JP2017094245A - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP2017094245A
JP2017094245A JP2015226967A JP2015226967A JP2017094245A JP 2017094245 A JP2017094245 A JP 2017094245A JP 2015226967 A JP2015226967 A JP 2015226967A JP 2015226967 A JP2015226967 A JP 2015226967A JP 2017094245 A JP2017094245 A JP 2017094245A
Authority
JP
Japan
Prior art keywords
water
treated
floc
meth
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015226967A
Other languages
Japanese (ja)
Other versions
JP6197016B2 (en
Inventor
安永 利幸
Toshiyuki Yasunaga
利幸 安永
弘明 仲田
Hiroaki Nakata
弘明 仲田
康輔 森
Kosuke Mori
康輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2015226967A priority Critical patent/JP6197016B2/en
Publication of JP2017094245A publication Critical patent/JP2017094245A/en
Application granted granted Critical
Publication of JP6197016B2 publication Critical patent/JP6197016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device increasing turbidity removal effect, also solving the problem of filtration blockage and enabling stable water treatment.SOLUTION: Provided is a treatment device 10 comprising: a feed means 35 of injecting an organic feeder; and a feeding means 45 of injecting a polymer coagulant, where an inorganic coagulant is injected to the water to be treated, thereafter, a polymer coagulant is injected, coagulation sedimentation treatment is performed, and a liquid phase after the sedimentation of a huge floc is filtered with a filtering means 55. This polymer coagulant being a poly(meth)acrylate having a 0.1% salt viscosity of 2 to 5 mPa s and also having an anion equivalent of -9.0 or lower, and by the use of this polymer coagulant, the turbidity of pure water after filtration is sufficiently reduced, further, a filter medium is made hard to be clogged, and water treatment can be stably and continuously performed for a long time.SELECTED DRAWING: Figure 1

Description

本発明は、高分子凝集剤を使用した好適な浄水処理方法及び装置に関するものであり、より詳しくは高分子凝集剤を使用した場合に起こるろ過閉塞を防止することができ、高分子凝集剤を使用する凝集沈殿工程において優れた凝集処理効果を得ることができる方法及び装置に関するものである。   The present invention relates to a suitable water purification treatment method and apparatus using a polymer flocculant, and more specifically, can prevent filtration clogging that occurs when a polymer flocculant is used. The present invention relates to a method and an apparatus capable of obtaining an excellent coagulation treatment effect in the coagulation sedimentation step used.

従来より、浄水処理においては、懸濁物質を含有する被処理水(以下「原水」ともいう)に硫酸バンドやポリ塩化アルミニウム(PAC)等の無機凝集剤を注入し、懸濁物質を取り込んだ凝集フロックを形成させ、この凝集フロックを沈降分離させることによって、懸濁物質を除去していた。   Conventionally, in water purification treatment, an inorganic flocculant such as a sulfate band or polyaluminum chloride (PAC) is injected into water to be treated containing suspended solids (hereinafter also referred to as “raw water”), and suspended solids are taken in. Suspended substances were removed by forming agglomerated floc and allowing the agglomerated floc to settle and separate.

しかしながら、近年、湖沼や河川の富栄養化が進み藻類が増殖するようになった。これらの藻類は凝集性が悪く、砂ろ過処理にも悪影響を与える。増殖した藻類を凝集させるには多量の無機凝集剤を必要とし、無機凝集剤を多量に注入することにより処理水が酸性になるため、飲料水としては適さなくなる。また無機凝集剤に由来する汚泥の発生量も増加し、この汚泥の処理に費用が増大する問題も生じている。   However, in recent years, eutrophication of lakes and rivers has progressed, and algae have grown. These algae have poor cohesiveness and have an adverse effect on sand filtration. A large amount of an inorganic flocculant is required to agglutinate the grown algae, and the treated water becomes acidic by injecting a large amount of the inorganic flocculant, which makes it unsuitable as drinking water. In addition, the amount of sludge generated from the inorganic flocculant is increased, and there is a problem that the cost for processing this sludge increases.

浄水処理において無機凝集剤による凝集フロックの沈降性を改良するために、アニオン系高分子凝集剤を併用することが検討されているが、次のような問題点が指摘されている。即ち、浄水処理において注入された高分子凝集剤は、生成フロックとともに固液分離され大部分は取り除かれるが、一部が微細フロックとともに処理水側に残存する。この残存した高分子凝集剤が後工程の砂ろ過塔内のろ材に吸着し、ろ過閉塞を起こしてしまう恐れがある。   The use of an anionic polymer flocculant in combination with an anionic polymer flocculant in order to improve the sedimentation property of the flocs by an inorganic flocculant in water purification treatment has been pointed out. In other words, the polymer flocculant injected in the water purification treatment is solid-liquid separated together with the generated floc and is mostly removed, but a part remains on the treated water side along with the fine floc. The remaining polymer flocculant may be adsorbed on the filter medium in the sand filtration tower in the subsequent step and cause clogging of the filter.

高分子凝集剤による閉塞を防止する手段としては、凝集薬封鎖剤を注入する方法、フロック形成槽内の流動電流を測定し、測定した流動電流に基づいて凝集剤の余剰量あるいは不足量を求め、凝集剤の注入量を制御する方法等がある。   As means for preventing clogging by the polymer flocculant, a method of injecting the flocculant sequestering agent, measuring the flow current in the floc forming tank, and determining the surplus or deficiency of the flocculant based on the measured flow current And a method of controlling the injection amount of the flocculant.

特開2003-340208JP2003-340208 特開2007-61718JP2007-61718

しかしながら、上記方法にも以下のような問題点がある。凝集薬封鎖剤を注入する方法は、処理コストの上昇を招く恐れがある。フロック形成槽内の流動電流を測定し、測定した流動電流に基づいて、凝集剤の注入量を制御する方法では、懸濁物質と凝集剤が過不足なく反応し、電気的に中性になるように凝集剤量をコントロールすることを目的としているが、浄水処理においては、電気的に中和となる点が必ずしも良好な処理結果が得られるわけではなく、特許文献1公報には処理水濁度やろ過への影響については何ら示唆されていない。   However, the above method also has the following problems. The method of injecting the coagulant sequestering agent may increase the processing cost. In the method of measuring the flow current in the floc forming tank and controlling the injection amount of the flocculant based on the measured flow current, the suspended substance and the flocculant react without excess and deficiency and become electrically neutral. However, in water purification treatment, the neutralization point does not always give a good treatment result, and Patent Document 1 discloses treatment water turbidity. There is no suggestion about the effect on temperature or filtration.

そこで、本発明者らは上述の問題点に鑑み、高分子凝集剤について種々検討した結果、特定の高分子凝集剤を使用した場合に低濁度時においても優れた濁度除去効果が得られ、かつ高分子凝集剤を使用した場合に起り得るろ過閉塞の問題を解消し、安定的な浄水処理が可能であることを見出し、本発明を完成するに至った。   In view of the above-mentioned problems, the present inventors have studied various polymer flocculants. As a result, when a specific polymer flocculant is used, an excellent turbidity removal effect can be obtained even at low turbidity. And the problem of the filtration blockage | capacitance which may arise when using a polymer flocculant was solved, it discovered that the stable water purification process was possible, and came to complete this invention.

上記課題を解決するために、本発明の浄水処理方法は以下の構成とすることができる。   In order to solve the above problems, the water purification method of the present invention can be configured as follows.

(1)本発明の浄水処理方法では、被処理水に無機凝集剤を注入した後に、高分子凝集剤を注入する方法であって、高分子凝集剤として、0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を用いる。このアニオン当量の単位はmeq/gである。   (1) The water purification treatment method of the present invention is a method of injecting a polymer flocculant after injecting an inorganic flocculant into water to be treated, and the polymer flocculant has a 0.1% salt viscosity of 2 to 2. Poly (meth) acrylic acid salt having an anion equivalent of −9.0 or less and 5 mPa · s is used. The unit of this anion equivalent is meq / g.

なお、ポリ(メタ)アクリル酸塩は、ポリアクリル酸塩とポリメタアクリル酸塩のいずれか一方又は両方を含む概念である。   The poly (meth) acrylate is a concept including one or both of a polyacrylate and a polymethacrylate.

(2)好ましくは、無機凝集剤の注入量を被処理水1L当たり10〜200mg(10mg/L〜200mg/L)にする。また、ポリ(メタ)アクリル酸塩の注入量は、無機凝集剤を注入後の前記被処理水1L当たり0.05〜20mg(0.05mg/L〜20mg/L)が好ましい。   (2) Preferably, the injection amount of the inorganic flocculant is 10 to 200 mg (10 mg / L to 200 mg / L) per liter of water to be treated. Moreover, the injection amount of poly (meth) acrylate is preferably 0.05 to 20 mg (0.05 mg / L to 20 mg / L) per liter of the water to be treated after the inorganic flocculant is injected.

(3)ポリ(メタ)アクリル酸塩の注入を開始するタイミングは特に限定されないが、好ましくは、無機凝集剤注入後、被処理水中の凝集フロックの径が0.1mm以上になった時点を注入開始のタイミングと判断し、その時点又はその時点よりも後にポリ(メタ)アクリル酸塩の注入を開始する。   (3) The timing for starting the injection of poly (meth) acrylate is not particularly limited, but preferably after the injection of the inorganic flocculant, the time when the diameter of the aggregated floc in the treated water becomes 0.1 mm or more is injected. The start timing is determined, and injection of poly (meth) acrylate is started at that time or after that time.

(4)ポリ(メタ)アクリル酸塩のような高分子凝集剤を注入すると凝集フロックが成長し、巨大化する。この巨大化したフロックを、高分子凝集剤を注入する前の被処理水に返送することも有効である。   (4) When a polymer flocculant such as poly (meth) acrylate is injected, the floc floc grows and becomes large. It is also effective to return the enlarged floc to the water to be treated before injecting the polymer flocculant.

また、本発明の浄水処理装置は以下の構成とすることができる。   Moreover, the water purification apparatus of this invention can be set as the following structures.

(5)供給源から被処理水を導入する凝集混和槽と、当該凝集混和槽に無機凝集剤を注入する供給手段と、無機凝集剤を注入後の被処理水を導入するフロック形成槽と、当該フロック形成槽に高分子凝集剤を注入する供給手段とを浄水処理装置に設け、当該供給手段は、高分子凝集剤として、0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を注入する。   (5) an agglomeration mixing tank for introducing treated water from a supply source, a supply means for injecting an inorganic flocculant into the agglomeration mixing tank, a flock forming tank for introducing treated water after injecting the inorganic flocculant, The water purification apparatus is provided with a supply means for injecting a polymer flocculant into the floc-forming tank, and the supply means has a 0.1% salt viscosity of 2 to 5 mPa · s as the polymer flocculant, and A poly (meth) acrylate having an anion equivalent of −9.0 or less is injected.

(6)これら供給手段は、必要に応じて注入量を制御可能であり、例えば、無機凝集剤用の供給手段は、無機凝集剤を被処理水1リットル当たり10〜200mg注入し、高分子凝集剤用の供給手段は、高分子凝集剤を被処理水1リットル当たり0.05〜20mg注入する。   (6) These supply means can control the injection amount as required. For example, the supply means for inorganic flocculant injects 10 to 200 mg of inorganic flocculant per liter of water to be treated, and polymer agglomeration The supply means for the agent injects 0.05 to 20 mg of the polymer flocculant per liter of water to be treated.

(7)浄水処理装置には返送手段を設けることが好ましい。この返送手段は、高分子凝集剤注入後の被処理水と、当該被処理水の沈殿物のいずれか一方又は両方を返送するものであって、凝集混和槽と、それよりも上流側の1以上の装置に接続されている。すなわち、凝集混和槽と、凝集混和槽と供給源との間のいずれか一か所以上を返送場所とし、被処理水と、沈殿物のいずれか一方又は両方を返送する。   (7) It is preferable to provide a return means in the water purification apparatus. This returning means returns either one or both of the water to be treated after the polymer flocculant is injected and the precipitate of the water to be treated. It is connected to the above devices. That is, any one or more of the coagulation mixing tank and the coagulation mixing tank and the supply source are used as the return place, and either one or both of the water to be treated and the precipitate are returned.

本発明によれば、浄水処理装置の連続運転可能時間が長くなる上、濁度の低い浄水が得られる。高分子凝集剤は、重合成分としてアクリルアミドを含まないので、人体への影響が少ない。   ADVANTAGE OF THE INVENTION According to this invention, the continuous operation possible time of a water purification apparatus becomes long, and also purified water with low turbidity is obtained. Since the polymer flocculant does not contain acrylamide as a polymerization component, it has little influence on the human body.

本発明の浄水処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the water purification apparatus of this invention.

以下、本発明を具体的に説明するが、本発明は特定の具体例に限定されるものではない。   Hereinafter, the present invention will be specifically described, but the present invention is not limited to a specific example.

本発明は、被処理水に無機凝集剤を注入して凝集フロックを形成した後に、更に、特定の高分子凝集剤を注入して凝集フロックに成長させる手段及び工程を有する。以下に、本発明に用いる無機凝集剤と高分子凝集剤の具体例を説明する。   The present invention includes means and a process for injecting a specific polymer flocculant to grow into an aggregated floc after injecting an inorganic flocculant into the water to be treated to form an aggregated floc. Specific examples of the inorganic flocculant and polymer flocculant used in the present invention will be described below.

[無機凝集剤]
本発明に用いる無機凝集剤は特に限定されず、浄水処理に通常使用される無機凝集剤を使用することができる。具体的には、鉄系凝集剤とアルミニウム系凝集剤のいずれか一方又は両方を使用可能であり、より具体的には、硫酸バンド、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄及びこれらの混合物からなる群より選択されるいずれか1種以上を用いることができる。
[Inorganic flocculant]
The inorganic flocculant used for this invention is not specifically limited, The inorganic flocculant normally used for a water purification process can be used. Specifically, one or both of an iron-based flocculant and an aluminum-based flocculant can be used, and more specifically, a sulfuric acid band, polyaluminum chloride (PAC), aluminum chloride, polyferric sulfate. Any one or more selected from the group consisting of (polyiron), ferric chloride, and mixtures thereof can be used.

[高分子凝集剤]
高分子凝集剤は、0.1%塩粘度が2〜5mPa・s、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を含有するものであれば特に限定されないが、そのポリ(メタ)アクリル酸塩の含有量が少なくとも50質量%以上、好ましくは80質量%以上、特に好ましくは99質量%以上であって、実質的に上記ポリ(メタ)アクリル酸塩からなるものを用いる。
[Polymer flocculant]
The polymer flocculant is not particularly limited as long as it contains a poly (meth) acrylate having a 0.1% salt viscosity of 2 to 5 mPa · s and an anion equivalent of −9.0 or less. The content of the (meth) acrylate is at least 50% by mass or more, preferably 80% by mass or more, particularly preferably 99% by mass or more, and is substantially composed of the poly (meth) acrylate.

ここで、ポリ(メタ)アクリル酸塩は特に限定されず、例えば、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム、ポリメタクリル酸アンモニウムからなる群より選択されるいずれか1種以上を用いることが可能であり、好ましくはポリアクリル酸ナトリウムである。   Here, the poly (meth) acrylate is not particularly limited. For example, polyacrylic acid, sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, polymethacrylic acid, polysodium methacrylate, polypotassium methacrylate. Any one or more selected from the group consisting of polyammonium methacrylate can be used, and preferably sodium polyacrylate.

ポリ(メタ)アクリル酸塩はホモポリマー、コポリマーのいずれであってもよく、好ましくは、(メタ)アクリル酸又はその塩、マレイン酸又はその塩、ビニルスルホン酸又はその塩等を重合単位として含むコポリマー又はホモポリマーである。コポリマーの場合、共重合成分としてアクリルアミドを使用することもできるが、アクリルアミドを使用しないことがより好ましい。   The poly (meth) acrylate may be either a homopolymer or a copolymer, and preferably contains (meth) acrylic acid or a salt thereof, maleic acid or a salt thereof, vinylsulfonic acid or a salt thereof as a polymerized unit. Copolymer or homopolymer. In the case of a copolymer, acrylamide can be used as a copolymerization component, but it is more preferable not to use acrylamide.

ポリ(メタ)アクリル酸塩は、単独又は混合物として用いることができる。ポリ(メタ)アクリル酸塩の混合物を用いる場合は、混合物全体の0.1%塩粘度が2〜5mPa・sであることが好ましい。   Poly (meth) acrylates can be used alone or as a mixture. When using a mixture of poly (meth) acrylates, the 0.1% salt viscosity of the entire mixture is preferably 2 to 5 mPa · s.

なお、塩粘度は、1Nの塩化ナトリウム水溶液に、ポリ(メタ)アクリル酸塩をその濃度が0.1質量%になるよう溶解した試料を、B型粘度計にて25℃の条件で測定した値であり、単位はmPa・sである。   In addition, the salt viscosity measured the sample which melt | dissolved the poly (meth) acrylate in the sodium chloride aqueous solution of 1N so that the density | concentration might be 0.1 mass% on 25 degreeC conditions with a B-type viscosity meter. It is a value and the unit is mPa · s.

0.1%塩粘度が2mPa・s未満では、凝集フロックが然程大きくならず沈降性の改善が望めない、一方、0.1%塩粘度が5mPa・sを超えると注入後のフロック形成槽での拡散が遅くなり、フロック形成槽内の攪拌速度を速くする必要があるので、フロックを破壊する危険がある。   If the 0.1% salt viscosity is less than 2 mPa · s, the flocs flocs are not so large and improvement in sedimentation cannot be expected. On the other hand, if the 0.1% salt viscosity exceeds 5 mPa · s, the floc forming tank after injection In this case, it is necessary to increase the stirring speed in the floc forming tank, and there is a risk of breaking the floc.

アニオン当量は以下の測定法で求めることができる値であって、単位はmeq/gである。ポリ(メタ)アクリル酸塩0.1%水溶液を調整し、メチルグリコールキトサン溶液(N/200)を5ml添加し、攪拌後、トイジンブルー指示薬を2〜3滴添加し、ポリビニル硫酸カリウム溶液(PVSK,N/400)で滴定し、変色して10秒以上保持する時点を終点とする。同上の操作で試料を添加せずにブランク試験を行い、下記式によりアニオン当量Cvを算出する。   The anion equivalent is a value that can be determined by the following measurement method, and the unit is meq / g. Prepare a 0.1% aqueous solution of poly (meth) acrylate, add 5 ml of methyl glycol chitosan solution (N / 200), add 2 to 3 drops of toidin blue indicator after stirring, and add polyvinyl potassium sulfate solution (PVSK, Titrate with N / 400), and change the color and hold for 10 seconds or longer as the end point. A blank test is performed without adding a sample by the same operation, and an anion equivalent Cv is calculated by the following formula.

アニオン当量(Av)[meq/g] =
(ブランク滴定量ml−サンプル滴定量ml) ×1/2×PVSKの力価
Anion equivalent (Av) [meq / g] =
(Blank titration ml-Sample titration ml) x 1/2 x PVSK titer

ポリ(メタ)アクリル酸の混合物を用いる場合、その混合物のアニオン当量値を直接測定してもよいが、各ポリ(メタ)アクリル酸塩のアニオン当量値(Av)[meq/g]が既知の場合は、個別のポリ(メタ)アクリル酸塩のアニオン当量(Av)に、そのポリ(メタ)アクリル酸塩が混合物全体に占める質量割合(個別質量/合計質量)を乗じた値を合算し、混合物全体のアニオン当量とする。   When using a mixture of poly (meth) acrylic acid, the anion equivalent value of the mixture may be measured directly, but the anion equivalent value (Av) [meq / g] of each poly (meth) acrylate is known. In this case, the value obtained by multiplying the anion equivalent (Av) of the individual poly (meth) acrylate by the mass ratio of the poly (meth) acrylate to the entire mixture (individual mass / total mass) is added. The anion equivalent of the entire mixture.

アニオン当量が‐9.0以下であることが好ましく、より好ましいアニオン当量は−11.0〜−9.0である。アニオン当量がこの範囲を超えると凝集フロックが大きく成長せず処理水の濁度が高くなる傾向となり、この範囲より低いと処理水のろ過抵抗が高くなる傾向になる。   The anion equivalent is preferably −9.0 or less, and the more preferable anion equivalent is −11.0 to −9.0. If the anion equivalent exceeds this range, the aggregated flocs do not grow greatly and the turbidity of the treated water tends to increase, and if it falls below this range, the filtration resistance of the treated water tends to increase.

一般に、コロイド当量(meq/g)が−7以下の高分子凝集剤は高アニオン性であり、コロイド当量が−2.8以下で−7.0を超える高分子凝集剤は中アニオン性であり、コロイド当量が−0.7以下で−2.8を超こえる高分子凝集剤は低アニオン性である。本発明に用いるポリ(メタ)アクリル酸塩は、アニオン当量が−0.9以下、すなわち、高アニオン性凝集剤の中でもアニオン性がより高いことを特徴とする。   In general, a polymer flocculant having a colloid equivalent (meq / g) of -7 or less is highly anionic, and a polymer flocculant having a colloid equivalent of -2.8 or less and exceeding -7.0 is medium anionic. A polymer flocculant having a colloid equivalent of -0.7 or less and exceeding -2.8 has low anionic properties. The poly (meth) acrylate used in the present invention is characterized in that the anion equivalent is −0.9 or less, that is, the anionic property is higher among the high anionic flocculants.

次に、上記の無機凝集剤と高分子凝集剤を用いた、本発明の処理装置と処理方法について説明する。   Next, the processing apparatus and processing method of the present invention using the above-mentioned inorganic flocculant and polymer flocculant will be described.

[浄水処理装置]
本発明が適用できる浄水処理設備(浄水処理装置)は特に限定されず、実用化されている通常の設備を全て採用することが可能であり、例えば横流式沈殿設備を有する浄水施設、高速凝集沈殿設備を有する浄水設備が挙げられる。高速凝集沈殿設備としてはスラリー循環型、スラッジ・ブランケット型いずれも適用可能である。
[Water purification equipment]
Water purification equipment (water purification equipment) to which the present invention can be applied is not particularly limited, and it is possible to adopt all normal equipment in practical use. For example, water purification equipment having a cross-flow type precipitation equipment, high-speed coagulation sedimentation Water purification facilities with facilities are listed. Either a slurry circulation type or a sludge / blanket type can be applied as the high-speed coagulating sedimentation equipment.

横流式沈殿設備を有する浄水処理装置10の模式図を図1に示す。この浄水処理装置10は、凝集混和槽31と、凝集混和槽31に接続されたフロック形成槽41と、フロック形成槽41に直接又は他の装置(沈澱池51等)を介して接続されたろ過手段55とを有している。   A schematic diagram of a water purification apparatus 10 having a cross-flow type precipitation facility is shown in FIG. The water purification apparatus 10 includes a flocculation / mixing tank 31, a flock formation tank 41 connected to the flocculation / mixing tank 31, and a filtration connected to the flock formation tank 41 directly or via another device (such as a precipitation basin 51). Means 55.

凝集混和槽31とフロック形成槽41は1台ずつ設置してもよいし、いずれか一方又は両方を複数台設置してもよい。これらの槽31、41を複数台設置する場合は、同じ種類の槽31、41を直列又は並列、より好ましくは直列に接続し、被処理水が複数の槽を通過して、次の処理工程に送られるように設計する。   One aggregation mixing tank 31 and one flock formation tank 41 may be installed, or a plurality of either one or both may be installed. When installing a plurality of these tanks 31, 41, the same kind of tanks 31, 41 are connected in series or in parallel, more preferably in series, and the water to be treated passes through the plurality of tanks, and the next treatment step. Design to be sent to.

凝集混和槽31とフロック形成槽41を通過する被処理水には、供給手段35、45から、或いは手作業により、上述した無機凝集剤と高分子凝集剤が直接又は間接的に注入される。   The water to be treated that passes through the agglomeration and mixing tank 31 and the flock formation tank 41 is directly or indirectly injected with the above-described inorganic flocculant and polymer flocculant from the supply means 35 and 45 or manually.

例えば、無機凝集剤の供給手段35は、1台又は複数台の凝集混和槽31と、凝集混和槽31よりも上流側の装置(供給源1、配管21、着水井等)のうち、いずれか1台以上に接続されており、無機凝集剤は、被処理水とは別に凝集混和槽31に直接注入されるか、被処理水と一緒に上流側の装置から凝集混和槽31に間接的に注入される。   For example, the inorganic coagulant supply means 35 is one of one or a plurality of coagulation / mixing tanks 31 and an apparatus upstream from the coagulation / mixing tank 31 (supply source 1, piping 21, landing well, etc.). It is connected to one or more units, and the inorganic flocculant is directly injected into the coagulation mixing tank 31 separately from the water to be treated, or indirectly from the upstream apparatus together with the water to be treated to the coagulation mixing tank 31. Injected.

凝集混和槽31には、攪拌羽、攪拌ポンプなどの攪拌手段が設置されている。この攪拌手段は、所定の撹拌エネルギーを付与する撹拌速度(回転数)が設定され、無機凝集剤が注入された被処理水を急速撹拌する。撹拌エネルギーの指標は特に限定されないが、その一例はG値(単位時間単位体積あたりの仕事量Pから被処理水の粘性係数μを除した値の平方根、日本水道協会水道施設設計指針2000、P188より)である。   The agglomeration mixing tank 31 is provided with stirring means such as a stirring blade and a stirring pump. The stirring means is set with a stirring speed (number of rotations) for applying predetermined stirring energy, and rapidly stirs the water to be treated into which the inorganic flocculant has been injected. The index of agitation energy is not particularly limited, but an example thereof is G value (square root of value obtained by dividing viscosity coefficient μ of water to be treated from work amount P per unit time unit volume, Japan Water Works Association Water Facility Design Guidelines 2000, P188. More).

急速撹拌の結果、被処理水中の濁質が凝集して微細フロック(マイクロフロック)として成長し、微細フロックを含む被処理水がフロック形成槽41に供給される。   As a result of rapid stirring, turbidity in the water to be treated aggregates and grows as fine flocs (micro flocs), and the water to be treated containing fine flocs is supplied to the floc forming tank 41.

このフロックの凝集状態は、目視で観察するほか、浄水処理装置10に測定手段37を設けてもよい。いずれの場合も、観察(測定)したフロック成長度を、高分子凝集剤を注入するタイミングの判断に利用可能である。   In addition to observing the floc aggregation state visually, a measuring means 37 may be provided in the water purification apparatus 10. In either case, the observed (measured) floc growth degree can be used to determine the timing of injecting the polymer flocculant.

高分子凝集剤の供給手段45は、1台又は複数台のフロック形成槽41と、フロック形成槽41よりも上流側の装置(凝集混和槽31、配管22等)のうち、いずれか1台以上に接続されており、上述した高分子凝集剤は、被処理水とは別にフロック形成槽41に直接注入されるか、被処理水と一緒に上流側の装置からフロック形成槽41に間接的に注入される。   The polymer flocculant supply means 45 is one or more of one or a plurality of flock formation tanks 41 and devices upstream of the flock formation tank 41 (aggregation mixing tank 31, pipe 22 and the like). The polymer flocculant described above is directly injected into the floc forming tank 41 separately from the water to be treated, or indirectly from the upstream apparatus to the floc forming tank 41 together with the water to be treated. Injected.

凝集混和槽31と同様に、フロック形成槽41には、攪拌羽、攪拌ポンプなどの攪拌手段が設置されている。この撹拌手段は、凝集混和槽31の撹拌手段よりも低攪拌エネルギー(例えば、G値10〜80秒−1)を付与するように撹拌速度が設定され、高分子凝集剤が注入された被処理水を緩速撹拌し、微細フロックを巨大化させる。 As with the agglomeration mixing tank 31, the flock formation tank 41 is provided with stirring means such as stirring blades and a stirring pump. The stirring means is set to have a stirring speed so as to give a lower stirring energy (for example, G value of 10 to 80 seconds −1 ) than the stirring means of the agglomeration mixing tank 31, and the processing target in which the polymer flocculant is injected. Stir the water slowly to enlarge the fine flocs.

巨大フロック分離のため、好ましくは、フロック形成槽41とろ過手段55との間には沈殿手段(沈殿池51)を設置し、巨大フロックを含む被処理水をフロック形成槽41から沈澱池51へ送る。   In order to separate the huge floc, preferably, a sedimentation means (sedimentation basin 51) is installed between the floc formation tank 41 and the filtration means 55, and the water to be treated containing the huge floc is transferred from the floc formation tank 41 to the sedimentation basin 51. send.

沈澱池51の構造は特に限定されないが、一般的にその内部には、傾斜板又は傾斜管が設けられており、フロック形成槽41からの被処理水は、この沈澱池51で巨大フロックを主に含む沈殿物(汚泥)と、巨大フロックが分離された液相とに分離される。   The structure of the sedimentation basin 51 is not particularly limited. Generally, an inclined plate or an inclined tube is provided in the inside of the sedimentation basin 51. The treated water from the flock formation tank 41 is mainly composed of a huge floc in the sedimentation basin 51. Is separated into a precipitate (sludge) contained in the liquid phase and a liquid phase from which the giant floc is separated.

この分離の後又は分離の前に、巨大フロックの一部又は全部を上流側の装置に返送することも可能である。具体的には、フロック形成槽41と、沈澱池51と、それらの間の配管23のうち1以上に返送手段59を接続し、分離した沈殿物と巨大フロックのいずれか一方又は両方を含む被処理水を、凝集混和槽31と、それよりも上流側の装置(配管21、着水井等)のうち、いずれか一カ所以上の返送場所に返送する。返送手段59は特に限定されないが、一般にフロックを返送する返送管29を有し、必要であれば送水ポンプ、切替バルブ、貯蔵タンク等の他の部材をも有する。   It is also possible to return some or all of the giant floc to the upstream device after or before this separation. Specifically, the return means 59 is connected to one or more of the flock formation tank 41, the sedimentation basin 51, and the pipe 23 between them, and the cover containing either or both of the separated sediment and the giant floc is included. The treated water is returned to any one or more return places among the agglomeration mixing tank 31 and the upstream devices (pipe 21, landing well, etc.). The return means 59 is not particularly limited, but generally has a return pipe 29 for returning flocs and, if necessary, other members such as a water pump, a switching valve, and a storage tank.

他方、巨大フロックを分離後の液相は、沈澱池51からろ過手段55に送られ、過剰な高分子凝集剤や残留フロック等の残留汚染物質が除去され、浄水6となる。ろ過手段55は特に限定されず、ろ過塔、ろ過膜(フィルター)などを使用することができるが、特に好ましくはろ材が充填されたろ過塔である。このろ材は、特に限定されず、粒子状ろ材、繊維状ろ材の一方又は両方を使用できるが、特に粒子状ろ材が好ましい。   On the other hand, the liquid phase after separation of the giant floc is sent from the sedimentation basin 51 to the filtering means 55, and residual contaminants such as excess polymer flocculant and residual floc are removed, resulting in purified water 6. The filtration means 55 is not particularly limited, and a filtration tower, a filtration membrane (filter), or the like can be used. Particularly preferred is a filtration tower filled with a filter medium. The filter medium is not particularly limited, and one or both of a particulate filter medium and a fibrous filter medium can be used, and a particulate filter medium is particularly preferable.

粒子状ろ材は、例えば、ろ過砂(珪砂)(有効径0.35〜1.0mm、均等係数1.7以下、比重2.57〜2.67)、アンスラサイト(有効径0.7〜4.0mm、均等係数1.4以下、比重1.4〜1.6)、ガーネット(有効径約0.3mm、均等係数1.5以下、比重3.8〜4.1)、マンガン砂(有効径0.35〜0.60mm、均等係数1.5以下、比重2.58〜2.65)、セラミック(有効径0.3〜2.0mm、比重1.0〜1.2)のうち、1種以上を用いることができるが、上水道用途の場合は、珪砂とアンスラサイトのいずれか一方又は両方を含むものが最も好ましく、これらのろ過材に他のろ過材を更に組み合わせることも可能である。ろ過材は単層又は多層構造とし、これらろ過材とフィルターとを組み合わせることも可能である。   Examples of the particulate filter medium include filtration sand (silica sand) (effective diameter 0.35 to 1.0 mm, uniformity coefficient 1.7 or less, specific gravity 2.57 to 2.67), anthracite (effective diameter 0.7 to 4). 0.0 mm, uniformity coefficient 1.4 or less, specific gravity 1.4 to 1.6), garnet (effective diameter about 0.3 mm, uniformity coefficient 1.5 or less, specific gravity 3.8 to 4.1), manganese sand (effective Diameter 0.35 to 0.60 mm, uniformity coefficient 1.5 or less, specific gravity 2.58 to 2.65), ceramic (effective diameter 0.3 to 2.0 mm, specific gravity 1.0 to 1.2), One or more types can be used, but in the case of water supply applications, those containing either one or both of silica sand and anthracite are most preferable, and other filter media can be further combined with these filter media. . The filter medium may be a single layer or a multilayer structure, and the filter medium and the filter may be combined.

従来技術では、上記のようなろ過材は詰まりなどの問題があったが、本発明の浄水処理装置10と浄水処理方法はこの問題を劇的に改善した。   In the prior art, the filter medium as described above has a problem such as clogging, but the water purification apparatus 10 and the water purification method of the present invention dramatically improved this problem.

次に、上記浄水処理装置10を用いた本発明の浄水処理方法を具体的に説明する。   Next, the water purification method of the present invention using the water purification device 10 will be specifically described.

[浄水処理方法]
本発明で処理する被処理水は特に限定されず、工場排水、家庭排水、海水などの処理も可能ではあるが、特に適しているのは河川水、湖沼水、貯水地水、雨水、伏流水、地下水、井水である。これらの被処理水(原水)を水源から直接又は前処理部(着水井等)を介して凝集混和槽31に供給する。
[Water purification treatment method]
The treated water to be treated in the present invention is not particularly limited, and it is possible to treat industrial wastewater, domestic wastewater, seawater, etc., but particularly suitable is river water, lake water, reservoir water, rainwater, underground water , Groundwater, well water. These to-be-treated water (raw water) is supplied to the flocculation / mixing tank 31 directly from the water source or via a pretreatment part (a landing well or the like).

必要であれば、被処理水の水質をジャーテストなどで予め調べ、水質に合わせて無機凝集剤の注入量を予め設定しておき、供給手段35から或いは作業者の手作業により、被処理水1リットルあたり5〜200mg、好ましくは10〜100mgの範囲内で無機凝集剤を注入する。無機凝集剤が注入された被処理水を急速撹拌し、被処理水中の濁質分を凝集させる。   If necessary, the quality of the water to be treated is checked in advance by a jar test or the like, the injection amount of the inorganic flocculant is set in advance according to the water quality, and the water to be treated is supplied from the supply means 35 or manually by the operator. The inorganic flocculant is injected in the range of 5 to 200 mg, preferably 10 to 100 mg per liter. The water to be treated into which the inorganic flocculant has been injected is rapidly stirred to flocculate turbid components in the water to be treated.

高分子凝集剤を注入する時点(タイミング)を決定するため、微細フロックの成長度を定期的又は連続して測定する。フロック成長度は、測定手段37により機械的に、あるいは作業者が目視(肉眼、顕微鏡)により測定可能であり、また、フロック成長度としては、フロック径、被処理水濁度など多様な指標を採用することが可能であるが、好ましくはフロック径を測定する。   In order to determine the point (timing) at which the polymer flocculant is injected, the degree of growth of the fine floc is measured periodically or continuously. The floc growth degree can be measured mechanically by the measuring means 37 or visually by the operator (with the naked eye, a microscope). As the floc growth degree, various indices such as floc diameter and water turbidity to be treated can be used. Although it is possible to employ, preferably the floc diameter is measured.

一般に、作業者が肉眼で認識可能なフロック径(直径)が0.1mm以上と言われており、フロック径(好ましくは平均粒径)が0.1mm以上、好ましくは1mm〜2mmの範囲にある時点を注入可能のタイミングと判断し、供給手段45から或いは作業者の手作業により、高分子凝集剤の注入を開始する。   Generally, it is said that the floc diameter (diameter) that can be recognized by the operator with the naked eye is 0.1 mm or more, and the floc diameter (preferably the average particle diameter) is 0.1 mm or more, preferably in the range of 1 mm to 2 mm. The time point is determined as the timing at which injection is possible, and the injection of the polymer flocculant is started from the supply means 45 or manually by the operator.

高分子凝集剤、すなわち、上述したポリ(メタ)アクリル酸塩の注入量は、原水の水質により適宜変更可能ではあるが、好ましくは被処理水1リットル当たり0.05〜20mgの範囲内で設定する。   The amount of the polymer flocculant, that is, the above-mentioned poly (meth) acrylate, can be appropriately changed depending on the quality of the raw water, but is preferably set within a range of 0.05 to 20 mg per liter of water to be treated. To do.

ポリ(メタ)アクリル酸塩は、ポリアクリルアミド系等のアニオン性高分子凝集剤とは異なり、その共重合成分としてアクリルアミドを含まないので浄水中にアクリルアミドモノマーが混入しない。従って、このポリ(メタ)アクリル酸塩を1mg/リットルを超えて多量に使用しても、人体への健康問題は生じないが、上水用の被処理水に対しては、注入量が20mg/リットルを超えると過剰のポリマーが有する粘性によりろ過池の閉塞などの問題を発生させる可能性があるので、注入量の上限は20mg/リットルが好ましい。   Unlike an anionic polymer flocculant such as polyacrylamide, poly (meth) acrylate does not contain acrylamide as a copolymerization component, so that no acrylamide monomer is mixed in purified water. Therefore, even if this poly (meth) acrylate is used in a large amount exceeding 1 mg / liter, there is no health problem for the human body. However, for treated water for clean water, the injection amount is 20 mg. Since the viscosity of the excess polymer may cause problems such as clogging of the filtration pond when the amount exceeds / liter, the upper limit of the injection amount is preferably 20 mg / liter.

この高分子凝集剤が注入された被処理水を緩速攪拌してフロックを成長させ、その一部又は全部を沈澱池51で固液分離し、分離された液相がろ過手段55を通る間に、フロックで補足されなかった濁質分や、固液分離されなかった遊離フロックなどの残留汚染物質が被処理水から除去される。   The water to be treated into which the polymer flocculant has been injected is slowly stirred to grow flocs, and part or all of the flocs are solid-liquid separated in the sedimentation basin 51, while the separated liquid phase passes through the filtration means 55. In addition, residual pollutants such as turbidity not captured by floc and free floc not solid-liquid separated are removed from the treated water.

この遊離フロックの表面には高分子凝集剤が付着しており、公知のアクリルアミド系高分子凝集剤を用いた場合はろ過閉塞を起こすことがあった。   A polymer flocculant is adhered to the surface of this free floc, and when a known acrylamide polymer flocculant is used, filtration clogging may occur.

被処理水を無機凝集剤で処理した後、0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩で処理した場合には、このろ過閉塞が起こり難く、仮にろ過閉塞が起こっても通常の逆洗処理により容易に回復する。   When water to be treated is treated with an inorganic flocculant and then treated with a poly (meth) acrylate having a 0.1% salt viscosity of 2 to 5 mPa · s and an anionic equivalent of −9.0 or less. This filtration clogging hardly occurs, and even if the filtration clogging occurs, it can be easily recovered by a normal backwash process.

なお、ろ過閉塞は、高分子凝集剤の種類だけではなく、他の要因でも起こりうる。例えば、原水の濁度が低く、フロックの核となる濁質分が少なすぎる場合は、フロックが十分に成長されないため、フロック成長に寄与できない残留高分子凝集剤が増加する。このような場合は、高分子凝集剤を無機凝集剤と併用しても濁度低減の効果が見られない上、残留高分子凝集剤や遊離フロックの増加によりろ過閉塞が起こりやすくなる。   The filtration blockage can occur not only due to the type of polymer flocculant but also due to other factors. For example, when the turbidity of raw water is low and the amount of turbidity that is the core of flocs is too small, the flocs are not grown sufficiently, and the residual polymer flocculant that cannot contribute to floc growth increases. In such a case, even if the polymer flocculant is used in combination with the inorganic flocculant, the effect of reducing turbidity is not observed, and filtration clogging easily occurs due to an increase in the residual polymer flocculant and free floc.

従って、本発明の他の実施形態では、上記高分子凝集剤の使用に加え、返送手段59を使用して、フロック形成槽41と沈澱池51のいずれか一方又は両方からフロックを上流側へ返送する。   Therefore, in another embodiment of the present invention, in addition to the use of the polymer flocculant, the return means 59 is used to return the floc from either one or both of the flock formation tank 41 and the sedimentation tank 51 to the upstream side. To do.

具体的には、原水の濁度、無機凝集剤注入後のフロック成長度、高分子凝集剤注入後のフロック成長度のうち、いずれか1以上を測定し、測定値が予め設定した値に達しないときは、測定値に応じた量のフロックを上流側に返送し、高分子凝集剤注入前の被処理水と混合する。   Specifically, any one or more of raw water turbidity, floc growth after injection of inorganic flocculant, and floc growth after injection of polymer flocculant is measured, and the measured value reaches a preset value. If not, return the floc in an amount corresponding to the measured value to the upstream side and mix with the water to be treated before injecting the polymer flocculant.

フロックの返送場所は、凝集混和槽31またはそれよりも上流側の装置(配管21等)であれば特に限定されず、これら返送場所のうち、1又は2箇所以上に返送することが可能であるが、測定値に応じて返送場所の切り替えも可能であり、具体的には、原水濁度が低い場合は、凝集混和槽31よりも上流側で被処理水(原水)に返送する。   The floc return place is not particularly limited as long as it is an agglomeration mixing tank 31 or an upstream apparatus (pipe 21 or the like), and can be returned to one or more of these return places. However, the return place can be switched according to the measured value. Specifically, when the raw water turbidity is low, the water is returned to the water to be treated (raw water) upstream from the agglomeration mixing tank 31.

返送されたフロックには、表面に高分子凝集剤が付着し、それ自体が凝集能力を有するので、フロックを返送しない場合と比較して、フロック相互が衝突してより巨大なフロックを形成する。その結果、フロックの巨大化により固液分離が促進され、凝集フロックによるろ過手段55の詰まりが防止される上、高分子凝集剤の注入量も低減可能になる。   Since the polymer flocculant adheres to the surface of the floc that has been returned and itself has an aggregating ability, the flocs collide with each other to form a larger floc than when the floc is not returned. As a result, solid-liquid separation is promoted by enlarging the floc, preventing clogging of the filtration means 55 by the flocs, and the amount of the polymer flocculant injected can be reduced.

返送するフロックは特に限定されないが、沈澱池51からフロックを返送する場合には、沈殿池51で完全に沈殿・濃縮された沈殿フロックの返送は避けることが好ましい。完全に沈殿・濃縮した沈殿フロックでは返送の際に目的濁質濃度に調整することが困難で、かえって無機凝集剤や高分子凝集剤の必要量が多くなることがある。また、濃縮により、沈殿フロック表面に露出する高分子凝集剤の吸着部位(活性基)が減少し、フロック形成能力が極端に低下してしまう。   The floc to be returned is not particularly limited. However, when the floc is returned from the sedimentation basin 51, it is preferable to avoid returning the sedimentation floc completely precipitated and concentrated in the sedimentation basin 51. Precipitation flocs that have been completely precipitated and concentrated are difficult to adjust to the target turbidity concentration upon return, and the required amount of inorganic flocculant and polymer flocculant may increase. Moreover, the adsorption | suction site | part (active group) of the polymer flocculent exposed to the precipitation floc surface reduces by concentration, and floc formation capability will fall extremely.

フロックを返送する場合、1種以上の添加剤、例えば、カオリン等の粘土質無機微粒子や微細砂を一緒に返送してもよく、これら添加剤によりフロックがより強固でかつ重量を有するものになるので、除濁効果がより発揮される。   When returning flocs, one or more additives, for example, clayey inorganic fine particles such as kaolin or fine sand, may be returned together, and these additives will make the flocs stronger and have a higher weight. Therefore, the turbidity effect is more exhibited.

これら添加剤を返送フロックと混合する場所は特に限定されないが、フロックを返送する経路の途中、例えば、フロックの返送管29が好ましく、より好ましくは、フロックを被処理水と混合する直前(原水導入用の配管21や凝集混和槽31に到達する直前)が好ましい。また、返送管29ではなく、原水導入用の配管21や凝集混和槽31に返送する地点に、別途、粘土質無機微粒子や微細砂を注入する手段を設けることも可能である。   The place where these additives are mixed with the return flock is not particularly limited. For example, the flock return pipe 29 is preferable in the course of returning the flock, and more preferably, immediately before mixing the flock with the water to be treated (introduction of raw water) For example, immediately before reaching the piping 21 and the agglomeration mixing tank 31). Further, instead of the return pipe 29, a means for injecting clay inorganic fine particles and fine sand can be separately provided at the point of return to the raw water introduction pipe 21 and the coagulation mixing tank 31.

なお、フロックの返送や、高分子凝集剤添加は、いずれの工程でも工程開始の判断にはフロック成長度の測定結果を利用するが、その測定方法は特に限定されない。   The return of floc and the addition of the polymer flocculant use the measurement result of the floc growth degree for determining the start of the process in any process, but the measurement method is not particularly limited.

例えば、作業者が肉眼でフロックを観察し、高分子凝集剤の注入開始を判断する場合、目視でフロックが確認でき(すなわちフロック径0.1mm以上)、かつ、確認できる最大フロックの径が2mm以下の場合を、高分子凝集剤の注入開始のタイミングとする。濁度を作業者が目視で測定する場合は、比色管等を用いることができる(視覚濁度)。   For example, when the operator observes the floc with the naked eye and determines the start of the injection of the polymer flocculant, the floc can be visually confirmed (that is, the floc diameter is 0.1 mm or more), and the maximum floc diameter that can be confirmed is 2 mm. The following case is set as the timing for starting the injection of the polymer flocculant. When the turbidity is measured visually by an operator, a colorimetric tube or the like can be used (visual turbidity).

フロック成長度を測定手段37で機械的に測定する場合は、通常使用される測定装置を広く使用することができる。例えば、測定手段37は光学センサーを有し、被処理水の透過率、吸光度、散乱光等の光学データを取得し、その光学データからフロック径、濁度を測定する。測定手段37で測定される濁度は、例えば、散乱光濁度、積分球濁度、又は透光度濁度であり、フロック径は、例えば吸光度変動解析法による平均粒径である。   When the floc growth degree is mechanically measured by the measuring means 37, a commonly used measuring apparatus can be widely used. For example, the measuring means 37 has an optical sensor, acquires optical data such as the transmittance, absorbance, and scattered light of the water to be treated, and measures the floc diameter and turbidity from the optical data. The turbidity measured by the measuring means 37 is, for example, scattered light turbidity, integrating sphere turbidity, or translucent turbidity, and the floc diameter is, for example, an average particle diameter by an absorbance fluctuation analysis method.

なお、本発明の処理装置10及び処理方法は、上記以外のいかなる変更も可能であり、例えば、pH調整剤、凝集補助剤、殺菌剤等の通常浄水処理に使用される添加剤や、他の高分子凝集剤を被処理水に添加可能であり、その添加のタイミングや添加手段も特に限定されるものではない。   In addition, the processing apparatus 10 and the processing method of the present invention can be modified in any way other than those described above. For example, additives used in normal water purification treatment such as pH adjusters, coagulant aids, and bactericides, and other The polymer flocculant can be added to the water to be treated, and the addition timing and addition means are not particularly limited.

以下、実施例により本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

図1の浄水処理装置10を用いて下記実験条件で浄水試験を行った。   A water purification test was conducted under the following experimental conditions using the water purification apparatus 10 of FIG.

‐原水:流量100m3/日、河川水、濁度15〜25度、pH7.0〜7.4
‐無機凝集剤:ポリ塩化アルミニウム(PAC)
‐高分子凝集剤:ポリアクリル酸ナトリウム、
0.1%塩粘度3.5mPa・s、アニオン当量−9.4meq/g
‐凝集混和槽:有効容積200リットル×2槽(周辺速度1.5m/s)
‐フロック形成槽:有効容積1200リットル×2槽沈殿池(周辺速度0.5m/s)
‐ろ過速度100m/日、
‐ろ材:2層構成(アンスラサイト層高400mm、珪砂層高400mm)
-Raw water: flow rate 100m 3 / day, river water, turbidity 15-25 degrees, pH 7.0-7.4
-Inorganic flocculant: polyaluminum chloride (PAC)
-Polymer flocculant: sodium polyacrylate,
0.1% salt viscosity 3.5mPa · s, anion equivalent -9.4meq / g
-Coagulation mixing tank: Effective volume 200 liters x 2 tanks (peripheral speed 1.5 m / s)
-Flock formation tank: effective volume 1200 liter x 2 tank sedimentation basin (peripheral speed 0.5 m / s)
-Filtration speed 100m / day,
-Filter media: 2 layers (Anthracite layer height 400mm, Silica sand layer height 400mm)

<実施例1>
図1の装置10で、PACを20mg/リットルを凝集混和槽31に注入し、急速攪拌を行い、マイクロフロックを形成した。凝集混和槽31の被処理水をメスシリンダに採取し、肉眼によりフロック径が1〜2mmになったことを確認してから、フロック形成槽41に流入直前(配管22)の被処理水に、高分子凝集剤を1.0mg/リットル注入して緩速撹拌し、高分子凝集剤注入後の凝集フロック径を肉眼で測定した。この被処理水を更に沈殿池51とろ過手段55で処理し、沈澱池51で分離後の液相(凝集沈殿処理水)と、ろ過手段55を通過後の浄水6(ろ過水)について、日本電色工業社製の濁度計「WA 6000」を用いて濁度を測定した。
<Example 1>
In the apparatus 10 of FIG. 1, 20 mg / liter of PAC was injected into the coagulation mixing tank 31 and rapidly stirred to form micro flocs. Collect the water to be treated in the coagulation mixing tank 31 in a measuring cylinder, and after confirming that the floc diameter has become 1 to 2 mm with the naked eye, in the water to be treated just before flowing into the floc forming tank 41 (pipe 22), The polymer flocculant was injected at a rate of 1.0 mg / liter and stirred gently, and the aggregate floc diameter after the polymer flocculant was injected was measured with the naked eye. This treated water is further treated in the sedimentation basin 51 and the filtering means 55, and the liquid phase (aggregated sedimentation treated water) after separation in the sedimentation basin 51 and the purified water 6 (filtered water) after passing through the filtration means 55 are Turbidity was measured using a turbidimeter “WA 6000” manufactured by Denshoku Industries Co., Ltd.

更に、処理装置10での浄水処理を連続して行い、閉塞がおこらずに正常にろ過処理が可能な時間も測定した。   Furthermore, the water purification process by the processing apparatus 10 was performed continuously, and the time which can be normally filtered without obstruction | occlusion was also measured.

<実施例2、3>
高分子凝集剤注入量を1.5mg/リットル、0.3mg/リットルとした以外は実施例1と同様に浄水試験を実施した。
<Examples 2 and 3>
A water purification test was conducted in the same manner as in Example 1 except that the polymer flocculant injection amount was 1.5 mg / liter and 0.3 mg / liter.

<実施例4>
高分子凝集剤の注入場所をフロック形成槽41の2槽目とした以外は実施例1と同様に浄水試験を実施した。
<Example 4>
A water purification test was carried out in the same manner as in Example 1 except that the place where the polymer flocculant was injected was the second tank of the floc forming tank 41.

<実施例5>
高分子凝集剤をポリアクリル酸ナトリウム(0.1%塩粘度が4.4mPa・s、アニオン当量が−9.8meq/g)に変更した以外は、実施例3と同じ条件で試験を行った。
<Example 5>
The test was performed under the same conditions as in Example 3 except that the polymer flocculant was changed to sodium polyacrylate (0.1% salt viscosity: 4.4 mPa · s, anion equivalent: −9.8 meq / g).

<実施例6>
高分子凝集剤をポリアクリル酸ナトリウム(0.1%塩粘度が2.7mPa・s、アニオン当量が−9.5meq/g)に変えた以外は、実施例1と同じ条件で試験を行った。
<Example 6>
The test was performed under the same conditions as in Example 1 except that the polymer flocculant was changed to sodium polyacrylate (0.1% salt viscosity: 2.7 mPa · s, anion equivalent: −9.5 meq / g).

<比較例1>
高分子凝集剤を使用せず、PAC単独で処理した以外は実施例1と同じ条件で浄水試験を行った。
<Comparative Example 1>
A water purification test was conducted under the same conditions as in Example 1 except that the polymer flocculant was not used and the PAC was used alone.

<比較例2、3>
高分子凝集剤として、市販の高分子凝集剤(中アニオン性のアクリルアミド・アクリル酸ナトリウム共重合体)を0.5mg/リットル(比較例2)、1.0mg/リットル(比較例3)注入して実施例1と同様に浄水試験を実施した。
<Comparative Examples 2 and 3>
As the polymer flocculant, a commercially available polymer flocculant (medium anionic acrylamide / sodium acrylate copolymer) was injected at 0.5 mg / liter (Comparative Example 2) and 1.0 mg / liter (Comparative Example 3). A water purification test was conducted in the same manner as in Example 1.

上記実施例及び比較例の試験結果を、凝集剤の注入率と共に下記表1に記載する。   The test results of the above Examples and Comparative Examples are shown in Table 1 below together with the flocculant injection rate.

Figure 2017094245
Figure 2017094245

上記表1から明らかなように、ポリアクリル酸ナトリウムの注入量を0.3mg/リットル1.0mg/リットル及び1.5mg/リットル注した実施例1〜6は、ろ過継続時間が40時間以上あり、高分子凝集剤を使用しない比較例1と比べても差異が少なく、ろ過手段55の状態は安定していた。   As apparent from Table 1 above, Examples 1 to 6 in which the injection amount of sodium polyacrylate was injected at 0.3 mg / liter 1.0 mg / liter and 1.5 mg / liter had a filtration duration of 40 hours or more. There was little difference compared with Comparative Example 1 in which no polymer flocculant was used, and the state of the filtering means 55 was stable.

これに対してアクリルアミド・アクリル酸ナトリウム共重合体を0.5mg/リットル、1.0mg/リットル注入した比較例2、3では、ろ過継続時間22時間、16時間と短くなった。また、1.0mg/リットル注入した比較例3では、処理水濁度も高くなった。   On the other hand, in Comparative Examples 2 and 3 in which acrylamide / sodium acrylate copolymer was injected at 0.5 mg / liter and 1.0 mg / liter, the filtration duration was shortened to 22 hours and 16 hours. In Comparative Example 3 in which 1.0 mg / liter was injected, the treated water turbidity was also high.

1 供給源
10 浄水処理装置
31 凝集混和槽
35 無機凝集剤の供給手段
37 測定手段
41 フロック形成槽
45 高分子凝集剤の供給手段
55 ろ過手段
59 返送手段
DESCRIPTION OF SYMBOLS 1 Supply source 10 Water purification apparatus 31 Coagulation mixing tank 35 Inorganic flocculant supply means 37 Measuring means 41 Flock formation tank 45 Polymer flocculant supply means 55 Filtration means 59 Return means

Claims (7)

被処理水に無機凝集剤を注入した後、
0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を注入することを特徴とする浄水処理方法。
After injecting the inorganic flocculant into the treated water,
A water purification method characterized by injecting a poly (meth) acrylate having a 0.1% salt viscosity of 2 to 5 mPa · s and an anionic equivalent of −9.0 or less.
前記無機凝集剤を、前記被処理水1L当たり10〜200mg注入し、
前記ポリ(メタ)アクリル酸塩を、前記被処理水1L当たり0.05〜20mg注入する請求項1に記載の浄水処理方法。
Injecting 10 to 200 mg of the inorganic flocculant per liter of the water to be treated,
The water purification method according to claim 1, wherein 0.05 to 20 mg of the poly (meth) acrylate is injected per liter of the water to be treated.
前記無機凝集剤の注入により凝集したフロックの径が0.1mm以上になった後に、前記ポリ(メタ)アクリル酸塩の注入を開始する請求項1又は請求項2のいずれか1項に記載の浄水処理方法。   3. The injection of the poly (meth) acrylate is started after the diameter of the floc aggregated by the injection of the inorganic flocculant becomes 0.1 mm or more. 4. Water purification method. 前記ポリ(メタ)アクリル酸塩の注入により成長したフロックを、前記ポリ(メタ)アクリル酸塩を注入する前の前記被処理水に返送する請求項1〜3のいずれか1項に記載の浄水処理方法。   The purified water according to any one of claims 1 to 3, wherein flocs grown by the injection of the poly (meth) acrylate are returned to the water to be treated before the poly (meth) acrylate is injected. Processing method. 供給源から被処理水が導入される凝集混和槽と、
前記凝集混和槽に無機凝集剤を注入する無機凝集剤の供給手段と、
前記無機凝集剤を注入後の被処理水が導入されるフロック形成槽と、
前記フロック形成槽に、0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を注入する高分子凝集剤の供給手段と、を有することを特徴とする浄水処理装置。
An agglomeration mixing tank into which treated water is introduced from a supply source;
Inorganic flocculant supply means for injecting the inorganic flocculant into the flocculent mixing tank,
A floc-forming tank into which water to be treated after injecting the inorganic flocculant is introduced;
A polymer flocculant supply means for injecting a poly (meth) acrylate having a 0.1% salt viscosity of 2 to 5 mPa · s and an anion equivalent of −9.0 or less into the floc-forming tank; The water purification apparatus characterized by having.
前記無機凝集剤の供給手段は、前記無機凝集剤を被処理水1リットル当たり10〜200mg注入し、
前記高分子凝集剤の供給手段は、前記ポリ(メタ)アクリル酸塩を被処理水1リットル当たり0.05〜20mg注入する請求項5に記載の浄水処理装置。
The inorganic flocculant supply means injects 10 to 200 mg of the inorganic flocculant per liter of water to be treated,
The water purification apparatus according to claim 5, wherein the polymer flocculant supply means injects 0.05 to 20 mg of the poly (meth) acrylate per liter of water to be treated.
前記ポリ(メタ)アクリル酸塩を注入後の被処理水と、当該被処理水の沈殿物のいずれか一方又は両方を返送する返送手段を更に有し、
前記返送手段は、前記凝集混和槽と前記供給源の間のいずれか1か所以上の返送場所に、前記被処理水と前記沈殿物のいずれか一方又は両方を返送する請求項5又は6に記載の浄水処理装置。
The water to be treated after injecting the poly (meth) acrylate, and a return means for returning either or both of the precipitates of the water to be treated,
The return means returns either one or both of the treated water and the precipitate to any one or more return places between the agglomeration mixing tank and the supply source. The water purification apparatus as described.
JP2015226967A 2015-11-19 2015-11-19 Water purification method and water purification device Active JP6197016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015226967A JP6197016B2 (en) 2015-11-19 2015-11-19 Water purification method and water purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015226967A JP6197016B2 (en) 2015-11-19 2015-11-19 Water purification method and water purification device

Publications (2)

Publication Number Publication Date
JP2017094245A true JP2017094245A (en) 2017-06-01
JP6197016B2 JP6197016B2 (en) 2017-09-13

Family

ID=58803450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226967A Active JP6197016B2 (en) 2015-11-19 2015-11-19 Water purification method and water purification device

Country Status (1)

Country Link
JP (1) JP6197016B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340208A (en) * 2002-05-24 2003-12-02 Ebara Corp Water cleaning method and apparatus therefor
JP2004224998A (en) * 2003-01-27 2004-08-12 Mitsui Cytec Kk Method for producing acrylamide water-soluble polymer
JP2014128746A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340208A (en) * 2002-05-24 2003-12-02 Ebara Corp Water cleaning method and apparatus therefor
JP2004224998A (en) * 2003-01-27 2004-08-12 Mitsui Cytec Kk Method for producing acrylamide water-soluble polymer
JP2014128746A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination

Also Published As

Publication number Publication date
JP6197016B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
Koohestanian et al. The separation method for removing of colloidal particles from raw water
Liu et al. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water
JP5512068B2 (en) Water treatment method
JP5037002B2 (en) Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water
JP2011230038A (en) Water treatment apparatus
JP5364298B2 (en) Dispersant-containing water treatment method
Nan et al. The role of shear conditions on floc characteristics and membrane fouling in coagulation/ultrafiltration hybrid process–the effect of flocculation duration and slow shear force
JP7068773B2 (en) Water treatment agent, water treatment method and water treatment equipment
Sun et al. Effects of epichlorohydrin–dimethylamine on coagulation and membrane performance of ferric chloride in coagulation–ultrafiltration hybrid process
JP4004854B2 (en) Water purification method and apparatus
CN106103352A (en) Purification of waste water
JP2014128746A (en) Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination
JP2015136648A (en) Flocculation method
JP6197016B2 (en) Water purification method and water purification device
Ntwampe et al. The effect of water hardness on paint wastewater treatment by coagulation-flocculation
JP2019198806A (en) Water treatment method, and water treatment device
JP2012170911A (en) Method for forming initial mother flock when high speed coagulating sedimentation pond is started up
Shi et al. Improved Dissolved Air Flotation Performances Using Chitosan under Different Dosing Schemes.
Kim et al. Utilization of floc characteristics for the evaluation of seawater coagulation process
JP2014004508A (en) Water treatment apparatus and method for forming flocculate
JP7142540B2 (en) Water purification method and water purification device
CN110655230A (en) Treatment method of circulating water for copper material production
JP2022165279A (en) Coagulation membrane filtration treatment method
JP5993605B2 (en) Flocculant evaluation method and flocculant processing apparatus
JP7075718B2 (en) Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6197016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250