JP2010137224A - Method for cleaning water - Google Patents

Method for cleaning water Download PDF

Info

Publication number
JP2010137224A
JP2010137224A JP2010028646A JP2010028646A JP2010137224A JP 2010137224 A JP2010137224 A JP 2010137224A JP 2010028646 A JP2010028646 A JP 2010028646A JP 2010028646 A JP2010028646 A JP 2010028646A JP 2010137224 A JP2010137224 A JP 2010137224A
Authority
JP
Japan
Prior art keywords
water
slaked lime
aqueous solution
carbon dioxide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010028646A
Other languages
Japanese (ja)
Inventor
Isao Funahashi
勲 舟橋
Shinichi Kuboki
伸一 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Engineering Co Ltd
Original Assignee
Kureha Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Engineering Co Ltd filed Critical Kureha Engineering Co Ltd
Priority to JP2010028646A priority Critical patent/JP2010137224A/en
Publication of JP2010137224A publication Critical patent/JP2010137224A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning water which simultaneously carries out highly efficient coagulation sedimentation treatment and anti-corrosion of water. <P>SOLUTION: The charge rate of slaked lime is decided by finding the Langelier index of water to be treated to achieve pH 7.5-8.3 for the suitable water quality for anti-corrosion and the Langelier index of -1 to 0. Undissolved slurry is charged to adjust pH 6.7-7.3 in a sedimentation pond or before its process. In the presence of a coagulation agent, coagulation, sedimentation, and filtration are carried out, and a slaked lime aqueous solution is charged to filtered water to achieve pH 7.5-8.3 and the Langelier index of -1 to 0. Thus, the efficient coagulation sedimentation treatment and anti-corrosion of water are simultaneously carried out. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、凝集沈殿処理と水の非腐食化を行う浄水処理方法に関する。詳しくは、消石灰水溶液と炭酸ガスを注入処理する浄水処理方法の改良された方法であって、浄水処理施設に消石灰水溶液製造装置及び炭酸ガス注入装置を設けて得られる消石灰水溶液、該消石灰水溶液製造装置からでる未溶解物スラリー、及び炭酸ガスを浄水工程の適宜の個所に注入することにより、高効率凝集沈殿処理と水の非腐食性化を同時に達成する浄水処理方法に関する。   The present invention relates to a water purification method for performing coagulation sedimentation treatment and non-corrosion of water. Specifically, it is an improved method of a water purification treatment method for injecting a slaked lime aqueous solution and carbon dioxide gas, and is provided with a slaked lime aqueous solution production apparatus and a carbon dioxide gas injection apparatus in a water purification treatment facility, and the slaked lime aqueous solution production apparatus The present invention relates to a water purification treatment method that simultaneously achieves high-efficiency coagulation sedimentation treatment and non-corrosion of water by injecting undissolved slurry from water and carbon dioxide into appropriate portions of the water purification step.

従来、表流水系の浄水処理施設においては被処理水( 以下、原水と記す。) に凝集剤を加える凝集沈殿・濾過処理工程が欠かせず、凝集剤としてポリ塩化アルミニウム(PAC)や硫酸バンドが使用されている。近年、表流水の水質悪化にともない凝集剤の使用量が増大する傾向にあり、特に、着水井に導入される原水が低温、低濁度、あるいは低アルカリ度時には凝集効率を上げるために、凝集剤の注入率を増大させる必要がある。この結果、凝集剤の使用量が増大し汚泥発生量の増加、濾過水への凝集剤の混入、凝集剤費用の増加、凝集剤に由来する塩素イオンや硫酸イオンの増大による浄水の腐食性の増加と言う問題が生じる。また、着水井に導入される原水のpHが高いときには、硫酸等の酸を注入しpHを低下させて凝集処理を行ない、その後で適正pH値にするためアルカリ剤を注入している。しかし、遊離炭酸やアルカリ度の低い水にあってはpH緩衝性が小さいので、アルカリ剤の注入量を増加させると、pHが大きく上昇し水道法の上限値(日本では8.6 )を容易に越えてしまい消石灰水溶液を多量に注入することが難しく、水の腐食の判定指標であるランゲリア指数を高めて非腐食性の水に改善させることができない。さらには、アルミニウムがアルツハイマー病の原因になると懸念されている。このようなことから浄水汚泥の発生量や薬剤費用を減少させることや、PACや硫酸バンドの注入率の低減化の研究が進められている。   Conventionally, in a surface water treatment plant, a coagulation-precipitation / filtration process in which a coagulant is added to the water to be treated (hereinafter referred to as raw water) is indispensable. As coagulants, polyaluminum chloride (PAC) and sulfate bands are used. Is used. In recent years, the amount of flocculant used tends to increase with the deterioration of surface water quality, especially in order to increase the flocculation efficiency when the raw water introduced into the landing well is at low temperature, low turbidity, or low alkalinity. It is necessary to increase the injection rate of the agent. As a result, the amount of flocculant used is increased, the amount of sludge generated is increased, the flocculant is mixed into the filtered water, the cost of the flocculant is increased, and the corrosiveness of the purified water is increased due to the increase in chloride and sulfate ions derived from the flocculant. The problem of increase arises. Further, when the pH of the raw water introduced into the landing well is high, an acid such as sulfuric acid is injected to lower the pH to perform a coagulation treatment, and then an alkaline agent is injected to obtain an appropriate pH value. However, in free carbonic acid and water with low alkalinity, the pH buffering property is small, so increasing the injection amount of the alkaline agent will greatly increase the pH and easily exceed the upper limit value (8.6 in Japan). Therefore, it is difficult to inject a large amount of slaked lime aqueous solution, and it is impossible to increase the Langeria index, which is an index for determining the corrosion of water, to improve noncorrosive water. Furthermore, there is concern that aluminum will cause Alzheimer's disease. For these reasons, studies are being made to reduce the amount of purified water sludge generated and chemical costs, and to reduce the injection rate of PAC and sulfuric acid bands.

一方、水の非腐食化のため消石灰水溶液を注入する技術も、例えば特許第1459175号公報に開示される消石灰水溶液を連続的に製造する装置の出現とともに普及しつつある。他の公報に開示の装置においては、pH12以上の水溶液には溶解し難い未溶解分(未溶解物)が残存する問題があったが、未溶解分(未溶解物)をpH10以下に維持された水中で処理した後、着水井に導入する方法により解決されている(特許文献1)。また、特許文献2には、消石灰水溶液と炭酸ガスを併用してランゲリア指数を上げ水の非腐食性化を図ることが開示されている。さらには、特許文献3には、消石灰水溶液製造の際に生成した難溶解性フロックの濃度を上げて、このフロックを混和池に導入してアルカリ剤として利用することが提案されているが、凝集沈殿を改善するものではない。高効率凝集沈殿と水の非腐食化を同時に達成する方法が要望されている。   On the other hand, a technique for injecting a slaked lime aqueous solution for non-corrosion of water is also becoming widespread with the advent of an apparatus for continuously producing a slaked lime aqueous solution disclosed in, for example, Japanese Patent No. 1459175. In the apparatus disclosed in other publications, there is a problem that an undissolved part (undissolved substance) that is difficult to dissolve remains in an aqueous solution having a pH of 12 or higher, but the undissolved part (undissolved substance) is maintained at a pH of 10 or less. This is solved by a method of introducing it into a landing well after treatment in water (Patent Document 1). Further, Patent Document 2 discloses that a slaked lime aqueous solution and carbon dioxide gas are used in combination to increase the Langeria index and make water non-corrosive. Furthermore, Patent Document 3 proposes that the concentration of the hardly soluble floc produced during the production of the slaked lime aqueous solution is increased, and the floc is introduced into the mixing pond and used as an alkali agent. It does not improve precipitation. There is a need for a method that achieves high-efficiency coagulation precipitation and non-corrosion of water at the same time.

特許第1416054号公報Japanese Patent No. 1416054 特許第2048482号公報Japanese Patent No. 2048482 特開平6-63566号公報JP-A-6-63566

本発明者等は、このような現状に鑑み、高効率凝集沈殿と水の非腐食性化を同時に解決させる方法について研究した結果、従来知られている消石灰炭酸ガス併用注入法を改良・発展させることにより、すなわち、消石灰水溶液製造装置から出る未溶解物スラリー、消石灰溶液及び炭酸ガスを水質に応じて浄水処理工程の適宜の箇所に注入することにより、未溶解物スラリーが凝集沈殿操作において凝集の核的機能をもち、重質なフロックを形成し、水質改善に通常用いる消石灰溶液と炭酸ガス、および消石灰水溶液製造装置から出る未溶解物スラリー以外に、凝集助剤等の追加的な薬剤の使用を必要とすることなく、凝集沈殿が効果的に行われることを見出し、本発明を完成した。   In view of the current situation, the present inventors have studied a method for simultaneously solving high-efficiency coagulation sedimentation and non-corrosion of water, and as a result, improved and developed a conventionally known slaked lime carbon dioxide combined injection method. That is, by injecting undissolved slurry, slaked lime solution and carbon dioxide gas from the slaked lime aqueous solution manufacturing apparatus into appropriate portions of the water purification treatment process according to the water quality, the undissolved slurry is agglomerated in the coagulation sedimentation operation. Use of additional chemicals such as coagulant aids in addition to the slaked lime solution and carbon dioxide gas normally used to improve water quality and undissolved slurry from the slaked lime aqueous solution production equipment, which has a nuclear function and forms a heavy floc The present invention has been completed by finding that the coagulation and precipitation can be carried out effectively without the necessity of the above.

本発明は、代表的に着水井、混和池、沈殿池、濾過池及び配水池を含む浄水処理施設に、消石灰水溶液製造装置及び炭酸ガス注入装置を設け、消石灰水溶液と炭酸ガスを注入して水質調整を行う浄水処理において、被処理水のpH、アルカリ度、カルシウム硬度等を測定してランゲリア指数を求めて、腐食防止上から好ましい水質であるpH7.5〜8.3、アルカリ度60〜80mg/l、ランゲリア指数-1〜0になる量の消石灰と炭酸ガスの注入率を決定し、浄水処理施設の沈殿池またはそれより前の工程に、該消石灰水溶液製造装置から出る未溶解物スラリーと炭酸ガスと消石灰水溶液を注入し、pHを6.7 〜7.3 、炭酸水素カルシウム濃度を80〜160mg/lの間になるように調整して、pH緩衝性を上げた後に凝集剤を注入して凝集、沈殿、濾過を行ない、さらに濾過水に消石灰水溶液および/または炭酸ガスを注入することにより、高効率凝集沈殿と水の非腐食性化を同時に行うことを特徴とする浄水処理方法である。   The present invention typically includes a slaked lime aqueous solution production device and a carbon dioxide gas injection device in a water purification treatment facility including a landing well, a mixing pond, a sedimentation basin, a filtration pond, and a distribution basin. In the water purification treatment to be adjusted, the pH, alkalinity, calcium hardness, etc. of the water to be treated are measured to obtain the Langeria index, pH 7.5 to 8.3, alkalinity 60 to 80 mg / l which is a preferable water quality from the viewpoint of corrosion prevention Then, determine the injection rate of slaked lime and carbon dioxide gas in an amount that makes the Langeria index -1 to 0, and in the settling basin of the water purification treatment facility or the process before that, undissolved slurry and carbon dioxide gas from the slaked lime aqueous solution production apparatus And slaked lime aqueous solution is injected, pH is adjusted to 6.7 to 7.3, calcium bicarbonate concentration is adjusted to 80 to 160 mg / l, and after increasing pH buffering property, flocculant is injected to aggregate, precipitate, Perform filtration, and further sterilize the filtered water By injecting an aqueous solution and / or carbon dioxide, a water treatment method characterized by performing high efficiency flocculation and non-corrosive of water at the same time.

本発明方法によれば、原水が低温低濁度の水、低アルカリ度の水またはpHの高低の水質に拘わらず、凝集沈降させるとき凝集助剤を用いることなく重質のフロックを形成させることができ、凝集沈殿を効果的に行うことができ、かつ非腐食性の水を容易に得ることができる。   According to the method of the present invention, a heavy floc can be formed without using an agglomeration aid when coagulating and sedimenting regardless of whether the raw water is low-temperature, low-turbidity water, low-alkaline water or pH-high water quality. Therefore, coagulation and precipitation can be performed effectively, and non-corrosive water can be easily obtained.

本発明による水処理の一例を示すフローである。It is a flow which shows an example of the water treatment by this invention.

本発明は、着水井、混和井、沈殿池、濾過池及び配水池を含む浄水処理施設に、消石灰水溶液製造装置及び炭酸ガス注入装置を設け、沈殿池またはそれより前の工程に、消石灰水溶液製造装置から出る消石灰水溶液、未溶解物スラリー及び炭酸ガスを水質に応じて注入する。本発明における未溶解物スラリーとは、消石灰水溶液製造装置においてpH11以上の消石灰水溶液に溶解せずに残存する未溶解物を含むスラリーを指す。この未溶解物スラリー中の固体は炭酸カルシウムを主とし、この炭酸カルシウムに包含された未溶解の消石灰、その他原料消石灰の不純物を含む。消石灰水溶液製造装置としては、例えば特許第1459175号公報に記載されているような攪拌槽の下部から水を導入し、上部から消石灰水溶液を連続的に取り出す装置を用いることができる。未溶解物スラリーは、水の導入を停止した後に槽下部から取り出す。   The present invention provides a slaked lime aqueous solution production device and a carbon dioxide gas injection device in a water purification treatment facility including a landing well, a mixing well, a sedimentation basin, a filtration pond, and a distribution basin. Slaked lime aqueous solution, undissolved slurry and carbon dioxide gas coming out of the apparatus are injected according to the water quality. The undissolved material slurry in the present invention refers to a slurry containing undissolved material remaining without being dissolved in a slaked lime aqueous solution having a pH of 11 or more in a slaked lime aqueous solution production apparatus. The solid in the undissolved slurry is mainly calcium carbonate and contains impurities of undissolved slaked lime and other raw material slaked lime contained in the calcium carbonate. As an apparatus for producing slaked lime aqueous solution, for example, a device as described in Japanese Patent No. 1459175 can be used which introduces water from the lower part of the stirring tank and continuously takes out the slaked lime aqueous solution from the upper part. Undissolved slurry is removed from the bottom of the tank after the introduction of water is stopped.

本発明の実施にあたっては、浄水処理に先立ち、予め原水のpH、アルカリ度、カルシウム硬度等を測定してランゲリア指数を求めるとともに、処理後の水の腐食防止上から好ましい水質であるpH7.5〜8.3、アルカリ度60〜80mg/l、ランゲリア指数-1〜0になる量の消石灰と炭酸ガスの注入率を決定しておく。   In carrying out the present invention, prior to the water purification treatment, the pH, alkalinity, calcium hardness and the like of raw water are measured in advance to determine the Langeria index, and pH 7.5 to pH 7.5, which is a preferable water quality from the prevention of water corrosion after treatment. 8.3, The injection rate of slaked lime and carbon dioxide gas in an amount that makes the alkalinity 60-80 mg / l and Langeria index -1-0 is determined.

炭酸ガス及び、消石灰の注入率は上記のように予め決定された量のうち、その一部若しくは全部を用いて凝集操作時の水のpHを調整する。例えば原水のpHが所定のpHより高い場合は炭酸ガスを注入して、pHが低い場合は消石灰水溶液を注入してpHを所定のpHに調整する。このpHの調整は凝集剤の添加後に行ってもよいが、凝集剤の添加によるpHの低下の程度を見越して凝集剤の添加前に炭酸ガスまたは/及び消石灰水溶液を注入することにより行うこともできる。また、凝集操作時の水の炭酸水素カルシウム濃度が80〜160mg/lの範囲内になるように調整する。原水の炭酸水素カルシウム濃度が80mg/lより低い場合は緩衝能が小さく、凝集剤添加時のpHが所定範囲内に調整されていても含まれている浮遊性物質を充分に沈降分離することができない。炭酸水素カルシウム濃度の調整は消石灰及び炭酸ガスを用いて行う。以下に代表的な場合について説明する。原水の性状に応じた量の前記未溶解物スラリーを好ましくは着水井に注入し、次いで炭酸ガスおよび消石灰水溶液を注入して、凝集沈殿させるに好ましい性状、即ち、pH6.7 〜7.3 、炭酸水素カルシウム濃度80〜160mg/l 、好ましくはpH6.8 〜7.2、炭酸水素カルシウム濃度90〜120mg/l に調整する。このように未溶解物スラリーを用いて調整することにより、凝集沈殿時に凝集助剤を用いずとも重質のフロックを形成させることが可能となる。なお、原水の性状が低pH、低アルカリ度の場合には、先ず消石灰水溶液および必要に応じて炭酸ガスを用いて、また原水が高pHの場合には、先ず炭酸ガスおよび必要に応じて消石灰水溶液を用いて、可能な範囲で凝集反応に好ましい性状に近い性状に調整した後、未溶解物スラリーおよび凝集剤を添加してもよい。未溶解物スラリーおよび凝集剤を添加した後、さらにpHおよび炭酸水素カルシウム濃度を調整してもよい。また場合によっては、凝集助剤等を用いることを排除するものではない。未溶解物スラリーは、好ましくは2 〜3%スラリーで注入する。炭酸ガスは予め求めたランゲリア指数を-1〜0に調整するための必要量の全量または一部を注入する。なお、炭酸ガス注入口は着水井または混和井の広さに応じて適当箇所の水深2mより深い位置に設ける。未溶解物スラリーを着水井に注入した後、炭酸ガスを着水井または混和井に注入し、pHを6.7〜7.3に調整する。上記処理後のpHが6.7 以下と低い場合には消石灰水溶液を注入してpHが上記範囲内になるよう調整する。消石灰水溶液を必要とする場合は、消石灰溶解槽より未溶解物を取り出す際に、必要量の消石灰水溶液とともにスラリーとして取り出し、着水井に加えることができる。また、上記処理後のpHが7.7 より高くなる場合には、炭酸ガスの注入量を増やして調整する。   The injection rate of carbon dioxide and slaked lime adjusts the pH of the water during the coagulation operation using part or all of the predetermined amount as described above. For example, when the pH of the raw water is higher than a predetermined pH, carbon dioxide is injected, and when the pH is low, a slaked lime aqueous solution is injected to adjust the pH to the predetermined pH. This pH adjustment may be performed after the addition of the flocculant, but may also be performed by injecting carbon dioxide gas and / or slaked lime aqueous solution before the addition of the flocculant in anticipation of the degree of pH decrease due to the addition of the flocculant. it can. Moreover, it adjusts so that the calcium hydrogencarbonate density | concentration of the water at the time of aggregation operation may be in the range of 80-160 mg / l. When the concentration of calcium hydrogen carbonate in raw water is lower than 80 mg / l, the buffer capacity is small, and even if the pH at the time of adding the flocculant is adjusted within the specified range, the contained floating substances can be sufficiently settled and separated. Can not. The calcium bicarbonate concentration is adjusted using slaked lime and carbon dioxide. A typical case will be described below. The amount of the undissolved slurry according to the properties of the raw water is preferably injected into the landing well, and then carbon dioxide gas and slaked lime aqueous solution are injected, and preferable properties for coagulating precipitation, that is, pH 6.7 to 7.3, hydrogen carbonate The calcium concentration is adjusted to 80 to 160 mg / l, preferably pH 6.8 to 7.2, and the calcium bicarbonate concentration is adjusted to 90 to 120 mg / l. Thus, by adjusting using an undissolved substance slurry, it becomes possible to form a heavy floc even if it does not use an aggregation auxiliary agent at the time of aggregation precipitation. When the raw water has a low pH and low alkalinity, first use a slaked lime aqueous solution and carbon dioxide gas as needed. If the raw water has a high pH, first use carbon dioxide gas and slaked lime as needed. The aqueous solution may be used to adjust the properties close to those preferable for the aggregation reaction as much as possible, and then the undissolved slurry and the aggregating agent may be added. After adding the undissolved slurry and the flocculant, the pH and calcium bicarbonate concentration may be further adjusted. In some cases, the use of a coagulant aid or the like is not excluded. Undissolved slurry is preferably injected as a 2-3% slurry. Carbon dioxide is injected as a whole or a part of the necessary amount for adjusting the Langelia index determined in advance to -1 to 0. The carbon dioxide gas inlet is provided at a position deeper than the appropriate depth of 2 m depending on the size of the landing well or the mixing well. After injecting the undissolved slurry into the landing well, carbon dioxide is injected into the landing well or the mixing well, and the pH is adjusted to 6.7 to 7.3. If the pH after treatment is as low as 6.7 or less, slaked lime aqueous solution is injected to adjust the pH to be within the above range. When the slaked lime aqueous solution is required, when taking out the undissolved material from the slaked lime dissolving tank, it can be taken out as a slurry together with a required amount of the slaked lime aqueous solution and added to the landing well. When the pH after the above treatment is higher than 7.7, the amount of carbon dioxide injection is increased.

このように調整された水は緩衝能が大きくなり、PACなどの凝集剤を添加すると、先に加えた未溶解物が凝集の核的機能を果たし、重質フロックが形成されその沈降速度が速くなる。その結果、生成してくるフロックの沈降速度が速く効率的な処理が可能となる。また、従来使用されている凝集助剤の添加を必要としないこと、及び添加した未溶解物主成分である消石灰の殆どが溶解するため、分離される固形物の量が著しく減少する。   The water adjusted in this way has a large buffering capacity, and when a flocculant such as PAC is added, the undissolved material added previously performs the core function of aggregation, forming a heavy floc and increasing its sedimentation rate. Become. As a result, the settling speed of the generated floc is high and efficient processing becomes possible. Moreover, since the addition of the coagulant aid used conventionally is not required and most of the added slaked lime, which is the main component of the undissolved material, dissolves, the amount of solid matter to be separated is significantly reduced.

原水は水温15℃、pH6.7 、アルカリ度5 mg/l、カルシウム硬度5 mg/l、ランゲリア指数-3.8、濁度50度の腐食性の大きい表流水であった。腐食性の小さい浄水として水質改善目標値をpH7.8、アルカリ度70mg/l、カルシウム硬度70mg/l、ランゲリア指数-0.5と定め、消石灰と炭酸ガスの所要注入率を実験で求めたところ、それぞれ48mg/l、57mg/lとなった。原水20m3/日に対して上水質改善目標値を達成するのに必要な全消石灰量は1kg /日、炭酸ガス量は1.2kg/日と計算された。直径0.22m、高さ1.5m、容量0.06m3の円筒縦型低速攪拌機付溶解槽(消石灰水溶液製造装置)へ1.2kgの消石灰を投入し、該溶解槽の下部から給水してpH12以上の溢流液を中間槽に貯めた。消石灰の80%が溶解し中間槽へ溢流した時点で該溶解槽への給水を止め、1時間静止沈降させた後に該溶解槽の下部に残存している未溶解物スラリーを未溶解物スラリー槽に抜き出した。中間槽に得られた消石灰の濃度は略1500mg/lであった。未溶解物スラリーはpH12.0、スラリー濃度2.9%であり、未溶解物の成分は炭酸カルシウム57%、消石灰40%、二酸化珪素2 %、酸化アルミ0.2 %であった。 The raw water was a highly corrosive surface water with a water temperature of 15 ° C., pH 6.7, alkalinity 5 mg / l, calcium hardness 5 mg / l, Langeria index −3.8, and turbidity 50 °. As the water quality improvement target value as pH 7.8, alkalinity 70mg / l, calcium hardness 70mg / l, Langeria index -0.5 as purified water with low corrosiveness, the required injection rate of slaked lime and carbon dioxide was obtained by experiment, 48 mg / l and 57 mg / l. The total amount of slaked lime required to achieve the water quality improvement target value for raw water of 20 m 3 / day was calculated as 1 kg / day, and the amount of carbon dioxide was calculated as 1.2 kg / day. Diameter 0.22 m, height 1.5 m, capacity cylindrical vertical low speed stirrer with dissolver of 0.06 m 3 to (slaked lime solution producing apparatus) was charged with slaked lime 1.2 kg, pH 12 or more spilled with water from the bottom of the dissolution tank The flowing liquid was stored in the intermediate tank. When 80% of the slaked lime is dissolved and overflows to the intermediate tank, the water supply to the dissolution tank is stopped and the undissolved slurry remaining in the lower part of the dissolution tank is left undissolved slurry after being allowed to settle for 1 hour. Extracted into the tank. The concentration of slaked lime obtained in the intermediate tank was approximately 1500 mg / l. The undissolved slurry had a pH of 12.0 and a slurry concentration of 2.9%, and the components of the undissolved material were calcium carbonate 57%, slaked lime 40%, silicon dioxide 2%, and aluminum oxide 0.2%.

図1に示す水処理フローにより以下のように浄水処理を行った。前記原水20m3/日を着水井に取り入れ、未溶解物スラリーを0.3 l/hで注入したところpH10.0になった。この混合水に炭酸ガスを57mg/lを注入し、次いで1500mg/lの消石灰水溶液を19.3 l/h 注入したところ、pH7.1 、アルカリ度59mg/l、カルシウム硬度60mg/l、炭酸水素カルシウム濃度98mg/lの水となった。ここへPACを25mg/l注入し凝集沈殿を行った。沈殿上澄水の濁度は3 度で凝集沈殿効率は94%の効果が得られた。この沈殿上澄水を砂濾過にかけたところ濁度0.1 度の濾過水となった。濾過水に消石灰溶液を5 l/hを注入したところ、処理水はpH7.8 、アルカリ度67mg/l、カルシウム硬度72mg/l、ランゲリア指数-0.5の非腐食性水が得られた。 The water purification process was performed as follows by the water treatment flow shown in FIG. The raw water 20m 3 / day was taken into the landing well and the undissolved slurry was injected at 0.3 l / h, resulting in a pH of 10.0. When 57 mg / l of carbon dioxide was injected into this mixed water and then 19.3 l / h of 1500 mg / l of slaked lime aqueous solution, pH 7.1, alkalinity 59 mg / l, calcium hardness 60 mg / l, calcium bicarbonate concentration It became 98 mg / l water. PAC was injected at a dose of 25 mg / l to perform aggregation precipitation. The turbidity of the sediment supernatant was 3 degrees, and the efficiency of coagulation sedimentation was 94%. The precipitate supernatant was subjected to sand filtration to obtain filtrate having a turbidity of 0.1 degree. When 5 l / h of slaked lime solution was injected into the filtered water, non-corrosive water having a pH of 7.8, an alkalinity of 67 mg / l, a calcium hardness of 72 mg / l and a Langeria index of -0.5 was obtained.

[比較例]
実施例と同じ原水、消石灰水溶液およびPACを使用して凝集沈殿の回分実験を行った。消石灰水溶液の注入のみでは原水にpH緩衝性がないので、1.8mg/lと少量の消石灰の注入でpHは8.6まで上昇し、このときの水質はアルカリ度7mg/l、カルシウム硬度7mg/lでランゲリア指数を-1.6であり、腐食性の小さい浄水としての好ましい水質値であるpH7.8,アルカリ度70mg/l、カルシウム硬度7mg/lでランゲリア指数を-0.5にすることは不可能であった。次いで凝集処理のためのpHを実施例と同じ7.1 にするのに要する消石灰注入率を求めたところ、0.8mg/lであった。図1に示す水処理フローにより、原水20m3/日に対して1500mg/lの消石灰水溶液を0.5l/h(消石灰注入率6mg/l ) 注入し、これにPACを25mg/l注入して、凝集沈殿を行った。沈殿上澄水の濁度は8度と高くこれを砂濾過にかけたところ、濁度は0.5 度の濾過水となった。この濾過水にpH7.8 となるように消石灰水溶液を注入して得られる浄水の水質を測定したところ、カルシウム硬度11mg/l、アルカリ度7mg/l、ランゲリア指数-2.3で非腐食性水とならず、凝集沈殿効率も79%と実施例に比べて低かった。
[Comparative example]
Using the same raw water, slaked lime aqueous solution and PAC as in the examples, a batch experiment of coagulation precipitation was performed. Since injection of slaked lime aqueous solution alone does not provide pH buffering to raw water, injection of a small amount of slaked lime, 1.8 mg / l, raises the pH to 8.6, and the water quality at this time is 7 mg / l for alkalinity and 7 mg / l for calcium hardness. It was impossible to set the Langeria index to -0.5 at a pH of 7.8, an alkalinity of 70 mg / l, a calcium hardness of 7 mg / l, which is a preferable water quality value for clean water with low corrosivity, and a Langeria index of -1.6. . Subsequently, the slaked lime injection rate required for setting the pH for the coagulation treatment to the same 7.1 as in the example was 0.8 mg / l. According to the water treatment flow shown in Fig. 1, 0.5 mg / l of slaked lime aqueous solution of 1500 mg / l is injected into raw water 20 m 3 / day, and PAC is injected 25 mg / l into this, Aggregation precipitation was performed. The turbidity of the precipitate supernatant was as high as 8 degrees, and when this was subjected to sand filtration, the turbidity was 0.5 degrees. The quality of the purified water obtained by injecting slaked lime aqueous solution to this filtered water so as to have a pH of 7.8 was measured and found to be non-corrosive water with a calcium hardness of 11 mg / l, alkalinity of 7 mg / l and Langeria index -2.3. In addition, the coagulation precipitation efficiency was 79%, which was lower than that of the example.

原水は水温28℃、pH9.4 、アルカリ度57.1mg/l、カルシウム硬度58.5mg/l、ランゲリア指数1.3 、濁度30度の表流水であり、pHの高い水であった。浄水としての水質改善目標値をpH7.8 、アルカリ度65mg/l、カルシウム硬度58.5mg/l、ランゲリア指数-0.2と定め、消石灰と炭酸ガスの所要注入率を実験で求めたところ、それぞれ10mg/l、16.1mg/lであった。原水20m3/日に対して上記水質改善目標値を達成するに必要な全消石灰0.02kg/日、炭酸ガス0.32kg/日と計算された。直径0.22m、高さ1.5m、容量0.06m3の円筒縦型低速攪拌機付溶解槽へ1.2kgの消石灰を投入し、該溶解槽の下部から給水してpH12以上の溢流液を中間槽に貯めた。消石灰の80%が溶解し中間槽へ溢流した時点で該溶解槽への給水を止め、1時間静止沈降させた後に該溶解槽の下部に残存している未溶解物スラリーを未溶解物スラリー槽に抜き出した。中間槽に得られた消石灰の濃度は略1600mg/lであった。未溶解物スラリーはpH12.1、スラリー濃度2.9%であった。前記原水20m3/日を図1の水処理フローにより以下のような処理した。即ち、先ず着水井へ原水を取り入れ、ここへ未溶解物スラリーを0.06 l/h と炭酸ガスを16.1mg/lとなるように注入したところ、pH7.2 、アルカリ度58.7mg/l、カルシウム硬度60.7mg/l、ランゲリア指数-1.0であった。次いで約1600mg/lの消石灰水溶液を3 l/hを前アルカリとして注入し、PACを36mg/l注入したところ、pH7.3 、アルカリ度60.5mg/l、カルシウム硬度67.9mg/l、ランゲリア指数-0.8であった。この水を凝集沈殿させたところ、沈殿上澄水の濁度は4 度で凝集沈殿効率は約87%であった。この沈殿上澄水を砂濾過にかけたところ、濾過水の濁度は0.1 度であった。濾過水に消石灰水溶液を2l/h注入したところ、処理水はpH7.8 、アルカリ度65mg/l、カルシウム硬度71.9mg/l、ランゲリア指数-0.2の非腐食水が得られた。 The raw water was a surface water having a water temperature of 28 ° C., pH 9.4, alkalinity 57.1 mg / l, calcium hardness 58.5 mg / l, Langeria index 1.3 and turbidity 30 degrees, and was a high pH water. Water quality improvement target values as purified water were set at pH 7.8, alkalinity 65 mg / l, calcium hardness 58.5 mg / l, Langeria index -0.2, and the required injection rates of slaked lime and carbon dioxide were determined experimentally, 10 mg / l each. l, 16.1 mg / l. It was calculated as 0.02 kg / day of total slaked lime and 0.32 kg / day of carbon dioxide required to achieve the above water quality improvement target values for raw water of 20 m 3 / day. Diameter 0.22 m, height 1.5 m, was charged with slaked lime 1.2kg to cylindrical vertical low speed stirrer with dissolver volume 0.06 m 3, and water from the bottom of the dissolution tank pH12 or more overflow liquid in the intermediate vessel I saved it. When 80% of the slaked lime is dissolved and overflows to the intermediate tank, the water supply to the dissolution tank is stopped and the undissolved slurry remaining in the lower part of the dissolution tank is left undissolved slurry after being allowed to settle for 1 hour. Extracted into the tank. The concentration of slaked lime obtained in the intermediate tank was approximately 1600 mg / l. The undissolved slurry had a pH of 12.1 and a slurry concentration of 2.9%. The raw water 20m 3 / day was treated as follows by the water treatment flow of FIG. That is, first, raw water was taken into the landing well, and undissolved slurry was injected here to 0.06 l / h and carbon dioxide gas to 16.1 mg / l, pH 7.2, alkalinity 58.7 mg / l, calcium hardness It was 60.7 mg / l and the Langeria index -1.0. Next, about 1600 mg / l of slaked lime aqueous solution was injected as 3 l / h as a pre-alkali, and PAC was injected at 36 mg / l, pH 7.3, alkalinity 60.5 mg / l, calcium hardness 67.9 mg / l, Langeria index − 0.8. When this water was coagulated, the turbidity of the sediment supernatant was 4 ° C., and the coagulation efficiency was about 87%. When this precipitated supernatant was subjected to sand filtration, the turbidity of the filtrate was 0.1 degree. When 2 l / h of slaked lime aqueous solution was injected into the filtered water, non-corrosive water having a pH of 7.8, an alkalinity of 65 mg / l, a calcium hardness of 71.9 mg / l and a Langeria index of -0.2 was obtained.

Claims (4)

浄水処理施設に消石灰水溶液製造装置を設け、該装置から別々に得られる未溶解物スラリー、消石灰水溶液を注入して水質調整を行う浄水処理において、被処理水のランゲリア指数を求めて、腐食防止から好ましい水質である(pH7.5〜8.3)、ランゲリア指数-1〜0になる量の消石灰の注入率を決定し、沈殿池またはそれより前の工程に、未溶解物スラリーを注入しpHを6.7〜7.3に調整し、凝集剤の存在下凝集、沈殿、濾過を行ない濾過水に消石灰水溶液を注入し、pH7、5〜8.3、ランゲリア指数-1〜0にする凝集沈殿処理と水の非腐食化を同時に行う浄水処理方法。   In the purified water treatment facility, the slaked lime aqueous solution manufacturing device is installed in the water treatment facility, and the undissolved slurry obtained separately from the device, and the slaked lime aqueous solution is injected to adjust the water quality. Determine the rate of injection of slaked lime, which is the preferred water quality (pH 7.5 to 8.3), the amount of Langeria index -1 to 0, and inject the undissolved slurry into the sedimentation basin or the previous step to adjust the pH to 6.7. Adjust to ~ 7.3, perform coagulation, precipitation and filtration in the presence of coagulant, inject slaked lime aqueous solution into the filtered water to adjust pH 7, 5-8.3, Langeria index -1 to 0, and water non-corrosion Water purification method that performs at the same time. 浄水処理施設に消石灰水溶液製造装置及び炭酸ガス注入装置を設け、水質調整を行う浄水処理において、被処理水のランゲリア指数を求めて、腐食防止から好ましい水質である(pH7.5〜8.3)、ランゲリア指数-1〜0になる量の消石灰と炭酸ガスの注入率を決定し、沈殿池またはそれより前の工程に、消石灰水溶液製造装置から得られる未溶解物スラリー、炭酸ガス注入装置から得られる炭酸ガスを注入してpHを6.7〜7.3に調整し、凝集剤の存在下凝集、沈殿、濾過を行ない濾過水に消石灰水溶液及び/又は炭酸ガスを注入し、pH7.5〜8.3、ランゲリア指数-1〜0にする凝集沈殿処理と水の非腐食化を同時に行う浄水処理方法。   In the purified water treatment where the slaked lime aqueous solution production device and the carbon dioxide gas injection device are installed in the water purification treatment facility and the water quality adjustment is performed, the Langeria index of the water to be treated is obtained and the water quality is preferable from the prevention of corrosion (pH 7.5 to 8.3). Determine the injection rate of slaked lime and carbon dioxide gas in an amount of index -1 to 0, and in the sedimentation basin or the previous process, undissolved slurry obtained from the slaked lime aqueous solution production device, carbon dioxide obtained from the carbon dioxide gas injection device Adjust the pH to 6.7 to 7.3 by injecting gas, perform aggregation, precipitation, and filtration in the presence of a flocculant, inject slaked lime aqueous solution and / or carbon dioxide gas into the filtered water, pH 7.5 to 8.3, Langeria index -1 A water purification method that simultaneously performs coagulation sedimentation treatment to make it 0 and non-corrosion of water. 沈殿池またはそれより前の工程に、未溶解物スラリー及び消石灰水溶液を注入してpHを6.7〜7.3に調整する請求項1又は2記載の凝集沈殿処理と水の非腐食化を同時に行う浄水処理方法。   3. A water purification treatment for simultaneously performing coagulation sedimentation treatment and non-corrosion of water according to claim 1 or 2, wherein the pH is adjusted to 6.7 to 7.3 by injecting undissolved slurry and slaked lime aqueous solution into the sedimentation basin or the previous step. Method. 沈殿池またはそれより前の工程で、pHを6.7〜7.3、炭酸水素カルシウム濃度を80〜160mg/lに調整する請求項1〜3の何れか記載の凝集沈殿処理と水の非腐食化を同時に行う浄水処理方法。   The coagulation sedimentation treatment and water non-corrosion treatment according to any one of claims 1 to 3, wherein the pH is adjusted to 6.7 to 7.3 and the calcium bicarbonate concentration is adjusted to 80 to 160 mg / l in the sedimentation basin or the step prior thereto. Water purification method to perform.
JP2010028646A 2010-02-12 2010-02-12 Method for cleaning water Pending JP2010137224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010028646A JP2010137224A (en) 2010-02-12 2010-02-12 Method for cleaning water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010028646A JP2010137224A (en) 2010-02-12 2010-02-12 Method for cleaning water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000113982A Division JP4522534B2 (en) 2000-04-14 2000-04-14 Water purification method

Publications (1)

Publication Number Publication Date
JP2010137224A true JP2010137224A (en) 2010-06-24

Family

ID=42347816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010028646A Pending JP2010137224A (en) 2010-02-12 2010-02-12 Method for cleaning water

Country Status (1)

Country Link
JP (1) JP2010137224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360017B1 (en) 2013-03-12 2014-02-12 재단법인 한국계면공학연구소 Method of water treatment and system using the same
KR101425965B1 (en) 2013-03-12 2014-08-06 재단법인 한국계면공학연구소 Method of reusing treated wastewater and system using the same

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194893A (en) * 1989-01-24 1990-08-01 Kureha Chem Ind Co Ltd Method and apparatus for improving langelier index of drinking water
JPH0478488A (en) * 1990-07-23 1992-03-12 Kureha Chem Ind Co Ltd Method and device for improving langelier index of city water
JPH0523675A (en) * 1991-07-18 1993-02-02 Kureha Chem Ind Co Ltd Method and device for reforming city water
JPH0596286A (en) * 1991-10-09 1993-04-20 Kureha Chem Ind Co Ltd Method and apparatus for improving tap water
JPH05138180A (en) * 1991-11-13 1993-06-01 Kureha Chem Ind Co Ltd Treatment of city water
JPH05200390A (en) * 1992-01-23 1993-08-10 Kureha Chem Ind Co Ltd Improvement of city water and device therefor
JPH05293476A (en) * 1992-04-22 1993-11-09 Kureha Chem Ind Co Ltd Preventing method for red water in city water
JPH0585494U (en) * 1992-04-22 1993-11-19 呉羽化学工業株式会社 Tap water improvement equipment
JPH0663566A (en) * 1992-08-20 1994-03-08 K P Ii:Kk Formation of slaked lime solution, slaked lime injection method and slaked lime dissolving tank
JPH0686989A (en) * 1992-08-12 1994-03-29 Kureha Chem Ind Co Ltd Method for treating tap water
JPH06240713A (en) * 1992-12-25 1994-08-30 Kureha Chem Ind Co Ltd Formation method of protection film inside running water piping
JPH06254572A (en) * 1992-10-01 1994-09-13 Kureha Chem Ind Co Ltd Method for preventing corrosion of city water pipeline
JPH06287777A (en) * 1993-04-01 1994-10-11 Suido Kiko Kk Method for lowering corrosiveness of water
JPH06296979A (en) * 1993-04-15 1994-10-25 Kureha Chem Ind Co Ltd Aqueous slaked lime solution producing device
JPH06296980A (en) * 1993-04-15 1994-10-25 Kureha Chem Ind Co Ltd Aqueous slaked lime solution producing device
JPH06343979A (en) * 1993-06-08 1994-12-20 Meidensha Corp Corrosion control device for water supply and distribution pipe
JPH07284779A (en) * 1994-04-15 1995-10-31 Kureha Chem Ind Co Ltd Method for improving langeria index
JPH081174A (en) * 1994-06-22 1996-01-09 Kureha Chem Ind Co Ltd Improvement of water quality
JPH0853782A (en) * 1994-08-09 1996-02-27 Kureha Chem Ind Co Ltd Corrosion preventive method for city water piping
JPH08243570A (en) * 1995-03-08 1996-09-24 Kureha Chem Ind Co Ltd Device for producing slaked lime solution for reforming city water and method therefor
JPH0952711A (en) * 1995-08-08 1997-02-25 Japan Organo Co Ltd Formation of aqueous slaked lime solution and apparatus therefor
JPH0975950A (en) * 1995-09-18 1997-03-25 Katayama Chem Works Co Ltd Water treatment
JPH1133565A (en) * 1997-07-16 1999-02-09 Kureha Chem Ind Co Ltd Method for preventing corrosion of water heat storage apparatus
JP2001129563A (en) * 1999-11-08 2001-05-15 Japan Organo Co Ltd Ph control method of water

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194893A (en) * 1989-01-24 1990-08-01 Kureha Chem Ind Co Ltd Method and apparatus for improving langelier index of drinking water
JPH0478488A (en) * 1990-07-23 1992-03-12 Kureha Chem Ind Co Ltd Method and device for improving langelier index of city water
JPH0523675A (en) * 1991-07-18 1993-02-02 Kureha Chem Ind Co Ltd Method and device for reforming city water
JPH0596286A (en) * 1991-10-09 1993-04-20 Kureha Chem Ind Co Ltd Method and apparatus for improving tap water
JPH05138180A (en) * 1991-11-13 1993-06-01 Kureha Chem Ind Co Ltd Treatment of city water
JPH05200390A (en) * 1992-01-23 1993-08-10 Kureha Chem Ind Co Ltd Improvement of city water and device therefor
JPH05293476A (en) * 1992-04-22 1993-11-09 Kureha Chem Ind Co Ltd Preventing method for red water in city water
JPH0585494U (en) * 1992-04-22 1993-11-19 呉羽化学工業株式会社 Tap water improvement equipment
JPH0686989A (en) * 1992-08-12 1994-03-29 Kureha Chem Ind Co Ltd Method for treating tap water
JPH0663566A (en) * 1992-08-20 1994-03-08 K P Ii:Kk Formation of slaked lime solution, slaked lime injection method and slaked lime dissolving tank
JPH06254572A (en) * 1992-10-01 1994-09-13 Kureha Chem Ind Co Ltd Method for preventing corrosion of city water pipeline
JPH06240713A (en) * 1992-12-25 1994-08-30 Kureha Chem Ind Co Ltd Formation method of protection film inside running water piping
JPH06287777A (en) * 1993-04-01 1994-10-11 Suido Kiko Kk Method for lowering corrosiveness of water
JPH06296979A (en) * 1993-04-15 1994-10-25 Kureha Chem Ind Co Ltd Aqueous slaked lime solution producing device
JPH06296980A (en) * 1993-04-15 1994-10-25 Kureha Chem Ind Co Ltd Aqueous slaked lime solution producing device
JPH06343979A (en) * 1993-06-08 1994-12-20 Meidensha Corp Corrosion control device for water supply and distribution pipe
JPH07284779A (en) * 1994-04-15 1995-10-31 Kureha Chem Ind Co Ltd Method for improving langeria index
JPH081174A (en) * 1994-06-22 1996-01-09 Kureha Chem Ind Co Ltd Improvement of water quality
JPH0853782A (en) * 1994-08-09 1996-02-27 Kureha Chem Ind Co Ltd Corrosion preventive method for city water piping
JPH08243570A (en) * 1995-03-08 1996-09-24 Kureha Chem Ind Co Ltd Device for producing slaked lime solution for reforming city water and method therefor
JPH0952711A (en) * 1995-08-08 1997-02-25 Japan Organo Co Ltd Formation of aqueous slaked lime solution and apparatus therefor
JPH0975950A (en) * 1995-09-18 1997-03-25 Katayama Chem Works Co Ltd Water treatment
JPH1133565A (en) * 1997-07-16 1999-02-09 Kureha Chem Ind Co Ltd Method for preventing corrosion of water heat storage apparatus
JP2001129563A (en) * 1999-11-08 2001-05-15 Japan Organo Co Ltd Ph control method of water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360017B1 (en) 2013-03-12 2014-02-12 재단법인 한국계면공학연구소 Method of water treatment and system using the same
KR101425965B1 (en) 2013-03-12 2014-08-06 재단법인 한국계면공학연구소 Method of reusing treated wastewater and system using the same

Similar Documents

Publication Publication Date Title
JP6281274B2 (en) High hardness wastewater treatment device and treatment method
JP4650384B2 (en) Treatment method for fluorine-containing wastewater
EP2993159B1 (en) Water treatment device and water treatment method
JP5440199B2 (en) Silicon wafer etching wastewater treatment method and treatment apparatus
JP4858449B2 (en) Treatment method for fluorine-containing wastewater
JP5753702B2 (en) Formation method of initial mother floc in high speed coagulation sedimentation basin
JP4879590B2 (en) Method and apparatus for concentration and volume reduction of sludge
JP4522534B2 (en) Water purification method
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2010137224A (en) Method for cleaning water
KR20140077251A (en) Apparatus for Removing Fluoride in Water and Method for Removing Fluoride in Water
JP5767009B2 (en) Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing
JP2006007086A (en) Method and apparatus for water treatment by coagulating sedimentation
JP2019198806A (en) Water treatment method, and water treatment device
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
KR20150061877A (en) Apparatus for Removing Fluoride in Water Using Activated Reaction Nucleus and Method for Removing Fluoride in Water
JP2008149222A (en) Removal method of fluorine ions in hot spring water
KR20150142469A (en) Method for acid wastewater abatement and device for the same
JP3939970B2 (en) Coal storage wastewater treatment method
JP5057955B2 (en) Sludge concentration method and sludge concentration apparatus
JP2005239457A (en) Method and apparatus for preparation of slaked lime aqueous solution
JP2005034746A (en) Method of preparing coagulant, and water treatment method using the same
JPH0592198A (en) Softening treatment of hard water
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305