JP5767009B2 - Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing - Google Patents

Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing Download PDF

Info

Publication number
JP5767009B2
JP5767009B2 JP2011099478A JP2011099478A JP5767009B2 JP 5767009 B2 JP5767009 B2 JP 5767009B2 JP 2011099478 A JP2011099478 A JP 2011099478A JP 2011099478 A JP2011099478 A JP 2011099478A JP 5767009 B2 JP5767009 B2 JP 5767009B2
Authority
JP
Japan
Prior art keywords
initial
sedimentation basin
coagulation sedimentation
speed
floc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011099478A
Other languages
Japanese (ja)
Other versions
JP2012228673A (en
Inventor
康輔 森
康輔 森
建介 恩田
建介 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2011099478A priority Critical patent/JP5767009B2/en
Publication of JP2012228673A publication Critical patent/JP2012228673A/en
Application granted granted Critical
Publication of JP5767009B2 publication Critical patent/JP5767009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、水道水、工業用水などを製造する水処理分野や、下水を処理する水処理分野などで実施されている高速凝集沈澱池の立ち上げ方法、詳しくは高速凝集沈澱池の運転を開始又は再開する際に行う初期母フロックの形成方法に関する。   The present invention is a method for starting up a high-speed coagulation sedimentation basin implemented in the water treatment field for producing tap water, industrial water, etc., and the water treatment field for treating sewage. Alternatively, the present invention relates to a method of forming an initial mother floc that is performed when resuming.

河川水、地下水、雨水等の水処理では、凝集沈澱処理や砂ろ過処理などの固液分離技術によって、不溶解性成分である濁度成分や藻類等を除去する処理が行われている。
このうち凝集沈澱処理は、無機凝集剤やpH調整剤を原水に添加して、原水中の汚濁物質を析出させたり、無機凝集剤から生成するフロックに汚濁物質を吸着させたりした後に、汚濁物質を含むフロックを原水から沈降除去して清浄化する処理方法である。
In water treatment of river water, groundwater, rainwater, etc., treatment for removing turbidity components, algae and the like, which are insoluble components, is performed by solid-liquid separation techniques such as coagulation sedimentation treatment and sand filtration treatment.
Among these, the coagulation-precipitation treatment is performed by adding an inorganic coagulant or pH adjuster to the raw water to precipitate the pollutant in the raw water, or adsorbing the pollutant on the flocs generated from the inorganic coagulant. Is a treatment method in which flocs containing water are settled and removed from raw water.

従来の凝集沈澱処理では、混和槽、フロック形成槽及び沈澱槽を連続して設置し、混和槽で原水(被処理水)と無機凝集剤を混合した後、これをフロック形成槽、沈澱槽へと移しながらフロックを形成させて原水の浄化を図る、いわゆる横流式沈澱池が採用されていた。しかし、この方法は、フロックの沈澱速度が遅く、一定の原水を処理するのに広い面積が必要であるという問題があった。   In the conventional coagulation-precipitation treatment, a mixing tank, a floc-forming tank and a precipitation tank are installed in succession, and after mixing raw water (treated water) and the inorganic flocculant in the mixing tank, this is transferred to the flock-forming tank and the precipitation tank. The so-called cross-flow type sedimentation basin was adopted, in which flocks were formed while purifying the raw water. However, this method has a problem that a flocs sedimentation rate is slow and a large area is required to treat certain raw water.

そこで、沈澱部の上昇流速を速くして沈澱部の設備面積を小さくすることができる“高速凝集沈澱池”が提案された。
図3は、高速凝集沈澱池の実施設の構成例を示す模式図である。原水51に無機凝集剤58が添加された後、一次撹拌室52および二次撹拌室53を備えた撹拌部に送られ、ここでスラリが生成される。そして、このスラリが沈澱部54内でスラリ界面を形成する一方、沈澱部54の下部は一次撹拌室52と連通しており、沈澱部54内のスラリ(;フロックを含有している)は一次撹拌室52に返送され、既存のスラリの存在下で新たなスラリが生成されるようになっている。他方、沈澱部54内の沈澱水55は上方の越流口からオーバーフローして沈澱処理水として流出するようになっている。
Therefore, a “high-speed coagulating sedimentation basin” was proposed in which the ascending flow rate of the sedimentation section can be increased to reduce the facility area of the sedimentation section.
FIG. 3 is a schematic diagram showing a configuration example of an implementation of the high-speed coagulation sedimentation basin. After the inorganic flocculant 58 is added to the raw water 51, it is sent to a stirring unit having a primary stirring chamber 52 and a secondary stirring chamber 53, where slurry is generated. The slurry forms a slurry interface in the sedimentation portion 54, while the lower portion of the sedimentation portion 54 communicates with the primary stirring chamber 52, and the slurry (containing floc) in the sedimentation portion 54 is primary. The slurry is returned to the stirring chamber 52 and a new slurry is generated in the presence of the existing slurry. On the other hand, the settling water 55 in the settling portion 54 overflows from the upper overflow port and flows out as settling water.

高速凝集沈澱池は、フロック形成速度がフロック粒子数の2乗及びフロック粒径の3乗に比例することを利用して、フロックの濃度が高い部分を設けて、原水がここを通るようにすることで、初期の微細なフロックを、既に成長したフロック(これを本発明では「母フロック」と称する)に補足させながら凝集させて凝集沈澱の効率を高める方法である(非特許文献1)。よって、高速凝集沈澱池によれば、迅速にフロックを形成することができ、しかも、生成されたフロックが粗大で大きな沈降速度を有するため、沈澱池面積が小さく済ませることもできる。また、高分子凝集剤を用いる必要が無いため、水道等、安全・安心を要求される水処理分野にも広く利用されている。   The high-speed coagulation sedimentation basin makes use of the fact that the floc formation speed is proportional to the square of the number of floc particles and the cube of the floc particle size, so that a portion having a high floc concentration is provided to allow raw water to pass therethrough. In this way, the initial fine flocs are aggregated while supplementing the already grown flocs (referred to as “mother flocs” in the present invention) to increase the efficiency of aggregation precipitation (Non-patent Document 1). Therefore, according to the high-speed agglomeration sedimentation basin, flocs can be formed quickly, and the generated flocs are coarse and have a large sedimentation rate, so that the sedimentation basin area can be reduced. Further, since it is not necessary to use a polymer flocculant, it is widely used in the water treatment field where safety and security are required, such as waterworks.

このような高速凝集沈澱地に関して、特許文献1には、無機凝集剤とともに被処理水に添加する不溶解性凝集助剤として、被処理水に添加した場合のゼータ電位が−40mV以下であり、比重が2.0以上4.0以下であり、粒度分布が100μm以上の粒子の存在割合が5質量%以下でかつ10μm以下の粒子の存在割合が30質量%以下である凝集助剤が開示されている。   Regarding such a high-speed coagulation sedimentation site, Patent Document 1 discloses that the zeta potential when added to the water to be treated is -40 mV or less as an insoluble coagulant auxiliary agent to be added to the water to be treated together with the inorganic flocculant. An agglomeration aid having a specific gravity of 2.0 or more and 4.0 or less, an abundance ratio of particles having a particle size distribution of 100 μm or more is 5 mass% or less, and an abundance ratio of particles of 10 μm or less is 30 mass% or less is disclosed. ing.

「水道施設設計指針2000」、第199〜201頁“Water Supply Facility Design Guidelines 2000”, pp. 199-201

特開2006−7086号公報JP 2006-7086 A

この種の高速凝集沈澱池では、点検及び修繕を1年に1回程度の頻度で行う必要があり、その都度、沈澱池をいったん空にして点検及び修繕を行う必要がある。そのため、通常運転を再開するためには、空となった沈澱池内に新たな原水を引き込み、原水由来の濁質分をもとにして、フロック形成の種となる母フロック(本発明では、「初期母フロック」と称する)を形成するところから開始して、沈澱池内に十分な量の初期母フロックを滞留させる必要がある。   In this type of high-speed coagulation sedimentation basin, it is necessary to perform inspections and repairs about once a year. In each case, it is necessary to empty the sedimentation basin once and perform repairs. Therefore, in order to resume normal operation, new raw water is drawn into the empty sedimentation basin, and the mother flock (in the present invention, “ Starting from the formation of the initial mother floc, it is necessary to retain a sufficient amount of the initial mother floc in the sedimentation basin.

この際、従来の高速凝集沈澱池の立ち上げ方法は、高速凝集沈澱池に初期原水を導入し、導入した初期原水に無機凝集剤乃至凝集助剤を加えて高速凝集沈澱池内において初期母フロックを形成し、高速凝集沈澱池内に初期母フロックを十分に滞留させることができたら、被処理水としての初期原水を高速凝集沈澱池内に導入して通常運転を開始する方法であった。   At this time, the conventional method for starting up the high-speed coagulation sedimentation basin is to introduce the initial raw water into the high-speed coagulation sedimentation basin, add an inorganic flocculant or a coagulant auxiliary agent to the introduced initial raw water, and remove the initial mother floc in the high-speed coagulation sedimentation basin. When the initial mother floc was sufficiently retained in the high-speed coagulation sedimentation basin, the initial raw water as the treated water was introduced into the high-speed coagulation sedimentation basin and the normal operation was started.

ところが、このように高速凝集沈澱池を立ち上げていたのでは、十分な量の初期母フロックを沈澱池内に滞留させるまでに長期間を要するため、高速凝集沈澱池を新設した際或いはメンテナンスした際、通常運転に復帰させるまでに長期間を要するという課題を抱えていた。しかも、近年、ダム設置等の河川改修が進み、取水源となる河川水の濁度はますます低くなる傾向にあるため、初期母フロックの形成に要する期間がさらに長期化する傾向にあった。   However, when a high-speed coagulation sedimentation basin is set up in this way, it takes a long time to retain a sufficient amount of the initial mother floc in the sedimentation basin. The problem was that it took a long time to return to normal operation. Moreover, in recent years, river repairs such as dam installations have progressed, and the turbidity of river water as a water intake source tends to become lower, and therefore the period required to form the initial mother floc tends to be further prolonged.

そこで本発明の目的は、高速凝集沈澱池を立ち上げる際、すなわち、高速凝集沈澱池の運転を開始又は再開する際に行う初期母フロックの形成を、より一層効率良く行うことができる方法及び装置を提案することにある。   Therefore, an object of the present invention is to provide a method and an apparatus that can perform the formation of an initial mother floc more efficiently when starting up a high-speed coagulation sedimentation basin, that is, when starting or restarting the operation of the high-speed coagulation sedimentation basin. Is to propose.

本発明は、高速凝集沈澱池とは別に、該高速凝集沈澱池よりも貯留容量の小さな初期母フロック形成槽を設け、前記初期母フロック形成槽内に初期原水を導入すると共に、導入した初期原水に無機凝集剤及び凝集助剤を加えて撹拌して初期母フロックを形成し、当該初期母フロック形成槽内の初期母フロックを高速凝集沈澱池に供給した後、再び、前記初期母フロック形成槽内に初期原水を導入すると共に、導入した初期原水に無機凝集剤及び凝集助剤を加えて撹拌して初期母フロックを形成し、当該初期母フロック形成槽内の初期母フロックを高速凝集沈澱池に供給する工程を繰り返すことにより、高速凝集沈澱池内に初期母フロックを滞留させることを特徴とする、高速凝集沈澱池の立ち上げ方法を提案するものである。   The present invention provides an initial mother floc-forming tank having a storage capacity smaller than that of the high-speed coagulation sedimentation basin separately from the high-speed coagulation sedimentation basin, and introduces the initial raw water into the initial mother floc-forming tank. An inorganic flocculant and an agglomeration aid are added to and stirred to form an initial mother floc. After the initial mother floc in the initial mother floc forming tank is supplied to the high-speed flocculent sedimentation basin, the initial mother floc forming tank is again formed. The initial raw water is introduced into the inner raw water, and an inorganic flocculant and a coagulant aid are added to the introduced initial raw water and stirred to form an initial mother floc. The present invention proposes a method for starting up a high-speed coagulation sedimentation basin, characterized in that the initial mother floc is retained in the high-speed coagulation sedimentation basin by repeating the step of supplying to the high-speed coagulation sedimentation basin.

本発明はまた、このような高速凝集沈殿池の立ち上げ方法を実現するための装置として、高速凝集沈澱池と、該高速凝集沈澱池よりも貯留容量の小さい、該高速凝集沈殿池を立ち上げるための初期母フロック形成槽と、を備えた高速凝集沈殿装置であって、該初期母フロック形成槽は、該槽内に初期原水を導入するための初期原水導入管と、該槽内に無機凝集剤及び凝集助剤を加えて撹拌して初期母フロックを形成するための撹拌手段と、該初期母フロックを該高速凝集沈殿池に滞留させるために、該初期母フロックを繰り返し該高速凝集沈殿池に供給するための初期母フロック供給管と、を備えた、高速凝集沈澱装置を提案するものである。 The present invention also provides a high- speed coagulation sedimentation basin and a high-speed coagulation sedimentation basin having a smaller storage capacity than that of the high-speed coagulation sedimentation basin. A high-speed coagulation sedimentation apparatus having an initial mother floc-forming tank for introducing an initial raw water introduction pipe for introducing initial raw water into the tank, and an inorganic substance in the tank. Agitation means for adding an aggregating agent and an agglomeration aid to form an initial mother floc and stirring, in order to retain the initial mother floc in the high-speed coagulation sedimentation basin, the initial mother floc is repeatedly repeated in the high-speed coagulation precipitation The present invention proposes a high-speed coagulating sedimentation apparatus having an initial mother floc supply pipe for supplying to a pond.

本発明が提案する高速凝集沈澱池の立ち上げ方法は、比較的容量の小さな初期母フロック形成槽において比較的少量の初期母フロックを形成し、形成した初期母フロックを高速凝集沈澱池に供給することを繰り返して高速凝集沈澱池内に初期母フロックを滞留させる方法である。この方法によれば、高速凝集沈澱池内において初期母フロックを形成する従来の方法に比べて、より一層効率良く初期母フロックを形成することができ、より一層短時間で高速凝集沈澱池を立ち上げることができる。   The method for starting up a high-speed coagulation sedimentation basin proposed by the present invention forms a relatively small amount of initial mother floc in an initial mother floc formation tank having a relatively small capacity, and supplies the formed initial mother floc to the high-speed coagulation sedimentation basin. This is a method in which the initial mother floc is retained in the high-speed coagulation sedimentation basin. According to this method, the initial mother floc can be formed more efficiently than the conventional method of forming the initial mother floc in the high-speed coagulation sedimentation basin, and the high-speed coagulation sedimentation basin can be set up in a shorter time. be able to.

本発明の高速凝集沈澱装置の一例を示した模式図である。It is the schematic diagram which showed an example of the high-speed coagulation precipitation apparatus of this invention. 本発明の高速凝集沈澱装置の一例に係る高速凝集沈澱池の一例を示した模式図である。It is the schematic diagram which showed an example of the high speed coagulation sedimentation basin which concerns on an example of the high speed coagulation precipitation apparatus of this invention. 従来の高速凝集沈澱装置の一般的な構成例を示した模式図である。It is the schematic diagram which showed the general structural example of the conventional high-speed aggregation precipitation apparatus.

次に、本発明の実施形態の一例について説明する。但し、本発明がここで説明する実施形態に限定されるものではない。   Next, an example of an embodiment of the present invention will be described. However, the present invention is not limited to the embodiment described here.

<本高速凝集沈澱装置>
先ず、本発明が提案する高速凝集沈澱池の立ち上げ方法を実現するための装置の一例(以下「本高速凝集沈澱装置1」と称する)について説明する。但し、本発明が提案する高速凝集沈澱装置が当該本高速凝集沈澱装置1に限定されるものではない。
<This high-speed coagulating sedimentation device>
First, an example of an apparatus (hereinafter referred to as “the present high-speed coagulating sedimentation apparatus 1”) for realizing the method for starting up the high-speed coagulating sedimentation pond proposed by the present invention will be described. However, the high-speed coagulation precipitation apparatus proposed by the present invention is not limited to the high-speed coagulation precipitation apparatus 1.

本高速凝集沈澱装置1は、図1に示すように、高速凝集沈澱池10とは別に、該高速凝集沈澱池10よりも貯留容量が小さい初期母フロック形成槽2を設けてなる構成を備えており、初期母フロック形成槽2で形成した初期母フロックを高速凝集沈澱池10に供給できるように構成されている。   As shown in FIG. 1, the high-speed coagulation sedimentation apparatus 1 includes a configuration in which an initial mother floc-forming tank 2 having a storage capacity smaller than that of the high-speed coagulation sedimentation basin 10 is provided. In addition, the initial mother floc formed in the initial mother floc forming tank 2 can be supplied to the high-speed coagulation sedimentation basin 10.

(高速凝集沈澱池10の構成)
高速凝集沈澱池10の構成は、特に限定するものではない。例えば高速凝集沈澱池の原理及び機構を分類した、参考文献(設計指針)記載の分類で説明すると“スラリ循環型“、”スラッジブランケット型“、”複合型“の全て適用することができる。
また、高速凝集沈澱池に傾斜板等沈降装置を組み合わせた構成など、水処理一般に用いられている変形や組合せにも、適用可能である。
(Configuration of high-speed coagulation sedimentation basin 10)
The configuration of the high-speed coagulation sedimentation basin 10 is not particularly limited. For example, when explaining the principle and mechanism of the high-speed agglomeration sedimentation basin and the classification described in the reference (design guideline), all of “slurry circulation type”, “sludge blanket type”, and “composite type” can be applied.
Moreover, it is applicable also to the deformation | transformation and combination which are generally used for water treatment, such as the structure which combined sedimentation apparatuses, such as an inclined plate, with the high-speed coagulation sedimentation basin.

ここで、高速凝集沈澱池10の具体的な一例について説明する。但し、高速凝集沈澱池10の構成がこれに限定されるものではない。   Here, a specific example of the high-speed coagulation sedimentation basin 10 will be described. However, the structure of the high-speed coagulation sedimentation basin 10 is not limited to this.

高速凝集沈澱池10としては、例えば図2に示すように、一次撹拌室11a及び二次撹拌室11bからなる撹拌部11と、沈澱部12とを備えており、原水供給管15が一次撹拌室11aに連通しており、該原水供給管15には初期母フロック供給管8が接続している構成を例示することができる。
かかる構成の高速凝集沈澱池10においては、一次撹拌室11a内で撹拌翼14が回転するようになっており、一次撹拌室11a内で初期母フロック乃至母フロックと原水が混合撹拌された後、二次撹拌室11bに移動するようになっている。
As shown in FIG. 2, for example, the high-speed agglomeration sedimentation basin 10 includes a stirrer 11 including a primary stirrer chamber 11a and a secondary stirrer chamber 11b, and a precipitater 12, and the raw water supply pipe 15 is a primary stirrer chamber. A configuration in which the initial mother floc supply pipe 8 is connected to the raw water supply pipe 15 can be exemplified.
In the high-speed coagulation sedimentation basin 10 having such a configuration, the stirring blade 14 rotates in the primary stirring chamber 11a, and after the initial mother floc or the mother floc and raw water are mixed and stirred in the primary stirring chamber 11a, It moves to the secondary stirring chamber 11b.

高速凝集沈澱池10は、立ち上げ時においては、一次撹拌室11a、二次撹拌室11b及び沈澱部12が空の状態から、初期母フロック形成槽2で形成された初期母フロックが初期母フロック供給管8及び原水供給管15を通じて一次撹拌室11aに供給され、一次撹拌室11a、二次撹拌室11b及び沈澱部12内に初期母フロックが滞留することになる。   When the high-speed coagulation sedimentation basin 10 is started up, the primary mother floc formed in the initial mother floc formation tank 2 is the initial mother floc from the state where the primary stirring chamber 11a, the secondary stirring chamber 11b and the sedimentation section 12 are empty. It is supplied to the primary stirring chamber 11a through the supply pipe 8 and the raw water supply pipe 15, and the initial mother floc stays in the primary stirring chamber 11a, the secondary stirring chamber 11b, and the settling part 12.

他方、通常運転時には、原水に無機凝集剤乃至凝集助剤が添加された状態で、原水供給管15を通じて一次撹拌室11aに供給され、該一次撹拌室11aを通じて二次撹拌室11bに移動するうちに、高速凝集沈澱処理に有用なスラリを生成する。そして、このスラリは、沈澱部12内でスラリ界面を形成する。その一方、沈澱部12の下部は一次撹拌室11aと連通しており、沈澱部12内のスラリ(;フロックを含有している)は一次撹拌室11aに返送され、一次撹拌室11a内において、既存のスラリの存在下で新たなスラリを生成するようになっている。他方、沈澱部12内の沈澱水は、上方の越流口13からオーバーフローして沈澱処理水として流出する。   On the other hand, during normal operation, while an inorganic flocculant or a coagulant aid is added to the raw water, it is supplied to the primary stirring chamber 11a through the raw water supply pipe 15 and moved to the secondary stirring chamber 11b through the primary stirring chamber 11a. In addition, a slurry useful for high-speed coagulation precipitation processing is produced. This slurry forms a slurry interface in the sedimentation portion 12. On the other hand, the lower part of the precipitation unit 12 communicates with the primary stirring chamber 11a, and the slurry (containing floc) in the precipitation unit 12 is returned to the primary stirring chamber 11a, and in the primary stirring chamber 11a, New slurry is generated in the presence of existing slurry. On the other hand, the settling water in the settling section 12 overflows from the upper overflow port 13 and flows out as settling water.

(初期母フロック形成槽2)
初期母フロック形成槽2の構成は、反応槽内に初期原水を導入でき、導入した初期原水に無機凝集剤乃至凝集助剤を加えることができ、これらを撹拌することができ、初期母フロック形成槽内の初期母フロックを高速凝集沈澱池に供給することができればよい。
(Initial mother flock formation tank 2)
The structure of the initial mother floc forming tank 2 can introduce the initial raw water into the reaction tank, can add an inorganic flocculant or a coagulant aid to the introduced initial raw water, can stir these, It is only necessary that the initial mother floc in the tank can be supplied to the high-speed coagulation sedimentation basin.

初期母フロック形成槽2の構成例としては、例えば図1に示すように、反応槽3と、撹拌手段4と、初期原水導入管5と、無機凝集剤添加手段6と、凝集助剤添加手段7と、初期母フロックを高速凝集沈澱池10に供給する初期母フロック供給管8とを備えた構成を挙げることができる。
但し、初期原水導入管5、無機凝集剤添加手段6及び凝集助剤添加手段7は必要に応じて設ければよく、必ずしも設備として設ける必要はない。
As an example of the configuration of the initial mother floc forming tank 2, as shown in FIG. 1, for example, a reaction tank 3, a stirring means 4, an initial raw water introduction pipe 5, an inorganic flocculant adding means 6, and an agglomerating auxiliary agent adding means. 7 and an initial mother floc supply pipe 8 for supplying the initial mother floc to the high-speed coagulation sedimentation basin 10 can be mentioned.
However, the initial raw water introduction pipe 5, the inorganic flocculant adding means 6 and the flocculant auxiliary agent adding means 7 may be provided as necessary, and are not necessarily provided as equipment.

初期母フロック形成槽2の貯留容量、すなわち原水を貯留できる容量は、高速凝集沈澱池10よりも少なければ、任意に設計可能である。
初期母フロック形成槽2内で初期母フロックを形成し、形成した初期母フロックを高速凝集沈澱池10に順次供給する作業を繰り返して高速凝集沈澱池10内に初期母フロックを滞留させることを考えると、初期母フロック形成槽2の貯留容量は高速凝集沈澱池10の貯留容量の1/2以下、中でも1/3以下、その中でも1/4以下とするのが好ましいと考えることができる。
As long as the storage capacity of the initial mother floc forming tank 2, that is, the capacity capable of storing raw water is less than that of the high-speed coagulation sedimentation basin 10, it can be arbitrarily designed.
It is considered that the initial mother floc is formed in the initial mother floc forming tank 2 and the operation of sequentially supplying the formed initial mother floc to the high-speed coagulation sedimentation basin 10 is repeated to retain the initial mother floc in the high-speed coagulation sedimentation basin 10. And, it can be considered that the storage capacity of the initial mother floc-forming tank 2 is preferably ½ or less of the storage capacity of the high-speed coagulation sedimentation tank 10, particularly 1 / or less, and particularly preferably ¼ or less.

また、初期母フロック形成槽2では、撹拌効率を高めることが好ましいため、高速凝集沈澱池10の貯留容量に対する高速凝集沈澱池10内の撹拌翼の半径の比率よりも、初期母フロック形成槽2の貯留容量に対する初期母フロック形成槽2内の撹拌翼の半径の比率の方を大きくすることが好ましい。
また、初期母フロック供給管8にはポンプを設置し、初期母フロック形成槽2内の初期母フロックを高速凝集沈澱池10に送ることができるようにするのが好ましい。
In addition, since it is preferable to increase the stirring efficiency in the initial mother floc forming tank 2, the initial mother floc forming tank 2 is larger than the ratio of the radius of the stirring blade in the high speed coagulating sedimentation tank 10 to the storage capacity of the high speed coagulating sedimentation tank 10. It is preferable to increase the ratio of the radius of the stirring blade in the initial mother floc forming tank 2 to the storage capacity.
Moreover, it is preferable to install a pump in the initial mother floc supply pipe 8 so that the initial mother floc in the initial mother floc forming tank 2 can be sent to the high-speed coagulation sedimentation basin 10.

<本立ち上げ方法>
次に、本発明が提案する高速凝集沈澱池の立ち上げ方法の一例(以下「本立ち上げ方法」と称する)について説明する。但し、高速凝集沈澱池の立ち上げ方法は本立ち上げ方法に限定されるものではない。
<How to start up>
Next, an example of a method for starting up the high-speed coagulating sedimentation basin proposed by the present invention (hereinafter referred to as “the present starting method”) will be described. However, the start-up method of the high-speed coagulation sedimentation basin is not limited to this start-up method.

本立ち上げ方法は、上記の如く高速凝集沈澱池10とは別に初期母フロック形成槽2を設け、前記初期母フロック形成槽2内に初期原水を導入すると共に、導入した初期原水に無機凝集剤乃至凝集助剤を加えて撹拌して初期母フロックを形成し、当該初期母フロック形成槽2内の初期母フロックを高速凝集沈澱池10に供給し、次に再び、前記初期母フロック形成槽2内に初期原水を導入すると共に、導入した初期原水に無機凝集剤乃至凝集助剤を加えて撹拌して初期母フロックを形成し、当該初期母フロック形成槽2内の初期母フロックを高速凝集沈澱池10に供給する工程を繰り返すことにより、高速凝集沈澱池10内に初期母フロックを滞留させるという方法である。
そして、このようにして高速凝集沈澱池10内に十分な量の初期母フロックを滞留させることができたら、被処理水としての初期原水を原水供給管15を通じて高速凝集沈澱池10に供給して通常運転を開始することができる。
In this start-up method, the initial mother floc-forming tank 2 is provided separately from the high-speed coagulating sedimentation basin 10 as described above, and the initial raw water is introduced into the initial mother floc-forming tank 2, and the inorganic flocculant is introduced into the introduced initial raw water. Or agglomeration aid is added and stirred to form an initial mother floc, the initial mother floc in the initial mother floc forming tank 2 is supplied to the high-speed agglomeration sedimentation basin 10, and then again the initial mother floc forming tank 2 The initial raw water is introduced into the inner raw water, and an inorganic flocculant or a coagulant aid is added to the introduced initial raw water and stirred to form an initial mother floc. The initial mother floc in the initial mother floc forming tank 2 is rapidly aggregated and precipitated. This is a method of retaining the initial mother floc in the high-speed coagulation sedimentation basin 10 by repeating the process of supplying the pond 10.
When a sufficient amount of the initial mother floc can be retained in the high-speed coagulation sedimentation basin 10 in this way, the initial raw water as treated water is supplied to the high-speed coagulation sedimentation basin 10 through the raw water supply pipe 15. Normal operation can be started.

このように比較的容量の小さな初期母フロック形成槽2において、比較的少量の初期母フロックを形成し、形成した初期母フロックをその都度高速凝集沈澱池10に供給することを繰り返して高速凝集沈澱池10内に初期母フロックを滞留させることにより、高速凝集沈澱池10内において初期母フロックを形成して滞留させる方法に比べて、初期原水と凝集剤乃至凝集助剤とを均一且つ効率的に接触させることができるから、より一層効率良く初期母フロックを形成することができ、その結果より一層短時間で高速凝集沈澱池10を立ち上げることができる。
また、高速凝集沈澱池10内の様子を見ながら、初期母フロック形成槽2から供給する初期母フロックの量を適宜調整できる点でも優れている。
Thus, in the initial mother floc formation tank 2 having a relatively small capacity, a relatively small amount of initial mother floc is formed, and the formed initial mother floc is supplied to the high-speed coagulation sedimentation basin 10 each time, thereby repeating the high-speed coagulation sedimentation. By retaining the initial mother floc in the pond 10, the initial raw water and the flocculant or flocculating aid are more uniformly and efficiently compared to the method of forming and retaining the initial mother floc in the high-speed coagulation sedimentation basin 10. Since they can be brought into contact with each other, the initial mother floc can be formed more efficiently, and as a result, the high-speed coagulation sedimentation basin 10 can be started up in a shorter time.
Moreover, it is also excellent in that the amount of the initial mother floc supplied from the initial mother floc forming tank 2 can be appropriately adjusted while observing the state in the high-speed coagulating sedimentation basin 10.

初期母フロック形成槽2内で初期母フロックを形成することができたら、少なくともその50%以上、好ましくは70%以上、特に好ましくは80%以上(100%を含む)の初期母フロックを高速凝集沈澱池10に供給し、その後、前記初期母フロック形成槽2内に初期原水を導入して初期母フロックを形成するのが好ましい。   If the initial mother floc can be formed in the initial mother floc forming tank 2, at least 50%, preferably 70% or more, particularly preferably 80% or more (including 100%) of the initial mother floc is rapidly aggregated. It is preferable to supply the settling tank 10 and then introduce initial raw water into the initial mother floc forming tank 2 to form an initial mother floc.

(初期原水)
ここで、「初期原水」とは、初期母フロックを形成するために用いられる原水(被処理水)の意味である。
(Initial raw water)
Here, “initial raw water” means raw water (treated water) used to form an initial mother floc.

初期原水としては、例えば河川水、地下水及び雨水のほか、下水、し尿、産業排水等の排水の処理水など、浄化を必要とする水全般を包含する。   The initial raw water includes, for example, river water, groundwater and rainwater, as well as water that requires purification, such as treated water for sewage, human waste, and industrial wastewater.

初期原水の濁度は10度以下であるのが好ましい。初期原水の濁度が低い程、本発明の効果をより一層享受できるから、かかる観点からすると、初期原水の濁度は5度以下であるのがさらに好ましく、その中でも3度以下であるのがより一層好ましい。   The initial raw water turbidity is preferably 10 degrees or less. The lower the initial raw water turbidity, the more the effects of the present invention can be enjoyed. From this point of view, the initial raw water turbidity is more preferably 5 degrees or less, of which 3 degrees or less. Even more preferred.

初期原水のpHは6.0〜8.0の範囲に調整するのが好ましい。
原水(被処理水)が強酸性であると、例えばアルミニウムや鉄などの金属塩を含有する凝集剤などを使用する場合、アルミニウムが単純イオン(Al3+)の形で存在することになるため、フロックを形成させることが困難になる。また、原水が酸性の場合、Al3+としてアルミニウムが溶解する割合が多く、またその後の処理で被処理水を中性域にした場合に固形分が析出するようになる。その一方、原水(被処理水)がアルカリ性であると、アルミニウムは負電荷(AlO2−)として溶解する割合が増加し、その後の処理で被処理水を中性にすると固形分が析出する。これに対し、原水(被処理水)のpHが中性付近であると、Al3+と水酸化物イオンとが結合する割合が増加し、電気的に中性で不溶性の水酸化アルミニウムになる。この不溶性水酸化アルミニウムが濁度成分と凝集助剤とを取り込んでフロックになる。
このような観点から、初期原水のpHは6.0〜8.0、特に7.0以上或いは7.5以下の範囲に調整するのが好ましい。
It is preferable to adjust the pH of the initial raw water to a range of 6.0 to 8.0.
If the raw water (treated water) is strongly acidic, for example, when using a flocculant containing a metal salt such as aluminum or iron, aluminum exists in the form of simple ions (Al 3+ ), It becomes difficult to form a floc. Moreover, when raw | natural water is acidic, there are many ratios which aluminum melt | dissolves as Al3 + , and solid content comes to precipitate when to-be-processed water is made into a neutral region by subsequent processing. On the other hand, when the raw water (treated water) is alkaline, the proportion of aluminum dissolved as a negative charge (AlO 2− ) increases, and solids are deposited when the treated water is neutralized in the subsequent treatment. On the other hand, when the pH of the raw water (treated water) is near neutral, the proportion of Al 3+ and hydroxide ions combined increases, resulting in electrically neutral and insoluble aluminum hydroxide. This insoluble aluminum hydroxide takes in the turbidity component and the coagulation aid to form a floc.
From such a viewpoint, it is preferable to adjust the pH of the initial raw water to a range of 6.0 to 8.0, particularly 7.0 or more and 7.5 or less.

よって、必要に応じて、初期原水にpH調整剤を加えてpHを調整した後、無機凝集剤乃至凝集助剤を添加するのが好ましい。
この際、アルミニウムや鉄などの金属塩を凝集剤として用いる場合、金属塩が弱酸性であるため、水に加えるとpHが低下する。このときに必要以上にpHの低下が起こると、上述のようにフロックが形成しなくなるおそれがあるため、その場合には、アルカリ(苛性ソーダ、石灰、重炭酸ソーダなど)を用いて初期原水のpHを調整することが望ましい。
Therefore, it is preferable to add an inorganic flocculant or a coagulant aid after adjusting the pH by adding a pH adjuster to the initial raw water as necessary.
At this time, when a metal salt such as aluminum or iron is used as a flocculant, the metal salt is weakly acidic, so that the pH is lowered when added to water. If the pH drops more than necessary at this time, flocs may not be formed as described above. In this case, the pH of the initial raw water is adjusted using alkali (caustic soda, lime, sodium bicarbonate, etc.). It is desirable to do.

(凝集助剤)
凝集助剤としての微細砂は、100μm以上の質量割合が5%以下であり、且つ10μm以下の質量割合が30%以下である粒度分布を有し、且つ比重が2.0〜4.0であるのが好ましい。
このような微細砂を凝集助剤として用いれば、粘土、色コロイド、有機コロイド等、種々の濁度成分の凝集沈澱処理において、効果的にフロックの形成及び成長を促進することができる。
(Aggregating aid)
The fine sand as an agglomerating aid has a particle size distribution in which the mass ratio of 100 μm or more is 5% or less and the mass ratio of 10 μm or less is 30% or less, and the specific gravity is 2.0 to 4.0. Preferably there is.
When such fine sand is used as an agglomeration aid, floc formation and growth can be effectively promoted in agglomeration and precipitation treatment of various turbidity components such as clay, color colloid, and organic colloid.

微細砂は、100μm以上の質量割合が5%以下で、10μm以下の質量割合が30%以下である粒度分布を有するのが好ましい。
粒径が100μm以上の粒子は、通常微粒子と呼ばれる粒子に比べて大きく、沈降速度も大きいため、沈積を防止して原水中に均一に分散させるためには、撹拌速度を大きくしなければならない。また凝集助剤の粒径が大きいということは、質量基準の添加量が同じでも粒子表面積は小さくなることを意味し、これにより凝集助剤と無機凝集剤との接触確率が減少しうる。したがって、凝集助剤として100μm以上の粒子があまり多く存在しないことがより好ましいと言える。さらに、10μm以下の粒子は、質量基準の添加量が同じでも粒子数が多くなることを意味し、これによりフロックに取り込まれない凝集助剤の割合も増加しうる。したがって、凝集助剤として10μm以下の粒子が必要以上に多く存在しないことが好ましいと言える。すなわち、フロックに取り込まれなかった凝集助剤が、自身で沈降し、処理水に混入することがないようにするためには、粒径が細かすぎず、かつ一定以上の沈降速度(すなわち一定以上の比重)を有することが必要となる。
The fine sand preferably has a particle size distribution in which a mass ratio of 100 μm or more is 5% or less and a mass ratio of 10 μm or less is 30% or less.
Particles having a particle size of 100 μm or more are larger than particles usually called fine particles and have a high sedimentation speed. Therefore, in order to prevent sedimentation and uniformly disperse in raw water, the stirring speed must be increased. In addition, the fact that the particle size of the coagulation aid is large means that the particle surface area becomes small even if the addition amount on the mass basis is the same, and the contact probability between the coagulation aid and the inorganic coagulant can be reduced. Therefore, it can be said that it is more preferable that there are not so many particles having a size of 100 μm or more as the aggregation assistant. Furthermore, particles having a size of 10 μm or less mean that the number of particles is increased even if the addition amount on the mass basis is the same, and this can increase the proportion of the coagulation aid that is not taken into the floc. Therefore, it can be said that it is preferable that there are not more particles of 10 μm or less than necessary as an aggregation aid. That is, in order to prevent the coagulation aid that has not been taken into the flocs from being settled by itself and mixed into the treated water, the particle size is not too fine and a settling rate of a certain level (that is, a certain level or more). Specific gravity).

微細砂はさらに、比重が2.0〜4.0であるのが好ましい。比重が大きすぎると、被処理水中に均一に分散させるために撹拌速度を増大させる必要が生じ、比重が小さすぎると、フロックの沈降速度を増加する作用が不十分となる上、フロックに取り込まれなかった場合に凝集助剤自身で沈降することが困難であるため、被処理水に凝集助剤が混入するおそれがある。
かかる観点から、微細砂の比重は2.4以上或いは2.7以下であるのがさらに好ましい。
なお、凝集助剤については、特開2006−7086号公報の段落[0022]−[0034]の記載も引用する。
微細砂の添加形態としては、注入ラインで閉塞しないようにすれば、粉体でも、溶液でもよい。
The fine sand preferably further has a specific gravity of 2.0 to 4.0. If the specific gravity is too large, it is necessary to increase the stirring speed in order to uniformly disperse it in the water to be treated. If the specific gravity is too small, the action of increasing the sedimentation speed of the floc becomes insufficient and it is taken into the floc. Otherwise, it is difficult for the flocculation aid itself to settle, and the flocculation aid may be mixed into the water to be treated.
From this viewpoint, the specific gravity of fine sand is more preferably 2.4 or more or 2.7 or less.
Regarding the coagulation aid, the description in paragraphs [0022]-[0034] of JP-A-2006-7086 is also cited.
The fine sand may be added in the form of powder or solution as long as it is not blocked by the injection line.

微細砂は、水に不溶解性で、かつ被処理水に添加した場合のゼータ電位が−30mV〜−60mVであることがさらに好ましい。
ゼータ電位とは、液体中の粒子が動くときに、同時に動く層と動かない層とのせん断面における電位、すなわち粒子のすべり面の電位のことであり、凝集状態の良否の判定指標として広く用いられる値である。
このようなゼータ電位を有する微細砂であれば、無機凝集剤から生成するフロックに効率的に取り込まれ、処理水に残留することがほとんどないという点で好ましい。凝集剤(PAC、硫酸アルミニウムなど)が水中で水酸化アルミニウムを生成する過程で、濁度成分と共に凝集助剤をも取り込んでフロックを形成するが、凝集助剤のゼータ電位が−30mV〜−60mVであることでフロックに取り込まれやすくなる。
かかる観点から、微細砂のゼータ電位は、特に−50mV以下であるのが好ましい。
The fine sand is more preferably insoluble in water and has a zeta potential of −30 mV to −60 mV when added to the water to be treated.
The zeta potential is the potential at the shear plane between the moving and non-moving layers at the same time when the particles in the liquid move, that is, the potential at the sliding surface of the particles. Value.
Such fine sand having a zeta potential is preferable in that it is efficiently taken into flocs produced from the inorganic flocculant and hardly remains in the treated water. While the flocculant (PAC, aluminum sulfate, etc.) produces aluminum hydroxide in water, it takes in the flocculant together with the turbidity component to form a floc. The flocculent aid has a zeta potential of -30 mV to -60 mV. It becomes easy to be taken in by the floc.
From this viewpoint, the zeta potential of the fine sand is particularly preferably −50 mV or less.

このような微細砂は、初期母フロック形成槽2内における微細砂の濃度(初期原水に対する濃度)が100〜4000mg/Lとなるようにその添加量を調整するのが好ましい。
微細砂が少ないと、凝集不良が生じて初期母フロックが十分生成せず、凝集で捕捉されなかった濁質分は浮遊し、立ち上げ時に処理水と共に越流して処理水濁度が上昇し、長時間を要するようになる。一方、微細砂が多すぎると、余分な微細砂が処理水中に残留して処理水水質の低下を招いたりする可能性がある。
よって、かかる観点から、微細砂の添加量は、初期母フロック形成槽2内における、初期原水に対する微細砂の濃度が200mg/L以上或いは2000mg/L以下、その中でも350mg/L以上或いは1200mg/L以下、さらにその中でも900mg/L以下となるように、その添加量を調整するのがさらに好ましい。
It is preferable to adjust the amount of such fine sand so that the concentration of fine sand (concentration relative to the initial raw water) in the initial mother floc forming tank 2 is 100 to 4000 mg / L.
If there is little fine sand, coagulation failure will occur and the initial mother floc will not be generated sufficiently, the turbid matter that was not trapped by aggregation will float, overflow with the treated water at startup, and the treated water turbidity will increase, It takes a long time. On the other hand, when there is too much fine sand, extra fine sand may remain in the treated water, leading to a decrease in the quality of the treated water.
Therefore, from this point of view, the amount of fine sand added is such that the concentration of fine sand with respect to the initial raw water in the initial mother floc forming tank 2 is 200 mg / L or more or 2000 mg / L or less, of which 350 mg / L or more or 1200 mg / L. In the following, it is more preferable to adjust the addition amount so as to be 900 mg / L or less.

微細砂の添加速度に関しては、微細砂を初期母フロック形成槽2内に投入開始してからの、微細砂の初期母フロック形成槽2内平均濃度の上昇速度が1〜90mg/L/minの範囲内となるように制御するのが好ましい。微細砂平均濃度の上昇速度が低過ぎては効率が悪い一方、高過ぎると、凝集不良を起こして初期母フロックの形成効率が低下してしまうことが確認されている。かかる観点から、微細砂を初期母フロック形成槽2内に投入開始してからの、微細砂の初期母フロック形成槽2内平均濃度の上昇速度が60mg/L/min以下となるように制御するのがより一層好ましい。   Regarding the addition speed of the fine sand, the rate of increase in the average concentration of the fine sand in the initial mother flock formation tank 2 after the start of the introduction of the fine sand into the initial mother flock formation tank 2 is 1 to 90 mg / L / min. It is preferable to control to be within the range. It has been confirmed that if the rate of increase in the average concentration of fine sand is too low, the efficiency is poor, whereas if it is too high, agglomeration failure occurs and the formation efficiency of the initial mother flocs decreases. From this point of view, the rate of increase in the average concentration of the fine sand in the initial mother flock formation tank 2 after starting the introduction of the fine sand into the initial mother flock formation tank 2 is controlled to be 60 mg / L / min or less. Is even more preferable.

(凝集剤)
初期母フロック形成時に添加する無機凝集剤は、通常の凝集沈澱水処理方法において使用される一般的な凝集剤を用いることができる。例えばポリ塩化アルミニウム(PAC)、硫酸ばん土、固形硫酸アルミニウム、液体硫酸アルミニウム、硫酸第二鉄等を挙げることができる。これらのうちの1種或いは2種類以上を組み合わせて使用することができる。
(Flocculant)
As the inorganic flocculant to be added at the time of forming the initial mother floc, a general flocculant used in an ordinary flocculent precipitation water treatment method can be used. Examples thereof include polyaluminum chloride (PAC), sulfated clay, solid aluminum sulfate, liquid aluminum sulfate, and ferric sulfate. One or more of these can be used in combination.

凝集剤は、微細砂100質量部に対して10〜150質量部加えるのが好ましい。
通常運転時には、凝集剤に対する凝集助剤の比率を一定範囲内になるように、両者の量を調整するのが好ましいが、初期母フロック形成時には、微細砂に対する凝集剤の添加量が一定範囲内になるように調整するのが好ましい。そしてこの際、微細砂に対する凝集剤の量が少な過ぎると、凝集に取り込まれない微細砂が生じることになり、逆に多すぎると、フロックが膨化して沈降性に乏しいフロックが形成されるようになり、その結果、運転開始後に水質の低下を招く一因となる可能性がある。
よって、かかる観点から、微細砂100質量部に対して25質量部以上或いは100質量部以下の割合で凝集剤を加えるのがより一層好ましく、その中でも、40質量部以上或いは60質量部以下の割合で凝集剤を加えるのがさらにより一層好ましい。
The flocculant is preferably added in an amount of 10 to 150 parts by mass with respect to 100 parts by mass of fine sand.
During normal operation, it is preferable to adjust both amounts so that the ratio of the coagulant aid to the coagulant is within a certain range, but when the initial mother floc is formed, the amount of coagulant added to the fine sand is within the range. It is preferable to adjust so that it becomes. At this time, if the amount of the flocculant with respect to the fine sand is too small, fine sand that is not taken into the agglomeration will be generated. Conversely, if the amount is too large, the floc swells and flocs with poor sedimentation are formed. As a result, there is a possibility that the water quality is lowered after the operation is started.
Therefore, from such a viewpoint, it is more preferable to add the flocculant at a ratio of 25 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of fine sand, and among them, a ratio of 40 parts by mass or more or 60 parts by mass or less. It is even more preferred to add a flocculant at

(凝集剤及び凝集助剤の添加)
凝集剤と凝集助剤(微細砂)の添加の順序はいずれでもよいし、同時に添加してもよい。
凝集剤と凝集助剤(微細砂)の注入点は同じとすることが好ましいが、凝集剤及び凝集助剤(微細砂)を処理水中に残留させないという観点からすると、沈降性を有する微細砂を先に添加することが好ましい。
(Addition of coagulant and coagulant aid)
The order of adding the flocculant and the flocculant aid (fine sand) may be any, or may be added simultaneously.
The injection point of the flocculant and the coagulation aid (fine sand) is preferably the same, but from the standpoint that the flocculant and the coagulation aid (fine sand) do not remain in the treated water, fine sand having sedimentation properties is used. It is preferable to add it first.

初期原水、凝集剤及び凝集助剤(微細砂)を初期母フロック形成槽2内に導入すると共に、或いは、導入した後、初期母フロック形成槽2内の初期原水を撹拌するのが好ましい。   It is preferable that the initial raw water, the flocculant and the coagulant aid (fine sand) are introduced into the initial mother floc forming tank 2 or after the initial raw water in the initial mother floc forming tank 2 is stirred.

<用語の説明>
本発明において、「X〜Y」(X,Yは任意の数字)と表現した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含する。
また、本発明において、「X以上」(Xは任意の数字)と表現した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と表現した場合、特にことわらない限り「好ましくはYより小さい」の意を包含する。
<Explanation of terms>
In the present invention, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” and “preferably Y”, with the meaning of “X to Y” unless otherwise specified. It means “smaller”.
Further, in the present invention, when expressed as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and “Y or less” (Y is an arbitrary number). ) Includes the meaning of “preferably smaller than Y” unless otherwise specified.

1 本高速凝集沈澱装置
2 初期母フロック形成槽
3 反応槽
4 撹拌手段
5 初期原水導入管
6 無機凝集剤添加手段
7 凝集助剤添加手段
8 初期母フロック供給管
10 高速凝集沈澱池
11a 一次撹拌室
11b 二次撹拌室
11 撹拌部
12 沈澱部
13 越流口
14 撹拌翼
15 原水供給管
51 原水
52 一次撹拌室
53 二次撹拌室
54 沈澱部
54a 沈澱部上澄液部
54b スラリプール(沈澱部スラリ滞留部)
54c スラリ界面
55 沈澱水
56b 沈澱部から攪拌室へのスラリ返送流
57 排泥
58 無機凝集剤
59 撹拌翼
60 外側ドラフトチューブ
61 撹拌室へ流入するスラリ
62 撹拌室へ流入する原水
1 High-speed coagulation sedimentation apparatus 2 Initial mother floc formation tank 3 Reaction tank 4 Stirring means 5 Initial raw water introduction pipe 6 Inorganic flocculant addition means 7 Aggregation aid addition means 8 Initial mother floc supply pipe 10 High-speed coagulation precipitation tank 11a Primary stirring chamber 11b Secondary stirring chamber 11 Stirring section 12 Precipitation section 13 Overflow port 14 Stirring blade 15 Raw water supply pipe 51 Raw water 52 Primary stirring chamber 53 Secondary stirring chamber 54 Precipitation section 54a Precipitation section supernatant section 54b Slurry pool (precipitation section slurry) Residence part)
54c Slurry interface 55 Precipitated water 56b Slurry return flow 57 from the precipitation portion to the stirring chamber 57 Mud 58 Inorganic flocculant 59 Stirring blade 60 Outer draft tube 61 Slurry flowing into the stirring chamber 62 Raw water flowing into the stirring chamber

Claims (7)

高速凝集沈澱池とは別に、該高速凝集沈澱池よりも貯留容量の小さな初期母フロック形成槽を設け、
前記初期母フロック形成槽内に初期原水を導入すると共に、導入した初期原水に無機凝集剤及び凝集助剤を加えて撹拌して初期母フロックを形成し、当該初期母フロック形成槽内の初期母フロックを高速凝集沈澱池に供給した後、再び、前記初期母フロック形成槽内に初期原水を導入すると共に、導入した初期原水に無機凝集剤及び凝集助剤を加えて撹拌して初期母フロックを形成し、当該初期母フロック形成槽内の初期母フロックを高速凝集沈澱池に供給する工程を繰り返すことにより、高速凝集沈澱池内に初期母フロックを滞留させることを特徴とする、高速凝集沈澱池の立ち上げ方法。
Apart from the high-speed coagulation sedimentation basin, an initial mother floc-forming tank having a smaller storage capacity than the high-speed coagulation sedimentation basin is provided,
The initial raw water is introduced into the initial mother flock formation tank, and an inorganic flocculant and a coagulant auxiliary agent are added to the introduced initial raw water and stirred to form an initial mother floc. After supplying the floc to the high-speed coagulation sedimentation basin, the initial raw water is again introduced into the initial mother floc-forming tank, and the initial mother floc is stirred by adding an inorganic flocculant and a coagulant aid to the introduced initial raw water. Forming the initial mother floc in the initial mother floc formation tank and repeating the step of supplying the initial mother floc to the high-speed coagulation sedimentation basin, Startup method.
前記高速凝集沈澱池内に初期母フロックを滞留させた後、被処理水としての初期原水を高速凝集沈澱池内に供給して高速凝集沈澱池の通常運転を開始することを特徴とする請求項1記載の高速凝集沈澱池の立ち上げ方法。 The initial mother water flocs are retained in the high-speed coagulation sedimentation basin, and then initial raw water as treated water is supplied into the high-speed coagulation sedimentation basin to start normal operation of the high-speed coagulation sedimentation basin. How to set up a high-speed coagulation sedimentation pond. 前記凝集助剤として、100μm以上の重量割合が5%以下で、且つ10μm以下の重量割合が30%以下である粒度分布を有し、且つ比重が2.0〜4.0である微細砂からなる凝集助剤を用いることを特徴とする請求項1又は2に記載の高速凝集沈澱池の立ち上げ方法。 As the agglomeration aid, from a fine sand having a particle size distribution in which a weight ratio of 100 μm or more is 5% or less and a weight ratio of 10 μm or less is 30% or less, and a specific gravity is 2.0 to 4.0. The method for starting up a high-speed coagulation sedimentation basin according to claim 1, wherein the coagulation aid is used. 前記初期母フロック形成槽内における凝集助剤の濃度が100mg/L〜4000mg/Lとなるように、初期原水に凝集助剤を加えることを特徴とする請求項1〜3の何れかに記載の高速凝集沈澱池の立ち上げ方法。 The coagulation aid is added to the initial raw water so that the concentration of the coagulation aid in the initial mother floc-forming tank is 100 mg / L to 4000 mg / L. How to set up a high-speed coagulation sedimentation pond. 高速凝集沈澱池と、該高速凝集沈澱池よりも貯留容量の小さい、該高速凝集沈殿池を立ち上げるための初期母フロック形成槽と、を備えた高速凝集沈殿装置であって、A high-speed coagulation sedimentation apparatus comprising a high-speed coagulation sedimentation basin and an initial mother floc-forming tank for starting up the high-speed coagulation sedimentation basin having a smaller storage capacity than the high-speed coagulation sedimentation basin,
該初期母フロック形成槽は、The initial mother flock formation tank is
該槽内に初期原水を導入するための初期原水導入管と、An initial raw water introduction pipe for introducing the initial raw water into the tank;
該槽内に無機凝集剤及び凝集助剤を加えて撹拌し、初期母フロックを形成するための撹拌手段と、Stirring means for adding an inorganic flocculant and a flocculant aid into the tank and stirring to form an initial mother floc;
該初期母フロックを該高速凝集沈殿池に滞留させるために、該初期母フロックを繰り返し該高速凝集沈殿池に供給するための初期母フロック供給管と、An initial mother floc supply pipe for repeatedly supplying the initial mother floc to the high-speed coagulation sedimentation basin to retain the initial mother floc in the high-speed coagulation sedimentation basin;
を備えたことを特徴とする高速凝集沈殿池の立ち上げ方法を実現するための高速凝集沈澱装置。A high-speed coagulation sedimentation apparatus for realizing a method for starting up a high-speed coagulation sedimentation basin characterized by comprising:
前記高速凝集沈殿池は、一次撹拌室と、該一次撹拌室に連通する二次撹拌室及び沈殿部と、を備え、
前記高速凝集沈殿池の立ち上げ時、前記初期母フロック形成槽で形成された初期母フロックを、前記初期母フロック供給管又は原水供給管を通じて該一次撹拌室に供給し、一次撹拌室、二次撹拌室及び沈殿部内に初期母フロックを空の状態から滞留させる構成としたことを特徴とする請求項5に記載の高速凝集沈殿池の立ち上げ方法を実現するための高速凝集沈澱装置。
The high-speed agglomeration sedimentation basin includes a primary stirring chamber, a secondary stirring chamber and a sedimentation portion communicating with the primary stirring chamber,
When starting up the high-speed coagulation sedimentation basin, the initial mother floc formed in the initial mother floc forming tank is supplied to the primary stirring chamber through the initial mother floc supply pipe or the raw water supply pipe, and the primary stirring chamber, secondary 6. The high-speed coagulation sedimentation apparatus for realizing the method for starting up a high-speed coagulation sedimentation basin according to claim 5 , wherein the initial mother floc is retained from an empty state in the stirring chamber and the sedimentation section.
高速凝集沈澱池の貯留容量に対する高速凝集沈澱池内の撹拌翼の半径の比率よりも、初期母フロック形成槽の貯留容量に対する初期母フロック形成槽内の撹拌翼の半径の比率の方が大きいことを特徴とする請求項5又は6に記載の高速凝集沈澱装置。   The ratio of the radius of the stirring blade in the initial mother floc formation tank to the storage capacity of the initial mother floc formation tank is larger than the ratio of the radius of the stirring blade in the high speed aggregation sedimentation basin to the storage capacity of the high speed aggregation sedimentation basin. The high-speed coagulation precipitation apparatus according to claim 5 or 6, characterized in that
JP2011099478A 2011-04-27 2011-04-27 Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing Active JP5767009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099478A JP5767009B2 (en) 2011-04-27 2011-04-27 Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099478A JP5767009B2 (en) 2011-04-27 2011-04-27 Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing

Publications (2)

Publication Number Publication Date
JP2012228673A JP2012228673A (en) 2012-11-22
JP5767009B2 true JP5767009B2 (en) 2015-08-19

Family

ID=47430692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099478A Active JP5767009B2 (en) 2011-04-27 2011-04-27 Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing

Country Status (1)

Country Link
JP (1) JP5767009B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752115B2 (en) * 2016-11-04 2020-09-09 オルガノ株式会社 How to set up a sludge blanket type coagulation sedimentation device
JP6752114B2 (en) * 2016-11-04 2020-09-09 オルガノ株式会社 How to set up a sludge blanket type coagulation sedimentation device
JP7202867B2 (en) * 2018-12-07 2023-01-12 オルガノ株式会社 Water treatment device and water treatment method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719234B1 (en) * 1994-05-02 1999-08-13 Omnium Traitement Valorisa Method and installation for treating a raw flow by simple decantation after ballasting with fine sand.
JPH09323004A (en) * 1996-06-04 1997-12-16 Kamata Bio Eng Kk Water treating apparatus
JP3866439B2 (en) * 1999-03-26 2007-01-10 オルガノ株式会社 Coagulation sedimentation equipment
JP2002320978A (en) * 2001-04-27 2002-11-05 Ebara Corp Method and system ultrahigh speed treatment of phosphorus-containing water
JP4336059B2 (en) * 2001-05-15 2009-09-30 Dowaテクノエンジ株式会社 Solid-liquid separator for waste water
JP5173538B2 (en) * 2008-04-03 2013-04-03 水ing株式会社 Water treatment method
JP2010017620A (en) * 2008-07-09 2010-01-28 Tech Corporation:Kk High-speed coagulation sedimentation apparatus and polluted water purifying method
JP4707752B2 (en) * 2009-05-27 2011-06-22 壽昭 落合 Water treatment method and water treatment system
JP5753702B2 (en) * 2011-02-23 2015-07-22 水ing株式会社 Formation method of initial mother floc in high speed coagulation sedimentation basin
WO2012117541A1 (en) * 2011-03-02 2012-09-07 住友重機械エンバイロメント株式会社 Palm oil effluent treatment device

Also Published As

Publication number Publication date
JP2012228673A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
CA2671928C (en) Method for treating wastewater or produced water
JP6281274B2 (en) High hardness wastewater treatment device and treatment method
JP2003300069A (en) Fresh water generating method and fresh water generator
CN105366839A (en) Treatment device and method for simultaneously removing high-concentration SS, fluoride, sulfate, arsenate and COD in desulfurization waste water
CN104936907B (en) The technique for reducing sulfate concentration in waste water stream by using regeneration gibbsite
KR101278230B1 (en) The method and Appuratus of removing total nitrogen and phosphate in sewage and wastewater using precipitation-agent of rapidity for coagulation an flocculation
CN107651774A (en) Coal chemical industry strong brine silicon removing process and its special purpose device
CN105036408A (en) Treatment method of wastewater containing high-concentration active silicon
WO2006056022A1 (en) Water treatment process
CN212450783U (en) Sewage treatment system for removing silicon and hardness
WO2014136651A1 (en) Silica-containing water treatment apparatus, water treatment system, and method for treating silica-containing water
JP5753702B2 (en) Formation method of initial mother floc in high speed coagulation sedimentation basin
CN112520895A (en) Gasification grey water aeration hardness removal device and treatment method and application thereof
JP5767009B2 (en) Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing
CN104973717A (en) Saline wastewater deep treatment method
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP5173538B2 (en) Water treatment method
WO2019077835A1 (en) Flocculation device and flocculation treatment method
WO2019119475A1 (en) Method for enhancing coagulation in stages
JP6731261B2 (en) Heavy metal-containing water treatment device and treatment method
JP2019198806A (en) Water treatment method, and water treatment device
CN110015816A (en) A method of waste water treatment efficiency is improved using temperature control methods
CN112374634B (en) Pretreatment method of fracturing flowback fluid
JP2021186793A (en) Water purification method and water purification apparatus
JP4522534B2 (en) Water purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150618

R150 Certificate of patent or registration of utility model

Ref document number: 5767009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250