JP2019198806A - Water treatment method, and water treatment device - Google Patents

Water treatment method, and water treatment device Download PDF

Info

Publication number
JP2019198806A
JP2019198806A JP2018093053A JP2018093053A JP2019198806A JP 2019198806 A JP2019198806 A JP 2019198806A JP 2018093053 A JP2018093053 A JP 2018093053A JP 2018093053 A JP2018093053 A JP 2018093053A JP 2019198806 A JP2019198806 A JP 2019198806A
Authority
JP
Japan
Prior art keywords
water
treated
tank
polymer flocculant
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018093053A
Other languages
Japanese (ja)
Other versions
JP7083274B2 (en
Inventor
臨太郎 前田
Rintaro Maeda
臨太郎 前田
鳥羽 裕一郎
Yuichiro Toba
裕一郎 鳥羽
江口 正浩
Masahiro Eguchi
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2018093053A priority Critical patent/JP7083274B2/en
Publication of JP2019198806A publication Critical patent/JP2019198806A/en
Application granted granted Critical
Publication of JP7083274B2 publication Critical patent/JP7083274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

To provide a water treatment method capable of producing cleaner treated water.SOLUTION: The water treatment method comprises a process of agitating water to be treated to which an inorganic coagulant is added, in an agitation tank while maintaining the retention time of the water to be treated in the agitation tank not shorter than one minute, a process of adding a cationic polymer coagulant to the water to be treated extracted from the agitation tank, a process of adding an anionic polymer coagulant to the water to be treated to which a cationic polymer coagulant has been added, and a process of separating coagulated floc by solid/liquid separation in a sedimentation tank from the water to be treated to which the anionic polymer coagulant has been added.SELECTED DRAWING: Figure 1

Description

本発明は、凝集沈殿法による水処理方法及び装置に関する。   The present invention relates to a water treatment method and apparatus using a coagulation sedimentation method.

水処理装置の1つとして、用水処理や排水処理などに凝集沈殿装置が広く用いられている。凝集沈殿装置では、被処理水に鉄塩やアルミニウム塩等の無機凝集剤を添加することによって、被処理水に含まれる懸濁物質(SS)を凝結させて微細フロックを形成させ、次いで高分子凝集剤を添加することで粗大化した凝集フロックを形成し、沈殿槽内で汚泥と処理水とに固液分離する。   As one of the water treatment devices, a coagulation sedimentation device is widely used for water treatment, wastewater treatment, and the like. In the coagulation sedimentation apparatus, an inorganic flocculant such as iron salt or aluminum salt is added to the water to be treated to condense suspended substances (SS) contained in the water to be treated to form fine flocs, and then polymer. By adding a flocculant, coarsened flocs are formed, and the liquid is separated into sludge and treated water in a sedimentation tank.

特許文献1には、無機凝集剤、カチオン系高分子凝集剤及びアニオン系高分子凝集剤を被処理水に添加する水処理方法が開示される。この文献によれば、カチオン系高分子凝集剤は、無機凝集剤と共に添加するか、又は無機凝集剤を添加した直後(例えば1秒〜1分特に5秒〜30秒)又はそれ以降に添加する。その後、アニオン系高分子凝集剤が添加される。   Patent Document 1 discloses a water treatment method in which an inorganic flocculant, a cationic polymer flocculant, and an anionic polymer flocculant are added to water to be treated. According to this document, the cationic polymer flocculant is added together with the inorganic flocculant, or is added immediately after the inorganic flocculant is added (for example, 1 second to 1 minute, particularly 5 seconds to 30 seconds) or thereafter. . Thereafter, an anionic polymer flocculant is added.

国際公開第2014/038537号International Publication No. 2014/038537

しかしながら、本発明者らの検討によれば、無機凝集剤を添加してからカチオン系高分子凝集剤を添加するまでの時間によっては、処理水のSS濃度が高くなり、処理水の清澄さが損なわれることがあった。   However, according to the study by the present inventors, depending on the time from the addition of the inorganic flocculant to the addition of the cationic polymer flocculant, the SS concentration of the treated water is increased, and the clarification of the treated water is reduced. It was sometimes damaged.

本発明の目的は、より清澄な処理水を得ることのできる水処理方法及び水処理装置を提供することである。   The objective of this invention is providing the water treatment method and water treatment apparatus which can obtain a clearer treated water.

本発明の一態様によれば、
無機凝集剤を添加した被処理水を攪拌槽内で攪拌する工程であって、該被処理水の攪拌槽における滞留時間を1分以上とする工程と、
前記撹拌槽から抜き出された被処理水に、カチオン系高分子凝集剤を添加する工程と、
カチオン系高分子凝集剤が添加された被処理水に、アニオン系高分子凝集剤を添加する工程と、
沈殿槽において、アニオン系高分子凝集剤が添加された被処理水から、固液分離によって凝集フロックを分離する工程と
を含む、水処理方法が提供される。
According to one aspect of the invention,
A step of stirring the water to be treated to which the inorganic flocculant has been added in a stirring tank, wherein the residence time in the stirring tank of the water to be treated is 1 minute or more;
Adding a cationic polymer flocculant to the water to be treated extracted from the stirring tank;
Adding an anionic polymer flocculant to the water to be treated with the cationic polymer flocculant added;
And a step of separating the aggregated flocs by solid-liquid separation from the water to be treated to which the anionic polymer flocculant is added in the precipitation tank.

本発明の別の態様によれば、
無機凝集剤を添加した被処理水を槽内で攪拌する攪拌槽であって、該被処理水の滞留時間が1分以上となるよう構成された攪拌槽と、
前記撹拌槽から排出された被処理水に、カチオン系高分子凝集剤を添加する手段と、
カチオン系高分子凝集剤が添加された被処理水に、アニオン系高分子凝集剤を添加する手段と、
アニオン系高分子凝集剤が添加された被処理水から、固液分離によって凝集フロックを分離する沈殿槽と
を含む、水処理装置が提供される。
According to another aspect of the invention,
A stirring tank for stirring the water to be treated to which the inorganic flocculant has been added in the tank, the stirring tank being configured so that the residence time of the water to be treated is 1 minute or longer;
Means for adding a cationic polymer flocculant to the water to be treated discharged from the stirring tank;
Means for adding an anionic polymer flocculant to the water to be treated with the cationic polymer flocculant;
There is provided a water treatment apparatus including a settling tank for separating agglomerated flocs by solid-liquid separation from water to be treated to which an anionic polymer flocculant is added.

本発明によれば、より清澄な処理水を得ることのできる水処理方法及び水処理装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the water treatment method and water treatment apparatus which can obtain clearer treated water are provided.

本発明に係る水処理装置の一形態を示す概略構成図である。It is a schematic block diagram which shows one form of the water treatment apparatus which concerns on this invention. 比較例A1で用いた水処理装置の概略構成図である。It is a schematic block diagram of the water treatment apparatus used by comparative example A1. 試験Aの結果を示すグラフである。10 is a graph showing the results of test A. 試験Bの結果を示すグラフである。10 is a graph showing the results of test B.

本発明に係る水処理方法は、次の工程を含む。
工程1:無機凝集剤を添加した被処理水を攪拌槽内で攪拌する工程であって、該被処理水の攪拌槽における滞留時間を1分以上とする工程。
工程2:前記撹拌槽から抜き出された被処理水に、カチオン系高分子凝集剤を添加する工程。
工程3:カチオン系高分子凝集剤が添加された被処理水に、アニオン系高分子凝集剤を添加する工程。
工程4:沈殿槽において、アニオン系高分子凝集剤が添加された被処理水から、固液分離によって凝集フロックを分離する工程。
The water treatment method according to the present invention includes the following steps.
Step 1: A step of stirring the water to be treated to which the inorganic flocculant has been added in a stirring tank, wherein the residence time in the stirring tank of the water to be treated is 1 minute or longer.
Step 2: A step of adding a cationic polymer flocculant to the water to be treated extracted from the stirring tank.
Step 3: A step of adding an anionic polymer flocculant to the water to be treated to which a cationic polymer flocculant has been added.
Process 4: The process of isolate | separating an aggregation floc by solid-liquid separation from the to-be-processed water to which the anionic polymer flocculant was added in a precipitation tank.

〔原水〕
水処理装置に供給する被処理水(原水)については、特に制限はなく、凝集沈殿の分野で公知の原水を、適宜使用できる。原水として、例えば、電子産業等でのエッチング工程で排出されるフッ素含有排水、めっき工場のめっき排水、発電所の排煙脱硫排水、工場から排出されるボイラーブロー排水や、染色工場の染色排水などの排水が挙げられる。
[Raw water]
There is no restriction | limiting in particular about the to-be-processed water (raw water) supplied to a water treatment apparatus, A well-known raw water can be used suitably in the field | area of aggregation precipitation. Raw water, for example, fluorine-containing wastewater discharged from the etching process in the electronics industry, plating wastewater from plating plants, flue gas desulfurization wastewater from power plants, boiler blow wastewater discharged from plants, dyeing wastewater from dyeing plants, etc. Waste water.

〔無機凝集剤〕
無機凝集剤としては、硫酸アルミニウムやポリ塩化アルミニウム(PAC)などのアルミニウム塩、塩化第二鉄やポリ硫酸第二鉄などの第二鉄塩の酸性溶液など、凝集沈殿の分野で公知の無機凝集剤を使用できる。
[Inorganic flocculant]
Examples of inorganic flocculants include inorganic salts known in the field of coagulation precipitation, such as aluminum salts such as aluminum sulfate and polyaluminum chloride (PAC), and acidic solutions of ferric salts such as ferric chloride and polyferric sulfate. Agents can be used.

〔カチオン系高分子凝集剤〕
カチオン系高分子凝集剤は、凝集沈殿の分野で公知のものを適宜使用することができる。カチオン系高分子凝集剤を構成するカチオン性モノマーとしては、例えば、ジメチルアミノエチルアクリレート・塩化メチル四級塩(DAA)、ジメチルアミノエチルメタアクリレート塩化メチル4級塩(DAM)が挙げられる。ノニオン性モノマーとしては、例えばアクリルアミドを挙げることができる。
[Cationic polymer flocculant]
As the cationic polymer flocculant, those known in the field of aggregation and precipitation can be appropriately used. Examples of the cationic monomer constituting the cationic polymer flocculant include dimethylaminoethyl acrylate / methyl chloride quaternary salt (DAA) and dimethylaminoethyl methacrylate methyl chloride quaternary salt (DAM). Examples of nonionic monomers include acrylamide.

処理水のSS濃度の観点から、カチオン系高分子凝集剤のカチオン基比率(カチオン性モノマーとノニオン性モノマーの合計量に対するカチオン性モノマーの比率)は低いことが好ましく、特にカチオン基比率8モル%以下のカチオン系高分子凝集剤を使用することが好ましい。カチオン系高分子凝集剤のカチオン基比率は、例えば3モル%以上とすることができる。   From the viewpoint of the SS concentration of the treated water, the cationic group ratio of the cationic polymer flocculant (ratio of the cationic monomer to the total amount of the cationic monomer and nonionic monomer) is preferably low, and in particular, the cationic group ratio is 8 mol%. The following cationic polymer flocculants are preferably used. The cationic group ratio of the cationic polymer flocculant can be set to 3 mol% or more, for example.

カチオン系高分子凝集剤の重量平均分子量は、例えば、700万以上あるいは1000万以上とすることができ、また1500万以下とすることができる。一般的に分子量が大きいほど凝集能力に優れるが、排水種、汚泥脱水機種によっても最適分子量が異なるため、それらに応じて都度選定するのが良い。   The weight average molecular weight of the cationic polymer flocculant can be, for example, 7 million or more, 10 million or more, and 15 million or less. In general, the larger the molecular weight, the better the coagulation ability, but the optimum molecular weight varies depending on the drainage type and sludge dewatering model, so it is better to select each time accordingly.

カチオン系高分子凝集剤の被処理水への添加量は、例えば、0.3〜10mg/Lとすることが好ましい。添加量が0.3mg/L以上であると、カチオン系高分子凝集剤の効果(カチオン・アニオン系高分子凝集剤併用の効果)を得ることが容易であり、凝集物(ペレットであってもよい)を大きくすることが容易である。添加量を10mg/L超としてもよいが、その場合、添加量の増加に対して凝集物(ペレット)の粒径を大きくする効果は小さい。また、添加量を10mg/L以下とすることにより、後段設備への影響、例えば膜ろ過設備の閉塞、脱水後の汚泥剥離性の低下を容易に防止することができる。   The addition amount of the cationic polymer flocculant to the water to be treated is preferably 0.3 to 10 mg / L, for example. When the addition amount is 0.3 mg / L or more, it is easy to obtain the effect of the cationic polymer flocculant (the effect of the combined use of the cationic and anionic polymer flocculant), and the aggregate (even in the case of pellets) It is easy to make good. Although the addition amount may be more than 10 mg / L, in that case, the effect of increasing the particle size of the aggregate (pellet) with respect to the increase in the addition amount is small. Moreover, by making addition amount into 10 mg / L or less, the influence on a back | latter stage installation, for example, obstruction | occlusion of a membrane filtration installation, and the fall of the sludge peelability after spin-drying | dehydration can be prevented easily.

カチオン系高分子凝集剤は、予め水に溶解した溶液の状態で被処理水に添加することが好ましい。その溶液のカチオン系高分子凝集剤の濃度は、例えば0.05〜0.3w/v%である。   The cationic polymer flocculant is preferably added to the water to be treated in the form of a solution previously dissolved in water. The concentration of the cationic polymer flocculant in the solution is, for example, 0.05 to 0.3 w / v%.

〔アニオン系高分子凝集剤〕
アニオン系高分子凝集剤は、凝集沈殿の分野で公知のものを適宜使用することができる。アニオン系高分子凝集剤として、アニオン性モノマーとノニオン性モノマーとの共重合体からなるものを用いることができる。アニオン性モノマーは、例えば、アクリル酸である。ノニオン性モノマーは、例えば、アクリルアミドである。
[Anionic polymer flocculant]
As the anionic polymer flocculant, those known in the field of aggregation and precipitation can be appropriately used. As the anionic polymer flocculant, there can be used those made of a copolymer of an anionic monomer and a nonionic monomer. An anionic monomer is acrylic acid, for example. The nonionic monomer is, for example, acrylamide.

アニオン系高分子凝集剤のアニオン基比率(アニオン性モノマーとノニオン性モノマーの合計量に対するアニオン性モノマーの比率)の最適値は原水の性状や凝集を行う際のpHにより異なる。   The optimum value of the anion group ratio of the anionic polymer flocculant (the ratio of the anionic monomer to the total amount of the anionic monomer and the nonionic monomer) varies depending on the properties of the raw water and the pH at the time of aggregation.

アニオン系高分子凝集剤の重量平均分子量は、例えば、1000万以上あるいは1500万以上とすることができ、また2500万以下とすることができる。カチオン系高分子凝集剤同様に、一般的に分子量が大きいほど凝集能力に優れるが、排水種、汚泥脱水機種によっても最適分子量が異なるため、それらに応じて都度選定するのが良い。   The weight average molecular weight of the anionic polymer flocculant can be, for example, 10 million or more or 15 million or more, and can be 25 million or less. Similar to the cationic polymer flocculant, the larger the molecular weight, the better the coagulation ability. However, the optimum molecular weight differs depending on the drainage species and sludge dewatering model, so it is better to select each time accordingly.

アニオン系高分子凝集剤の被処理水への添加量は、例えば、0.3〜10mg/Lとすることが好ましい。添加量が0.3mg/L以上であると、凝集物(ペレットであってもよい)を大きくすることが容易である。添加量を10mg/L超としてもよいが、その場合、添加量の増加に対して凝集物の粒径を大きくする効果は少ない。また、添加量を10mg/L以下とすることにより、後段設備への影響、例えば膜ろ過設備の閉塞、脱水後の汚泥剥離性の低下を容易に防止することができる。   The amount of the anionic polymer flocculant added to the water to be treated is preferably 0.3 to 10 mg / L, for example. When the addition amount is 0.3 mg / L or more, it is easy to enlarge the aggregate (may be a pellet). The addition amount may be more than 10 mg / L, but in that case, the effect of increasing the particle size of the aggregate is small with respect to the increase in the addition amount. Moreover, by making addition amount into 10 mg / L or less, the influence on a back | latter stage installation, for example, obstruction | occlusion of a membrane filtration equipment, and the fall of the sludge peeling property after spin-drying | dehydration can be prevented easily.

アニオン系高分子凝集剤は、予め水に溶解した溶液の状態で被処理水に添加することが好ましい。その溶液のアニオン系高分子凝集剤の濃度は、0.05〜0.3w/v%である。   The anionic polymer flocculant is preferably added to the water to be treated in the form of a solution previously dissolved in water. The concentration of the anionic polymer flocculant in the solution is 0.05 to 0.3 w / v%.

〔沈殿槽〕
沈殿槽として、凝集沈殿の分野で公知の沈殿槽を使用することができる。例えば被処理水が沈殿槽内に流入する前に凝集反応を完了させ、その後に沈殿槽に流入させるタイプの沈殿槽がある。また、沈殿槽内で凝集及び沈殿を行うタイプの沈殿槽がある。後者のタイプの沈殿槽として、特に、沈殿槽内で緩速攪拌を行うための攪拌翼を備え、沈殿槽内で凝集及び造粒操作を行う沈殿槽がある。沈殿槽で凝集と造粒を行う沈殿槽では、沈殿槽内で高密度で沈降速度の高い凝集物を形成できるため、より高い流速で水処理を行うことができる。
[Settling tank]
As a precipitation tank, a well-known precipitation tank can be used in the field of aggregation precipitation. For example, there is a type of settling tank in which the agglomeration reaction is completed before the water to be treated flows into the settling tank, and then flows into the settling tank. There is also a type of precipitation tank in which aggregation and precipitation are performed in the precipitation tank. As the latter type of precipitation tank, in particular, there is a precipitation tank that is equipped with a stirring blade for performing slow stirring in the precipitation tank and that performs aggregation and granulation operations in the precipitation tank. In a sedimentation tank in which aggregation and granulation are performed in the sedimentation tank, aggregates having a high density and a high sedimentation speed can be formed in the sedimentation tank, so that water treatment can be performed at a higher flow rate.

〔水処理装置〕
無機凝集剤、カチオン系高分子凝集剤及びアニオン系高分子凝集剤は、この順に被処理水に添加される。したがって、工程1は、カチオン系高分子凝集剤及びアニオン系高分子凝集剤を添加する前(工程2の前、かつ工程3の前)に行う。また、工程2は、アニオン系高分子凝集剤を添加する前(工程3の前)に行う。
[Water treatment equipment]
The inorganic flocculant, the cationic polymer flocculant, and the anionic polymer flocculant are added to the water to be treated in this order. Therefore, step 1 is performed before the cationic polymer flocculant and the anionic polymer flocculant are added (before step 2 and before step 3). Step 2 is performed before the anionic polymer flocculant is added (before Step 3).

図1を用いて水処理方法及び水処理装置の例について説明するが、本発明はこれによって限定されるものではない。この水処理装置は、詳しくは「凝集沈殿装置」と呼ぶことができるので、以下において「凝集沈殿装置」と呼ぶことがある。また、図1中の「カチオンポリマー」及び「アニオンポリマー」は、それぞれカチオン系高分子凝集剤及びアニオン系高分子凝集剤を意味する(図2も同様)。   Although the example of a water treatment method and a water treatment apparatus is demonstrated using FIG. 1, this invention is not limited by this. Since this water treatment apparatus can be specifically referred to as a “aggregation precipitation apparatus”, it may be referred to as a “aggregation precipitation apparatus” below. In addition, “cationic polymer” and “anionic polymer” in FIG. 1 mean a cationic polymer flocculant and an anionic polymer flocculant, respectively (the same applies to FIG. 2).

・工程1
以下、工程1で用いる攪拌槽を、「無機凝集剤反応槽」あるいは「反応槽」と呼ぶことがある。反応槽10に、ラインL1から原水が供給される。原水を他の処理に付した後に、反応槽10に供給することもできる。他の処理は、例えば、原水に溶解しているフッ素や金属などのイオンから懸濁物質を形成する処理である。
Process 1
Hereinafter, the stirring tank used in Step 1 may be referred to as “inorganic flocculant reaction tank” or “reaction tank”. Raw water is supplied to the reaction tank 10 from the line L1. The raw water can be supplied to the reaction tank 10 after being subjected to other treatments. The other treatment is, for example, a treatment for forming a suspended substance from ions such as fluorine and metal dissolved in raw water.

反応槽10において、被処理水に、ラインL6から無機凝集剤(図1においてはPAC)を添加し、ラインL7からpH調整のためのアルカリ(図1においては苛性ソーダ)を添加する。反応槽10に備わる攪拌機11によって、攪拌を行う。この攪拌は、無機凝集剤を添加する反応槽において、凝集剤を均一に分散させ、微細フロックを形成させるために行う。未反応粒子の残留を抑制する観点からは、この攪拌の攪拌強度G値が高いことが好ましい。また反応槽で形成されたフロックは小さく破壊の心配がないことから、反応槽における攪拌強度G値は高くてよい。そのため、反応槽10における攪拌強度G値は100〜500s−1とするのが好ましい。攪拌強度G値は下式によって求めることができる。 In the reaction tank 10, an inorganic flocculant (PAC in FIG. 1) is added to the water to be treated from the line L6, and an alkali for pH adjustment (caustic soda in FIG. 1) is added from the line L7. Stirring is performed by a stirrer 11 provided in the reaction vessel 10. This agitation is performed to uniformly disperse the flocculant and form fine flocs in the reaction vessel to which the inorganic flocculant is added. From the viewpoint of suppressing residual unreacted particles, it is preferable that the stirring strength G value of this stirring is high. Further, since the floc formed in the reaction tank is small and there is no fear of destruction, the stirring strength G value in the reaction tank may be high. Therefore, the stirring intensity G value in the reaction vessel 10 is preferably 100 to 500 s −1 . The stirring intensity G value can be obtained by the following equation.

Figure 2019198806
Figure 2019198806

なお、図1に示されるようにラインL6は反応槽10に接続してもよいが、その必要はなく、例えばラインL1に接続してもよい。すなわち、反応槽10に流入する前の原水(被処理水)に、無機凝集剤を添加してもよい。   As shown in FIG. 1, the line L6 may be connected to the reaction vessel 10, but it is not necessary, and for example, it may be connected to the line L1. That is, an inorganic flocculant may be added to the raw water (treated water) before flowing into the reaction tank 10.

無機凝集剤を添加した被処理水の、攪拌槽すなわち反応槽10における滞留時間(以下、「工程1の滞留時間」ということがある)は、1分以上とする。この滞留時間は、1分以上である限り、排水種や除去対象物質に応じて決めることができる。例えば原水がフッ素含有排水の場合には、この滞留時間を15分以上とすることが、残留するフッ素の除去に効果的である。ただしこの場合でも、1分以上の滞留時間があれば、処理水のSS濃度の面では清澄な処理水を得ることができる。無機凝集剤は凝集フロックの核を形成する機能を果たす。そのため、この滞留時間が1分に満たない場合には、凝集フロックの核を十分に形成できず、その後カチオン系高分子凝集剤及びアニオン系高分子凝集剤を添加しても、粗大で強度の高いフロックを十分に形成することができず、清澄な処理水を得ること、また高濃度の濃縮汚泥を得ることが難しい。   The residence time of the water to be treated to which the inorganic flocculant is added in the stirring vessel, that is, the reaction vessel 10 (hereinafter sometimes referred to as “residence time of step 1”) is 1 minute or longer. As long as this residence time is 1 minute or longer, the residence time can be determined according to the drainage species and the substance to be removed. For example, when the raw water is fluorine-containing wastewater, setting the residence time to 15 minutes or more is effective for removing residual fluorine. However, even in this case, if the residence time is 1 minute or longer, clear treated water can be obtained in terms of the SS concentration of treated water. The inorganic flocculant functions to form a core of the floc floc. Therefore, if this residence time is less than 1 minute, the flocculent floc nuclei cannot be sufficiently formed, and even if a cationic polymer flocculant and an anionic polymer flocculant are added thereafter, they are coarse and strong. High floc cannot be sufficiently formed, and it is difficult to obtain clear treated water and to obtain concentrated sludge having a high concentration.

工程1の滞留時間が1分以上となるように、反応槽10を設計することができる。   The reaction vessel 10 can be designed so that the residence time in step 1 is 1 minute or longer.

・工程2
反応槽10から抜き出された被処理水は、ラインL2を経て、後段の一次凝集槽20に送られる。一次凝集槽20は、必要に応じて攪拌機21を備えた槽である。一次凝集槽ではカチオン系高分子凝集剤のノニオン鎖と無機凝集剤由来の微細フロックが水素結合によって結合し、フロックの粗大化が行われる。一次凝集槽における攪拌強度G値は、フロックの破壊を抑えるために、反応槽におけるG値より小さくてもよい。あるいは、後にアニオン系高分子凝集剤を添加し更にフロックの粗大化を行うため、一次凝集槽におけるG値は、反応槽と同様に高くてもよい。そのため一次凝集槽20における攪拌強度G値は10〜500s−1とするのが好ましい。
Process 2
The water to be treated extracted from the reaction tank 10 is sent to the primary flocculation tank 20 at the subsequent stage via the line L2. The primary aggregation tank 20 is a tank provided with a stirrer 21 as necessary. In the primary flocculation tank, the nonionic chain of the cationic polymer flocculant and the fine flocs derived from the inorganic flocculant are bonded by hydrogen bonding, and the flocs are coarsened. The stirring strength G value in the primary flocculation tank may be smaller than the G value in the reaction tank in order to suppress breakage of flocs. Alternatively, since an anionic polymer flocculant is added later to further coarsen the floc, the G value in the primary flocculation tank may be as high as in the reaction tank. Therefore, the stirring strength G value in the primary flocculation tank 20 is preferably 10 to 500 s −1 .

一次凝集槽20に流入した被処理水には、ラインL8からカチオン系高分子凝集剤が添加され、その結果、凝集物(一次凝集フロック)が形成される。一次凝集槽20において、攪拌機21を用いて撹拌を行うことができる。なお、図1に示されるようにラインL8を一次凝集槽20に接続してもよいが、その必要はなく、例えばラインL2に接続してもよい。すなわち、反応槽10より下流、かつ一次凝集槽20より上流で、被処理水に、カチオン系高分子凝集剤を添加してもよい。特に断りの無い限り、本明細書において「上流」及び「下流」は、被処理水の流れ方向を基準とする。また、攪拌機21は必ずしも必要ではない。さらに一次凝集槽20も必ずしも必要ではない。この場合、例えば配管内でカチオン系高分子凝集剤の添加を行い、ラインミキサーなどを用いて混合を行ってもよい。   A cationic polymer flocculant is added from the line L8 to the water to be treated which has flowed into the primary flocculation tank 20, and as a result, an aggregate (primary flocculation floc) is formed. In the primary flocculation tank 20, stirring can be performed using a stirrer 21. As shown in FIG. 1, the line L8 may be connected to the primary flocculation tank 20, but this is not necessary, and for example, it may be connected to the line L2. That is, a cationic polymer flocculant may be added to the water to be treated downstream from the reaction tank 10 and upstream from the primary flocculation tank 20. Unless otherwise specified, “upstream” and “downstream” in this specification are based on the flow direction of the water to be treated. Moreover, the stirrer 21 is not necessarily required. Further, the primary flocculation tank 20 is not necessarily required. In this case, for example, a cationic polymer flocculant may be added in a pipe and mixed using a line mixer or the like.

カチオン系高分子凝集剤を添加してから、アニオン系高分子凝集剤を添加するまでの、水処理装置内での被処理水の滞留時間(以下、「工程2の滞留時間」ということがある。)は、好ましくは1分以上、更に好ましくは2分以上である。工程2の滞留時間が1分以上の場合、強度が高く粗大な凝集フロックを得ることが容易で、清澄な処理水、また高濃度の濃縮汚泥を得ることが容易である。この場合、無機凝集剤由来のフロックとカチオン系高分子凝集剤とが良好に結合した後に、フロックがアニオン系高分子凝集剤に吸着される。したがって、カチオン系及びアニオン系高分子凝集剤を併用したことによる架橋構造を得ることが容易である。その結果、強度が高く粗大な凝集フロックを得ることが容易となる。   Residence time of water to be treated in the water treatment apparatus from the addition of the cationic polymer flocculant to the addition of the anionic polymer flocculant (hereinafter referred to as “residence time of step 2”) .) Is preferably 1 minute or longer, more preferably 2 minutes or longer. When the residence time in step 2 is 1 minute or longer, it is easy to obtain a coarse aggregated floc having a high strength, and it is easy to obtain clear treated water and concentrated sludge having a high concentration. In this case, after the flocs derived from the inorganic flocculant and the cationic polymer flocculant are well bonded, the floc is adsorbed by the anionic polymer flocculant. Therefore, it is easy to obtain a crosslinked structure by using a cationic and anionic polymer flocculant in combination. As a result, it becomes easy to obtain a coarse aggregate floc having high strength.

工程2の滞留時間を1分以上とするために、カチオン系高分子凝集剤が添加された被処理水の、一次凝集槽20における滞留時間を1分以上とすることができる。この条件が満たされるように一次凝集槽20を設計することができる。   In order to make the residence time of the process 2 1 minute or more, the residence time in the primary coagulation tank 20 of the water to be treated to which the cationic polymer flocculant is added can be 1 minute or more. The primary flocculation tank 20 can be designed so that this condition is satisfied.

反応槽10から抜き出された被処理水にカチオン系高分子凝集剤を添加する手段は、一次凝集槽20、ラインL2及びL8を含む。一次凝集槽20を用いない場合、当該手段は、ラインL2と、ラインL8(ただしラインL2に接続される)とを含み、更に混合のためのラインミキサーなどを用いることもある。   Means for adding the cationic polymer flocculant to the water to be treated extracted from the reaction tank 10 includes a primary coagulation tank 20 and lines L2 and L8. When the primary flocculation tank 20 is not used, the means includes a line L2 and a line L8 (however, connected to the line L2), and a line mixer for mixing may be used.

・工程3
一次凝集槽20からラインL3に抜き出した被処理水には、ラインL9からアニオン系高分子凝集剤が添加される。沈殿槽30への被処理水供給流路(ラインL3)において、アニオン系高分子凝集剤の添加を行うことができる。この場合、ラインL9をラインL3に接続する。あるいは、沈殿槽30において、アニオン系高分子凝集剤の添加を行うことができる。この場合、例えば、センターウェルを備える沈殿槽(不図示)を沈殿槽30として用い、ラインL9からセンターウェル内の被処理水にアニオン系高分子凝集剤を添加することができる。
Process 3
An anionic polymer flocculant is added from the line L9 to the water to be treated extracted from the primary flocculation tank 20 to the line L3. In the treated water supply channel (line L3) to the settling tank 30, an anionic polymer flocculant can be added. In this case, the line L9 is connected to the line L3. Alternatively, an anionic polymer flocculant can be added in the precipitation tank 30. In this case, for example, a precipitation tank (not shown) provided with a center well can be used as the precipitation tank 30, and an anionic polymer flocculant can be added from the line L9 to the water to be treated in the center well.

カチオン系高分子凝集剤が添加された被処理水にアニオン系高分子凝集剤を添加する手段は、ラインL3及びL9を含む。あるいは、当該手段はラインL3と、上記センターウェルと、ラインL9(ただし上記センターウェルにアニオン系高分子凝集剤を添加できるよう配置される)を含む。   Means for adding the anionic polymer flocculant to the water to be treated to which the cationic polymer flocculant has been added includes lines L3 and L9. Alternatively, the means includes a line L3, the center well, and a line L9 (provided that an anionic polymer flocculant can be added to the center well).

・工程4
アニオン系高分子凝集剤が添加された被処理水から、固液分離によって凝集フロックを分離するために、沈殿槽30を用いる。アニオン系高分子凝集剤が添加された被処理水は、ラインL3を経て(あるいは沈殿槽内のセンターウェルを経て)、沈殿槽30に、その下部もしくは底部から流入する。被処理水の上昇流によって、スラッジブランケットZ1が形成される。本例における沈殿槽30は造粒型の沈殿槽であり、この沈殿槽においては、アニオン系高分子凝集剤が添加された被処理水を沈殿槽内で撹拌することによって凝集と造粒を行い、ペレット状汚泥でスラッジブランケット(ペレットブランケット)Z1を形成させる。この攪拌のために、沈殿槽30には、モータMによって駆動される被処理水攪拌用の攪拌機31が設けられる。スラッジブランケットZ1の上に、清澄水の層Z2が形成される。清澄水層Z2から、清澄水が、処理水としてラインL4に排出される。このようにして、凝集フロック(ペレット状汚泥)が、固液分離によって、清澄水から分離される。
Process 4
In order to separate the flocs from the water to be treated to which the anionic polymer flocculant has been added, the precipitation tank 30 is used. The water to be treated to which the anionic polymer flocculant is added flows into the precipitation tank 30 from the lower part or the bottom part through the line L3 (or through the center well in the precipitation tank). The sludge blanket Z1 is formed by the upward flow of the water to be treated. The settling tank 30 in this example is a granulation type settling tank. In this settling tank, the water to be treated to which the anionic polymer flocculant is added is agglomerated and granulated by stirring in the settling tank. The sludge blanket (pellet blanket) Z1 is formed with pellet sludge. For this stirring, the settling tank 30 is provided with a stirrer 31 for stirring the water to be treated driven by the motor M. A layer Z2 of clarified water is formed on the sludge blanket Z1. From the clarified water layer Z2, clarified water is discharged to the line L4 as treated water. In this way, the aggregated floc (pellet sludge) is separated from the clarified water by solid-liquid separation.

沈殿槽30の側面には、開口部32を介して沈殿槽30の内部と連通する濃縮部33が設けられている。濃縮部33は、沈殿槽とは別の槽を形成している。沈殿槽30内のペレット状汚泥(スラッジブランケットZ1の上部で浮遊しているペレット)の一部をオーバーフローさせて濃縮部33に移し、それを濃縮部33の内部で沈降させて濃縮する。濃縮部33の下部には、濃縮部33に堆積した濃縮汚泥(高濃度に濃縮されたペレット)の層Z3から濃縮汚泥を引き抜くためのラインL5が接続される。ポンプPにより、ラインL5から濃縮汚泥が凝集沈殿装置の外部に排出される。   A concentrating part 33 that communicates with the inside of the precipitation tank 30 through an opening 32 is provided on a side surface of the precipitation tank 30. The concentration unit 33 forms a tank different from the precipitation tank. Part of the pellet sludge in the sedimentation tank 30 (pellets floating above the sludge blanket Z1) is overflowed and transferred to the concentration unit 33, where it is sedimented and concentrated in the concentration unit 33. Connected to the lower part of the concentration unit 33 is a line L5 for extracting the concentrated sludge from the layer Z3 of concentrated sludge (pellet concentrated to a high concentration) accumulated in the concentration unit 33. The pump P discharges the concentrated sludge from the line L5 to the outside of the coagulation sedimentation apparatus.

〔試験A〕
<実施例A1〜A4>
図1に示す構成を有する水処理装置を用いて連続通水試験を実施した。すなわちPACとカチオン系高分子凝集剤は別々の槽で添加した。試験条件は次のとおりとした。
[Test A]
<Examples A1 to A4>
A continuous water flow test was carried out using a water treatment apparatus having the configuration shown in FIG. That is, PAC and cationic polymer flocculant were added in separate tanks. The test conditions were as follows.

試験条件
原水:カオリン模擬排水(カオリンを濃度100mg/Lで含む。模擬排水作成用の水は地下水をろ過したものを使用した。導電率:0.3mS/cm)。
反応槽及び一次凝集槽の容量:それぞれ23.8L。
反応槽及び一次凝集槽における攪拌強度G値:それぞれ105s−1
原水通水量:
・実施例A1:40L/h(沈殿槽通水LV(線速度):5m/h、反応槽及び一次凝集槽における滞留時間:それぞれ36.4分)。
・実施例A2:80L/h(沈殿槽通水LV:10m/h、反応槽及び一次凝集槽における滞留時間:それぞれ18.2分)。
・実施例A3:120L/h(沈殿槽通水LV:15m/h、反応槽及び一次凝集槽における滞留時間:それぞれ12.1分)。
・実施例A4:240L/h(沈殿槽通水LV:30m/h、反応槽及び一次凝集槽における滞留時間:それぞれ6.1分)。
PAC添加量(添加後の被処理水中の濃度):120mg/L。
カチオン系高分子凝集剤添加量(添加後の被処理水中の濃度):0.5mg/L。
カチオン系高分子凝集剤のカチオン基比率:8モル%。
アニオン系高分子凝集剤添加量(添加後の被処理水中の濃度):1.0mg/L。
アニオン系高分子凝集剤のアニオン基比率:4モル%。
沈殿槽径:φ(直径)100mm。
Test condition raw water: Kaolin simulated drainage (containing kaolin at a concentration of 100 mg / L. The water for creating simulated drainage was groundwater filtered. Conductivity: 0.3 mS / cm).
Capacity of the reaction tank and the primary flocculation tank: 23.8 L each.
Agitation strength G value in the reaction tank and the primary flocculation tank: 105 s −1 respectively.
Raw water flow rate:
Example A1: 40 L / h (precipitation tank water flow LV (linear velocity): 5 m / h, residence time in the reaction tank and primary coagulation tank: 36.4 minutes each).
Example A2: 80 L / h (precipitation tank water flow LV: 10 m / h, residence time in the reaction tank and primary coagulation tank: 18.2 minutes each).
Example A3: 120 L / h (precipitation tank water flow LV: 15 m / h, residence time in the reaction tank and primary coagulation tank: 12.1 minutes each).
Example A4: 240 L / h (precipitation tank water flow LV: 30 m / h, residence time in the reaction tank and primary coagulation tank: 6.1 minutes each).
PAC addition amount (concentration in treated water after addition): 120 mg / L.
Cationic polymer flocculant addition amount (concentration in treated water after addition): 0.5 mg / L.
Cationic group ratio of cationic polymer flocculant: 8 mol%.
Anionic polymer flocculant addition amount (concentration in treated water after addition): 1.0 mg / L.
Anionic group ratio of anionic polymer flocculant: 4 mol%.
Precipitation tank diameter: φ (diameter) 100 mm.

なお、沈殿槽の通水LVは、沈殿槽のスラッジブランケットZ1部における流路断面積を基準とする。すなわち、この通水LVを算出するにあたっては、濃縮部33は考慮しない。   In addition, the water flow LV of the settling tank is based on the flow path cross-sectional area in the sludge blanket Z1 portion of the settling tank. That is, in calculating this water flow LV, the concentration unit 33 is not considered.

<比較例A1〜A4>
図2に示す水処理装置を用いて連続通水試験を実施した。この水処理装置は、実施例A1で用いた水処理装置に次の改造を加えたものである。すなわち、原水を、ラインL2から供給した。また、PAC供給ラインL6とアルカリ供給ラインL7を、一次凝集槽20に接続した。反応槽10は用いなかった。
<Comparative Examples A1 to A4>
A continuous water flow test was performed using the water treatment apparatus shown in FIG. This water treatment apparatus is obtained by adding the following modification to the water treatment apparatus used in Example A1. That is, raw water was supplied from the line L2. Further, the PAC supply line L6 and the alkali supply line L7 were connected to the primary flocculation tank 20. The reaction vessel 10 was not used.

すなわち本例では、PAC及びカチオン系高分子凝集剤を同じ槽において被処理水に添加した。換言すれば、PACとカチオン系高分子凝集剤とを、実質的に同時に被処理水に添加した。   That is, in this example, PAC and cationic polymer flocculant were added to the water to be treated in the same tank. In other words, PAC and the cationic polymer flocculant were added to the water to be treated substantially simultaneously.

比較例A1〜A4において、上記以外は実施例A1〜A4とそれぞれ同様にして、連続通水試験を実施した。したがって、比較例A1〜A4において、一次凝集槽における滞留時間は、それぞれ実施例A1〜A4と同じである。   In Comparative Examples A1 to A4, a continuous water flow test was performed in the same manner as in Examples A1 to A4 except for the above. Therefore, in Comparative Examples A1 to A4, the residence times in the primary flocculation tank are the same as those in Examples A1 to A4, respectively.

図3に、試験結果を示す。図3において、横軸は沈殿槽30の通水LV、縦軸は処理水のSS濃度である。図3中、「別添加」は実施例A1〜A4のデータを意味し、「同時添加」は比較例A1〜A4のデータを意味する。   FIG. 3 shows the test results. In FIG. 3, the horizontal axis represents the water flow LV of the settling tank 30, and the vertical axis represents the SS concentration of the treated water. In FIG. 3, “separate addition” means data of Examples A1 to A4, and “simultaneous addition” means data of Comparative Examples A1 to A4.

無機凝集剤とカチオン系高分子凝集剤を同時に(同じ反応槽に)添加する場合よりも、別々に(別々の反応槽に)添加する場合のほうが、清澄な処理水を得ることができることが明らかとなった。また処理水SS濃度の差(同時添加の場合と別添加の場合との間の差)は、沈殿槽通水LVが上昇するほど顕著となった。   It is clear that clear treated water can be obtained when adding the inorganic flocculant and the cationic polymer flocculant separately (in the same reaction tank) separately (in separate reaction tanks). It became. Moreover, the difference of the treated water SS density | concentration (difference between the case of simultaneous addition and the case of another addition) became so remarkable that the sedimentation tank water flow LV increased.

さらに、沈殿槽通水LVが30m/hの試験(実施例A4及び比較例A4)において、スラッジブランケットZ1部から越流した汚泥を30分沈降濃縮させて、濃縮汚泥を引抜いた。それぞれの濃縮汚泥の汚泥濃度を測定したところ、次のとおりであった。
同時添加(比較例A4)の場合の汚泥濃度:2.4質量%。
別添加(実施例A4)の場合の汚泥濃度:3.5質量%。
Furthermore, in the test (Example A4 and Comparative Example A4) in which the sedimentation tank water flow LV was 30 m / h, the sludge overflowed from the sludge blanket Z1 part was settled and concentrated for 30 minutes, and the concentrated sludge was extracted. It was as follows when the sludge density | concentration of each concentrated sludge was measured.
Sludge concentration in the case of simultaneous addition (Comparative Example A4): 2.4% by mass.
Sludge concentration in the case of separate addition (Example A4): 3.5% by mass.

汚泥濃度については、無機凝集剤とカチオン系高分子凝集剤を同一槽に添加する場合よりも、別の槽に添加する場合のほうが高い値を示した。すなわち、後者のほうが、沈降速度が速く、濃縮性の高い凝集物を形成できていたといえる。   About the sludge density | concentration, the case where the inorganic flocculant and the cationic polymer flocculant were added to another tank showed a higher value than the case where it was added to the same tank. That is, it can be said that the latter was able to form an agglomerate having a high sedimentation rate and high concentration.

〔試験B〕
本試験では、工程1の滞留時間の影響について調査した。実施例A1で用いた水処理装置を用いた。ただし無機凝集剤反応槽10の大きさを変更することによって、この槽における滞留時間、すなわち工程1の滞留時間を変化させた。沈殿槽30の通水LVは30m/hとした。実施例B1〜B2においては、それぞれ工程1の滞留時間を1(反応槽容量4L)、2(反応槽容量8L)分とした。比較例B1においては、工程1の滞留時間を0.5分(反応槽容量2L)とした。本試験では一次凝集槽の滞留時間は全て6.1分とした。
[Test B]
In this test, the influence of the residence time in step 1 was investigated. The water treatment apparatus used in Example A1 was used. However, by changing the size of the inorganic flocculant reaction tank 10, the residence time in this tank, that is, the residence time in Step 1 was changed. The water flow LV of the settling tank 30 was 30 m / h. In Examples B1 and B2, the residence time in step 1 was set to 1 (reaction tank capacity 4 L) and 2 (reaction tank capacity 8 L), respectively. In Comparative Example B1, the residence time in Step 1 was 0.5 minutes (reaction tank capacity 2 L). In this test, the residence time in the primary flocculation tank was all 6.1 minutes.

上記以外は、実施例A1と同様の試験を行った。図4に試験結果を示す。この図には、実施例A4(工程1の滞留時間:6.1分。沈殿槽通水LV30m/h)、比較例A4(工程1の滞留時間:0分。沈殿槽通水LV:30m/h)も併せて示す。図4において、横軸は工程1の滞留時間、縦軸は得られた処理水のSS濃度である。   Except for the above, the same test as in Example A1 was performed. FIG. 4 shows the test results. In this figure, Example A4 (residence time of step 1: 6.1 minutes. Precipitation tank water flow LV 30 m / h), Comparative example A4 (retention time of process 1: 0 minutes. Precipitation tank water flow LV: 30 m / h) h) is also shown. In FIG. 4, the horizontal axis represents the residence time in step 1, and the vertical axis represents the SS concentration of the treated water obtained.

実験の結果、工程1の滞留時間を1分以上とすることによって、したがって無機凝集剤による凝結反応を1分以上行った後にカチオン系高分子凝集剤を添加することで、沈殿槽の通水LVが高くても、清澄な処理水を得ることができることが明らかとなった。   As a result of the experiment, by setting the residence time in Step 1 to 1 minute or longer, and thus adding the cationic polymer flocculant after the condensation reaction with the inorganic flocculant for 1 minute or longer, the water flow LV of the precipitation tank It became clear that clear treated water can be obtained even if the water content is high.

〔試験C〕
<実施例C1及び比較例C1>
大型の水処理装置を用いて、連続通水試験を行った。実施例C1及び比較例C1では、それぞれ実施例A1及び比較例A1で使用した水処理装置と同様の構成を有するが、より大型の水処理装置を用いた。試験条件は次のとおりである。
[Test C]
<Example C1 and Comparative Example C1>
A continuous water flow test was conducted using a large water treatment apparatus. In Example C1 and Comparative Example C1, each had the same configuration as the water treatment device used in Example A1 and Comparative Example A1, but a larger water treatment device was used. The test conditions are as follows.

試験条件
原水:カオリン模擬排水(カオリンを濃度100mg/Lで含む。模擬排水作成用の水は地下水をろ過したものを使用した)。
原水通水量:19m/h(沈殿槽通水LV:20m/h、反応槽及び一次凝集槽における滞留時間:それぞれ3.2分)。
反応槽及び一次凝集槽の容量:それぞれ1000L。
反応槽及び一次凝集槽における攪拌強度G値:387s−1
PAC添加量(添加後の被処理水中の濃度):120mg/L。
カチオン系高分子凝集剤添加量(添加後の被処理水中の濃度):0.5mg/L。
カチオン系高分子凝集剤のカチオン基比率:8モル%。
アニオン系高分子凝集剤添加量(添加後の被処理水中の濃度):1.0mg/L。
アニオン系高分子凝集剤のアニオン基比率:4モル%。
沈殿槽径:φ1100mm。
Test condition raw water: Kaolin simulated wastewater (containing kaolin at a concentration of 100 mg / L. Water for preparing simulated wastewater was obtained by filtering groundwater).
Raw water flow rate: 19 m 3 / h (precipitation tank flow LV: 20 m / h, residence time in reaction tank and primary coagulation tank: 3.2 minutes each).
Capacity of reaction tank and primary flocculation tank: 1000 L each.
Agitation strength G value in the reaction tank and the primary flocculation tank: 387 s −1 .
PAC addition amount (concentration in treated water after addition): 120 mg / L.
Cationic polymer flocculant addition amount (concentration in treated water after addition): 0.5 mg / L.
Cationic group ratio of cationic polymer flocculant: 8 mol%.
Anionic polymer flocculant addition amount (concentration in treated water after addition): 1.0 mg / L.
Anionic group ratio of anionic polymer flocculant: 4 mol%.
Precipitation tank diameter: φ1100 mm.

上記以外は、実施例A1と同様にして(実施例C1)、あるいは比較例A1と同様にして(比較例C1)、連続通水試験を行って、得られた処理水のSS濃度を測定した。結果は次の通りであった。
実施例C1:1.8mg/L。
比較例C1:5.2mg/L。
Except for the above, in the same manner as in Example A1 (Example C1) or in the same manner as in Comparative Example A1 (Comparative Example C1), a continuous water flow test was performed to measure the SS concentration of the treated water obtained. . The results were as follows.
Example C1: 1.8 mg / L.
Comparative Example C1: 5.2 mg / L.

<実施例C2及び比較例C2>
実施例C2及び比較例C2においてそれぞれ、カチオン系高分子凝集剤としてカチオン基比率が3モル%のカチオン系高分子凝集剤を用いたこと以外は、実施例C1及び比較例C1と同様にして、連続通水試験を行って、得られた処理水のSS濃度を測定した。結果は次の通りであった。
実施例C2:1.2mg/L。
比較例C2:4.3mg/L。
<Example C2 and Comparative Example C2>
In Example C2 and Comparative Example C2, respectively, except that a cationic polymer flocculant having a cation group ratio of 3 mol% was used as the cationic polymer flocculant, in the same manner as in Example C1 and Comparative Example C1, A continuous water test was performed to measure the SS concentration of the treated water. The results were as follows.
Example C2: 1.2 mg / L.
Comparative Example C2: 4.3 mg / L.

この結果から、装置を大型化した場合でも、無機凝集剤とカチオン系高分子凝集剤を別に添加した方が良いことが明らかとなった。   From these results, it was found that it is better to add an inorganic flocculant and a cationic polymer flocculant separately even when the apparatus is enlarged.

〔試験D〕
原水の種類を変えた場合の水処理性能について調査した。原水としては、フッ素含有水を用いた。
[Test D]
The water treatment performance when the raw water type was changed was investigated. As raw water, fluorine-containing water was used.

<実施例D1〜D2、比較例D1〜D4>
実施例D1及びD2では、実施例A1で用いた水処理装置を、次のように改造して用いた。すなわち、反応槽10の上流側に、攪拌機を備える槽(不図示)を追加した。この槽に原水を供給した。またこの槽において、Ca(OH)(消石灰水溶液)とHCl(塩酸)を原水に添加して、攪拌した。この槽から、難溶性のフッ素化合物(CaF)を懸濁物質として含む被処理水を抜き出し、この被処理水をラインL1に供給した。
<Examples D1 to D2, Comparative Examples D1 to D4>
In Examples D1 and D2, the water treatment apparatus used in Example A1 was modified as follows and used. That is, a tank (not shown) provided with a stirrer was added upstream of the reaction tank 10. Raw water was supplied to this tank. In this tank, Ca (OH) 2 (slaked lime aqueous solution) and HCl (hydrochloric acid) were added to the raw water and stirred. From this tank, water to be treated containing a sparingly soluble fluorine compound (CaF 2 ) as a suspended substance was extracted, and this water to be treated was supplied to the line L1.

比較例D1〜D4では、比較例A1で用いた水処理装置を、上記と同様に改造して用いた。ただし、難溶性のフッ素化合物(CaF)を含む被処理水は、ラインL2に供給した。 In Comparative Examples D1 to D4, the water treatment apparatus used in Comparative Example A1 was modified and used in the same manner as described above. However, the water to be treated containing a hardly soluble fluorine compound (CaF 2 ) was supplied to the line L2.

なお、実施例D1では反応槽及び一次凝集槽の滞留時間はそれぞれ6.1分、実施例D2では反応槽及び一次凝集槽の滞留時間はそれぞれ5.2分である。また比較例D1〜D4では反応槽は無く、比較例D1及びD3の一次凝集槽の滞留時間はそれぞれ6.1分、比較例D2及びD4の一次凝集槽の滞留時間はそれぞれ5.2分である。   In Example D1, the residence time of the reaction tank and the primary flocculation tank is 6.1 minutes, respectively. In Example D2, the residence time of the reaction tank and the primary flocculation tank is 5.2 minutes, respectively. In Comparative Examples D1 to D4, there is no reaction tank, the residence times of the primary flocculation tanks of Comparative Examples D1 and D3 are 6.1 minutes, and the residence times of the primary flocculation tanks of Comparative Examples D2 and D4 are 5.2 minutes, respectively. is there.

試験条件
試験条件は次のとおりである。
原水:フッ素含有模擬排水(フッ素を濃度520mg/L、その他多数イオン類を含む水。導電率3.6mS/cm)。
原水通水量:表1に示す。
反応槽、一次凝集槽容量:23.8L。
反応槽、一次凝集槽攪拌強度G値:105s−1
PAC添加量(添加後の被処理水中の濃度):700mg/L。
カチオン系高分子凝集剤添加量(添加後の被処理水中の濃度):表1に示す。
カチオン系高分子凝集剤カチオン基比率:8モル%。
アニオン系高分子凝集剤添加量(添加後の被処理水中の濃度):表1に示す。
アニオン系高分子凝集剤アニオン基比率:4モル%。
沈殿槽径:φ100mm。
Test conditions The test conditions are as follows.
Raw water: Fluorine-containing simulated waste water (fluorine concentration 520 mg / L, water containing many other ions, conductivity 3.6 mS / cm).
Raw water flow rate: as shown in Table 1.
Reaction tank, primary coagulation tank capacity: 23.8 L.
Reaction tank, primary agglomeration tank stirring strength G value: 105 s −1 .
PAC addition amount (concentration in treated water after addition): 700 mg / L.
Cationic polymer flocculant addition amount (concentration in treated water after addition): shown in Table 1.
Cationic polymer flocculant cationic group ratio: 8 mol%.
Anionic polymer flocculant addition amount (concentration in treated water after addition): shown in Table 1.
Anionic polymer flocculant anion group ratio: 4 mol%.
Precipitation tank diameter: φ100 mm.

上記以外は、実施例A1と同様にして(実施例D1〜D2)、あるいは比較例A1と同様にして(比較例D1〜D4)、連続通水試験を行って、得られた処理水のSS濃度を測定した。結果を表1に示す。   Except for the above, SS was treated in the same manner as in Example A1 (Examples D1 to D2) or as in Comparative Example A1 (Comparative Examples D1 to D4). Concentration was measured. The results are shown in Table 1.

Figure 2019198806
Figure 2019198806

実験の結果、原水の種類を変えても、無機凝集剤とカチオン系高分子凝集剤を同じ反応槽に添加した場合(比較例D1〜D4)より、別々の反応槽に添加した場合(実施例D1、D2)のほうが清澄な処理水を得ることができることが明らかとなった。   As a result of the experiment, even when the type of raw water is changed, when the inorganic flocculant and the cationic polymer flocculant are added to the same reaction tank (Comparative Examples D1 to D4), they are added to separate reaction tanks (Examples) It became clear that D1 and D2) can obtain clear treated water.

また無機凝集剤とカチオン系高分子凝集剤を同時添加し、高分子凝集剤の合計添加量を6mg/Lに増やした場合(比較例D3及びD4)と比べても、無機凝集剤とカチオン系高分子凝集剤を別添加し、高分子凝集剤の合計添加量を3mg/Lとした場合(実施例D1及びD2)のほうが、処理水SSが低く清澄な処理水を得ている。したがって、高分子凝集剤の使用量の削減も見込める。   In addition, the inorganic flocculant and the cationic polymer flocculant were added simultaneously, and the total amount of the polymer flocculant was increased to 6 mg / L (Comparative Examples D3 and D4). When the polymer flocculant is added separately and the total amount of the polymer flocculant is 3 mg / L (Examples D1 and D2), the treated water SS is lower and clear treated water is obtained. Therefore, the amount of the polymer flocculant used can be reduced.

〔試験E〕
以下の手順にてジャーテストを行い、凝集物の大きさを調べた。
[Test E]
A jar test was performed according to the following procedure, and the size of the aggregate was examined.

<ジャーテストE1>
原水として、実施例A1で用いたものと同じ原水を用いた。ビーカーに原水500mLを入れ、そこに無機凝集剤(PAC)を120mg/Lの濃度になるように添加し、NaOHにてpH7に調整し、150rpmで5分急速撹拌を実施した。続いて、カチオン系高分子凝集剤を0.5mg/Lの濃度になるように添加し、150rpmで1分急速撹拌を実施した。続いてアニオン系高分子凝集剤を1mg/Lの濃度になるように添加し、150rpmの急速撹拌を1分行った後、40rpmの緩速撹拌を3分実施した。
<Jartest E1>
As raw water, the same raw water as that used in Example A1 was used. Into a beaker, 500 mL of raw water was added, and an inorganic flocculant (PAC) was added thereto to a concentration of 120 mg / L, adjusted to pH 7 with NaOH, and rapidly stirred at 150 rpm for 5 minutes. Subsequently, a cationic polymer flocculant was added to a concentration of 0.5 mg / L, and rapid stirring was performed at 150 rpm for 1 minute. Subsequently, an anionic polymer flocculant was added to a concentration of 1 mg / L, rapid stirring at 150 rpm was performed for 1 minute, and then slow stirring at 40 rpm was performed for 3 minutes.

<ジャーテストE2>
カチオン系高分子凝集剤の添加後、アニオン系高分子凝集剤の添加前の急速撹拌時間を2分にしたこと以外はジャーテストE1と同様の試験を行った。
<Jartest E2>
After the addition of the cationic polymer flocculant, the same test as in the jar test E1 was conducted except that the rapid stirring time before the addition of the anionic polymer flocculant was 2 minutes.

<ジャーテストE3>
無機凝集剤添加後の急速撹拌(5分)まではジャーテストE1と同様の操作を行った。続いて、カチオン系高分子凝集剤とアニオン系高分子凝集剤を同時に添加し、150rpmの急速撹拌を1分行った後、40rpmの緩速撹拌を5分実施した。
<Jartest E3>
The same operation as in the jar test E1 was performed until rapid stirring (5 minutes) after the addition of the inorganic flocculant. Subsequently, a cationic polymer flocculant and an anionic polymer flocculant were simultaneously added, and after rapid stirring at 150 rpm for 1 minute, slow stirring at 40 rpm was performed for 5 minutes.

<ジャーテストE4>
カチオン系高分子凝集剤の添加後、アニオン系高分子凝集剤の添加前の急速撹拌時間を30秒にしたこと以外はジャーテストE1と同様の試験を行った。
<Jartest E4>
After the addition of the cationic polymer flocculant, the same test as in the jar test E1 was conducted except that the rapid stirring time before the addition of the anionic polymer flocculant was 30 seconds.

各ジャーテストにおいて、得られた液に含まれる凝集物の大きさ(凝集フロック径)を測定した。結果を表2に示す。   In each jar test, the size (aggregation floc diameter) of aggregates contained in the obtained liquid was measured. The results are shown in Table 2.

Figure 2019198806
Figure 2019198806

この結果より、カチオン系高分子凝集剤を添加してからアニオン系高分子凝集剤を添加するまでの攪拌時間は1分以上が好ましく、したがって工程2の滞留時間は1分以上が好ましいと言える。   From this result, it can be said that the stirring time from the addition of the cationic polymer flocculant to the addition of the anionic polymer flocculant is preferably 1 minute or longer, and therefore the residence time in Step 2 is preferably 1 minute or longer.

以上の結果、次のことが言える。すなわち、無機凝集剤を添加してから1分以上攪拌して反応させ(工程1の滞留時間を1分以上とし)、次いでカチオン系高分子凝集剤を添加し、最後にアニオン系高分子凝集剤を添加して凝集物を形成することで、例えば沈殿槽の通水LVが5m/h以上、特には10m/h以上と高い場合に、高分子凝集剤の添加量が少なくても、清澄な処理水を得ることができる。また凝集物自体の沈降速度が上昇し、そのため、沈降濃縮も進みやすい。したがって、汚泥を沈降濃縮させた場合には、より高濃度の濃縮汚泥を得ることができる。   As a result, the following can be said. That is, after adding the inorganic flocculant, the reaction is performed by stirring for 1 minute or longer (the residence time in Step 1 is 1 minute or longer), then the cationic polymer flocculant is added, and finally the anionic polymer flocculant To form agglomerates, for example, when the water flow LV of the settling tank is as high as 5 m / h or more, particularly 10 m / h or more, it is clear even if the addition amount of the polymer flocculant is small. Treated water can be obtained. In addition, the sedimentation rate of the aggregate itself increases, so that sedimentation concentration tends to proceed. Therefore, when sludge is settled and concentrated, concentrated sludge having a higher concentration can be obtained.

Claims (7)

無機凝集剤を添加した被処理水を攪拌槽内で攪拌する工程であって、該被処理水の攪拌槽における滞留時間を1分以上とする工程と、
前記撹拌槽から抜き出された被処理水に、カチオン系高分子凝集剤を添加する工程と、
カチオン系高分子凝集剤が添加された被処理水に、アニオン系高分子凝集剤を添加する工程と、
沈殿槽において、アニオン系高分子凝集剤が添加された被処理水から、固液分離によって凝集フロックを分離する工程と
を含む、水処理方法。
A step of stirring the water to be treated to which the inorganic flocculant has been added in a stirring tank, wherein the residence time in the stirring tank of the water to be treated is 1 minute or more;
Adding a cationic polymer flocculant to the water to be treated extracted from the stirring tank;
Adding an anionic polymer flocculant to the water to be treated with the cationic polymer flocculant added;
And a step of separating the aggregated flocs by solid-liquid separation from the water to be treated to which the anionic polymer flocculant is added in the precipitation tank.
カチオン系高分子凝集剤を添加してから、アニオン系高分子凝集剤を添加するまでの、被処理水の滞留時間を1分以上とする、請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein a residence time of water to be treated from the addition of the cationic polymer flocculant to the addition of the anionic polymer flocculant is 1 minute or more. 前記沈殿槽への被処理水の供給流路または前記沈殿槽において、前記アニオン系高分子凝集剤の添加を行い、
前記アニオン系高分子凝集剤が添加された被処理水を沈殿槽内で撹拌することによって造粒を行い、ペレット状汚泥でスラッジブランケットを形成させる、請求項1または2に記載の水処理方法。
In the supply channel of the water to be treated to the settling tank or the settling tank, the anionic polymer flocculant is added,
The water treatment method according to claim 1 or 2, wherein the water to be treated to which the anionic polymer flocculant is added is granulated by stirring in a sedimentation tank, and a sludge blanket is formed with pellet sludge.
前記スラッジブランケットを形成するペレット状汚泥の一部を別の槽に移し、該別の槽において沈降させて濃縮する、請求項3に記載の水処理方法。   The water treatment method according to claim 3, wherein a part of the pellet sludge that forms the sludge blanket is transferred to another tank, and is settled and concentrated in the other tank. 前記沈殿槽における通水線速度が5m/h以上である、請求項1〜4のいずれか一項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein a water passage speed in the settling tank is 5 m / h or more. 前記沈殿槽における通水線速度が10m/h以上である、請求項5に記載の水処理方法。   The water treatment method according to claim 5, wherein a water passage speed in the settling tank is 10 m / h or more. 無機凝集剤を添加した被処理水を槽内で攪拌する攪拌槽であって、該被処理水の滞留時間が1分以上となるよう構成された攪拌槽と、
前記撹拌槽から排出された被処理水に、カチオン系高分子凝集剤を添加する手段と、
カチオン系高分子凝集剤が添加された被処理水に、アニオン系高分子凝集剤を添加する手段と、
アニオン系高分子凝集剤が添加された被処理水から、固液分離によって凝集フロックを分離する沈殿槽と
を含む、水処理装置。
A stirring tank for stirring the water to be treated to which the inorganic flocculant has been added in the tank, the stirring tank being configured so that the residence time of the water to be treated is 1 minute or longer;
Means for adding a cationic polymer flocculant to the water to be treated discharged from the stirring tank;
Means for adding an anionic polymer flocculant to the water to be treated with the cationic polymer flocculant;
A water treatment apparatus comprising: a settling tank that separates aggregate flocs by solid-liquid separation from water to be treated to which an anionic polymer flocculant is added.
JP2018093053A 2018-05-14 2018-05-14 Water treatment method and water treatment equipment Active JP7083274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018093053A JP7083274B2 (en) 2018-05-14 2018-05-14 Water treatment method and water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018093053A JP7083274B2 (en) 2018-05-14 2018-05-14 Water treatment method and water treatment equipment

Publications (2)

Publication Number Publication Date
JP2019198806A true JP2019198806A (en) 2019-11-21
JP7083274B2 JP7083274B2 (en) 2022-06-10

Family

ID=68611557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018093053A Active JP7083274B2 (en) 2018-05-14 2018-05-14 Water treatment method and water treatment equipment

Country Status (1)

Country Link
JP (1) JP7083274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062330A (en) * 2020-08-30 2020-12-11 南京中电环保水务有限公司 High-load crystal nucleus solid-liquid separation device and method
WO2022169298A1 (en) * 2021-02-05 2022-08-11 주식회사 파나시아 Water treatment system with automatic chemical injection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473464A (en) * 1977-11-22 1979-06-12 Ebara Infilco Co Ltd Treatment of waste water
US20130341267A1 (en) * 2010-09-28 2013-12-26 General Electric Company Treatment for molasses spent wash and other wastewaters
WO2014038537A1 (en) * 2012-09-10 2014-03-13 栗田工業株式会社 Water treatment method and apparatus
JP2014151307A (en) * 2013-02-13 2014-08-25 Kurita Water Ind Ltd Method for treating development waste water in color filter production process
JP2014237122A (en) * 2013-05-07 2014-12-18 新日鐵住金株式会社 Coagulation sedimentation equipment and method
JP6145240B1 (en) * 2017-04-17 2017-06-07 壽昭 落合 Coagulation precipitation treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473464A (en) * 1977-11-22 1979-06-12 Ebara Infilco Co Ltd Treatment of waste water
US20130341267A1 (en) * 2010-09-28 2013-12-26 General Electric Company Treatment for molasses spent wash and other wastewaters
WO2014038537A1 (en) * 2012-09-10 2014-03-13 栗田工業株式会社 Water treatment method and apparatus
JP2014151307A (en) * 2013-02-13 2014-08-25 Kurita Water Ind Ltd Method for treating development waste water in color filter production process
JP2014237122A (en) * 2013-05-07 2014-12-18 新日鐵住金株式会社 Coagulation sedimentation equipment and method
JP6145240B1 (en) * 2017-04-17 2017-06-07 壽昭 落合 Coagulation precipitation treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062330A (en) * 2020-08-30 2020-12-11 南京中电环保水务有限公司 High-load crystal nucleus solid-liquid separation device and method
WO2022169298A1 (en) * 2021-02-05 2022-08-11 주식회사 파나시아 Water treatment system with automatic chemical injection
KR20220113176A (en) * 2021-02-05 2022-08-12 주식회사 파나시아 Water Treatment System Capable of Automatic Supplying of Chemicals
KR102532784B1 (en) * 2021-02-05 2023-05-22 주식회사 파나시아 Water Treatment System Capable of Automatic Supplying of Chemicals

Also Published As

Publication number Publication date
JP7083274B2 (en) 2022-06-10

Similar Documents

Publication Publication Date Title
JP5364298B2 (en) Dispersant-containing water treatment method
JP2004512937A (en) Method and apparatus for treating water and sewage
JP6793014B2 (en) Wastewater treatment method and wastewater treatment equipment
JP2005013892A (en) Water cleaning method
JP2013078730A (en) Method and apparatus for treatment of coagulation precipitation
JP7083274B2 (en) Water treatment method and water treatment equipment
JP4004854B2 (en) Water purification method and apparatus
WO2019077835A1 (en) Flocculation device and flocculation treatment method
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP2000317220A (en) Flocculating and settling device
JP2018153729A (en) Water treatment agent, water treatment method, and water treatment device
JP5767009B2 (en) Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing
JP7142540B2 (en) Water purification method and water purification device
JP4353584B2 (en) Sand-added coagulating sedimentation equipment
JP2002355507A (en) Flocculating and settling equipment and its controlling method
JP2003145168A (en) Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JP6825999B2 (en) Operation method of coagulation sedimentation device and coagulation sedimentation device
JP7117101B2 (en) Water treatment method and device
JP6798867B2 (en) Wastewater treatment method and wastewater treatment equipment
JP5874359B2 (en) Aggregation method
JP7213125B2 (en) Coagulation-sedimentation device for water containing silica and coagulation-sedimentation treatment method
JP2005007246A (en) Treatment method for organic waste water
JP2002113472A (en) High-speed coagulating sedimentation method for suspended water and its device
JP3901392B2 (en) Coagulation sedimentation equipment
JP7075718B2 (en) Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220531

R150 Certificate of patent or registration of utility model

Ref document number: 7083274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150