JP4650384B2 - Treatment method for fluorine-containing wastewater - Google Patents

Treatment method for fluorine-containing wastewater Download PDF

Info

Publication number
JP4650384B2
JP4650384B2 JP2006257731A JP2006257731A JP4650384B2 JP 4650384 B2 JP4650384 B2 JP 4650384B2 JP 2006257731 A JP2006257731 A JP 2006257731A JP 2006257731 A JP2006257731 A JP 2006257731A JP 4650384 B2 JP4650384 B2 JP 4650384B2
Authority
JP
Japan
Prior art keywords
calcium
fluoride
fluorine
reaction
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006257731A
Other languages
Japanese (ja)
Other versions
JP2008073646A (en
Inventor
周平 伊澤
孝博 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006257731A priority Critical patent/JP4650384B2/en
Priority to TW096133811A priority patent/TWI422532B/en
Priority to CN2007101535723A priority patent/CN101157507B/en
Priority to KR1020070096303A priority patent/KR101333261B1/en
Publication of JP2008073646A publication Critical patent/JP2008073646A/en
Application granted granted Critical
Publication of JP4650384B2 publication Critical patent/JP4650384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明はフッ素含有排水に塩化カルシウムを添加してフッ素を不溶性のフッ化カルシウム(CaF)として固液分離する方法に係り、特に、排水中のフッ素に対して塩化カルシウムを有効に作用させて、高水質の処理水を得ると同時に含水率が低い汚泥を生成するフッ素含有排水の処理方法に関する。 The present invention relates to a method of solid-liquid separation of fluorine by adding calcium chloride to the waste water containing fluorine as calcium fluoride insoluble (CaF 2), in particular, effectively acts to calcium chloride to fluorine in the waste water The present invention relates to a method for treating fluorine-containing wastewater that obtains high-quality treated water and at the same time generates sludge having a low moisture content.

半導体部品製造におけるシリコンウェハ製造工程から排出されるフッ素含有廃水、ステンレス鋼板製造工程から排出される酸洗廃水、アルミニウム表面処理廃水、フッ酸製造廃水、肥料製造廃水、ゴミ焼却廃水等のフッ素含有排水は、一般に、次のような二段処理・多段処理で処理されている。   Fluorine-containing wastewater such as fluorine-containing wastewater discharged from the silicon wafer manufacturing process in semiconductor component manufacturing, pickling wastewater discharged from the stainless steel plate manufacturing process, aluminum surface treatment wastewater, hydrofluoric acid manufacturing wastewater, fertilizer manufacturing wastewater, and waste incineration wastewater Is generally processed by the following two-stage processing / multi-stage processing.

即ち、まず、一段目でフッ素含有排水に水酸化カルシウムを添加してpHを10〜11にする第1反応工程とその反応液に過剰分のカルシウムイオン120〜250mg/Lに相当する水酸化カルシウムを注入すると共に、塩酸で中和する第2反応工程とを有する処理方法が採用されている(例えば、特許文献1参照)。またアルカリ性下での水酸化カルシウムとフッ酸との反応が遅いため、pHを酸性もしくは中性に維持しつつ、フッ素イオンに対して0.3〜0.5当量の水酸化カルシウムを添加し、生成する不溶物を分離し、上澄水に対して同様の処理を繰り返し行うことも行われている(例えば、特許文献2参照)。
特開2004−283759(特許請求の範囲、第1図) 特許第3378362号(特許請求の範囲、段落13)
That is, first, in the first step, calcium hydroxide corresponding to 120 to 250 mg / L of excess calcium ions in the first reaction step in which calcium hydroxide is added to fluorine-containing wastewater to adjust the pH to 10 to 11 and the reaction solution. And a second reaction step of neutralizing with hydrochloric acid is employed (see, for example, Patent Document 1). Moreover, since the reaction of calcium hydroxide and hydrofluoric acid under alkalinity is slow, while maintaining the pH acidic or neutral, 0.3 to 0.5 equivalents of calcium hydroxide is added to fluorine ions, The insoluble matter to produce | generate is isolate | separated and repeating the same process with respect to supernatant water is also performed (for example, refer patent document 2).
JP 2004-283759 (Claims, Fig. 1) Japanese Patent No. 3378362 (Claims, paragraph 13)

水酸化カルシウムを、pH10〜11に調整するpH調整剤を兼ねたフッ素不溶化剤として採用すると、フッ素イオンの当量以上に添加することがあり、微細なフッ化カルシウムが析出し、それが処理水にリークして処理水水質が安定しない問題があった。また、高水質の処理水を得るために、生成してまった微細なフッ化カルシウムをポリマー等の凝集剤により凝集沈殿処理すと、生成する汚泥の含水率が高く、廃棄物量が多くなる問題があった。また、フッ素イオンに対して0.3〜0.5当量の水酸化カルシウムを添加し、生成する不溶物を分離し、生成する不溶化物を分離する方法では、少なくても3回添加工程と分離工程と繰り返さなければならず、処理水フッ素濃度を15mg/L以下に低下するのは、4〜5回繰り返すことが必要であった。 When calcium hydroxide is employed as a fluorine insolubilizer that also serves as a pH adjuster that adjusts the pH to 10 to 11, it may be added in an amount equal to or greater than the equivalent of fluorine ions, and fine calcium fluoride is precipitated, which is added to the treated water. There was a problem that the quality of treated water was not stable due to leakage. Further, in order to obtain treated water of high quality, if the generated and wait fine calcium fluoride you coagulation precipitation treatment by coagulant such as a polymer, a high water content of the resulting sludge, many waste There was a problem. In addition, in the method of adding 0.3 to 0.5 equivalents of calcium hydroxide to fluorine ions, separating the insoluble matter to be produced, and separating the insoluble matter to be produced, the method is separated from the addition step at least three times. It had to be repeated with the process, and it was necessary to repeat the treatment water fluorine concentration to 15 mg / L or less 4 to 5 times.

本願発明は、少ない工程で安定した処理水質を得ると同時に含水率の低い汚泥を生成するためには、最初にフッ素イオンを粗取りすれば、次に残留するフッ化物イオンに対して当量以上の塩化カルシウムを添加しても微細なフッ化カルシウムの生成は抑制できることを見い出し、上記した従来技術の問題点を解決するに至った。すなわち、本願発明は、フッ素含有排水に塩化カルシウムを添加してフッ化カルシウムを含む不溶化物を生成させる反応工程と、生成したフッ化カルシウムの不溶化物を含む汚泥と分離水とに固液分離する分離工程と、分離した前記汚泥を返送汚泥として前記反応工程に返送する汚泥返送工程とを含むフッ素含有排水の処理方法において、前記反応工程は、直列2段のpH5±0.5の反応槽を含み、第1段目の反応槽に塩化カルシウムをフッ化物イオンの当量未満であって、カルシウムイオンが1mg/L以上50mg/L以下残留するように添加して、フッ化物イオンを80mg/L以下とし、第2段目の反応槽にはカルシウム化合物を、第1段目の反応槽で残留するフッ化物イオンの当量以上であって、フッ化物イオン濃度が15mg/L未満となるように添加することを特徴とするフッ素含有排水の処理方法である In the present invention, in order to obtain a stable treated water quality in a small number of steps and at the same time to produce sludge having a low water content, if the fluorine ions are first roughed, then the equivalent to or more than the remaining fluoride ions. It found that the generation of fine calcium fluoride be added calcium chloride can be suppressed, leading to solve the problems of the prior art described above. That is, the present onset bright, solid-liquid in the reaction step by the addition of calcium chloride to a fluorine-containing waste water to produce insoluble substance containing calcium fluoride, a sludge containing insolubles of the resulting calcium fluoride and separated water In the method for treating fluorine-containing wastewater, comprising a separation step of separating, and a sludge return step of returning the separated sludge as return sludge to the reaction step, the reaction step is a reaction of pH 5 ± 0.5 in two stages in series. includes a bath, the calcium chloride be less than equivalent amount of fluoride ion in the reaction vessel of the first stage, calcium ions are added to the residue 1 mg / L or higher 50 mg / L or less, a fluoride ion 80mg / L or less, and the calcium compound in the second reaction tank is equal to or more than the equivalent of fluoride ions remaining in the first reaction tank, and the fluoride ion concentration is 15 mg. It is a method of treating fluorine-containing waste water which comprises adding as less than L.

第1段目の反応槽に塩化カルシウムを、フッ化物イオンの当量未満であって、カルシウムイオンが1mg/L以上50mg/L以下残留するように添加するので、微細なフッ化カルシウムの生成を抑制して、フッ素の粗取りができ、第2段目の反応槽には、残留するフッ化物イオンの当量以上に過剰に塩化カルシウムを添加してフッ化物イオンを不溶化させるので、微細なフッ化カルシウムの生成が抑制でき、処理水水質が安定すると同時にフッ化カルシウム粒子を大きく成長させるため、含水率の低い汚泥が生成する。また、第1段目の反応槽のpHを3〜6に調整すると、カルシウム化合物の添加量が少なくて済む。 The calcium chloride in the reaction vessel of the first stage, a less than equivalent amount of fluoride ions, since calcium ions are added to the residue 1 mg / L or higher 50 mg / L or less, the generation of fine calcium fluoride and suppression can rough fluorine, the second stage reaction vessel, since the insoluble excessively fluoride ions by addition of calcium chloride to a more equivalents of fluoride ions remaining, fine fluoride The generation of calcium fluoride can be suppressed, the quality of treated water is stabilized, and at the same time, the calcium fluoride particles are grown to a large size, so that sludge having a low water content is generated. Further, when the pH of the first-stage reaction tank is adjusted to 3 to 6, the amount of calcium compound added can be reduced.

以下、第1図を参照して実施の形態について説明する。   The embodiment will be described below with reference to FIG.

図1は、本発明の処理フローの概略図である。1は原水流入路、2は第1反応槽、3は第2反応槽、4は凝集槽、5は沈殿槽、6は汚泥返送路、7は塩化カルシウム添加配管、8はpH調整剤注入配管である。 FIG. 1 is a schematic diagram of the processing flow of the present invention. 1 is a raw water inflow path, 2 is a first reaction tank, 3 is a second reaction tank, 4 is a coagulation tank, 5 is a precipitation tank, 6 is a sludge return path, 7 is a calcium chloride addition pipe, and 8 is a pH adjuster injection pipe. It is.

フッ素含有排水である原水は、原水流入路1から第1反応槽に流入し、そこでフッ化物イオンの当量未満の塩化カルシウが添加されるとともに、pH調整剤が注入されてpHを3〜11、より好ましくは3〜6に調整され、カルシウムイオンとフッ化物イオンとが反応してフッ化カルシウムが析出する。pHが3より小さいとフッ化カルシウムの溶解度が大きく、フッ化物イオン濃度を低減できず、またpHが11より大きいと炭酸カルシウムの析出が著しくなり、スケールの問題が生じる。pH3〜6の場合は、フッ化物イオンを少ない塩化カルシウム添加量でフッ化カルシウムを析出させることができ、その際、後述する返送汚泥が核となり、その表面にフッ化カルシウムが析出するので、微細なフッ化カルシウムの生成が抑制されると同時にフッ化カルシウム粒子が大きく成長する。 Fluorine-containing a waste water raw water flows from the water inlet line 1 into the first reaction vessel, where together with calcium chloride of less than equivalent is added of fluoride ions, the pH pH adjusting agent is injected 3-11 More preferably, it is adjusted to 3 to 6, and calcium fluoride and fluoride ion react to precipitate calcium fluoride. If the pH is less than 3, the solubility of calcium fluoride is large, and the fluoride ion concentration cannot be reduced. If the pH is more than 11, precipitation of calcium carbonate becomes remarkable, resulting in a scale problem. In the case of pH 3-6, calcium fluoride can be precipitated with a small calcium chloride addition amount of fluoride ions. At that time, return sludge described later serves as a nucleus, and calcium fluoride precipitates on the surface. The generation of calcium fluoride is suppressed and at the same time, calcium fluoride particles grow greatly.

本発明者らの検討によると、反応槽に流入するフッ化物イオン濃度および反応槽に残留するカルシウムイオン濃度が、図2に示す溶解度曲線(フッ化カルシウムの理論溶解度積 [Ca2+][F= 4.9×10-11mol/l)と過溶解度曲線にはさまれる領域であれば、微細なフッ化カルシウムの生成が抑制されると同時に核表面にフッ化カルシウムが析出し、フッ化カルシウム粒子が大きく成長するが、過溶解度曲線よりも高濃度であると微細なフッ化カルシウムが生成することがわかった。フッ化物イオンを15mg/L未満にまで処理する場合、カルシウムイオンはフッ化物イオンの当量以上、望ましくは当量より200〜300mg/L過剰に存在することが必要であるため、図2からわかるようにフッ化物イオンを、まず、80mg/L以下にまで低減することが必要である。 According to the study by the present inventors, the concentration of fluoride ions flowing into the reaction tank and the concentration of calcium ions remaining in the reaction tank are determined by the solubility curve shown in FIG. 2 (the theoretical solubility product [Ca 2+ ] [F − − ] 2 = 4.9 x 10 -11 mol 3 / l 3 ) and the region that falls between the supersolubility curves, the formation of fine calcium fluoride is suppressed and calcium fluoride is precipitated on the surface of the nucleus. However, although calcium fluoride particles grew greatly, it was found that fine calcium fluoride was produced when the concentration was higher than the oversolubility curve. As shown in FIG. 2, when processing fluoride ions to less than 15 mg / L, calcium ions must be present in an amount equal to or greater than that of fluoride ions, preferably 200 to 300 mg / L in excess of the equivalent. First, it is necessary to reduce the fluoride ion to 80 mg / L or less.

塩化カルシウムの添加量は、第1反応槽のフッ化物イオン濃度が80mg/L以下となり、かつ、残留カルシウムイオン濃度が低濃度となるように添加する。つまり、フッ化物イオンの当量未満であっても、第1反応槽にカルシウムイオンが残留する程度、すなわち、カルシウムイオンが1mg/L以上50mg/L以下残留するように添加する。カルシウムイオンが1mg/L未満であると、フッ素の粗取りができないおそれがあり、50mg/Lを超えると、微細なフッ化カルシウムの生成が抑制できないおそれがある。 The addition amount of calcium chloride is fluoride ion concentration in the first reaction vessel is less 80 mg / L, and the residual calcium ions concentration is added to a low concentration. That is, even if it is less than the equivalent of fluoride ions, it is added so that calcium ions remain in the first reaction tank, that is, calcium ions remain 1 mg / L or more and 50 mg / L or less. If the calcium ion is less than 1 mg / L, rough removal of fluorine may not be possible, and if it exceeds 50 mg / L, production of fine calcium fluoride may not be suppressed.

次にフッ素が粗取りされた第1反応槽2の反応液は、固液分離することなく、第2反応槽3に流入し、そこでフッ化物イオンの当量以上に過剰に塩化カルシウムが添加され、残留するフッ化物イオンを不溶化する。その際、pH調整は、処理水の放流を考慮してpH5.8〜8.6の間にpH調整することが好ましい。 Next the first reaction liquid in the reaction vessel 2 which fluorine is rough, without solid-liquid separation, flow into the second reaction vessel 3, where excessive calcium chloride was added to the above equivalent of fluoride ion To insolubilize the remaining fluoride ions. At that time, it is preferable to adjust the pH between pH 5.8 and 8.6 in consideration of the release of the treated water.

第2反応槽3の反応液は、凝集槽4に導入することが好ましい。第1反応槽2や第2反応槽3における塩化カルシウムの添加量設定間違い等で、微細なフッ化カルシウムの生成を抑制できなかった場合や、処理水水質の更なる向上のために、凝集剤槽4では高分子凝集剤を添加することができる(図示せず)。 The reaction solution in the second reaction tank 3 is preferably introduced into the aggregation tank 4. In addition quantity setting mistake or the like of calcium chloride in the first reaction tank 2 and the second reaction tank 3, and if it can not suppress the formation of fine calcium fluoride, for further improvement of the treated water quality, aggregation In the agent tank 4, a polymer flocculant can be added (not shown).

次に、凝集された、または凝集処理されなかった反応液は沈殿槽5で固液分離され、フッ化カルシウムを含む不溶化物スラリーは返送汚泥として汚泥返送路6から第1反応槽2に返送され、カルシウムとフッ化物イオンとが反応してフッ化カルシウムが析出する核となる。汚泥返送量は、原水流量の0.01〜10倍程度で、通常は0.05〜0.5倍、原水のフッ化物濃度が高い場合は、希釈を兼ねて0.1〜10倍とするのが好ましい。分離水は処理水排出路9から処理水として排出される。   Next, the agglomerated or non-aggregated reaction liquid is solid-liquid separated in the precipitation tank 5, and the insolubilized slurry containing calcium fluoride is returned to the first reaction tank 2 from the sludge return path 6 as return sludge. Calcium fluoride precipitates as a result of the reaction between calcium and fluoride ions. The amount of sludge returned is about 0.01 to 10 times the raw water flow rate, usually 0.05 to 0.5 times, and when the fluoride concentration of the raw water is high, it is also 0.1 to 10 times for dilution. Is preferred. The separated water is discharged as treated water from the treated water discharge passage 9.

カルシウム化合物としては、カルシウムイオンを遊離するものでよく、塩化カルシウムや水酸化カルシウムが挙げられる。pH調整剤としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリや、塩酸、硫酸などの酸を用いることができる。   As a calcium compound, what liberates calcium ion may be sufficient and calcium chloride and calcium hydroxide are mentioned. As the pH adjuster, alkalis such as sodium hydroxide, potassium hydroxide and calcium hydroxide, and acids such as hydrochloric acid and sulfuric acid can be used.

実施例1
図1に示す処理フローでのフッ素含有排水を処理した。
原水水質は以下のとおり。
pH:3.4、F:131mg/L、PO 3−−P:1mg/L、SO 2−:21.3mg/L、SiO:39mg/L、TOC:3.3mg/L。
Example 1
The fluorine-containing wastewater in the treatment flow shown in FIG. 1 was treated.
The raw water quality is as follows.
pH: 3.4, F: 131mg / L, PO 4 3- -P: 1mg / L, SO 4 2-: 21.3mg / L, SiO 2: 39mg / L, TOC: 3.3mg / L.

第1反応槽2、第2反応槽3および凝集槽4の容量は各1L,沈殿槽5の容量は15Lで、上記原水の流量は4L/Hr,返送汚泥量は、0.1L/Hrとした。カルシウム化合物としては、塩化カルシウムを用い、第1反応槽2および第2反応槽3にそれぞれ添加した。pH調整には0.1Nの水酸化ナトリウムを用い、第1反応槽2および第2反応槽のpHを5±0.5に調整した。凝集槽4には、高分子凝集剤を添加せず、単なる滞留槽とした。なお、処理開始時には種晶として平均粒径5μmのフッ化カルシウムを第1反応槽2に添加した。第1、2反応槽内の反応液および処理水をメンブレンフィルター(孔径0.45μm)で濾過し、濾液の分析を行い、結果を表1に示した。塩化カルシウムの添加量も併せて表1に示した。また、沈澱汚泥を遠心分離機により2000Gで脱水し、含水率を測定し表1に示した。
比較例1
実施例1において、第2反応槽に塩化カルシウムを添加することなく、第1反応槽にのみ塩化カルシウムをフッ化物イオン当量より過剰に添加した以外は実施例1と同様に処理を行った。処理水の水質を表1に示した。
比較例2
比較例1において、凝集槽4に高分子凝集剤クリフロック(栗田工業株式会社登録商標)PA331(ポリアクリルアミドの部分加水分解物)を3mg/L添加した以外は比較例1と同様に処理を行った。処理水の水質を表1に示す。また、沈澱汚泥を遠心分離機により2000Gで脱水し、含水率を測定し表1に示した。
The capacity of the first reaction tank 2, the second reaction tank 3 and the coagulation tank 4 is 1L each, the capacity of the sedimentation tank 5 is 15L, the flow rate of the raw water is 4L / Hr, and the amount of returned sludge is 0.1L / Hr. did. As the calcium compound, calcium chloride was used and added to the first reaction tank 2 and the second reaction tank 3, respectively. 0.1N sodium hydroxide was used for pH adjustment, and the pH of the first reaction tank 2 and the second reaction tank was adjusted to 5 ± 0.5. The coagulation tank 4 was not a polymer flocculant, but a mere residence tank. At the start of the treatment, calcium fluoride having an average particle size of 5 μm was added to the first reaction tank 2 as a seed crystal. The reaction liquid and treated water in the first and second reaction tanks were filtered with a membrane filter (pore diameter 0.45 μm), and the filtrate was analyzed. The results are shown in Table 1. The amount of calcium chloride added is also shown in Table 1. Further, the precipitated sludge was dehydrated at 2000 G with a centrifuge and the water content was measured and shown in Table 1.
Comparative Example 1
In Example 1, the treatment was performed in the same manner as in Example 1 except that calcium chloride was added to the second reaction tank in excess of the fluoride ion equivalent without adding calcium chloride to the second reaction tank. Table 1 shows the quality of the treated water.
Comparative Example 2
In Comparative Example 1, the same treatment as in Comparative Example 1 was performed except that 3 mg / L of the polymer flocculant Cliff Rock (registered trademark of Kurita Kogyo Co., Ltd.) PA331 (polyacrylamide partial hydrolyzate) was added to the coagulation tank 4. It was. Table 1 shows the quality of the treated water. Further, the precipitated sludge was dehydrated at 2000 G with a centrifuge and the water content was measured and shown in Table 1.

Figure 0004650384
表1から、比較例1は高濃度のフッ素と高濃度のカルシウムが反応するために微細なフッ化カルシウム粒子が生成し、処理水側にリークするために、処理水の全フッ素濃度が高く、良好な処理水が得られないことが分る。比較例2では、微細なフッ化カルシウム粒子を高分子凝集剤で凝集沈殿除去するために良好な処理水が得られている。しかし、微細粒子を凝集させた汚泥は水切れが悪いため、汚泥発生量が多くなることが分る。実施例1では、カルシウム総添加量は同じでも、第1反応槽でフッ素を粗取りしているので、微細なフッ化カルシウム粒子の生成を抑制し、種晶表面にフッ化カルシウムを析出させているために、良好な処理水質が得られていると思われる。
Figure 0004650384
From Table 1, in Comparative Example 1, fine calcium fluoride particles are generated because high concentration fluorine and high concentration calcium react and leak to the treated water side, so that the total fluorine concentration of treated water is high, It turns out that good treated water cannot be obtained. In Comparative Example 2, good treated water is obtained because fine calcium fluoride particles are coagulated and removed with a polymer flocculant. However, it can be seen that the sludge in which the fine particles are aggregated is poor in water drainage, so that the amount of sludge generated increases. In Example 1, although the total amount of calcium added is the same, since the fluorine is roughly removed in the first reaction tank, the production of fine calcium fluoride particles is suppressed, and calcium fluoride is precipitated on the seed crystal surface. Therefore, it seems that good treated water quality is obtained.

本発明のフッ素含有排水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the fluorine-containing waste_water | drain of this invention. フッ化カルシウムの溶解度を表わすグラフである。縦軸はカルシウム濃度、横軸はフッ化物イオン濃度を示す。破線は溶解度曲線、実線は過溶解度曲線である。点線はカルシウムイオンとフッ化物イオンの当量線である。Is a graph showing the soluble Kaido calcium fluoride. The vertical axis represents the calcium concentration, and the horizontal axis represents the fluoride ion concentration. The broken line is the solubility curve, and the solid line is the supersolubility curve. A dotted line is an equivalent line of calcium ions and fluoride ions.

符号の説明Explanation of symbols

1 原水流入路
2 第1反応槽
3 第2反応槽
4 凝集槽
5 沈殿槽
6 汚泥返送路
7 カルシウム添加管
8 pH調整剤注入管
9 処理水排出路

DESCRIPTION OF SYMBOLS 1 Raw water inflow path 2 1st reaction tank 3 2nd reaction tank 4 Coagulation tank 5 Sedimentation tank 6 Sludge return path 7 Calcium addition pipe 8 pH adjuster injection pipe 9 Treated water discharge path

Claims (1)

フッ素含有排水に塩化カルシウムを添加してフッ化カルシウムを含む不溶化物を生成させる反応工程と、生成したフッ化カルシウムの不溶化物を含む汚泥と分離水とに固液分離する分離工程と、分離した前記汚泥を返送汚泥として前記反応工程に返送する汚泥返送工程とを含むフッ素含有排水の処理方法において、 前記反応工程は、直列2段のpH5±0.5の反応槽を含み、第1段目の反応槽に塩化カルシウムをフッ化物イオンの当量未満であって、カルシウムイオンが1mg/L以上50mg/L以下残留するように添加して、残留するフッ化物イオンを80mg/L以下とし、第2段目の反応槽には塩化カルシウムを、第1段目の反応槽で残留するフッ化物イオンの当量以上であって、フッ化物イオン濃度が15mg/L未満となるように添加することを特徴とするフッ素含有排水の処理方法。 A reaction step of adding the calcium chloride to fluorine-containing waste water to produce insoluble substance containing calcium fluoride, a separation step of solid-liquid separation and the separated water sludge containing insolubles of the resulting calcium fluoride, separated In the method for treating fluorine-containing wastewater including the sludge returning step of returning the sludge as returned sludge to the reaction step, the reaction step includes a series of two-stage reaction tanks having a pH of 5 ± 0.5 , and the first step the calcium chloride in the reaction vessel of the eye is less than equivalent amount of fluoride ions, added as calcium ions remaining 1 mg / L or higher 50 mg / L or less, the fluoride ions remaining not more than 80 mg / L, calcium chloride in the second stage reaction vessel, be more than equivalent amount of fluoride ions remaining in the reaction vessel of the first stage, so that the fluoride ion concentration is less than 15 mg / L A method for treating fluorine-containing wastewater, which is characterized by being added to the above.
JP2006257731A 2006-09-22 2006-09-22 Treatment method for fluorine-containing wastewater Expired - Fee Related JP4650384B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006257731A JP4650384B2 (en) 2006-09-22 2006-09-22 Treatment method for fluorine-containing wastewater
TW096133811A TWI422532B (en) 2006-09-22 2007-09-11 Treating method for drainage water containing fluorine
CN2007101535723A CN101157507B (en) 2006-09-22 2007-09-21 Method for treating fluoric containing drainage
KR1020070096303A KR101333261B1 (en) 2006-09-22 2007-09-21 Method for treating fluoric containing drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257731A JP4650384B2 (en) 2006-09-22 2006-09-22 Treatment method for fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
JP2008073646A JP2008073646A (en) 2008-04-03
JP4650384B2 true JP4650384B2 (en) 2011-03-16

Family

ID=39305759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257731A Expired - Fee Related JP4650384B2 (en) 2006-09-22 2006-09-22 Treatment method for fluorine-containing wastewater

Country Status (4)

Country Link
JP (1) JP4650384B2 (en)
KR (1) KR101333261B1 (en)
CN (1) CN101157507B (en)
TW (1) TWI422532B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823799B (en) * 2009-03-06 2012-08-15 昆山工研院华科生物高分子材料研究所有限公司 Method for treating acidic fluorine-containing waste water
TW201236983A (en) * 2011-03-03 2012-09-16 Chiou-Mei Chen Treatment method for waste water in process of preparing silicon chip
CN102225814B (en) * 2011-04-13 2012-11-14 黑龙江省牡丹江农垦奥宇石墨深加工有限公司 Fluorine-containing waste water processing apparatus and processing method thereof
CN102350176A (en) * 2011-09-07 2012-02-15 四川明晶光电科技有限公司 Method for treating fluoride waste water and gas
KR101382171B1 (en) * 2012-11-07 2014-04-10 대림산업 주식회사 Method for treating wastewater including fluorine component
JP5692278B2 (en) * 2013-04-25 2015-04-01 栗田工業株式会社 Method and apparatus for treating fluoride-containing water
SG11201609957RA (en) * 2014-06-26 2017-01-27 Kurita Water Ind Ltd Method and device for treating fluoride-containing water
KR101559852B1 (en) * 2014-11-13 2015-10-13 오에스케이 주식회사 Treating method for waste water contaning fluoroboric acid produced in etch process
WO2016157452A1 (en) * 2015-03-31 2016-10-06 住友金属鉱山エンジニアリング株式会社 Method for treating wastewater, and system for treating wastewater
CN107792832B (en) * 2016-08-31 2020-04-03 中国科学院过程工程研究所 Method for recovering fluorine resource in acidic fluorine-containing wastewater
KR102112112B1 (en) * 2019-11-19 2020-05-18 에코매니지먼트코리아홀딩스 주식회사 Process for recycling wasteacid
CN111646591A (en) * 2020-06-08 2020-09-11 苏州晟德水处理有限公司 Treatment method of semiconductor fluorine-containing wastewater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285095A (en) * 1976-01-09 1977-07-15 Mitsubishi Metal Corp Treatment of f-contg. ammoniac waste liquor
JPS542995B2 (en) * 1975-08-15 1979-02-16
JPS627490A (en) * 1985-07-05 1987-01-14 Tokuyama Soda Co Ltd Treatment of waste water
JP2001219177A (en) * 2000-02-10 2001-08-14 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing water

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW495487B (en) * 1999-06-07 2002-07-21 Ind Tech Res Inst Process for removing fluoride from wastewater
TW200538402A (en) * 2004-05-19 2005-12-01 Powerchip Semiconductor Corp Method of fluoride-contained wastewater treatment
CN100351185C (en) * 2004-10-28 2007-11-28 力晶半导体股份有限公司 Method for treating fluorine-containing waste water
JP4524796B2 (en) * 2004-12-14 2010-08-18 栗田工業株式会社 Method and apparatus for treating fluorine-containing wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542995B2 (en) * 1975-08-15 1979-02-16
JPS5285095A (en) * 1976-01-09 1977-07-15 Mitsubishi Metal Corp Treatment of f-contg. ammoniac waste liquor
JPS627490A (en) * 1985-07-05 1987-01-14 Tokuyama Soda Co Ltd Treatment of waste water
JP2001219177A (en) * 2000-02-10 2001-08-14 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing water

Also Published As

Publication number Publication date
TW200817289A (en) 2008-04-16
CN101157507B (en) 2011-07-27
KR20080027193A (en) 2008-03-26
TWI422532B (en) 2014-01-11
JP2008073646A (en) 2008-04-03
KR101333261B1 (en) 2013-11-27
CN101157507A (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP4650384B2 (en) Treatment method for fluorine-containing wastewater
JP4747216B2 (en) Pretreatment method for wastewater containing fluorine and silicon, and treatment equipment for wastewater containing fluorine and silicon
JP4858449B2 (en) Treatment method for fluorine-containing wastewater
WO2015198438A1 (en) Method and device for treating fluoride-containing water
JP5440199B2 (en) Silicon wafer etching wastewater treatment method and treatment apparatus
JP5157040B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4572812B2 (en) Fluorine-containing water treatment method
JP2008104946A (en) Method for treating fluorine-containing waste water
JPH07265869A (en) Treatment of fluorine-phosphorus-containing discharged water
JP3977757B2 (en) Dephosphorization method of waste water
JP5464374B2 (en) Pretreatment method for wastewater containing fluorine and silicon, and treatment equipment for wastewater containing fluorine and silicon
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP2019051450A (en) Method and device of treating silica-containing water
JP4376135B2 (en) Wastewater treatment method
JP4522534B2 (en) Water purification method
JP4487492B2 (en) Treatment method for fluorine-containing wastewater
JP3622407B2 (en) Water treatment method
JP4136194B2 (en) Fluorine-containing wastewater treatment method
JP2021065803A (en) Treatment method of fluorine-containing wastewater
JP2008111158A (en) Method of purifying brine for electrolysis
KR20060051767A (en) Treating method of drainage containing fluorine
JPH10151456A (en) Wastewater treatment method
WO2019054062A1 (en) Apparatus and method for treating silica-containing water
JP2003071470A (en) Method and apparatus for treating fluorine-containing water
JP4824058B2 (en) Phosphoric acid-containing water treatment apparatus and phosphoric acid-containing water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4650384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees