1/56 ZABZ 11/00 11/00 Z / / E03F 5/14 E03F 5/14 F term (reference) 2D063 DB01 DB07 4D015 BA21 BB09 BB12 DA04 DA13 DA16 DB03 DB08 DB12 DB13 DB19 DB30 DC06 DC07 DC08 EA01 EA03 EA32 FA03 FA19 4D059 AA06 BK30 CA28 EB20 4D07 A0320A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原水中の懸濁物質を粒状物と凝集剤の添
加によりフロックとして凝集させる凝集槽と、凝集槽か
らの導入水中のフロックを沈降させ処理水とスラリーと
に分離する沈澱槽と、沈澱槽からスラリーを抜き出す汚
泥引抜ポンプと、抜き出したスラリーを汚泥と粒状物と
に分離し、分離した粒状物を凝集槽に戻すサイクロンと
を備えた凝集沈澱装置において、サイクロンの上部出口
からのラインを汚泥排出ラインと汚泥循環ラインとに分
岐し、分岐した汚泥循環ラインを汚泥引抜ポンプの吸い
込み側に接続したことを特徴とする凝集沈澱装置。
1. A flocculation tank for flocculating a suspended substance in raw water as a floc by adding a particulate matter and a flocculant, and a sedimentation tank for sedimenting floc in water introduced from the flocculation tank and separating it into treated water and slurry. A sludge extraction pump for extracting the slurry from the sedimentation tank, and a cyclone for separating the extracted slurry into sludge and particulate matter, and returning the separated particulate matter to the flocculation tank. A coagulating sedimentation apparatus characterized in that the line is branched into a sludge discharge line and a sludge circulation line, and the branched sludge circulation line is connected to the suction side of a sludge extraction pump.
【請求項2】 汚泥循環ラインに流量コントロール弁が
設けられている、請求項1に記載の凝集沈澱装置。
2. The coagulating sedimentation apparatus according to claim 1, wherein a flow control valve is provided in the sludge circulation line.
【請求項3】 請求項1または2に記載の凝集沈澱装置
の制御方法であって、原水の濁質負荷または/および原
水中への無機凝集剤の添加量に応じて、汚泥循環ライン
の流量を制御することを特徴とする、凝集沈澱装置の制
御方法。
3. The method for controlling a coagulating sedimentation apparatus according to claim 1 or 2, wherein the flow rate of the sludge circulation line depends on the turbidity load of raw water and / or the amount of inorganic coagulant added to raw water. And controlling the coagulation sedimentation apparatus.
【請求項4】 原水の濁度を検知し、検知した値に応じ
て、汚泥循環ラインの流量を制御することを特徴とす
る、請求項3に記載の凝集沈澱装置の制御方法。
4. The method according to claim 3, wherein the turbidity of the raw water is detected, and the flow rate of the sludge circulation line is controlled according to the detected value.
【請求項5】 検知した原水の濁度から添加すべき無機
凝集剤量を求め、濁度と無機凝集剤量に応じて、汚泥循
環ラインの流量を制御することを特徴とする、請求項4
に記載の凝集沈澱装置の制御方法。
5. The amount of the inorganic flocculant to be added is determined from the detected turbidity of the raw water, and the flow rate of the sludge circulation line is controlled according to the turbidity and the amount of the inorganic flocculant.
3. The method for controlling a coagulation sedimentation apparatus according to item 1.
JP2001164970A 2001-05-31 2001-05-31 Aggregation precipitation apparatus and control method thereof Expired - Fee Related JP3866054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164970A JP3866054B2 (en) 2001-05-31 2001-05-31 Aggregation precipitation apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164970A JP3866054B2 (en) 2001-05-31 2001-05-31 Aggregation precipitation apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2002355507A true JP2002355507A (en) 2002-12-10
JP3866054B2 JP3866054B2 (en) 2007-01-10

Family

ID=19007707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164970A Expired - Fee Related JP3866054B2 (en) 2001-05-31 2001-05-31 Aggregation precipitation apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP3866054B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514554A (en) * 2006-12-29 2010-05-06 オテヴェ・ソシエテ・アノニム Method and plant for treating water by ballasted flocculation and settling
CN102228749A (en) * 2011-04-14 2011-11-02 中国矿业大学 Quantitative method for coagulation reagent for slime water
CN103285628A (en) * 2013-03-28 2013-09-11 卢普伦 A sludge discharging inclined tube settling tank
CN103372334A (en) * 2013-03-28 2013-10-30 卢普伦 Sludge discharge pipe chute precipitate equipment
JP2014050830A (en) * 2012-08-08 2014-03-20 Swing Corp Sludge treatment method and apparatus
CN104264990A (en) * 2014-08-28 2015-01-07 中建八局第四建设有限公司 Construction method and equipment of sludge-collecting hopper for use in settling tank
KR20210035801A (en) 2018-08-10 2021-04-01 쿠리타 고교 가부시키가이샤 Coagulation and precipitation device and its starting method
KR20210040935A (en) 2018-08-10 2021-04-14 쿠리타 고교 가부시키가이샤 Coagulation and precipitation device, its control method, and settling tank

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514554A (en) * 2006-12-29 2010-05-06 オテヴェ・ソシエテ・アノニム Method and plant for treating water by ballasted flocculation and settling
CN102228749A (en) * 2011-04-14 2011-11-02 中国矿业大学 Quantitative method for coagulation reagent for slime water
CN102228749B (en) * 2011-04-14 2013-10-30 中国矿业大学 Quantitative method for coagulation reagent for slime water
JP2014050830A (en) * 2012-08-08 2014-03-20 Swing Corp Sludge treatment method and apparatus
CN103285628A (en) * 2013-03-28 2013-09-11 卢普伦 A sludge discharging inclined tube settling tank
CN103372334A (en) * 2013-03-28 2013-10-30 卢普伦 Sludge discharge pipe chute precipitate equipment
CN104264990A (en) * 2014-08-28 2015-01-07 中建八局第四建设有限公司 Construction method and equipment of sludge-collecting hopper for use in settling tank
KR20210035801A (en) 2018-08-10 2021-04-01 쿠리타 고교 가부시키가이샤 Coagulation and precipitation device and its starting method
KR20210040935A (en) 2018-08-10 2021-04-14 쿠리타 고교 가부시키가이샤 Coagulation and precipitation device, its control method, and settling tank

Also Published As

Publication number Publication date
JP3866054B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP6265822B2 (en) Coagulation sedimentation apparatus and coagulation sedimentation method
JP6474669B2 (en) Coagulation sedimentation method
JP2010046627A (en) Water-purifying pretreatment system
JP4707752B2 (en) Water treatment method and water treatment system
JP4937228B2 (en) Coagulation sedimentation equipment
JP2005046787A (en) Flocculation and separation apparatus
JP2002355507A (en) Flocculating and settling equipment and its controlling method
JP2000317220A (en) Flocculating and settling device
JP6270608B2 (en) Coagulation sedimentation apparatus and coagulation sedimentation method
JP4416144B2 (en) Coagulation precipitation method and apparatus
JP2019072675A (en) Coagulation sedimentation apparatus and coagulation sedimentation treatment method
WO1999033541A1 (en) Coagulation precipitator
JP7083274B2 (en) Water treatment method and water treatment equipment
JP4535419B2 (en) Coagulation sedimentation equipment
JP3866053B2 (en) Coagulation sedimentation apparatus and operation method thereof
JP2004351254A (en) Flocculating and settling apparatus
JP4446418B2 (en) Coagulation precipitation system
JP2004290926A (en) Flocculation precipitation apparatus
JP3870354B2 (en) Coagulation sedimentation equipment
JP2001104712A (en) Flocculation/precipitation equipment and method of water treatment using the same
JP2002085907A (en) Flocculating and settling apparatus
JP6825999B2 (en) Operation method of coagulation sedimentation device and coagulation sedimentation device
JP3901392B2 (en) Coagulation sedimentation equipment
JP2002066208A (en) Flocculation/precipitation apparatus
JP7109970B2 (en) Coagulating sedimentation device and coagulating sedimentation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3866054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees