JP4522534B2 - Water purification method - Google Patents

Water purification method Download PDF

Info

Publication number
JP4522534B2
JP4522534B2 JP2000113982A JP2000113982A JP4522534B2 JP 4522534 B2 JP4522534 B2 JP 4522534B2 JP 2000113982 A JP2000113982 A JP 2000113982A JP 2000113982 A JP2000113982 A JP 2000113982A JP 4522534 B2 JP4522534 B2 JP 4522534B2
Authority
JP
Japan
Prior art keywords
slaked lime
water
carbon dioxide
aqueous solution
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000113982A
Other languages
Japanese (ja)
Other versions
JP2001293483A (en
Inventor
勲 舟橋
伸一 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Engineering Co Ltd
Original Assignee
Kureha Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Engineering Co Ltd filed Critical Kureha Engineering Co Ltd
Priority to JP2000113982A priority Critical patent/JP4522534B2/en
Publication of JP2001293483A publication Critical patent/JP2001293483A/en
Application granted granted Critical
Publication of JP4522534B2 publication Critical patent/JP4522534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、凝集沈殿処理と水の非腐食化を行う浄水処理方法に関する。詳しくは、消石灰水溶液と炭酸ガスを注入処理する浄水処理方法の改良された方法であって、浄水処理施設に消石灰水溶液製造装置及び炭酸ガス注入装置を設けて得られる消石灰水溶液、該消石灰水溶液製造装置からでる未溶解物、及び炭酸ガスを浄水工程の適宜の個所に注入することにより、高効率凝集沈殿処理と水の非腐食性化を同時に達成する浄水処理方法に関する。
【0002】
【従来の技術】
従来、表流水系の浄水処理施設においては被処理水( 以下、原水と記す。) に凝集剤を加える凝集沈殿・濾過処理工程が欠かせず、凝集剤としてポリ塩化アルミニウム(PAC)や硫酸バンドが使用されている。近年、表流水の水質悪化にともない凝集剤の使用量が増大する傾向にあり、特に、着水井に導入される原水が低温、低濁度、あるいは低アルカリ度時には凝集効率を上げるために、凝集剤の注入率を増大させる必要がある。この結果、凝集剤の使用量が増大し汚泥発生量の増加、濾過水への凝集剤の混入、凝集剤費用の増加、凝集剤に由来する塩素イオンや硫酸イオンの増大による浄水の腐食性の増加と言う問題が生じる。
また、着水井に導入される原水のpHが高いときには、硫酸等の酸を注入しpHを低下させて凝集処理を行ない、その後で適正pH値にするためアルカリ剤を注入している。しかし、遊離炭酸やアルカリ度の低い水にあってはpH緩衝性が小さいので、アルカリ剤の注入量を増加させると、pHが大きく上昇し水道法の上限値(日本では8.6 )を容易に越えてしまい消石灰水溶液を多量に注入することが難しく、水の腐食の判定指標であるランゲリア指数を高めて非腐食性の水に改善させることができない。
さらには、アルミニウムがアルツハイマー病の原因になると懸念されている。
このようなことから浄水汚泥の発生量や薬剤費用を減少させることや、PACや硫酸バンドの注入率の低減化の研究が進められている。
【0003】
一方、水の非腐食化のため消石灰水溶液を注入する技術も、例えば特許第1459175号公報に開示される消石灰水溶液を連続的に製造する装置の出現とともに普及しつつある。この公報に開示の装置においては、pH12以上の水溶液には溶解し難い未溶物が残存する問題があったが、未溶物をpH10以下に維持された水中で処理した後、着水井に導入する方法により解決されている(特許第141605号公報)。また、特許第2048482号公報には、消石灰水溶液と炭酸ガスを併用してランゲリア指数を上げ水の非腐食性化を図ることが開示されている。
さらには、特開平6-83566号公報には、消石灰水溶液製造の際に生成した難溶解性フロックの濃度を上げて、このフロックを混和池に導入してアルカリ剤として利用することが提案されているが、凝集沈殿を改善するものではない。高効率凝集沈殿と水の非腐食化を同時に達成する方法が要望されている。
【0004】
【発明が解決しようとする課題】
本発明者等は、このような現状に鑑み、高効率凝集沈殿と水の非腐食性化を同時に解決させる方法について研究した結果、従来知られている消石灰炭酸ガス併用注入法を改良・発展させることにより、すなわち、消石灰溶解装置から出る未溶物、消石灰溶液及び炭酸ガスを水質に応じて浄水処理工程の適宜の箇所に注入するとこにより、未溶解物が凝集沈殿操作において凝集の核的機能をもち、重質なフロックを形成し、水質改善に通常用いる消石灰溶液と炭酸ガス、および消石灰溶解装置から出る未溶物以外に、凝集助剤等の追加的な薬剤の使用を必要とすることなく、凝集沈殿が効果的に行われることを見出し、本発明を完成した。
【0005】
【課題を解決するための手段】
本発明は、着水井、混和池、沈殿池、濾過池及び配水池を含む浄水処理施設に、消石灰水溶液製造装置及び炭酸ガス注入装置を設け、消石灰水溶液と炭酸ガスを注入して水質調整を行う浄水処理において、被処理水のpH、アルカリ度、カルシウム硬度等を測定してランゲリア指数を求めて、腐食防止上から好ましい水質であるpH7.5〜8.3、アルカリ度60〜80mg/l、ランゲリア指数-1〜0になる量の消石灰と炭酸ガスの注入率を決定し、浄水処理施設の沈殿池またはそれより前の工程に、該消石灰溶液製造装置から出る未溶解物スラリーと炭酸ガスと消石灰水溶液を注入し、pHを6.7 〜7.3 、炭酸水素カルシウム濃度を80〜160mg/l の間になるように調整して、pH緩衝性を上げた後に凝集剤を注入して凝集、沈殿、濾過を行ない、さらに濾過水に消石灰水溶液および/または炭酸ガスを注入することにより、高効率凝集沈殿と水の非腐食性化を同時に行うことを特徴とする浄水処理方法である。
【0006】
【発明の実施の形態】
本発明は、着水井、混和井、沈殿池、濾過池及び配水池を含む浄水処理施設に、消石灰水溶液製造装置及び炭酸ガス注入装置を設け、沈殿池またはそれより前の工程に、消石灰水溶液製造装置から出る消石灰水溶液、未溶物スラリー及び炭酸ガスを水質に応じて注入する。
本発明における未溶物スラリーとは、消石灰水溶液製造装置においてpH11以上の消石灰水溶液に溶解せずに残存する未溶解物を含むスラリーを指す。この未溶解物スラリー中の固体は炭酸カルシウムを主とし、この炭酸カルシウムに包含された未溶解の消石灰、その他原料消石灰の不純物を含む。
消石灰溶解装置としては、例えば特許第1459175号公報に記載されているような攪拌槽の下部から水を導入し、上部から消石灰水溶液を連続的に取り出す装置を用いることができる。未溶解物スラリーは、水の導入を停止した後に槽下部から取り出す。
【0007】
本発明の実施にあたっては、浄水処理に先立ち、予め原水のpH、アルカリ度、カルシウム硬度等を測定してランゲリア指数を求めるとともに、処理後の水の腐食防止上から好ましい水質であるpH7.5〜8.3、アルカリ度60〜80mg/l、ランゲリア指数-1〜0になる量の消石灰と炭酸ガスの注入率を決定しておく。
【0008】
炭酸ガス及び、消石灰水溶液の注入率は上記のように予め決定された量のうち、その一部若しくは全部を用いて凝集操作時の水のpHを調整する。例えば原水のpHが所定のpHより高い場合は炭酸ガスを注入して、pHが低い場合は消石灰水溶液を注入してpHを所定のpHに調整する。このpHの調整は凝集剤の添加後に行ってもよいが、凝集剤の添加によるpHの低下の程度を見越して凝集剤の添加前に炭酸ガスまたは/及び消石灰水溶液を注入することにより行うこともできる。また、凝集操作時の水の炭酸水素カルシウム濃度が80〜160mg/l の範囲内になるように調整する。原水の炭酸水素カルシウム濃度が80mg/lより低い場合は緩衝能が小さく、凝集剤添加時のpHが所定範囲内に調整されていても含まれている浮遊性物質を充分に沈降分離することができない。炭酸水素カルシウム濃度の調整は消石灰及び炭酸ガスを用いて行う。
以下に代表的な場合について説明する。
原水の性状に応じた量の前記未溶解物を好ましくは着水井に注入し、次いで炭酸ガスおよび消石灰水溶液を注入して、凝集沈殿させるに好ましい性状、即ち、pH6.7 〜7.3 、炭酸水素カルシウム濃度80〜160mg/l 、好ましくはpH6.8 〜7.2 、炭酸水素カルシウム濃度90〜120mg/l に調整する。このように未溶物を用いて調整することにより、凝集沈殿時に凝集助剤を用いずとも重質のフロックを形成させることが可能となる。
なお、原水の性状が低pH、低アルカリ度の場合には、先ず消石灰水溶液および必要に応じて炭酸ガスを用いて、また原水が高pHの場合には、先ず炭酸ガスおよび必要に応じて消石灰水溶液を用いて、可能な範囲で凝集反応に好ましい性状に近い性状に調整して後、未溶解物および凝集剤を添加してもよい。未溶物および凝集剤を添加して後、さらにpHおよび炭酸水素カルシウム濃度を調整してもよい。また場合によっては、凝集助剤等を用いることを排除するものではない。
未溶物は、好ましくは2 〜3%スラリーで注入する。炭酸ガスは予め求めたランゲリア指数を-1〜0に調整するための必要量の全量または一部を注入する。なお、炭酸ガス注入口は着水井または混和井の広さに応じて適当箇所の水深2mより深い位置に設ける。
未溶物を着水井に注入した後、炭酸ガスを着水井または混和井に注入し、pHを6.7〜7.3に調整する。上記処理後のpHが6.7 以下と低い場合には消石灰水溶液を注入してpHが上記範囲内になるよう調整する。消石灰水溶液を必要とする場合は、消石灰溶解槽より未溶解物を取り出す際に、必要量の消石灰水溶液とともにスラリーとして取り出し、着水井に加えることができる。また、上記処理後のpHが7.7 より高くなる場合には、炭酸ガスの注入量を増やして調整する。
【0009】
このように調整された水は緩衝能が大きくなり、PACなどの凝集剤を添加すると、先に加えた未溶解物が凝集の核的機能を果たし、重質フロックが形成されその沈降速度が速くなる。その結果、生成してくるフロックの沈降速度が速く効率的な処理が可能となる。また、従来使用されている凝集助剤の添加を必要としないこと、及び添加した未溶解物主成分である消石灰及び炭酸カルシウムの殆どが溶解するため、分離される固形物の量が著しく減少する。
【0010】
【実施例1】
原水は水温15℃、pH6.7 、アルカリ度5 mg/l、カルシウム硬度5 mg/l、ランゲリア指数-3.8、濁度50度の腐食性の大きい表流水であった。腐食性の小さい浄水として水質改善目標値をpH7.8、アルカリ度70mg/l、カルシウム硬度70mg/l、ランゲリア指数-0.5と定め、消石灰と炭酸ガスの所要注入率を実験で求めたところ、それぞれ48mg/l、57mg/lとなった。
原水20m3/日に対して上水質改善目標値を達成するのに必要な全消石灰量は1kg /日、炭酸ガス量は1.2kg/日と計算された。
直径0.22m、高さ1.5m、容量0.06m3の円筒縦型低速攪拌機付溶解槽へ1.2kgの消石灰を投入し、該溶解槽の下部から給水してpH12以上の溢流液を中間槽に貯めた。消石灰の80%が溶解し中間槽へ溢流した時点で溶解槽への給水を止め、1時間静止沈降させた後に該溶解槽の下部に残存している未溶解物を未溶解物スラリー槽に抜き出した。中間槽に得られた消石灰の濃度は略1500mg/lであった。未溶解物スラリーはpH12.0、スラリー濃度2.9%であり、未溶解物の成分は炭酸カルシウム57%、消石灰40%、二酸化珪素2 %、酸化アルミ0.2 %であった。
【0011】
図1に示す水処理フローにより以下のように浄水処理を行った。前記原水20m3/日を着水井に取り入れ、未溶解物スラリーを0.3 l/hで注入したところpH10.0になった。この混合水に炭酸ガスを57mg/lを注入し、次いで1500mg/lの消石灰水溶液を19.3 l/h 注入したところ、pH7.1 、アルカリ度59mg/l、カルシウム硬度60mg/l、炭酸水素カルシウム濃度98mg/lの水となった。ここへPACを25mg/l注入し凝集沈殿を行った。沈殿上澄水の濁度は3 度で凝集沈殿効率は94%の効果が得られた。この沈殿上澄水を砂濾過にかけたところ濁度0.1 度の濾過水となった。濾過水に消石灰溶液を5l/hを注入したところ、処理水はpH7.8 、アルカリ度67mg/l、カルシウム硬度72mg/l、ランゲリア指数-0.5の非腐食性水が得られた。
【0012】
【比較例】
実施例と同じ原水、消石灰水溶液およびPACを使用して凝集沈殿の回分実験を行った。消石灰水溶液の注入のみでは原水にpH緩衝性がないので、1.8mg/l と少量の消石灰の注入でpHは8.6まで上昇し、このときの水質はアルカリ度7mg/l、カルシウム硬度7mg/lでランゲリア指数を-1.6であり、腐食性の小さい浄水としての好ましい水質値であるpH7.8,アルカリ度70mg/l、カルシウム硬度7mg/lでランゲリア指数を-0.5にすることは不可能であった。次いで凝集処理のためのpHを実施例と同じ7.1 にするのに要する消石灰注入率を求めたところ、0.8mg/lであった。
図1に示す水処理フローにより、原水20m3/日に対して1500mg/lの消石灰水溶液を0.5l/h(消石灰注入率6mg/l ) 注入し、これにPACを25mg/l注入して、凝集沈殿を行った。沈殿上澄水の濁度は8度と高くこれを砂濾過にかけたところ、濁度は0.5 度の濾過水となった。この濾過水にpH7.8 となるように消石灰水溶液を注入して得られる浄水の水質を測定したところ、カルシウム硬度11mg/l、アルカリ度7mg/l、ランゲリア指数-2.3で非腐食性水とならず、凝集沈殿効率も79%と実施例に比べて低かった。
【0013】
【実施例2】
原水は水温28℃.pH9.4 、アルカリ度57.1mg/l、カルシウム硬度58.5mg/l、ランゲリア指数1.3 、濁度30度の表流水であり、pHの高い水であった。
浄水としての水質改善目標値をpH7.8 、アルカリ度65mg/l、カルシウム硬度58.5mg/l、ランゲリア指数-0.2と定め、消石灰と炭酸ガスの所要注入率を実験で求めたところ、それぞれ10mg/l、16.1mg/lであった。
原水20m3/日に対して上記水質改善目標値を達成するに必要な全消石灰0.02kg/日、炭酸ガス0.32kg/日と計算された。直径0.22m、高さ1.5m、容量0.06m3の円筒縦型低速攪拌機付溶解槽へ1.2kgの消石灰を投入し、該溶解槽の下部から給水してpH12以上の溢流液を中間槽に貯めた。消石灰の80%が溶解し中間槽へ溢流した時点で溶解槽への給水を止め、1時間静止沈降させた後に該溶解槽の下部に残存している未溶解物を未溶解物スラリー槽に抜き出した。中間槽に得られた消石灰の濃度は略1600mg/lであった。未溶解物スラリーはpH12.1、スラリー濃度2.9%であった。
前記原水20m3/日を図1の水処理フローにより以下のような処理した。即ち、先ず着水井へ原水を取り入れ、ここへ未溶解物スラリーを0.06l/h と炭酸ガスを16.1mg/lとなるように注入したところ、pH7.2 、アルカリ度58.7mg/l、カルシウム硬度60.7mg/l、ランゲリア指数-1.0であった。次いで約1600mg/lの消石灰溶液を3l/hを前アルカリとして注入し、PACを36mg/l注入したところ、pH7.3 、アルカリ度60.5mg/l、カルシウム硬度67.9mg/l、ランゲリア指数-0.8であた。この水を凝集沈殿させたところ、沈殿上澄水の濁度は4 度で凝集沈殿効率は約87%であった。この沈殿上澄水を砂濾過にかけたところ、濾過水の濁度は0.1 度であった。濾過水に消石灰溶液を2l/h注入したところ、処理水はpH7.8 、アルカリ度65mg/l、カルシウム硬度71.9mg/l、ランゲリア指数-0.2の非腐食水が得られた。
【0014】
【発明の効果】
本発明方法によれば、原水が低温低濁度の水、低アルカリ度の水またはpHの高低の水質に拘わらず、凝集沈降させるとき凝集助剤を用いることなく重質のフロックを形成させることができ、凝集沈殿を効果的に行うことができ、かつ非腐食性の水を容易に得ることができる。
【図面の簡単な説明】
【図1】本発明による水処理の一例を示すフローである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water purification method for performing coagulation sedimentation treatment and non-corrosion of water. Specifically, it is an improved method of a water purification treatment method for injecting a slaked lime aqueous solution and carbon dioxide gas, and is provided with a slaked lime aqueous solution production apparatus and a carbon dioxide gas injection apparatus in a water purification treatment facility, and the slaked lime aqueous solution production apparatus The present invention relates to a water purification treatment method that simultaneously achieves high-efficiency coagulation sedimentation treatment and non-corrosion of water by injecting undissolved substances and carbon dioxide gas from appropriate portions of the water purification process.
[0002]
[Prior art]
Conventionally, in a surface water treatment plant, a coagulation-precipitation / filtration process in which a coagulant is added to the water to be treated (hereinafter referred to as raw water) is indispensable. As coagulants, polyaluminum chloride (PAC) and sulfate bands are used. Is used. In recent years, the amount of flocculant used tends to increase with the deterioration of surface water quality, especially in order to increase the flocculation efficiency when the raw water introduced into the landing well is at low temperature, low turbidity, or low alkalinity. It is necessary to increase the injection rate of the agent. As a result, the amount of flocculant used is increased, the amount of sludge generated is increased, the flocculant is mixed into the filtered water, the cost of the flocculant is increased, and the corrosiveness of the purified water is increased due to the increase in chloride and sulfate ions derived from the flocculant. The problem of increase arises.
Further, when the pH of the raw water introduced into the landing well is high, an acid such as sulfuric acid is injected to lower the pH to perform an agglomeration treatment, and then an alkaline agent is injected to obtain an appropriate pH value. However, in free carbonic acid and water with low alkalinity, the pH buffering property is small, so increasing the injection amount of the alkaline agent will greatly increase the pH and easily exceed the upper limit value (8.6 in Japan). Therefore, it is difficult to inject a large amount of slaked lime aqueous solution, and it is impossible to increase the Langeria index, which is an index for determining the corrosion of water, to improve noncorrosive water.
Furthermore, there is concern that aluminum will cause Alzheimer's disease.
For these reasons, studies are being made to reduce the amount of purified water sludge generated and chemical costs, and to reduce the injection rate of PAC and sulfuric acid bands.
[0003]
On the other hand, a technique for injecting a slaked lime aqueous solution for non-corrosion of water is also becoming widespread with the advent of an apparatus for continuously producing a slaked lime aqueous solution disclosed in, for example, Japanese Patent No. 1459175. In the apparatus disclosed in this publication, there is a problem that undissolved substances that are difficult to dissolve remain in an aqueous solution having a pH of 12 or more, but the undissolved substances are treated in water maintained at a pH of 10 or less and then introduced into the landing well. This method is solved (Japanese Patent No. 141605). Japanese Patent No. 2048482 discloses that a slaked lime aqueous solution and carbon dioxide gas are used in combination to increase the Langeria index and make water non-corrosive.
Furthermore, Japanese Patent Laid-Open No. 6-83566 proposes that the concentration of the hardly soluble floc produced during the production of the slaked lime aqueous solution is increased, and this floc is introduced into the mixing pond and used as an alkali agent. However, it does not improve the coagulation sedimentation. There is a need for a method that achieves high-efficiency coagulation precipitation and non-corrosion of water simultaneously.
[0004]
[Problems to be solved by the invention]
In view of the current situation, the present inventors have studied a method for simultaneously solving high-efficiency coagulation sedimentation and non-corrosion of water, and as a result, improved and developed a conventionally known slaked lime carbon dioxide combined injection method. That is, by injecting undissolved matter, slaked lime solution and carbon dioxide gas from the slaked lime dissolving apparatus into appropriate portions of the water purification treatment process according to the water quality, the undissolved matter is a core function of aggregation in the coagulation sedimentation operation. In addition to the slaked lime solution and carbon dioxide gas normally used for water quality improvement, and the undissolved material coming out of the slaked lime dissolving equipment, it is necessary to use additional chemicals such as coagulant aids. Thus, the present inventors have found that agglomeration and precipitation can be effectively carried out and completed the present invention.
[0005]
[Means for Solving the Problems]
The present invention provides a slaked lime aqueous solution production device and a carbon dioxide gas injection device in a water purification treatment facility including a landing well, a mixing pond, a sedimentation basin, a filtration pond and a distribution pond, and adjusts the water quality by injecting the slaked lime aqueous solution and carbon dioxide gas. In water purification treatment, the pH, alkalinity, calcium hardness, etc. of the water to be treated are measured to determine the Langeria index, pH 7.5-8.3, alkalinity 60-80 mg / l, Langeria index, which is a preferred water quality for corrosion prevention Determine the injection rate of slaked lime and carbon dioxide gas in the amount of -1 to 0, and in the sedimentation basin of the water purification treatment facility or in the previous process, undissolved slurry, carbon dioxide gas and slaked lime aqueous solution coming out of the slaked lime solution manufacturing apparatus Adjust the pH to 6.7 to 7.3 and adjust the calcium bicarbonate concentration to 80 to 160 mg / l, increase the pH buffering property, and then inject the flocculant to perform aggregation, precipitation, and filtration. Further, remove the water from the filtered water. By injecting ash solution and / or carbon dioxide, a water treatment method characterized by performing high efficiency flocculation and non-corrosive of water at the same time.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a slaked lime aqueous solution production device and a carbon dioxide gas injection device in a water purification treatment facility including a landing well, a mixing well, a sedimentation basin, a filtration pond, and a water distribution basin. Slaked lime aqueous solution, undissolved slurry and carbon dioxide gas from the apparatus are injected according to the water quality.
The undissolved slurry in the present invention refers to a slurry containing undissolved material remaining without being dissolved in a slaked lime aqueous solution having a pH of 11 or more in a slaked lime aqueous solution manufacturing apparatus. The solid in the undissolved slurry is mainly calcium carbonate and contains impurities of undissolved slaked lime and other raw material slaked lime contained in the calcium carbonate.
As the slaked lime dissolving device, for example, a device as described in Japanese Patent No. 1459175, which introduces water from the lower part of the stirring tank and continuously takes out the slaked lime aqueous solution from the upper part can be used. Undissolved slurry is removed from the bottom of the tank after the introduction of water is stopped.
[0007]
In carrying out the present invention, prior to the water purification treatment, the pH, alkalinity, calcium hardness and the like of raw water are measured in advance to obtain the Langeria index, and pH 7.5 ~ 8.3, The injection rate of slaked lime and carbon dioxide gas in an amount that makes the alkalinity 60-80 mg / l and Langeria index -1-0 is determined.
[0008]
The injection rate of the carbon dioxide gas and the slaked lime aqueous solution adjusts the pH of the water during the coagulation operation using part or all of the predetermined amount as described above. For example, when the pH of the raw water is higher than a predetermined pH, carbon dioxide is injected, and when the pH is low, a slaked lime aqueous solution is injected to adjust the pH to the predetermined pH. This pH adjustment may be performed after the addition of the flocculant, but may also be performed by injecting carbon dioxide gas and / or slaked lime aqueous solution before the addition of the flocculant in anticipation of the degree of pH decrease due to the addition of the flocculant. it can. In addition, the calcium bicarbonate concentration of water during the coagulation operation is adjusted to be in the range of 80 to 160 mg / l. When the concentration of calcium bicarbonate in raw water is lower than 80 mg / l, the buffering capacity is small, and even if the pH at the time of adding the flocculant is adjusted within the predetermined range, the contained floating substances can be sufficiently settled and separated. Can not. The calcium bicarbonate concentration is adjusted using slaked lime and carbon dioxide.
A typical case will be described below.
The amount of the undissolved material corresponding to the properties of the raw water is preferably injected into the landing well, and then injected with carbon dioxide and slaked lime aqueous solution to cause coagulation and precipitation, ie, pH 6.7 to 7.3, calcium bicarbonate The concentration is adjusted to 80 to 160 mg / l, preferably pH 6.8 to 7.2, and the calcium bicarbonate concentration is adjusted to 90 to 120 mg / l. Thus, by adjusting using an insoluble matter, it becomes possible to form a heavy floc without using a coagulant auxiliary agent at the time of coagulation sedimentation.
When the raw water has a low pH and low alkalinity, first use a slaked lime aqueous solution and, if necessary, carbon dioxide, and if the raw water has a high pH, first, carbon dioxide and, if necessary, slaked lime. The aqueous solution may be used to adjust the properties close to those preferable for the aggregation reaction as much as possible, and then the undissolved material and the flocculant may be added. After adding the insoluble matter and the flocculant, the pH and calcium bicarbonate concentration may be further adjusted. In some cases, the use of a coagulant aid or the like is not excluded.
Undissolved material is preferably injected in a 2-3% slurry. Carbon dioxide is injected as a whole or a part of the necessary amount for adjusting the Langelia index determined in advance to -1 to 0. The carbon dioxide gas inlet is provided at a position deeper than the appropriate depth of 2 m depending on the size of the landing well or the mixing well.
After injecting undissolved material into the landing well, carbon dioxide gas is injected into the landing well or the mixing well, and the pH is adjusted to 6.7 to 7.3. When the pH after the treatment is as low as 6.7 or less, slaked lime aqueous solution is injected to adjust the pH to be within the above range. When the slaked lime aqueous solution is required, when taking out the undissolved material from the slaked lime dissolving tank, it can be taken out as a slurry together with a required amount of the slaked lime aqueous solution and added to the landing well. If the pH after the treatment is higher than 7.7, the amount of carbon dioxide injection is increased.
[0009]
The water adjusted in this way has a large buffering capacity, and when a flocculant such as PAC is added, the undissolved material added previously performs the core function of aggregation, forming a heavy floc and increasing its sedimentation rate. Become. As a result, the settling speed of the generated floc is high and efficient processing becomes possible. Moreover, since the addition of the conventionally used flocculating aid is not necessary and most of the added undissolved slaked lime and calcium carbonate are dissolved, the amount of solids to be separated is significantly reduced. .
[0010]
[Example 1]
The raw water was a highly corrosive surface water with a water temperature of 15 ° C., pH 6.7, alkalinity 5 mg / l, calcium hardness 5 mg / l, Langeria index −3.8, and turbidity 50 °. As the water quality improvement target value as pH 7.8, alkalinity 70 mg / l, calcium hardness 70 mg / l, Langeria index -0.5 as purified water with low corrosiveness, the required injection rate of slaked lime and carbon dioxide gas was determined by experiment. 48 mg / l and 57 mg / l.
The total amount of slaked lime required to achieve the water quality improvement target value for raw water of 20 m 3 / day was calculated as 1 kg / day, and the amount of carbon dioxide was calculated as 1.2 kg / day.
Diameter 0.22 m, height 1.5 m, was charged with slaked lime 1.2kg to cylindrical vertical low speed stirrer with dissolver volume 0.06 m 3, and water from the bottom of the dissolution tank pH12 or more overflow liquid in the intermediate vessel I saved it. When 80% of the slaked lime is dissolved and overflows to the intermediate tank, the water supply to the dissolution tank is stopped and the undissolved matter remaining in the lower part of the dissolution tank after being allowed to settle for 1 hour is put into an undissolved slurry tank. Extracted. The concentration of slaked lime obtained in the intermediate tank was approximately 1500 mg / l. The undissolved slurry had a pH of 12.0 and a slurry concentration of 2.9%, and the components of the undissolved material were calcium carbonate 57%, slaked lime 40%, silicon dioxide 2%, and aluminum oxide 0.2%.
[0011]
The water purification process was performed as follows by the water treatment flow shown in FIG. The raw water 20m 3 / day was taken into the landing well and the undissolved slurry was injected at 0.3 l / h, resulting in a pH of 10.0. When 57 mg / l of carbon dioxide was injected into this mixed water and then 19.3 l / h of 1500 mg / l of slaked lime aqueous solution, pH 7.1, alkalinity 59 mg / l, calcium hardness 60 mg / l, calcium bicarbonate concentration It became 98 mg / l water. PAC was injected at a dose of 25 mg / l to perform aggregation precipitation. The turbidity of the sediment supernatant was 3 degrees, and the efficiency of coagulation sedimentation was 94%. The precipitate supernatant was subjected to sand filtration to obtain filtrate having a turbidity of 0.1 degree. When 5 l / h of slaked lime solution was injected into the filtered water, non-corrosive water having a pH of 7.8, an alkalinity of 67 mg / l, a calcium hardness of 72 mg / l and a Langeria index of -0.5 was obtained.
[0012]
[Comparative example]
Using the same raw water, slaked lime aqueous solution and PAC as in the examples, a batch experiment of coagulation precipitation was performed. Since injection of slaked lime aqueous solution alone does not provide pH buffering to raw water, injection of a small amount of slaked lime, 1.8 mg / l, raises the pH to 8.6, and the water quality at this time is 7 mg / l for alkalinity and 7 mg / l for calcium hardness. It was impossible to set the Langeria index to -0.5 at a pH of 7.8, an alkalinity of 70 mg / l, a calcium hardness of 7 mg / l, which is a preferable water quality value for clean water with low corrosivity, and a Langeria index of -1.6. . Next, the slaked lime injection rate required to set the pH for the coagulation treatment to the same 7.1 as in the example was determined to be 0.8 mg / l.
According to the water treatment flow shown in Fig. 1, 0.5 mg / l of slaked lime aqueous solution of 1500 mg / l is injected into raw water 20 m 3 / day, and PAC is injected 25 mg / l into this, Aggregation precipitation was performed. The turbidity of the precipitate supernatant was as high as 8 degrees, and when this was subjected to sand filtration, the turbidity became 0.5 degrees of filtered water. When the quality of purified water obtained by injecting slaked lime aqueous solution to pH 7.8 into this filtered water was measured, it was found to be non-corrosive water with a calcium hardness of 11 mg / l, alkalinity of 7 mg / l, and Langerian index -2.3. In addition, the coagulation precipitation efficiency was 79%, which was lower than that of the example.
[0013]
[Example 2]
The raw water temperature is 28 ° C. It was surface water with a pH of 9.4, an alkalinity of 57.1 mg / l, a calcium hardness of 58.5 mg / l, a Langeria index of 1.3, and a turbidity of 30 degrees.
Water quality improvement target values as purified water were set at pH 7.8, alkalinity 65 mg / l, calcium hardness 58.5 mg / l, Langeria index -0.2, and the required injection rates of slaked lime and carbon dioxide were determined experimentally, 10 mg / l each. l, 16.1 mg / l.
It was calculated as 0.02 kg / day of total slaked lime and 0.32 kg / day of carbon dioxide required to achieve the above water quality improvement target values for raw water of 20 m 3 / day. Diameter 0.22 m, height 1.5 m, was charged with slaked lime 1.2kg to cylindrical vertical low speed stirrer with dissolver volume 0.06 m 3, and water from the bottom of the dissolution tank pH12 or more overflow liquid in the intermediate vessel I saved it. When 80% of the slaked lime is dissolved and overflows to the intermediate tank, the water supply to the dissolution tank is stopped and the undissolved matter remaining in the lower part of the dissolution tank after being allowed to settle for 1 hour is put into an undissolved slurry tank. Extracted. The concentration of slaked lime obtained in the intermediate tank was approximately 1600 mg / l. The undissolved slurry had a pH of 12.1 and a slurry concentration of 2.9%.
The raw water 20m 3 / day was treated as follows by the water treatment flow of FIG. That is, first, raw water was taken into the landing well, and undissolved slurry was injected here to 0.06 l / h and carbon dioxide gas to 16.1 mg / l, pH 7.2, alkalinity 58.7 mg / l, calcium hardness It was 60.7 mg / l and the Langeria index -1.0. Subsequently, about 1600 mg / l of slaked lime solution was injected as 3 l / h as a pre-alkali, and PAC was injected at 36 mg / l, pH 7.3, alkalinity 60.5 mg / l, calcium hardness 67.9 mg / l, Langeria index -0.8 It was. When this water was coagulated, the turbidity of the sediment supernatant was 4 ° C., and the coagulation efficiency was about 87%. When this precipitated supernatant was subjected to sand filtration, the turbidity of the filtrate was 0.1 degree. When 2 l / h of slaked lime solution was injected into the filtrate, non-corrosive water having a pH of 7.8, an alkalinity of 65 mg / l, a calcium hardness of 71.9 mg / l, and a Langeria index of -0.2 was obtained.
[0014]
【The invention's effect】
According to the method of the present invention, regardless of whether the raw water is low-temperature, low-turbidity water, low-alkaline water, or pH-high water quality, a heavy floc can be formed without using a coagulant aid when coagulating and sedimenting. Therefore, coagulation and precipitation can be performed effectively, and non-corrosive water can be easily obtained.
[Brief description of the drawings]
FIG. 1 is a flow showing an example of water treatment according to the present invention.

Claims (1)

着水井、混和井、沈殿池、濾過池及び配水池を含む浄水処理施設に、消石灰水溶液製造装置及び炭酸ガス注入装置を設け、消石灰水溶液と炭酸ガスを注入して水質調整を行う浄水処理において、被処理水のpH、アルカリ度、カルシウム硬度等を測定してランゲリア指数を求めて、腐食防止上から好ましい水質であるpH7.5〜8.3、アルカリ度60〜80mg/l、ランゲリア指数−1〜0になる量の消石灰と炭酸ガスの注入率を決定し、沈殿池またはそれより前の工程に、消石灰水溶液製造装置から得られる未溶解物スラリーを注入すると共に前記決定した注入率に基づいて消石灰水溶液製造装置から未溶解物スラリーとは別に得られる消石灰水溶液、炭酸ガス注入装置から得られる炭酸ガスを注入してpHを6.7〜7.3、炭酸水素カルシウム濃度を80〜160mg/l に調整し、凝集剤の存在下凝集、沈殿、濾過を行ない濾過水に前記決定した注入率に基づいて消石灰水溶液及び/または炭酸ガスを注入し、pH7.5〜8.3、アルカリ度60〜80mg/l、ランゲリア指数−1〜0にする、高効率凝集沈殿処理と水の非腐食化を同時に行う浄水処理方法。In water purification treatment that adjusts water quality by injecting slaked lime aqueous solution and carbon dioxide gas into water purification treatment facilities including landing wells, mixing wells, sedimentation basins, filtration ponds and distribution ponds, and injecting slaked lime aqueous solution and carbon dioxide gas, The pH, alkalinity, calcium hardness and the like of the water to be treated are measured to obtain the Langeria index, and the water quality is preferably 7.5 to 8.3, alkalinity 60 to 80 mg / l, Langeria index-1 Determine the injection rate of slaked lime and carbon dioxide gas in an amount of ˜0, and inject the undissolved slurry obtained from the slaked lime aqueous solution manufacturing apparatus into the sedimentation basin or the previous step and based on the determined injection rate A slaked lime aqueous solution obtained separately from the undissolved slurry from the slaked lime aqueous solution production apparatus, and carbon dioxide gas obtained from the carbon dioxide gas injection device were injected to adjust the pH to 6.7 to 7.3, The concentration of lucium was adjusted to 80 to 160 mg / l, flocculation, precipitation, and filtration were carried out in the presence of a flocculant, and slaked lime aqueous solution and / or carbon dioxide gas was injected into the filtered water based on the determined injection rate. 8.3, A water purification method for simultaneously performing high-efficiency coagulation sedimentation treatment and water non-corrosion, having an alkalinity of 60 to 80 mg / l and a Langeria index of −1 to 0.
JP2000113982A 2000-04-14 2000-04-14 Water purification method Expired - Lifetime JP4522534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000113982A JP4522534B2 (en) 2000-04-14 2000-04-14 Water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000113982A JP4522534B2 (en) 2000-04-14 2000-04-14 Water purification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010028646A Division JP2010137224A (en) 2010-02-12 2010-02-12 Method for cleaning water

Publications (2)

Publication Number Publication Date
JP2001293483A JP2001293483A (en) 2001-10-23
JP4522534B2 true JP4522534B2 (en) 2010-08-11

Family

ID=18625861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113982A Expired - Lifetime JP4522534B2 (en) 2000-04-14 2000-04-14 Water purification method

Country Status (1)

Country Link
JP (1) JP4522534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210253456A1 (en) * 2015-08-28 2021-08-19 Bryan R. Johnson Integrated Biogas Treatment and Carbon Dioxide Based Disinfection for Water Treatment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853382B1 (en) * 2006-07-28 2008-08-25 재단법인 한국계면공학연구소 Method for corrosion prevention of water distribution systems by lime slurry
KR100979250B1 (en) 2008-11-14 2010-09-01 서울특별시 Method for Supplying Water with Controlled Corrosive Characteristics
KR101129233B1 (en) * 2009-07-30 2012-03-26 신도이앤씨 (주) A water pipes corrosion prevention system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107148A (en) * 1977-03-02 1978-09-18 Hitachi Ltd Chemical injection device in purification plant
JPS58137491A (en) * 1982-02-08 1983-08-15 Mitsubishi Electric Corp Method for controlling injection of alkali agent in water purifying plant
JPH0596285A (en) * 1991-10-02 1993-04-20 Toshiba Corp Injection control device of alkali agent
JP2001129557A (en) * 1999-11-08 2001-05-15 Japan Organo Co Ltd Water treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568299B2 (en) * 1990-07-23 1996-12-25 呉羽化学工業株式会社 Method and apparatus for improving the Langerian index of tap water
JPH0663566A (en) * 1992-08-20 1994-03-08 K P Ii:Kk Formation of slaked lime solution, slaked lime injection method and slaked lime dissolving tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107148A (en) * 1977-03-02 1978-09-18 Hitachi Ltd Chemical injection device in purification plant
JPS58137491A (en) * 1982-02-08 1983-08-15 Mitsubishi Electric Corp Method for controlling injection of alkali agent in water purifying plant
JPH0596285A (en) * 1991-10-02 1993-04-20 Toshiba Corp Injection control device of alkali agent
JP2001129557A (en) * 1999-11-08 2001-05-15 Japan Organo Co Ltd Water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210253456A1 (en) * 2015-08-28 2021-08-19 Bryan R. Johnson Integrated Biogas Treatment and Carbon Dioxide Based Disinfection for Water Treatment
US12012344B2 (en) * 2015-08-28 2024-06-18 Bryan R. Johnson Integrated biogas treatment and carbon dioxide based disinfection for water treatment

Also Published As

Publication number Publication date
JP2001293483A (en) 2001-10-23

Similar Documents

Publication Publication Date Title
TWI422532B (en) Treating method for drainage water containing fluorine
KR20000011702A (en) Fluoride Including Waste Water Processing Device and Method Capable of Processing Fluoride Including Waste Water to Have Low Concentration of Fluoride
JP5440199B2 (en) Silicon wafer etching wastewater treatment method and treatment apparatus
JP4879590B2 (en) Method and apparatus for concentration and volume reduction of sludge
JP5753702B2 (en) Formation method of initial mother floc in high speed coagulation sedimentation basin
JP4522534B2 (en) Water purification method
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP2010137224A (en) Method for cleaning water
JP2017159194A (en) Treatment equipment and treatment method for heavy metal-containing water
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP5767009B2 (en) Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing
JP2019198806A (en) Water treatment method, and water treatment device
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JP2930594B2 (en) Coagulation settling equipment
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP2021186793A (en) Water purification method and water purification apparatus
JP3939970B2 (en) Coal storage wastewater treatment method
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JPH0592198A (en) Softening treatment of hard water
JP2001054791A (en) Waste water treating device
JP5057955B2 (en) Sludge concentration method and sludge concentration apparatus
KR20150142469A (en) Method for acid wastewater abatement and device for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Ref document number: 4522534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term