WO2016157452A1 - Method for treating wastewater, and system for treating wastewater - Google Patents

Method for treating wastewater, and system for treating wastewater Download PDF

Info

Publication number
WO2016157452A1
WO2016157452A1 PCT/JP2015/060249 JP2015060249W WO2016157452A1 WO 2016157452 A1 WO2016157452 A1 WO 2016157452A1 JP 2015060249 W JP2015060249 W JP 2015060249W WO 2016157452 A1 WO2016157452 A1 WO 2016157452A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
wastewater
fluorine
waste water
decomposition
Prior art date
Application number
PCT/JP2015/060249
Other languages
French (fr)
Japanese (ja)
Inventor
治雄 柴山
務 村木
Original Assignee
住友金属鉱山エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山エンジニアリング株式会社 filed Critical 住友金属鉱山エンジニアリング株式会社
Priority to JP2017508959A priority Critical patent/JP6728546B2/en
Priority to PCT/JP2015/060249 priority patent/WO2016157452A1/en
Priority to KR1020177029308A priority patent/KR102434086B1/en
Publication of WO2016157452A1 publication Critical patent/WO2016157452A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Definitions

  • the present invention relates to a processing system processing method and wastewater wastewater containing a hardly decomposable compound, more particularly, with fluorine, BF 4 of persistent - implementing the method and method for processing waste water containing It relates to a processing system.
  • Patent Document 1 hardly degradable BF 4 - processing method of waste water containing is proposed. According to the method disclosed in Patent Document 1, BF 4 ⁇ contained in waste water can be treated easily, quickly and inexpensively with high decomposition efficiency. However, the concentration of BF 4 ⁇ in the wastewater changes with time. For this reason, it is preferable to continuously change the amount of the medicine to be used in accordance with this, and this makes it possible to control the amount of the medicine to be used and to perform the decomposition process more efficiently. .
  • the present invention has been proposed in view of such circumstances, BF 4 of persistent - in the process of wastewater containing, BF 4 included in the waste water - based on the concentration of more efficient and to provide a method of processing waste water that can degrade - BF 4 in.
  • the inventors of the present invention have made extensive studies in order to solve the above-described problems.
  • the free fluorine ions contained in the wastewater are removed, the concentration of BF 4 ⁇ contained in the wastewater from which the free fluorine ions have been removed is measured, and the amount of drug used determined based on the obtained concentration measurement results ( BF 4 was added to the polyvalent metal or polyvalent metal salts) - by performing the decomposition process of, found that it is possible to perform efficient processing, thereby completing the present invention. That is, the present invention is as follows.
  • a first invention of the present invention is a method for treating wastewater containing BF 4 - which is hardly decomposable together with fluorine, and a fluorine removing step for removing free fluorine ions contained in the wastewater; BF in the removal of the free fluorine ion wastewater 4 - measuring the concentration BF 4 - decomposition decompose - a measuring step, the BF 4 - the BF 4 based on the concentration of - BF 4 measured by the measuring step has a step, the BF 4 - in the measurement step, by adjusting the pH of the wastewater to 4 below BF 4 - to determine the concentration, in the decomposition step, the waste water, the BF 4 - to a concentration of
  • This is a wastewater treatment method in which a polyvalent metal or a metal salt thereof whose addition amount is determined based on the addition amount is added.
  • the wastewater BF 4 - is the waste water to determine the concentration processing method - into contact with the electrode BF 4 .
  • the waste water in the first or second aspect of the invention, in the fluorine removal step, is set so that the concentration of free fluorine ions in the waste water is less than 0.1 mol / L. It is a processing method.
  • waste water is generated and removed by generating a precipitate of free fluorine ions using a calcium salt. It is a processing method.
  • BF 4 of persistent - in the process of wastewater containing, BF 4 included in the waste water - based on the concentration of efficiently BF 4 - capable of degrading.
  • the waste water treatment method according to the present embodiment is a method for treating waste water containing BF 4 ⁇ which is hardly decomposable together with fluorine. Specifically, the processing method of the wastewater, the fluorine removal process S1 to remove free fluorine ions contained in waste water, BF 4 included in the waste water to remove fluoride ions - BF 4 for measuring the concentration - concentration measurement process S2 And a decomposition step S3 for decomposing BF 4 ⁇ based on the measured BF 4 ⁇ concentration.
  • BF 4 - in concentration measurement step S2 by adjusting the pH of the wastewater to 4 below to determine the concentration, also in the decomposition step S3, the measured BF 4 - on the basis of the concentration added
  • a feature is that BF 4 - is decomposed by adding a polyvalent metal or a metal salt thereof (polyvalent metal salt) whose amount is determined to waste water.
  • the addition amount of the polyvalent metal or the metal salt as a chemical for decomposing the BF 4 ⁇ is determined. and for which, BF 4 varies with decomposition treatment - the amount of continuous drug based on the concentration can be controlled, it is possible to perform a more efficient treatment of wastewater as compared with the conventional.
  • BF 4 contained in the waste water - prior to measuring the concentration also with the addition of agents such as polyvalent metal salts in the waste water BF 4 - Prior to decompose, in advance, the By removing the free fluorine ions (free F ⁇ ) contained in the wastewater, the free F ⁇ contained in the wastewater can be prevented from becoming strong hydrofluoric acid, and the concentration of BF 4 ⁇ can be measured more accurately. Can do. Further, by removing free F 2 ⁇ from wastewater, waste of chemicals such as polyvalent metal salts added for the decomposition of BF 4 ⁇ can be suppressed, and an efficient decomposition process can be performed.
  • FIG. 1 is a diagram illustrating an example of a configuration of a wastewater treatment system for carrying out a wastewater treatment method according to the present embodiment.
  • a wastewater treatment system 1 is larger, free fluorine ions contained in the waste water to be processed BF contained in waste water to remove - - fluorine removal apparatus 10 for removing the free F (F) 4 - BF 4 for measuring the concentration of - the concentration measuring device 20, BF 4 of the waste water - and a decomposition treatment unit 30 for processing the degradation to the wastewater.
  • the fluorine removal apparatus 10 is an apparatus for performing the fluorine removal step S1 in the above-described wastewater treatment method, and is a place where wastewater to be treated is first introduced, and measures the concentration of BF 4 ⁇ and BF 4. - prior to decomposition treatment of the free F contained in the waste water - the removal.
  • Waste water to be processed is adapted to contain fluorine, BF 4 of hardly decomposable - it contains a.
  • BF 4 ⁇ contained in this waste water is decomposed over time as shown in the following reaction formula (v). If F ⁇ is present in the waste water as shown in this reaction formula, BF 4 ⁇ is stable. Will come to do. From this point of view, it is considered that the presence of F ⁇ in the wastewater is preferable from the viewpoint of measuring the concentration of BF 4 ⁇ over time and measuring the concentration accurately.
  • BF 4 - in a concentration measuring device 20 BF 4 by adjusting the pH of the wastewater to 4 below - performs the density measurement while suppressing the degradation of, F in its pH4 following waste - Is present, the F ⁇ becomes hydrogen fluoride and the wastewater becomes a strong hydrofluoric acid solution.
  • the decomposition of BF 4 ⁇ in the wastewater in the decomposition treatment apparatus 30 described later is performed by adding a chemical whose use amount is determined based on the measurement result of the BF 4 ⁇ concentration, specifically, a polyvalent metal salt or the like.
  • a chemical whose use amount is determined based on the measurement result of the BF 4 ⁇ concentration specifically, a polyvalent metal salt or the like.
  • F ⁇ is present in the wastewater
  • the polyvalent metal element constituting the added polyvalent metal salt reacts with F ⁇ in the wastewater, and the polyvalent metal salt is consumed. It will be.
  • the amount of the polyvalent metal salt to be used for decomposing BF 4 ⁇ is reduced, and BF 4 ⁇ cannot be effectively decomposed, and by-produced by the reaction between the polyvalent metal salt and F ⁇ .
  • Precipitates (AlF 3 ) and hydroxide precipitates of polyvalent metal salts added excessively for the decomposition of BF 4 ⁇ become flocs, resulting in enormous waste.
  • the fluorine removing device 10 prior to measuring the BF 4 ⁇ concentration in the wastewater, and prior to decomposing BF 4 ⁇ by adding a chemical such as a polyvalent metal salt to the wastewater, the fluorine removing device 10 Then, a treatment for removing free F 2 ⁇ in waste water is performed. In this way, by removing free F 2 ⁇ from waste water, corrosion of the pH electrode, such as a glass electrode, used when measuring the BF 4 ⁇ concentration is suppressed, and appropriate pH adjustment and accurate BF 4 ⁇ concentration measurement are performed. In addition, the waste of the polyvalent metal salt added to the decomposition of BF 4 ⁇ can be prevented, and the BF 4 ⁇ in the waste water can be decomposed effectively and efficiently.
  • a chemical such as a polyvalent metal salt
  • the fluorine removing apparatus 10 it is preferable to remove free F ⁇ in the waste water so that the free F ⁇ concentration in the waste water is less than 0.1 mol / L. Further, it is more preferable to remove free F ⁇ from the waste water so that the free F ⁇ concentration is less than 0.01 mol / L.
  • the fluorine removal apparatus 10 for example, waste water is introduced free F - those with the fluorine removal reaction tank 11 to remove, and a sedimentation tank 12 for settling the precipitate containing fluorine It can be.
  • a method for removing free F 2 ⁇ from wastewater there is a method in which a chemical is added to wastewater to fix free F ⁇ as an insoluble substance (precipitate), and the precipitate is separated and removed from wastewater. Can do.
  • calcium salt can be added to waste water to make free F ⁇ into a CaF 2 precipitate, which can be separated and removed to remove free F ⁇ .
  • the calcium salt for example, inorganic calcium salts such as calcium hydroxide, calcium carbonate, calcium chloride, calcium oxide, and calcium sulfate are preferably used.
  • the free F using calcium salt - when removing it is preferable to add an excess amount as the amount added.
  • the pH of the wastewater it is preferable to adjust the pH of the wastewater to 4 to 11.
  • a CaF 2 precipitate can be efficiently generated by adding a calcium salt.
  • a slurry containing a precipitate generated by adding calcium salt is transferred to a settling tank 12 or the like, and the generated precipitate such as CaF 2 is settled and separated from waste water from which F ⁇ is removed. (Solid-liquid separation).
  • the precipitate obtained was separated off waste water, i.e. free F - waste water was removed is then BF 4 - is transferred to the concentration measuring apparatus 20.
  • sediments such as sedimented CaF 2 are dispensed.
  • BF 4 - BF 4 for measuring the concentration - concentration measuring device > BF 4 - concentration measuring device 20 has been transferred from the fluorine removal apparatus 10, the free F - is introduced waste water was removed, BF 4 contained in the waste water - measuring the concentration of.
  • BF 4 - BF 4 in the concentration measuring device 20 - As a method for measuring the concentration is not particularly limited, and a method for example using an ion-selective electrode.
  • BF 4 indicated by a dotted line enclosing unit in the diagram of Figure 1 - concentration measuring device 20 is cited as an example a device for performing the density measurement by ion electrode.
  • BF 4 using an ion electrode - with respect to the concentration measurement it is possible to refer to the patent document 2.
  • BF 4 shows a part of Figure 1 - concentration measuring device 20, BF 4 - and the container 21 for accommodating the waste water is the concentration of the measurement target, BF 4 - ion electrode device portion having a reference electrode 22b and the electrode 22a and a concentration measuring unit 24 for measuring the concentration - 22, a liquid feed portion 23 for feeding the waste water from the container 21 to the ion electrode device unit 22, BF 4 - BF 4 contained in the waste water in contact with the electrode 22a.
  • BF 4 - is intended to accommodate the waste water is the concentration of the measuring object, the liquid supply unit 23 to be described later, the liquid feed portion of the waste water contained within the chamber 21 to the ion electrode device 22 Is done.
  • the container 21 is, BF 4 - is also possible to decomposition reactor 31, thereby, BF 4 in the wastewater in real time - - BF 4 of decomposition treating apparatus 30 for performing decomposition treatment while measuring the concentration, the Based on the concentration measurement result, the amount of the drug (polyvalent metal or a salt of the polyvalent metal) used for the decomposition of BF 4 ⁇ can be controlled.
  • Ion electrode unit Ion electrode device 22, BF 4 - and the electrode 22a, provided with a reference electrode 22b, the BF 4 - BF to the electrode 22a 4 - contacting the wastewater the concentration of the measurement target.
  • BF 4 - as the electrode 22a, it is possible to use an ion electrode of DKK-TOA Corporation.
  • BF 4 - By contacting the waste water with the electrode 22a, BF 4 in the wastewater in the concentration measuring unit 24 to be described later - the concentration is measured.
  • the ion electrode device unit 22 is provided with a pH electrode (pH meter) 22A made of a glass electrode or the like.
  • a pH electrode 22A made of a glass electrode or the like.
  • the pH of the wastewater can be monitored as appropriate. This makes it possible to stably adjust the pH of the wastewater for measuring the BF 4 ⁇ concentration to 4 or less, and to accurately measure the BF 4 ⁇ concentration in the waste water.
  • BF 4 - will be described in detail later pH adjustment during concentration measurement.
  • the ion electrode device 22 the vessel 21 - may be a device incidental to (BF 4 decomposition reactor 31), this case may not be provided liquid feed section 23 to be described later.
  • the liquid feeding part 23 is for sending waste water accommodated in the container 21 to the ion electrode device part 22.
  • a liquid feeding pump capable of feeding waste water at a desired liquid feeding speed is configured.
  • the waste water may be returned to the container 21 through the liquid feeding section 23.
  • the concentration measuring unit 24 measures the BF 4 ⁇ concentration contained in the waste water in contact with the BF 4 ⁇ electrode 22a in the ion electrode device unit 22.
  • the concentration measuring unit 24, for example, BF 4 - can be made to measure by the AC electrical conductivity of the waste water in contact with the electrode 22a electrode method.
  • BF 4 - the density measuring device 20, BF 4 by adjusting the pH of the wastewater to 4 below - to measure the concentration.
  • BF 4 was adjusted to pH 2 ⁇ 3 - measuring the concentration. If the pH of the wastewater exceeds 4, the BF 4 ⁇ decomposition over time in the wastewater cannot be sufficiently suppressed, and accurate concentration measurement cannot be performed. As a result, the amount of the chemical used for decomposing BF 4 ⁇ added in the decomposition processing apparatus 30 cannot be appropriately controlled.
  • the pH adjustment of the wastewater is not particularly limited as long as the pH can be adjusted to 4 or less.
  • various inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, or various organic acids can be used. These acids for adjusting the pH can be added to the container 21.
  • the pH of the waste water can be measured by a pH electrode 22A provided in the ion electrode device unit 22. Further, a pH electrode may be further provided in the container 21 so that the pH can be measured.
  • Density measurement part 24, BF 4 in is connected to the control unit 32 constituting the decomposition treating apparatus 30 to be described later were measured wastewater - it is possible to transmit the information on the concentration. Thereby, the amount of the agent (polyvalent metal salt or the like) for decomposing BF 4 ⁇ used in the decomposition processing apparatus 30 can be controlled based on the measurement result of the BF 4 ⁇ concentration. In particular, in the present embodiment, prior to the measurement of the BF 4 ⁇ concentration, the fluorine removing apparatus 10 removes free F ⁇ from the wastewater.
  • the free F - According to, BF 4 - effective in determining the concentration - to prevent corrosion of the pH electrode 22A made of glass electrodes or the like to be used for the measurement of concentration, BF 4 it is possible to appropriately adjust the pH It is possible to control the amount of medicine used in the decomposition processing apparatus 30 appropriately.
  • BF 4 - decomposing decomposition treating apparatus In the decomposition treatment apparatus 30, BF 4 ⁇ contained in the waste water is decomposed. Specifically, in the decomposition processing apparatus 30, the addition amount of the chemical for decomposing BF 4 ⁇ is determined based on the measurement result of BF 4 ⁇ concentration measured by the BF 4 ⁇ concentration measuring apparatus 20, and BF 4 ⁇ concentration is measured. 4 - the decomposition process is performed of. As described above, in the present embodiment, the amount of drug is controlled based on the measurement result of the BF 4 ⁇ concentration, and the BF 4 ⁇ decomposition process is continuously performed. Therefore, efficient processing can be performed using an appropriate amount of medicine.
  • BF 4 constituting the decomposition treating apparatus 30 - decomposition reaction vessel BF 4 - is identical to the container 21 in the concentration measuring device 20. Therefore, the decomposition treating apparatus 30, BF 4 - BF in the wastewater that has been measured by the concentration measuring device 20 4 - concentration is sent periodically, BF 4 was measured by the real-time - continuously based on the density to determine the drug loading amounts, BF 4 - decomposition process can be performed in.
  • BF 4 - configuration for the degradation process of the [BF 4 - decomposition reactor] BF 4 - decomposition reactor 31 is housed wastewater to be processed is, BF 4 included in the waste water - the decomposing reaction field.
  • the BF 4 - in the decomposition reactor, BF of the contained waste water 4 - is added drug amount determined based on the concentration, BF 4 - performing the decomposition process.
  • BF 4 decomposition reaction tank 31 a polyvalent metal salt is added to the wastewater to cause a decomposition reaction of BF 4 ⁇ .
  • BF 4 the following reaction formula (i) ⁇ (iv) progresses - are decomposed.
  • the polyvalent metal salt is an agent for decomposing BF 4 ⁇ , and more specifically, free hydrogen fluoride, which is a final decomposition product of BF 4 ⁇ , is removed from the system to decompose BF 4 ⁇ . It is a drug for promoting (the above reaction formulas (i) to (iv)).
  • the polyvalent metal element constituting the polyvalent metal salt is at least one selected from aluminum, iron, titanium and the like.
  • the polyvalent metal salt is not particularly limited as long as it reacts with free hydrogen fluoride.
  • aluminum salts such as aluminum sulfate, ferric salts such as ferric chloride and ferric sulfate.
  • a second titanium salt such as titanium chloride.
  • Polyvalent metal salt when the polyvalent metal element is aluminum or iron which constitutes it, BF 4 contained in wastewater - relative to 1 mole of aluminum ions or iron ions of 0.8 to 5 moles Are added as follows. Further, when the polyvalent metal elements constituting the polyvalent metal salt is Titanium, BF 4 contained in wastewater - relative to 1 mol of titanium ions are added so that 0.4 to 3 moles.
  • the amount of the polyvalent metal salt, BF 4 - BF was measured by the concentration measuring device 20 4 - is characterized by determining based on the concentration of the measurement results.
  • BF 4 - in a concentration measuring device 20 BF 4 - decomposition reactor 31 BF 4 contained in the contained wastewater (vessel 21) - BF 4 concentration is provided in the ion electrode device 22 of the - as measured by contact with the electrodes 22a, the density measurement part 24 BF 4 - the transmitted information related to the measurement result of the concentration of the control unit 32, the BF 4 in the control unit 32 - polyvalent metal salts based on concentration Is added. Details will be described later.
  • the polyvalent metal ion BF 4 - reacts with generated by decomposing the free hydrogen fluoride, for example, AlF n 3 -N , FeF n 3-n and TiF n 4-n are generated. Thereby, the decomposition reaction of BF 4 ⁇ shown in the above reaction formulas (i) to (iv) is promoted.
  • the following general formula (v) is a reaction formula in which aluminum is added as a polyvalent metal element.
  • the agent for promoting the decomposition reaction of BF 4 ⁇ is not limited to the polyvalent metal salt, and a polyvalent metal composed of the same kind of polyvalent metal element can also be added. That is, for example, aluminum, iron, can be added a polyvalent metal such as titanium, in this case, BF 4 - may be added in amount based on the concentration.
  • BF 4 - for the waste water containing, by adding a pH adjusting agent with the addition of a polyvalent metal salt it is preferable to adjust the pH conditions of the waste water under acidic conditions.
  • the pH is preferably 4 or less, more preferably 3 or less, and particularly preferably adjusted to 2 or less.
  • a pH adjuster for example, acid agents such as sulfuric acid, hydrochloric acid, and nitric acid, and alkali agents such as sodium hydroxide, potassium hydroxide, and calcium hydroxide can be used.
  • BF 4 contained in the waste water - the decomposition process is preferably performed by ultraviolet irradiation of the waste water.
  • the bond between fluorine (F) and boron (B) in BF 4 ⁇ is easily broken by the strong energy of the ultraviolet rays, and the decomposition reaction efficiency can be improved.
  • a mechanical stirrer such as a vertical stirrer, a turbine stirrer, a propeller stirrer, a jet stirrer using a pump or the like, a gas blowing stirrer, or the like can be used.
  • Control unit The control unit 32, BF 4 - BF in the wastewater that has been measured by the density measurement part 24 in the concentration measuring device 20 4 - receives the information on the concentration, the BF 4 - on the basis of the concentration, BF 4 decomposition reactor 31 The amount of the polyvalent metal salt added to.
  • the decomposition processing unit 30 definitive BF 4 - the amount of the polyvalent metal salt used in the decomposition treatment, BF 4 - BF 4 was measured by the concentration measuring device 20 - the concentration of It is characterized by being determined based on the measurement result.
  • the decomposition treating apparatus 30, BF 4 contained in the waste water - recognizes the concentration in real time, the time-varying BF 4 - to determine continuously the drug amount based on the concentration, BF 4 - allow disassembly process. Therefore, changing BF 4 - in accordance with the concentration can control the drug amount, it can be performed more appropriately and efficient processing.
  • control unit 32 BF 4 - on the basis of the density measurement results, determined as follows the amount of the polyvalent metal salt.
  • the control unit 32, BF 4 - receives the information on the concentration, the BF 4 - - from the density measuring unit 24 in the concentration measuring device 20 BF 4 measurements and concentrations, also was controlled to less than 0.1 mol / L
  • the value obtained by multiplying the free F ⁇ concentration and the like by a predetermined coefficient is taken as the addition amount of the polyvalent metal salt.
  • the medicated portion 33 receives the information about the amount of the polyvalent metal salt from the control unit 32, the addition amount thereof, i.e. BF 4 - a polyvalent metal salt of the addition amount based on the concentration of the measurement results, BF 4 - It adds to the wastewater accommodated in the decomposition reaction tank 31.
  • the drug addition unit 33 is connected to, for example, a polyvalent metal salt supply tank that supplies a polyvalent metal salt. A predetermined ratio of the polyvalent metal salt is supplied from the polyvalent metal salt supply tank, and the predetermined amount is supplied. Store.
  • the medicated portion 33 on the basis of information about the amount of the control unit 32, a polyvalent metal salt which stores the partial multivalent metal salt of the amount added BF 4 - is added to the decomposition reaction vessel 31.
  • BF 4 - BF by adjusting the pH of the wastewater to 4 below in a concentration measuring device 20 4 - concentration were measured, and sends the measurement result to the decomposition treating apparatus 30 , BF 4 in the decomposition processor 30 - so that to determine the amount of drug based on the concentration.
  • the wastewater treatment method since the amount of the chemical used can be controlled continuously based on the BF 4 ⁇ concentration in the wastewater that varies with time, the wastewater can be treated more efficiently. be able to.
  • the wastewater prior to measuring the BF 4 ⁇ concentration contained in the wastewater, and before decomposing BF 4 ⁇ by adding a chemical such as a polyvalent metal salt to the wastewater, the wastewater By removing the free F ⁇ contained in the water, it is possible to suppress the free F ⁇ contained in the wastewater from becoming strong hydrofluoric acid, and to measure the concentration of BF 4 ⁇ more accurately. Further, by removing free F 2 ⁇ from wastewater, waste of chemicals such as polyvalent metal salts added for the decomposition of BF 4 ⁇ can be suppressed, and an efficient decomposition process can be performed.
  • the decomposition treatment apparatus 30 can perform a defluorination treatment that removes fluorine obtained by decomposing BF 4 ⁇ contained in wastewater. As shown in the block diagram of FIG. 1, this defluorination treatment can be performed in a defluorination (F) treatment tank.
  • F defluorination
  • a calcium salt such as slaked lime and a pH adjuster are added to wastewater obtained by decomposing BF 4 ⁇ to insolubilize fluorine contained in the wastewater ( Fluorine insolubilization treatment). That is, fluorine ions generated by the decomposition of BF 4 ⁇ are insolubilized.
  • the calcium salt is added to convert fluorine ions into an insoluble substance.
  • the preceding stage of BF 4 - aluminum salts in the decomposition reaction vessel 31 as polyvalent metal salts, ferric salts, BF 4 with a second titanium salt such as - when degrade, AlF n 3-n soluble , FeF n 3-n and TiF n 4-n complexes are formed.
  • a second titanium salt such as - when degrade, AlF n 3-n soluble , FeF n 3-n and TiF n 4-n complexes
  • fluorine ions can be converted to CaF 2 and insolubilized by an adsorption reaction of fluorine ions to calcium hydroxide of a hydrolysis product of solid calcium hydroxide or calcium salt.
  • fluorine component By converting the fluorine component into insoluble CaF 2 and insolubilizing in this way, the fluorine component can be easily flocated and removed in the agglomeration tank 36 described later.
  • inorganic calcium salts such as calcium chloride, calcium hydroxide, calcium carbonate, calcium oxide, and calcium sulfate.
  • the pH adjuster is added to adjust the pH condition of the wastewater in the defluorination treatment tank 34, but it is adjusted to a pH condition that can precipitate the reaction product generated by the addition of the calcium salt described above.
  • the pH is preferably adjusted to 4 to 8
  • a ferric salt and a second titanium salt are used, the pH is preferably adjusted to 4 or more.
  • acid agents such as sulfuric acid, hydrochloric acid and nitric acid, and alkali agents such as sodium hydroxide, potassium hydroxide and calcium hydroxide can be used.
  • a calcium salt such as slaked lime and a pH adjuster are further added to the wastewater to insolubilize boron contained in the wastewater (boron insolubilization treatment). That is, boron ions generated by the decomposition of BF 4 ⁇ are insolubilized.
  • the calcium salt, a boron ion (borate ion), a reaction product of a calcium salt in defluorination treatment tank 34 described above and BF 4 - is added in decomposition reactor 31 the hydroxides of polyvalent metal ions Acts to encapsulate the boron ions, thereby insolubilizing the boron ions.
  • the boron component is encapsulated by the calcium salt reaction product or polyvalent metal ion hydroxide and insolubilized, whereby the boron component can be easily flocked and removed in the agglomeration tank 36 described later. It becomes like this.
  • the thing similar to what was added in the defluorination processing tank 34 can be used for a calcium salt and a pH adjuster.
  • the defluorination treatment tank 34 and the deboronation treatment tank 35 described above may be integrated, and the defluorination treatment and the deboronation treatment may be performed together.
  • a flocculant such as an anionic polymer flocculant is added to the wastewater to coarsen (flocculate) the particles of the reaction product in the wastewater. That, BF 4 - decomposition produced in the decomposition reaction vessel 31, to flock the fluorine ions or boron ions insolubilized by defluorination treatment tank 34 and the deboronation treatment tank 35.
  • the flocculant is added to flock the particles of the insoluble material generated in the defluorination treatment tank 34 and the deboronation treatment tank 35.
  • a nonionic polymer flocculant is used in the acidic region
  • a weak anionic polymer flocculant is used in the acidic to weakly acidic region
  • a neutral anionic high concentration agent is used in the weakly acidic to weakly alkaline region.
  • a flocculant may be used individually by 1 type, or may use 2 or more types together.
  • the flocculant is not limited to a polymer flocculant, and an inorganic flocculant may be used as long as it can flock insoluble substances.
  • the addition amount of the flocculant is, for example, a concentration range of 0.5 mg / L to 15 mg / L with respect to the wastewater to be treated.
  • the flocculation tank 36 after adding the flocculant, it is preferable to treat the waste water with stirring with, for example, a turbine stirrer or a propeller stirrer. By stirring in this way, flocking by the flocculant can be promoted.
  • a turbine stirrer or a propeller stirrer By stirring in this way, flocking by the flocculant can be promoted.
  • the fluorine contained in the wastewater is separated as CaF 2 and boron is precipitated and separated as boric acid, and the fluorine and boron in the supernatant water are treated to a low concentration, and after the treatment Water can be obtained.
  • the solid component separated by solid-liquid separation that is, floc containing fluorine or boron is discharged from the settling tank 37 as a precipitate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A method for treating wastewater that contains sparingly decomposable BF4 - is provided in which the BF4 - can be more efficiently decomposed on the basis of the BF4 - concentration in the wastewater. The method for treating wastewater according to the present invention is a method for treating wastewater that contains fluorine and sparingly decomposable BF4 -, the method comprising: a fluorine removal step S1 in which free fluorine ions contained in the wastewater are removed; a BF4 - measurement step S2 in which the concentration of BF4 - in the wastewater from which the free fluorine ions have been removed is measured; and a decomposition step S3 in which the BF4 - is decomposed on the basis of the BF4 - concentration measured in the BF4 - measurement step S2. The method is characterized in that in the BF4 - measurement step S2, the pH of the wastewater is regulated to 4 or less and the BF4 - concentration is measured and that in the decomposition step S3, a polyvalent metal or a salt of the metal is added to the wastewater in an amount determined on the basis of the BF4 - concentration.

Description

廃水の処理方法、廃水の処理システムWastewater treatment method, wastewater treatment system
 本発明は、難分解性化合物を含有した廃水の処理方法及び廃水の処理システムに関し、より詳しくは、フッ素と共に、難分解性のBF を含有する廃水を処理する方法及びその方法を実施する処理システムに関する。 The present invention relates to a processing system processing method and wastewater wastewater containing a hardly decomposable compound, more particularly, with fluorine, BF 4 of persistent - implementing the method and method for processing waste water containing It relates to a processing system.
 従来、フッ素を含む廃水の処理方法として、水酸化カルシウム、塩化カルシウム等のカルシウム塩を添加して難溶性のフッ化カルシウム(CaF)を沈殿分離する方法が多用されてきた。しかしながら、例えばめっき工場廃水、ガラス製造工場廃水、石炭火力発電所の排煙脱硫廃水、非鉄金属精錬の工場廃水、半導体製造廃水のように、その廃水中に、フッ素とホウ素が反応することにより難分解性のホウフッ化物が形成されている場合には、カルシウム塩を加えても可溶性のCa(BFが生成されるだけで、廃水中のフッ素濃度はほとんど低減されない。 Conventionally, as a method for treating fluorine-containing wastewater, a method of precipitating and separating poorly soluble calcium fluoride (CaF 2 ) by adding calcium salts such as calcium hydroxide and calcium chloride has been widely used. However, it is difficult to react with fluorine and boron in the wastewater such as plating factory wastewater, glass manufacturing factory wastewater, flue gas desulfurization wastewater from coal-fired power plants, nonferrous metal refining factory wastewater, and semiconductor manufacturing wastewater. When decomposable borofluoride is formed, soluble Ca (BF 4 ) 2 is only produced even if calcium salt is added, and the fluorine concentration in the wastewater is hardly reduced.
 廃水中のホウフッ化物は、安定した錯イオンを形成しているため、フッ素を水溶液から除去するにあたっては、フッ素(F)とホウ素(B)との結合を切断することが重要となる。しかしながら、ホウフッ化物イオン(BF )は、そのフッ素とホウ素との結合エネルギーが非常に強く、下記の反応式(i)~(iv)に示すように、HBF は加水分解を受けると、Bに配位するFが1つずつ水酸基に置換しながら徐々に分解が進行していく。この分解反応は、通常その速度が遅く、これら一連の反応は温度、pH、遊離HFの除去等の要因により決定されると考えられている。なお、反応式(i)~(iv)は酸性溶液中における平衡反応である。 Since borofluoride in wastewater forms stable complex ions, it is important to break the bond between fluorine (F) and boron (B) when removing fluorine from the aqueous solution. However, borofluoride ion (BF 4 ) has a very strong binding energy between fluorine and boron, and as shown in the following reaction formulas (i) to (iv), HBF 4 undergoes hydrolysis. The decomposition proceeds gradually while F coordinated to B is substituted with a hydroxyl group one by one. This decomposition reaction is usually slow, and it is thought that these series of reactions are determined by factors such as temperature, pH, and removal of free HF. Reaction formulas (i) to (iv) are equilibrium reactions in an acidic solution.
 HBF+HO⇔HBF(OH)+HF ・・(i)
 HBF(OH)+HO⇔HBF(OH)+HF ・・(ii)
 HBF(OH)+HO⇔HBF(OH)+HF ・・・(iii)
 HBF(OH)+HO⇔HBO+HF ・・(iv)
HBF 4 + H 2 O⇔HBF 3 (OH) + HF (i)
HBF 3 (OH) + H 2 O⇔HBF 2 (OH) 2 + HF (ii)
HBF 2 (OH) 2 + H 2 O⇔HBF (OH) 3 + HF (iii)
HBF (OH) + H 2 O⇔H 3 BO 3 + HF (.iv)
 したがって、BF を含む廃水の処理においては、そのBF の分解を効率よく行い、Fをフッ化物塩として廃水から分離・除去することが必要となるが、そのためには、BF の分解条件や最適な薬剤の量を、廃水に含まれるBF やFの濃度を計測して決定することが重要となる。 Therefore, BF 4 - in the treatment of waste water containing, the BF 4 - decomposing performed efficiently in, F - the it becomes necessary to separate and remove from the waste water as fluoride salts, for which the BF 4 - the amount of degradation conditions and optimum drug, BF 4 contained in the waste water - or F - concentration becomes important to determine by measuring the.
 特許文献1には、難分解性のBF を含む廃水の処理方法が提案されている。この特許文献1に開示されている方法によれば、廃水中に含まれるBF を、高い分解効率でもって、容易に且つ迅速に、しかも安価に処理することができる。しかしながら、廃水中のBF の濃度は経時的に変化していく。そのため、使用する薬剤の量もそれに合わせて連続的に変化させていくことが好ましく、これによって、薬剤の使用量を制御することができ、より効率的に分解処理を行うことができるようになる。 Patent Document 1, hardly degradable BF 4 - processing method of waste water containing is proposed. According to the method disclosed in Patent Document 1, BF 4 contained in waste water can be treated easily, quickly and inexpensively with high decomposition efficiency. However, the concentration of BF 4 − in the wastewater changes with time. For this reason, it is preferable to continuously change the amount of the medicine to be used in accordance with this, and this makes it possible to control the amount of the medicine to be used and to perform the decomposition process more efficiently. .
 このことから、廃水中のBF の濃度を正確に測定しながら、その濃度測定の結果に基づいて最適な薬剤量でもって廃水を処理する方法が求められている。 For this reason, there is a need for a method for treating wastewater with an optimal amount of drug based on the result of concentration measurement while accurately measuring the concentration of BF 4 − in the wastewater.
特開2011-104459号公報JP 2011-104559 A 特開2011-27722号公報JP 2011-27722 A
 本発明は、このような実情に鑑みて提案されたものであり、難分解性のBF を含有する廃水の処理において、その廃水に含まれるBF の濃度に基づいて、より効率的にBF を分解することができる廃水の処理方法を提供することを目的とする。 The present invention has been proposed in view of such circumstances, BF 4 of persistent - in the process of wastewater containing, BF 4 included in the waste water - based on the concentration of more efficient and to provide a method of processing waste water that can degrade - BF 4 in.
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、廃水に含まれる遊離フッ素イオンを除去し、遊離フッ素イオンを除去した廃水に含まれるBF の濃度を測定して、得られた濃度測定結果に基づいて決定した使用量の薬剤(多価金属又はその多価金属の塩)を添加してBF の分解処理を行うことにより、効率的な処理を行うことができることを見出し、本発明を完成するに至った。すなわち、本発明は、以下のものである。 The inventors of the present invention have made extensive studies in order to solve the above-described problems. As a result, the free fluorine ions contained in the wastewater are removed, the concentration of BF 4 contained in the wastewater from which the free fluorine ions have been removed is measured, and the amount of drug used determined based on the obtained concentration measurement results ( BF 4 was added to the polyvalent metal or polyvalent metal salts) - by performing the decomposition process of, found that it is possible to perform efficient processing, thereby completing the present invention. That is, the present invention is as follows.
 (1)本発明の第1の発明は、フッ素と共に、難分解性のBF を含有する廃水の処理方法であって、前記廃水に含まれる遊離フッ素イオンを除去するフッ素除去工程と、前記遊離フッ素イオンを除去した廃水中のBF 濃度を測定するBF 測定工程と、前記BF 測定工程にて測定されたBF の濃度に基づいて該BF を分解する分解工程と、を有し、前記BF 測定工程では、前記廃水のpHを4以下に調整してBF 濃度を測定し、前記分解工程では、前記廃水に、前記BF の濃度に基づいて添加量を決定した多価金属又はその金属塩を添加する廃水の処理方法である。 (1) A first invention of the present invention is a method for treating wastewater containing BF 4 - which is hardly decomposable together with fluorine, and a fluorine removing step for removing free fluorine ions contained in the wastewater; BF in the removal of the free fluorine ion wastewater 4 - measuring the concentration BF 4 - decomposition decompose - a measuring step, the BF 4 - the BF 4 based on the concentration of - BF 4 measured by the measuring step has a step, the BF 4 - in the measurement step, by adjusting the pH of the wastewater to 4 below BF 4 - to determine the concentration, in the decomposition step, the waste water, the BF 4 - to a concentration of This is a wastewater treatment method in which a polyvalent metal or a metal salt thereof whose addition amount is determined based on the addition amount is added.
 (2)本発明の第2の発明は、第1の発明において、前記BF 測定工程では、前記廃水をBF 電極に接触させてBF 濃度を測定する廃水の処理方法である。 (2) the second invention of the present invention, in the first aspect, the BF 4 - In the measurement step, the wastewater BF 4 - is the waste water to determine the concentration processing method - into contact with the electrode BF 4 .
 (3)本発明の第3の発明は、第1又は第2の発明において、前記フッ素除去工程では、前記廃水中の遊離フッ素イオンの濃度が0.1mol/L未満となるようにする廃水の処理方法である。 (3) According to a third aspect of the present invention, in the first or second aspect of the invention, in the fluorine removal step, the waste water is set so that the concentration of free fluorine ions in the waste water is less than 0.1 mol / L. It is a processing method.
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記フッ素除去工程では、カルシウム塩を用いて前記遊離フッ素イオンの沈殿物を生成させて除去する廃水の処理方法である。 (4) According to a fourth aspect of the present invention, in any one of the first to third aspects of the invention, in the fluorine removal step, waste water is generated and removed by generating a precipitate of free fluorine ions using a calcium salt. It is a processing method.
 (5)本発明の第5の発明は、フッ素と共に、難分解性のBF を含有する廃水の処理システムであって、前記廃水に含まれる遊離フッ素イオンを除去するフッ素除去装置と、前記遊離フッ素イオンを除去した廃水中のBF 濃度を測定するBF 濃度測定装置と、前記BF 濃度測定装置にて測定されたBF 濃度に基づいて前記廃水中のBF を分解する分解処理装置と、を備え、前記BF 濃度測定装置では、前記廃水のpHを4以下に調整してBF 電極を用いてBF 濃度を測定し、前記分解処理装置は、前記廃水に多価金属又はその金属塩を添加してBF を分解する分解反応部と、前記分解反応部に前記多価金属又はその金属塩を添加する薬剤添加部と、前記多価金属又はその金属塩の添加量を決定する制御部と、を備え、前記制御部は、前記BF 濃度測定装置にて測定されたBF 濃度に関する情報に基づいて前記多価金属又はその金属塩の添加量を決定し、前記薬剤添加部に対して該添加量に関する情報を送る廃水の処理システムである。 (5) Fifth aspect of the present invention, together with fluorine, hardly degradable BF 4 - and a waste water treatment system containing, fluorine removal device to remove free fluorine ions contained in the waste water, the measuring the concentration BF 4 - - BF 4 in the removal of the free fluorine ion wastewater and concentration measuring device, the BF 4 - BF was measured by the concentration measuring apparatus 4 - BF of the waste water based on the concentration of 4 - and a decomposition treatment unit degrades, the BF 4 - in a concentration measuring apparatus, BF 4 by adjusting the pH of the wastewater to 4 below - using electrodes BF 4 - to determine the concentration, the decomposition treating apparatus is, BF 4 with a polyvalent metal or a metal salt to the wastewater - and decomposing decomposition reaction unit, and a drug loading unit for adding the polyvalent metal or a metal salt to the decomposition reaction unit, the multi Addition of valent metal or metal salt And a control unit to determine the amount, and the control unit, the BF 4 - determine the amount of the polyvalent metal or a metal salt thereof based on the information on the concentration - BF 4 was measured at the concentration measuring apparatus And a wastewater treatment system for sending information on the amount of addition to the chemical addition unit.
 本発明によれば、難分解性のBF を含有する廃水の処理において、その廃水に含まれるBF の濃度に基づいて、効率的にBF を分解することができる。 According to the present invention, BF 4 of persistent - in the process of wastewater containing, BF 4 included in the waste water - based on the concentration of efficiently BF 4 - capable of degrading.
廃水の処理システムの構成の一例を示す図である。It is a figure which shows an example of a structure of the wastewater treatment system.
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、以下の順序で詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Hereinafter, specific embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail in the following order. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.
 ≪1.廃水の処理方法について≫
 本実施の形態に係る廃水の処理方法は、フッ素と共に、難分解性のBF を含有する廃水を処理するための方法である。具体的に、この廃水の処理方法は、廃水に含まれる遊離フッ素イオンを除去するフッ素除去工程S1と、フッ素イオンを除去した廃水に含まれるBF 濃度を測定するBF 濃度測定工程S2と、測定されたBF 濃度に基づいてBF を分解する分解工程S3とを有する。
<< 1. About wastewater treatment method≫
The waste water treatment method according to the present embodiment is a method for treating waste water containing BF 4 which is hardly decomposable together with fluorine. Specifically, the processing method of the wastewater, the fluorine removal process S1 to remove free fluorine ions contained in waste water, BF 4 included in the waste water to remove fluoride ions - BF 4 for measuring the concentration - concentration measurement process S2 And a decomposition step S3 for decomposing BF 4 based on the measured BF 4 concentration.
 そして、この廃水の処理方法では、BF 濃度測定工程S2において、廃水のpHを4以下に調整して濃度を測定し、また分解工程S3においては、測定したBF 濃度に基づいて添加量を決定した多価金属又はその金属塩(多価金属塩)を廃水に添加してBF を分解させることを特徴としている。 Then, in the processing method of this waste water, BF 4 - in concentration measurement step S2, by adjusting the pH of the wastewater to 4 below to determine the concentration, also in the decomposition step S3, the measured BF 4 - on the basis of the concentration added A feature is that BF 4 - is decomposed by adding a polyvalent metal or a metal salt thereof (polyvalent metal salt) whose amount is determined to waste water.
 このような廃水の処理方法によれば、廃水中のBF の濃度の測定結果に基づいてそのBF を分解するための薬剤である多価金属又はその金属塩の添加量を決定しているため、分解処理に伴って変動するBF 濃度に基づいて連続的に薬剤の使用量も制御することができ、従来に比してより効率的な廃水の処理を行うことができる。 According to such a wastewater treatment method, based on the measurement result of the concentration of BF 4 − in the waste water, the addition amount of the polyvalent metal or the metal salt as a chemical for decomposing the BF 4 is determined. and for which, BF 4 varies with decomposition treatment - the amount of continuous drug based on the concentration can be controlled, it is possible to perform a more efficient treatment of wastewater as compared with the conventional.
 また、この廃水の処理方法においては、廃水に含まれるBF 濃度を測定するに先立ち、また廃水に多価金属塩等の薬剤を添加してBF を分解するに先立ち、予め、その廃水に含まれる遊離フッ素イオン(遊離F)を除去していることにより、廃水に含まれる遊離Fが強フッ酸になることを抑制し、より正確なBF の濃度測定を行うことができる。また、遊離Fを廃水中から除去することによって、BF の分解のために添加した多価金属塩等の薬剤の無駄を抑制して、効率的な分解処理を行うことができる。 In the processing method of this waste water, BF 4 contained in the waste water - prior to measuring the concentration, also with the addition of agents such as polyvalent metal salts in the waste water BF 4 - Prior to decompose, in advance, the By removing the free fluorine ions (free F ) contained in the wastewater, the free F contained in the wastewater can be prevented from becoming strong hydrofluoric acid, and the concentration of BF 4 can be measured more accurately. Can do. Further, by removing free F 2 from wastewater, waste of chemicals such as polyvalent metal salts added for the decomposition of BF 4 can be suppressed, and an efficient decomposition process can be performed.
 以下では、この廃水の処理方法を実施するための廃水処理システムの構成の一例を示して、より具体的に説明する。 Hereinafter, an example of the configuration of a wastewater treatment system for carrying out this wastewater treatment method will be shown and described more specifically.
 ≪2.廃水の処理システムについて≫
 図1は、本実施の形態に係る廃水の処理方法を実施するための廃水処理システムの構成の一例を示す図である。図1に示すように、廃水処理システム1は、大きく、処理対象となる廃水に含まれる遊離フッ素イオン(F)を除去するフッ素除去装置10と、遊離Fを除去した廃水に含まれるBF の濃度を測定するBF 濃度測定装置20と、その廃水中のBF を分解して廃水を処理する分解処理装置30とから構成されている。
≪2. About wastewater treatment system≫
FIG. 1 is a diagram illustrating an example of a configuration of a wastewater treatment system for carrying out a wastewater treatment method according to the present embodiment. As shown in FIG. 1, a wastewater treatment system 1 is larger, free fluorine ions contained in the waste water to be processed BF contained in waste water to remove - - fluorine removal apparatus 10 for removing the free F (F) 4 - BF 4 for measuring the concentration of - the concentration measuring device 20, BF 4 of the waste water - and a decomposition treatment unit 30 for processing the degradation to the wastewater.
  <2-1.フッ素を除去するフッ素除去装置>
 フッ素除去装置10は、上述した廃水の処理方法におけるフッ素除去工程S1を実行するための装置であって、処理対象となる廃水が最初に導入される場所となり、BF の濃度測定及びBF の分解処理に先立って、その廃水に含まれる遊離Fを除去する。
<2-1. Fluorine removal device for removing fluorine>
The fluorine removal apparatus 10 is an apparatus for performing the fluorine removal step S1 in the above-described wastewater treatment method, and is a place where wastewater to be treated is first introduced, and measures the concentration of BF 4 and BF 4. - prior to decomposition treatment of the free F contained in the waste water - the removal.
 処理対象となる廃水は、フッ素を含有するとともに、難分解性のBF を含有している。この廃水に含まれるBF は、下記の反応式(v)に示すように経時的に分解されるが、この反応式に示すように廃水中にFが存在すると、BF は安定するようになる。このことから、BF の経時的な変化を抑制してその濃度を正確に測定するという観点からすると、廃水中にFが存在することの方が好ましいとも考えられる。
 BF +3HO⇔HBO+4F+3H ・・(v)
Waste water to be processed is adapted to contain fluorine, BF 4 of hardly decomposable - it contains a. BF 4 contained in this waste water is decomposed over time as shown in the following reaction formula (v). If F is present in the waste water as shown in this reaction formula, BF 4 is stable. Will come to do. From this point of view, it is considered that the presence of F − in the wastewater is preferable from the viewpoint of measuring the concentration of BF 4 over time and measuring the concentration accurately.
BF 4 + 3H 2 O⇔H 3 BO 3 + 4F + 3H + .. (v)
 しかしながら、後述するように、BF 濃度測定装置20においては廃水のpHを4以下に調整してBF の分解を抑制しながら濃度測定を行うが、そのpH4以下の廃液中にFが存在すると、そのFがフッ化水素となり、その廃水は強フッ酸溶液となる。すると、BF 濃度測定装置20に設けられた、濃度を測定するための廃水のpHを測定するためのガラス電極等からなるpH電極(pH計)が腐食されて適切なpH測定が困難となり、その結果としてBF 濃度の正確な測定ができなくなる。 However, as will be described later, BF 4 - in a concentration measuring device 20 BF 4 by adjusting the pH of the wastewater to 4 below - performs the density measurement while suppressing the degradation of, F in its pH4 following waste - Is present, the F becomes hydrogen fluoride and the wastewater becomes a strong hydrofluoric acid solution. Then, BF 4 - provided in the concentration measuring device 20, pH electrode (pH meter) made of glass electrode or the like for measuring the pH of the wastewater to measure the concentration becomes difficult to correct pH measurements are corroded , BF 4 as a result - is impossible to accurately measure the concentration.
 また、後述する分解処理装置30における廃水中のBF の分解は、BF 濃度の測定結果に基づいて使用量を決定した薬剤、具体的には多価金属塩等を添加することによって行われるが、その廃水中にFが存在した状態であると、添加した多価金属塩を構成する多価金属元素と廃水中のFとが反応してしまい、多価金属塩が消費されてしまう。すると、BF の分解に用いられるべき多価金属塩の量が減少して効果的にBF を分解させることができなくなるとともに、多価金属塩とFとの反応により副生成した沈殿物(AlF)や、またBF の分解ために過剰に添加した多価金属塩の水酸化物沈殿がフロックとなり、膨大な廃棄物となってしまう。 Further, the decomposition of BF 4 in the wastewater in the decomposition treatment apparatus 30 described later is performed by adding a chemical whose use amount is determined based on the measurement result of the BF 4 concentration, specifically, a polyvalent metal salt or the like. However, if F is present in the wastewater, the polyvalent metal element constituting the added polyvalent metal salt reacts with F in the wastewater, and the polyvalent metal salt is consumed. It will be. As a result, the amount of the polyvalent metal salt to be used for decomposing BF 4 is reduced, and BF 4 cannot be effectively decomposed, and by-produced by the reaction between the polyvalent metal salt and F . Precipitates (AlF 3 ) and hydroxide precipitates of polyvalent metal salts added excessively for the decomposition of BF 4 become flocs, resulting in enormous waste.
 そこで、本実施の形態においては、廃水中のBF 濃度を測定するに先立ち、また廃水に多価金属塩等の薬剤を添加してBF を分解するに先立ち、フッ素除去装置10において、廃水中の遊離Fを除去する処理を行う。このように、廃水中から遊離Fを除去することにより、BF 濃度の測定時に用いるガラス電極等からなるpH電極の腐食を抑制して適切なpH調整と正確なBF 濃度の測定を可能にし、またBF の分解に添加する多価金属塩の無駄を防いで、効果的に且つ効率的に廃水中のBF を分解させることが可能になる。 Therefore, in the present embodiment, prior to measuring the BF 4 concentration in the wastewater, and prior to decomposing BF 4 by adding a chemical such as a polyvalent metal salt to the wastewater, the fluorine removing device 10 Then, a treatment for removing free F 2 − in waste water is performed. In this way, by removing free F 2 from waste water, corrosion of the pH electrode, such as a glass electrode, used when measuring the BF 4 concentration is suppressed, and appropriate pH adjustment and accurate BF 4 concentration measurement are performed. In addition, the waste of the polyvalent metal salt added to the decomposition of BF 4 can be prevented, and the BF 4 in the waste water can be decomposed effectively and efficiently.
 具体的に、フッ素除去装置10では、廃水中の遊離F濃度が0.1mol/L未満となるように、廃水中の遊離Fを除去することが好ましい。また、遊離F濃度が0.01mol/L未満となるように、廃水中の遊離Fを除去することがより好ましい。 Specifically, in the fluorine removing apparatus 10, it is preferable to remove free F in the waste water so that the free F concentration in the waste water is less than 0.1 mol / L. Further, it is more preferable to remove free F from the waste water so that the free F concentration is less than 0.01 mol / L.
 図1に示すように、フッ素除去装置10としては、例えば、廃水が導入され遊離Fを除去するフッ素除去反応槽11と、フッ素を含む沈殿物を沈降分離する沈降槽12とを備えたものとすることができる。このように、廃水中の遊離Fの除去方法としては、廃水に薬剤を添加して遊離Fを不溶性物質(沈殿物)として固定化し、その沈殿物を廃水から分離除去する方法を挙げることができる。 As shown in FIG. 1, the fluorine removal apparatus 10, for example, waste water is introduced free F - those with the fluorine removal reaction tank 11 to remove, and a sedimentation tank 12 for settling the precipitate containing fluorine It can be. As described above, as a method for removing free F 2 from wastewater, there is a method in which a chemical is added to wastewater to fix free F as an insoluble substance (precipitate), and the precipitate is separated and removed from wastewater. Can do.
 より具体的に、フッ素除去反応槽11においては、廃水にカルシウム塩を添加して遊離FをCaFの沈殿物とし、これを分離除去して遊離Fを除去することができる。カルシウム塩としては、例えば、水酸化カルシウム、炭酸カルシウム、塩化カルシウム、酸化カルシウム、硫酸カルシウム等の無機系カルシウム塩が好適に用いられる。また、カルシウム塩を用いて遊離Fを除去する場合、その添加量としては過剰量を添加することが好ましい。 More specifically, in the fluorine removal reaction tank 11, calcium salt can be added to waste water to make free F into a CaF 2 precipitate, which can be separated and removed to remove free F . As the calcium salt, for example, inorganic calcium salts such as calcium hydroxide, calcium carbonate, calcium chloride, calcium oxide, and calcium sulfate are preferably used. Further, the free F using calcium salt - when removing, it is preferable to add an excess amount as the amount added.
 また、フッ素除去反応槽11において廃水中の遊離Fを除去するにあたっては、廃水中のpHを4~11に調整して行うことが好ましい。pHを4~11に調整することで、例えばカルシウム塩の添加によりCaFの沈殿物を効率的に生成させることができる。 Further, when removing the free F 2 in the wastewater in the fluorine removal reaction tank 11, it is preferable to adjust the pH of the wastewater to 4 to 11. By adjusting the pH to 4 to 11, for example, a CaF 2 precipitate can be efficiently generated by adding a calcium salt.
 フッ素除去装置10においては、例えばカルシウム塩を添加して生成した沈殿物を含むスラリーを沈降槽12等に移送し、生成したCaF等の沈殿物を沈降させ、Fを除去した廃水と分離(固液分離)する。沈殿物を分離除去して得られた廃水、すなわち遊離Fを除去した廃水は、続いてBF 濃度測定装置20に移送される。一方で、沈降したCaF等の沈殿物は払い出される。 In the fluorine removing device 10, for example, a slurry containing a precipitate generated by adding calcium salt is transferred to a settling tank 12 or the like, and the generated precipitate such as CaF 2 is settled and separated from waste water from which F is removed. (Solid-liquid separation). The precipitate obtained was separated off waste water, i.e. free F - waste water was removed is then BF 4 - is transferred to the concentration measuring apparatus 20. On the other hand, sediments such as sedimented CaF 2 are dispensed.
  <2-2.BF 濃度を測定するBF 濃度測定装置>
 BF 濃度測定装置20は、フッ素除去装置10から移送された、遊離Fを除去した廃水が導入され、その廃水に含まれるBF の濃度を測定する。
<2-2. BF 4 - BF 4 for measuring the concentration - concentration measuring device>
BF 4 - concentration measuring device 20 has been transferred from the fluorine removal apparatus 10, the free F - is introduced waste water was removed, BF 4 contained in the waste water - measuring the concentration of.
 BF 濃度測定装置20におけるBF 濃度の測定方法としては、特に限定されないが、例えばイオン電極を用いた方法を挙げることができる。図1の構成図における点線囲み部で示したBF 濃度測定装置20は、イオン電極による濃度測定を行う装置を一例として挙げている。なお、イオン電極を用いたBF 濃度の測定に関しては、特許文献2を参照することができる。 BF 4 - BF 4 in the concentration measuring device 20 - As a method for measuring the concentration is not particularly limited, and a method for example using an ion-selective electrode. BF 4 indicated by a dotted line enclosing unit in the diagram of Figure 1 - concentration measuring device 20 is cited as an example a device for performing the density measurement by ion electrode. Incidentally, BF 4 using an ion electrode - with respect to the concentration measurement, it is possible to refer to the patent document 2.
 図1の一部に示すBF 濃度測定装置20は、BF 濃度の測定対象である廃水を収容する容器21と、BF 電極22aと比較電極22bとを有したイオン電極装置部22と、容器21からイオン電極装置部22に廃水を送液する送液部23と、BF 電極22aに接触した廃水に含まれるBF 濃度を測定する濃度測定部24とを備える。このBF 濃度測定装置20は、容器21に収容された廃水のBF 濃度を連続的に測定しながら、その測定結果を後述する分解処理装置30に送り、分解処理装置30にて使用するBF を分解するための薬剤添加量を適切に制御することを可能にしている。 BF 4 shows a part of Figure 1 - concentration measuring device 20, BF 4 - and the container 21 for accommodating the waste water is the concentration of the measurement target, BF 4 - ion electrode device portion having a reference electrode 22b and the electrode 22a and a concentration measuring unit 24 for measuring the concentration - 22, a liquid feed portion 23 for feeding the waste water from the container 21 to the ion electrode device unit 22, BF 4 - BF 4 contained in the waste water in contact with the electrode 22a. The BF 4 - concentration measuring device 20, BF 4 wastewater contained in the container 21 - while measuring the concentration continuously feeding the decomposition treating apparatus 30 described below the measurement result, using at decomposition treating apparatus 30 it is made possible to properly control the drug amount for decomposing - BF 4 to be.
 (容器)
 容器21は、BF 濃度の測定対象である廃水を収容するものであり、後述する送液部23により、当該容器21内に収容された廃水の一部がイオン電極装置部22に送液される。この容器21は、BF の分解処理を実行する分解処理装置30のBF 分解反応槽31とすることもでき、これにより、リアルタイムで廃水中のBF 濃度を測定しながら、その濃度測定結果に基づいてBF の分解のため薬剤(多価金属又はその多価金属の塩)の使用量を制御することができる。
(container)
Container 21, BF 4 - is intended to accommodate the waste water is the concentration of the measuring object, the liquid supply unit 23 to be described later, the liquid feed portion of the waste water contained within the chamber 21 to the ion electrode device 22 Is done. The container 21 is, BF 4 - is also possible to decomposition reactor 31, thereby, BF 4 in the wastewater in real time - - BF 4 of decomposition treating apparatus 30 for performing decomposition treatment while measuring the concentration, the Based on the concentration measurement result, the amount of the drug (polyvalent metal or a salt of the polyvalent metal) used for the decomposition of BF 4 can be controlled.
 (イオン電極装置部)
 イオン電極装置部22は、BF 電極22aと、比較電極22bを備えており、そのBF 電極22aにBF 濃度の測定対象である廃水を接触させる。例えば、BF 電極22aとしては、東亜ディーケーケー社製のイオン電極を用いることができる。このよう、BF 電極22aに廃水を接触させることで、後述する濃度測定部24において廃水中のBF 濃度が測定される。
(Ion electrode unit)
Ion electrode device 22, BF 4 - and the electrode 22a, provided with a reference electrode 22b, the BF 4 - BF to the electrode 22a 4 - contacting the wastewater the concentration of the measurement target. For example, BF 4 - as the electrode 22a, it is possible to use an ion electrode of DKK-TOA Corporation. Thus, BF 4 - By contacting the waste water with the electrode 22a, BF 4 in the wastewater in the concentration measuring unit 24 to be described later - the concentration is measured.
 また、イオン電極装置部22には、ガラス電極等からなるpH電極(pH計)22Aが設けられている。このpH電極22Aを設けることによって、廃水のpHを適宜モニタリングすることができる。これにより、BF 濃度を測定するための廃水のpHを4以下に安定的に調整可能にし、その廃水中のBF 濃度を正確に測定できるようにしている。なお、BF 濃度測定時におけるpH調整については後で詳述する。 The ion electrode device unit 22 is provided with a pH electrode (pH meter) 22A made of a glass electrode or the like. By providing this pH electrode 22A, the pH of the wastewater can be monitored as appropriate. This makes it possible to stably adjust the pH of the wastewater for measuring the BF 4 concentration to 4 or less, and to accurately measure the BF 4 concentration in the waste water. Incidentally, BF 4 - will be described in detail later pH adjustment during concentration measurement.
 なお、このイオン電極装置部22を容器21(BF 分解反応槽31)に付帯する装置としてもよく、この場合、後述するような送液部23を設けなくてもよい。 Incidentally, the ion electrode device 22 the vessel 21 - may be a device incidental to (BF 4 decomposition reactor 31), this case may not be provided liquid feed section 23 to be described later.
 (送液部)
 送液部23は、容器21に収容された廃水をイオン電極装置部22に送液するためのものである。送液部23としては、例えば、所望とする送液速度で廃水を送液させることが可能な送液ポンプにより構成される。なお、イオン電極装置部22にてBF 濃度を測定した後、この送液部23を介して、容器21に廃水を戻すようにしてもよい。
(Liquid feeding part)
The liquid feeding part 23 is for sending waste water accommodated in the container 21 to the ion electrode device part 22. As the liquid feeding part 23, for example, a liquid feeding pump capable of feeding waste water at a desired liquid feeding speed is configured. In addition, after measuring the BF 4 concentration in the ion electrode device section 22, the waste water may be returned to the container 21 through the liquid feeding section 23.
 (濃度測定部)
 濃度測定部24は、イオン電極装置部22におけるBF 電極22aと接触した廃水に含まれるBF 濃度を測定する。濃度測定部24としては、例えば、BF 電極22aに接触した廃水の電気伝導度を交流電極法により測定するものとすることができる。
(Concentration measurement unit)
The concentration measuring unit 24 measures the BF 4 concentration contained in the waste water in contact with the BF 4 electrode 22a in the ion electrode device unit 22. The concentration measuring unit 24, for example, BF 4 - can be made to measure by the AC electrical conductivity of the waste water in contact with the electrode 22a electrode method.
 ここで、BF 濃度測定装置20では、廃水のpHを4以下に調整してBF 濃度の測定を行う。好ましくは、pH2~3に調整してBF 濃度を測定する。廃水のpHが4を超えると、廃水中のBF の経時的な分解を十分に抑制できなくなり、正確な濃度測定を行うことができない。その結果、分解処理装置30において添加するBF の分解するための薬剤の使用量を適切に制御することができなくなる。 Here, BF 4 - the density measuring device 20, BF 4 by adjusting the pH of the wastewater to 4 below - to measure the concentration. Preferably, BF 4 was adjusted to pH 2 ~ 3 - measuring the concentration. If the pH of the wastewater exceeds 4, the BF 4 decomposition over time in the wastewater cannot be sufficiently suppressed, and accurate concentration measurement cannot be performed. As a result, the amount of the chemical used for decomposing BF 4 added in the decomposition processing apparatus 30 cannot be appropriately controlled.
 廃水のpH調整においては、pHを4以下に調整できるものであれば特に限定されず、例えば、硫酸、塩酸、硝酸等の各種無機酸、又は各種有機酸を用いることができる。これらのpH調整のための酸は、容器21に添加することができる。なお、廃水のpHは、イオン電極装置部22に設けられたpH電極22Aにより測定することができる。また、pH電極をさらに容器21に設けるようにしてpHを測定可能としてもよい。 The pH adjustment of the wastewater is not particularly limited as long as the pH can be adjusted to 4 or less. For example, various inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, or various organic acids can be used. These acids for adjusting the pH can be added to the container 21. The pH of the waste water can be measured by a pH electrode 22A provided in the ion electrode device unit 22. Further, a pH electrode may be further provided in the container 21 so that the pH can be measured.
 濃度測定部24は、後述する分解処理装置30を構成する制御部32と接続されており、測定した廃水中のBF 濃度に関する情報を送信することが可能となっている。これにより、BF 濃度の測定結果に基づいて、分解処理装置30にて使用するBF を分解するための薬剤(多価金属塩等)の量を制御するができる。特に、本実施の形態においては、このBF 濃度の測定に先立ち、フッ素除去装置10において廃水中の遊離Fを除去している。これにより、その遊離Fによる、BF 濃度の測定時に用いるガラス電極等からなるpH電極22Aの腐食を防いで、適切にpHを調整することができるとともにBF 濃度の測定を効果的に且つ効率的に行うことでき、分解処理装置30において使用する薬剤の使用量を適切に制御することが可能となる。 Density measurement part 24, BF 4 in is connected to the control unit 32 constituting the decomposition treating apparatus 30 to be described later were measured wastewater - it is possible to transmit the information on the concentration. Thereby, the amount of the agent (polyvalent metal salt or the like) for decomposing BF 4 used in the decomposition processing apparatus 30 can be controlled based on the measurement result of the BF 4 concentration. In particular, in the present embodiment, prior to the measurement of the BF 4 concentration, the fluorine removing apparatus 10 removes free F from the wastewater. Thus, the free F - According to, BF 4 - effective in determining the concentration - to prevent corrosion of the pH electrode 22A made of glass electrodes or the like to be used for the measurement of concentration, BF 4 it is possible to appropriately adjust the pH It is possible to control the amount of medicine used in the decomposition processing apparatus 30 appropriately.
  <2-3.BF を分解する分解処理装置>
 分解処理装置30では、廃水に含まれるBF を分解する。具体的に、この分解処理装置30では、BF 濃度測定装置20にて測定されたBF 濃度の測定結果に基づいてBF を分解するための薬剤の添加量を決定し、BF の分解処理を行う。このように、本実施の形態においては、BF 濃度の測定結果に基づいて薬剤量を制御して連続的にBF の分解処理を行うようにしている。そのため、適切な量の薬剤を使用して、効率的な処理を行うことができる。
<2-3. BF 4 - decomposing decomposition treating apparatus>
In the decomposition treatment apparatus 30, BF 4 contained in the waste water is decomposed. Specifically, in the decomposition processing apparatus 30, the addition amount of the chemical for decomposing BF 4 is determined based on the measurement result of BF 4 concentration measured by the BF 4 concentration measuring apparatus 20, and BF 4 concentration is measured. 4 - the decomposition process is performed of. As described above, in the present embodiment, the amount of drug is controlled based on the measurement result of the BF 4 concentration, and the BF 4 decomposition process is continuously performed. Therefore, efficient processing can be performed using an appropriate amount of medicine.
 図1の一部に示す分解処理装置30は、廃水を収容しBF の分解処理を行うBF分解反応槽31と、廃水中のBF 濃度に基づいて薬剤(多価金属塩)の使用量を決定する制御部32と、制御部32にて決定した使用量に基づいて多価金属塩をBF分解反応槽31に添加する薬剤添加部33とを備える。また、分解処理装置30は、BF を分解して生成したフッ素を固定化する脱フッ素(F)処理槽34と、ホウ素を固定化する脱ホウ素(B)処理槽35と、不溶性物質を凝集させる凝集槽36と、不溶性物質を沈降させて処理後水を得る沈降槽37とを備えた構成とすることができる。 Decomposition treating apparatus 30 shown in part in FIG. 1, BF 4 containing wastewater - and BF 4 decomposition reactor 31 for decomposition treatment of, BF 4 in the waste water - based on the concentration agent (polyvalent metal salt) It includes the control unit 32 which determines the amount, and a medicated portion 33 of adding a polyvalent metal salt based on the amount determined by the control unit 32 to the BF 4 decomposition reactor 31. Further, decomposition processor 30, BF 4 - and defluorination (F) treatment vessel 34 for immobilizing the resulting fluorine by decomposing and removing boron (B) treating tank 35 for fixing the boron, the insoluble material It can be set as the structure provided with the aggregation tank 36 to aggregate and the sedimentation tank 37 which makes an insoluble substance settle and obtains water after a process.
 ここで、図1に示すように、分解処理装置30を構成するBF 分解反応槽は、BF 濃度測定装置20における容器21と同一である。したがって、分解処理装置30では、BF 濃度測定装置20にて測定された廃水中のBF 濃度が定期的に送られ、そのリアルタイムで測定されたBF 濃度に基づいて連続的に薬剤添加量を決定して、BF の分解処理を行うことができる。 Here, as shown in FIG. 1, BF 4 constituting the decomposition treating apparatus 30 - decomposition reaction vessel, BF 4 - is identical to the container 21 in the concentration measuring device 20. Therefore, the decomposition treating apparatus 30, BF 4 - BF in the wastewater that has been measured by the concentration measuring device 20 4 - concentration is sent periodically, BF 4 was measured by the real-time - continuously based on the density to determine the drug loading amounts, BF 4 - decomposition process can be performed in.
 (1)BF の分解処理についての構成
 [BF 分解反応槽]
 BF 分解反応槽31は、処理対象である廃水が収容され、その廃水に含まれるBF を分解する反応場となる。このBF 分解反応槽では、収容された廃水中のBF 濃度に基づいて決定された添加量の薬剤が添加されて、BF の分解処理を行う。
(1) BF 4 - configuration for the degradation process of the [BF 4 - decomposition reactor]
BF 4 - decomposition reactor 31 is housed wastewater to be processed is, BF 4 included in the waste water - the decomposing reaction field. The BF 4 - in the decomposition reactor, BF of the contained waste water 4 - is added drug amount determined based on the concentration, BF 4 - performing the decomposition process.
 より具体的に、BF分解反応槽31では、廃水に対して多価金属塩が添加されて、BF の分解反応が生じる。BF分解反応槽31では、下記一般式(i)~(iv)の反応が進行してBF が分解される。 More specifically, in the BF 4 decomposition reaction tank 31, a polyvalent metal salt is added to the wastewater to cause a decomposition reaction of BF 4 . In BF 4 decomposition reactor 31, BF 4 the following reaction formula (i) ~ (iv) progresses - are decomposed.
 HBF+HO→HBF(OH)+HF ・・(i)
 HBF(OH)+HO→HBF(OH)+HF ・・(ii)
 HBF(OH)+HO→HBF(OH)+HF ・・(iii)
 HBF(OH)+HO→HBO+HF ・・(iv)
HBF 4 + H 2 O → HBF 3 (OH) + HF (i)
HBF 3 (OH) + H 2 O → HBF 2 (OH) 2 + HF (ii)
HBF 2 (OH) 2 + H 2 O → HBF (OH) 3 + HF (iii)
HBF (OH) + H 2 O → H 3 BO 3 + HF (.)
 多価金属塩は、BF を分解するための薬剤であって、より詳しくは、BF の最終分解生成物である遊離フッ化水素を系外へ除去し、BF の分解反応(上記反応式(i)~(iv))を促進させるため薬剤である。 The polyvalent metal salt is an agent for decomposing BF 4 , and more specifically, free hydrogen fluoride, which is a final decomposition product of BF 4 , is removed from the system to decompose BF 4 . It is a drug for promoting (the above reaction formulas (i) to (iv)).
 多価金属塩を構成する多価金属元素としては、アルミニウム、鉄、チタニウム等から選択される少なくとも1種である。具体的に、多価金属塩としては、遊離フッ化水素と反応する物質であれば特に限定されず、例えば硫酸アルミニウムなどのアルミニウム塩、塩化第二鉄、硫酸第二鉄などの第二鉄塩、又は塩化チタニウムなどの第二チタニウム塩等を挙げることができる。 The polyvalent metal element constituting the polyvalent metal salt is at least one selected from aluminum, iron, titanium and the like. Specifically, the polyvalent metal salt is not particularly limited as long as it reacts with free hydrogen fluoride. For example, aluminum salts such as aluminum sulfate, ferric salts such as ferric chloride and ferric sulfate. Or a second titanium salt such as titanium chloride.
 多価金属塩は、それを構成する多価金属元素がアルミニウム又は鉄の場合には、廃水に含まれるBF 1モルに対して、アルミニウムイオン又は鉄イオンが0.8~5モルとなるように添加される。また、多価金属塩を構成する多価金属元素がチタニウムの場合には、廃水に含まれるBF 1モルに対して、チタニウムイオンが0.4~3モルとなるように添加される。 Polyvalent metal salt, when the polyvalent metal element is aluminum or iron which constitutes it, BF 4 contained in wastewater - relative to 1 mole of aluminum ions or iron ions of 0.8 to 5 moles Are added as follows. Further, when the polyvalent metal elements constituting the polyvalent metal salt is Titanium, BF 4 contained in wastewater - relative to 1 mol of titanium ions are added so that 0.4 to 3 moles.
 ここで、本実施の形態においては、多価金属塩の添加量を、BF 濃度測定装置20にて測定したBF 濃度の測定結果に基づいて決定することを特徴としている。具体的には、BF 濃度測定装置20において、BF 分解反応槽31(容器21)に収容された廃水に含まれるBF の濃度がイオン電極装置部22に設けられたBF 電極22aと接触することによって測定されると、濃度測定部24からBF 濃度の測定結果に関する情報が制御部32に送信され、制御部32においてそのBF 濃度に基づく多価金属塩の添加量が決定される。詳しくは後述する。 Here, in the present embodiment, the amount of the polyvalent metal salt, BF 4 - BF was measured by the concentration measuring device 20 4 - is characterized by determining based on the concentration of the measurement results. Specifically, BF 4 - in a concentration measuring device 20, BF 4 - decomposition reactor 31 BF 4 contained in the contained wastewater (vessel 21) - BF 4 concentration is provided in the ion electrode device 22 of the - as measured by contact with the electrodes 22a, the density measurement part 24 BF 4 - the transmitted information related to the measurement result of the concentration of the control unit 32, the BF 4 in the control unit 32 - polyvalent metal salts based on concentration Is added. Details will be described later.
 廃水に対して多価金属塩を添加すると、下記反応式(v)に示すように、その多価金属イオンがBF を分解して生じた遊離フッ化水素と反応し、例えばAlF 3-n、FeF 3-n、TiF 4-nを生成させる。これにより、上述した反応式(i)~(iv)に示すBF の分解反応を促進させる。なお、下記一般式(v)は、多価金属元素としてアルミニウムを添加した場合を例とした反応式である。 The addition of a polyvalent metal salt with respect to the waste water, as shown in the following reaction formula (v), the polyvalent metal ion BF 4 - reacts with generated by decomposing the free hydrogen fluoride, for example, AlF n 3 -N , FeF n 3-n and TiF n 4-n are generated. Thereby, the decomposition reaction of BF 4 shown in the above reaction formulas (i) to (iv) is promoted. The following general formula (v) is a reaction formula in which aluminum is added as a polyvalent metal element.
 6HF+Al +3OH→HAlF+3HO ・・(v) 6HF + Al 3 + + 3OH → H 3 AlF 6 + 3H 2 O (v)
 なお、BF の分解反応を促進させる薬剤としては、多価金属塩に限られず、同種の多価金属元素からなる多価金属を添加することもできる。すなわち、例えば、アルミニウム、鉄、チタニウム等の多価金属を添加することができ、この場合においても、BF 濃度に基づく添加量で添加することができる。 The agent for promoting the decomposition reaction of BF 4 is not limited to the polyvalent metal salt, and a polyvalent metal composed of the same kind of polyvalent metal element can also be added. That is, for example, aluminum, iron, can be added a polyvalent metal such as titanium, in this case, BF 4 - may be added in amount based on the concentration.
 また、BF を含む廃水に対しては、多価金属塩を添加するとともにpH調整剤を添加し、廃水のpH条件を酸性条件下に調整することが好ましい。具体的には、pH4以下とすることが好ましく、pH3以下とすることがより好ましく、pH2以下に調整することが特に好ましい。このようにpH調整剤を添加して廃水のpHを4以下に調整することで、BF をより効率的に分解することができる。なお、pH調整剤としては、例えば硫酸、塩酸、硝酸等の酸薬剤や、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ薬剤を使用することができる。 Further, BF 4 - for the waste water containing, by adding a pH adjusting agent with the addition of a polyvalent metal salt, it is preferable to adjust the pH conditions of the waste water under acidic conditions. Specifically, the pH is preferably 4 or less, more preferably 3 or less, and particularly preferably adjusted to 2 or less. Thus, by adding a pH adjuster to adjust the pH of the wastewater to 4 or less, BF 4 can be decomposed more efficiently. As the pH adjuster, for example, acid agents such as sulfuric acid, hydrochloric acid, and nitric acid, and alkali agents such as sodium hydroxide, potassium hydroxide, and calcium hydroxide can be used.
 また、廃水に含まれるBF の分解処理では、その廃水の紫外線を照射して行うことが好ましい。廃水に対して紫外線を照射することで、紫外線の強力なエネルギーによりBF のフッ素(F)とホウ素(B)との結合が切断されやすくなり、分解反応効率を向上させることができる。 Further, BF 4 contained in the waste water - the decomposition process is preferably performed by ultraviolet irradiation of the waste water. By irradiating the wastewater with ultraviolet rays, the bond between fluorine (F) and boron (B) in BF 4 is easily broken by the strong energy of the ultraviolet rays, and the decomposition reaction efficiency can be improved.
 また、BF分解反応槽31においては、廃水1を攪拌しながらBF の分解処理を行うことが好ましい。廃水を攪拌することにより、分解反応効率が向上するとともに、紫外線を照射する場合においても照射面積を増やして照射分布を均一にすることができ、より短時間で処理することができる。攪拌処理においては、例えば擢型攪拌機、タービン型攪拌機、プロペラ型攪拌機のような機械式のもののほか、ポンプ等を用いた噴流攪拌機、さらにはガス吹込攪拌等を用いて行うことができる。 Further, in the BF 4 decomposition reaction tank 31, it is preferable to perform the decomposition treatment of BF 4 while stirring the waste water 1. By stirring the wastewater, the decomposition reaction efficiency is improved, and even when the ultraviolet rays are irradiated, the irradiation area can be increased to make the irradiation distribution uniform, and the treatment can be performed in a shorter time. In the stirring treatment, for example, a mechanical stirrer such as a vertical stirrer, a turbine stirrer, a propeller stirrer, a jet stirrer using a pump or the like, a gas blowing stirrer, or the like can be used.
 [制御部]
 制御部32では、BF 濃度測定装置20における濃度測定部24にて測定された廃水中のBF 濃度に関する情報を受信し、そのBF 濃度に基づいて、BF分解反応槽31に添加する多価金属塩の量とする。このように、本実施の形態においては、分解処理装置30おけるBF の分解処理に使用する多価金属塩の添加量を、BF 濃度測定装置20にて測定したBF 濃度の測定結果に基づいて決定することを特徴としている。
[Control unit]
The control unit 32, BF 4 - BF in the wastewater that has been measured by the density measurement part 24 in the concentration measuring device 20 4 - receives the information on the concentration, the BF 4 - on the basis of the concentration, BF 4 decomposition reactor 31 The amount of the polyvalent metal salt added to. Thus, in the present embodiment, the decomposition processing unit 30 definitive BF 4 - the amount of the polyvalent metal salt used in the decomposition treatment, BF 4 - BF 4 was measured by the concentration measuring device 20 - the concentration of It is characterized by being determined based on the measurement result.
 これにより、分解処理装置30では、廃水に含まれるBF 濃度をリアルタイムに認識して、その経時的に変化するBF 濃度に基づいて連続的に薬剤添加量を決定して、BF の分解処理を行うことができる。このため、変化するBF 濃度に合わせて薬剤添加量を制御することができ、より適切に且つ効率的な処理を行うことができる。 Thus, the decomposition treating apparatus 30, BF 4 contained in the waste water - recognizes the concentration in real time, the time-varying BF 4 - to determine continuously the drug amount based on the concentration, BF 4 - allow disassembly process. Therefore, changing BF 4 - in accordance with the concentration can control the drug amount, it can be performed more appropriately and efficient processing.
 具体的に、制御部32においては、BF 濃度の測定結果に基づいて、多価金属塩の添加量を以下のようにして決定する。例えば、制御部32は、BF 濃度測定装置20における濃度測定部24からBF 濃度に関する情報を受信すると、そのBF 濃度の測定結果と、また0.1mol/L未満に制御した遊離F濃度等から、所定の係数を乗じて得られる値を多価金属塩の添加量とする。 Specifically, in the control unit 32, BF 4 - on the basis of the density measurement results, determined as follows the amount of the polyvalent metal salt. For example, the control unit 32, BF 4 - receives the information on the concentration, the BF 4 - - from the density measuring unit 24 in the concentration measuring device 20 BF 4 measurements and concentrations, also was controlled to less than 0.1 mol / L The value obtained by multiplying the free F concentration and the like by a predetermined coefficient is taken as the addition amount of the polyvalent metal salt.
 このように制御部32において多価金属塩の添加量が決定されると、その算出された添加量に関する情報が薬剤添加部33に送信される。 As described above, when the addition amount of the polyvalent metal salt is determined by the control unit 32, information on the calculated addition amount is transmitted to the drug addition unit 33.
 [薬剤添加部]
 薬剤添加部33では、制御部32からの多価金属塩の添加量に関する情報を受信すると、その添加量、すなわちBF 濃度の測定結果に基づく添加量の多価金属塩を、BF 分解反応槽31に収容された廃水に添加する。
[Drug addition part]
The medicated portion 33 receives the information about the amount of the polyvalent metal salt from the control unit 32, the addition amount thereof, i.e. BF 4 - a polyvalent metal salt of the addition amount based on the concentration of the measurement results, BF 4 - It adds to the wastewater accommodated in the decomposition reaction tank 31.
 薬剤添加部33は、例えば多価金属塩を供給する多価金属塩供給槽と接続されており、多価金属塩供給槽から所定の割合の多価金属塩が供給されて、その所定量を貯留する。薬剤添加部33では、制御部32からの添加量に関する情報に基づいて、貯留した多価金属塩からその添加量の分の多価金属塩をBF 分解反応槽31に添加する。 The drug addition unit 33 is connected to, for example, a polyvalent metal salt supply tank that supplies a polyvalent metal salt. A predetermined ratio of the polyvalent metal salt is supplied from the polyvalent metal salt supply tank, and the predetermined amount is supplied. Store. The medicated portion 33, on the basis of information about the amount of the control unit 32, a polyvalent metal salt which stores the partial multivalent metal salt of the amount added BF 4 - is added to the decomposition reaction vessel 31.
 本実施の形態においては、上述したように、BF 濃度測定装置20において廃水のpHを4以下に調整してBF 濃度を測定し、その測定結果を分解処理装置30に送信して、分解処理装置30においてBF 濃度に基づいた薬剤の添加量を決定するようにしている。このような廃水の処理方法によれば、経時的に変動する廃水中のBF 濃度に基づいて連続的に薬剤の使用量を制御することができるため、より効率的な廃水の処理を行うことができる。 In the present embodiment, as described above, BF 4 - BF by adjusting the pH of the wastewater to 4 below in a concentration measuring device 20 4 - concentration were measured, and sends the measurement result to the decomposition treating apparatus 30 , BF 4 in the decomposition processor 30 - so that to determine the amount of drug based on the concentration. According to such a wastewater treatment method, since the amount of the chemical used can be controlled continuously based on the BF 4 concentration in the wastewater that varies with time, the wastewater can be treated more efficiently. be able to.
 また、本実施の形態においては、廃水に含まれるBF 濃度を測定するに先立ち、また廃水に多価金属塩等の薬剤を添加してBF を分解するに先立ち、予め、その廃水に含まれる遊離Fを除去していることにより、廃水に含まれる遊離Fが強フッ酸になることを抑制し、より正確なBF の濃度測定を行うことができる。また、遊離Fを廃水中から除去することによって、BF の分解のために添加した多価金属塩等の薬剤の無駄を抑制して、効率的な分解処理を行うことができる。 In the present embodiment, prior to measuring the BF 4 concentration contained in the wastewater, and before decomposing BF 4 by adding a chemical such as a polyvalent metal salt to the wastewater, the wastewater By removing the free F contained in the water, it is possible to suppress the free F contained in the wastewater from becoming strong hydrofluoric acid, and to measure the concentration of BF 4 more accurately. Further, by removing free F 2 from wastewater, waste of chemicals such as polyvalent metal salts added for the decomposition of BF 4 can be suppressed, and an efficient decomposition process can be performed.
 (2)Fの除去処理について(脱フッ素処理槽)
 次に、分解処理装置30においては、廃水に含まれるBF を分解して得られたフッ素を除去する脱フッ素処理を行うようにすることができる。図1の構成図に示すように、この脱フッ素処理は、脱フッ素(F)処理槽にて行うようにすることができる。
(2) About F removal treatment (defluorination treatment tank)
Next, the decomposition treatment apparatus 30 can perform a defluorination treatment that removes fluorine obtained by decomposing BF 4 contained in wastewater. As shown in the block diagram of FIG. 1, this defluorination treatment can be performed in a defluorination (F) treatment tank.
 具体的に、脱フッ素処理槽34における脱フッ素処理では、BF を分解した廃水に対して、消石灰等のカルシウム塩とpH調整剤とを添加して、廃水に含まれるフッ素を不溶化させる(フッ素不溶化処理)。すなわち、BF の分解によって生じたフッ素イオンを不溶化させる。 Specifically, in the defluorination treatment in the defluorination treatment tank 34, a calcium salt such as slaked lime and a pH adjuster are added to wastewater obtained by decomposing BF 4 to insolubilize fluorine contained in the wastewater ( Fluorine insolubilization treatment). That is, fluorine ions generated by the decomposition of BF 4 are insolubilized.
 ここで、カルシウム塩は、フッ素イオンを不溶性物質に転換させるために添加される。具体的に、前段のBF 分解反応槽31において多価金属塩としてアルミニウム塩、第二鉄塩、第二チタニウム塩等を用いてBF を分解させると、可溶性のAlF 3-n、FeF 3-n、TiF 4-nの錯体が生成されるが、これらの錯体が形成された廃水に対してカルシウム塩を添加することで、フッ素イオンをCaFに転換して不溶化させることができる。または、固体水酸化カルシウム又はカルシウム塩の加水分解生成物の水酸化カルシウムへのフッ素イオンの吸着反応によって、フッ素イオンをCaFに転換して不溶化させることもできる。このようにしてフッ素成分を不溶性のCaFに転換して不溶化させることにより、後述する凝集槽36においてフッ素成分を容易にフロック化させて除去することができる。 Here, the calcium salt is added to convert fluorine ions into an insoluble substance. Specifically, the preceding stage of BF 4 - aluminum salts in the decomposition reaction vessel 31 as polyvalent metal salts, ferric salts, BF 4 with a second titanium salt such as - when degrade, AlF n 3-n soluble , FeF n 3-n and TiF n 4-n complexes are formed. By adding calcium salts to the waste water in which these complexes are formed, fluorine ions are converted into CaF 2 and insolubilized. be able to. Alternatively, fluorine ions can be converted to CaF 2 and insolubilized by an adsorption reaction of fluorine ions to calcium hydroxide of a hydrolysis product of solid calcium hydroxide or calcium salt. By converting the fluorine component into insoluble CaF 2 and insolubilizing in this way, the fluorine component can be easily flocated and removed in the agglomeration tank 36 described later.
 カルシウム塩としては、塩化カルシウム、水酸化カルシウム、炭酸カルシウム、酸化カルシウム、硫酸カルシウム等の無機系カルシウム塩を用いることが好ましい。 As the calcium salt, it is preferable to use inorganic calcium salts such as calcium chloride, calcium hydroxide, calcium carbonate, calcium oxide, and calcium sulfate.
 また、pH調整剤は、脱フッ素処理槽34内における廃水のpH条件を調整するために添加されるが、上述したカルシウム塩の添加により生成した反応生成物を沈殿させ得るpH条件に調整することが好ましい。例えば、多価金属塩としてアルミニウム塩を用いた場合にはpH4~8に調整することが好ましく、第二鉄塩及び第二チタニウム塩を用いた場合にはpH4以上に調整することが好ましい。これにより、効率的に廃水中のフッ素成分を不溶化させて除去することができる。 Further, the pH adjuster is added to adjust the pH condition of the wastewater in the defluorination treatment tank 34, but it is adjusted to a pH condition that can precipitate the reaction product generated by the addition of the calcium salt described above. Is preferred. For example, when an aluminum salt is used as the polyvalent metal salt, the pH is preferably adjusted to 4 to 8, and when a ferric salt and a second titanium salt are used, the pH is preferably adjusted to 4 or more. Thereby, the fluorine component in wastewater can be efficiently insolubilized and removed.
 pH調整剤としては、硫酸、塩酸、硝酸等の酸薬剤や、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ薬剤を用いることができる。 As the pH adjuster, acid agents such as sulfuric acid, hydrochloric acid and nitric acid, and alkali agents such as sodium hydroxide, potassium hydroxide and calcium hydroxide can be used.
 (3)Bの除去処理について(脱ホウ素処理槽)
 廃水中におけるフッ素を不溶化させると、次に、その廃水に含まれるホウ素を不溶化させる脱ホウ素処理を行うことができる。図1の構成図に示すように、この脱ホウ素処理は、脱ホウ素(B)処理槽35にて行うようにすることができる。
(3) About the removal process of B (deboronation processing tank)
When fluorine in the wastewater is insolubilized, next, a boron removal treatment for insolubilizing boron contained in the wastewater can be performed. As shown in the configuration diagram of FIG. 1, this deboronation treatment can be performed in a deboronation (B) treatment tank 35.
 具体的に、脱ホウ素処理槽35における脱ホウ素処理では、廃水に対して、さらに消石灰等のカルシウム塩とpH調整剤とを添加して、廃水に含まれるホウ素を不溶化させる(ホウ素不溶化処理)。すなわち、BF の分解によって生じたホウ素イオンを不溶化させる。 Specifically, in the deboronation treatment in the deboronation treatment tank 35, a calcium salt such as slaked lime and a pH adjuster are further added to the wastewater to insolubilize boron contained in the wastewater (boron insolubilization treatment). That is, boron ions generated by the decomposition of BF 4 are insolubilized.
 ここで、カルシウム塩は、ホウ素イオン(ホウ酸イオン)を、上述した脱フッ素処理槽34におけるカルシウム塩の反応生成物やBF 分解反応槽31で添加された多価金属イオンの水酸化物によって包み込むように作用し、これによりホウ素イオンが不溶化する。このようにしてホウ素成分をカルシウム塩の反応生成物や多価金属イオンの水酸化物によって包み込んで不溶化させることにより、後述する凝集槽36においてホウ素成分を容易にフロック化させて除去することができるようになる。 Here, the calcium salt, a boron ion (borate ion), a reaction product of a calcium salt in defluorination treatment tank 34 described above and BF 4 - is added in decomposition reactor 31 the hydroxides of polyvalent metal ions Acts to encapsulate the boron ions, thereby insolubilizing the boron ions. In this way, the boron component is encapsulated by the calcium salt reaction product or polyvalent metal ion hydroxide and insolubilized, whereby the boron component can be easily flocked and removed in the agglomeration tank 36 described later. It becomes like this.
 なお、カルシウム塩やpH調整剤は、脱フッ素処理槽34にて添加したものと同様のものを用いることができる。また、上述した脱フッ素処理槽34と脱ホウ素処理槽35とを一体として、脱フッ素処理と脱ホウ素処理とを併せて行うようにしてもよい。 In addition, the thing similar to what was added in the defluorination processing tank 34 can be used for a calcium salt and a pH adjuster. Further, the defluorination treatment tank 34 and the deboronation treatment tank 35 described above may be integrated, and the defluorination treatment and the deboronation treatment may be performed together.
 (4)凝集処理について(凝集槽)
 次に、脱フッ素処理槽34、脱ホウ素処理槽35において、不溶性物質として沈殿した廃水中のフッ素及びホウ素の反応生成物を凝集させてフロック化する(凝集処理)。図1の構成図に示すように、この凝集処理は、凝集槽36にて行うようにすることができる。
(4) About aggregation treatment (aggregation tank)
Next, in the defluorination treatment tank 34 and the deboronation treatment tank 35, the reaction product of fluorine and boron in the wastewater precipitated as an insoluble substance is aggregated to form a floc (coagulation treatment). As shown in the configuration diagram of FIG. 1, this aggregation treatment can be performed in the aggregation tank 36.
 具体的に、凝集槽36における凝集処理では、廃水に対して、アニオン系高分子凝集剤等の凝集剤を添加して、廃水中の反応生成物の粒子を粗大化(フロック化)させる。すなわち、BF 分解反応槽31において分解生成し、脱フッ素処理槽34及び脱ホウ素処理槽35にて不溶化されたフッ素イオンやホウ素イオンをフロック化する。 Specifically, in the flocculation treatment in the flocculation tank 36, a flocculant such as an anionic polymer flocculant is added to the wastewater to coarsen (flocculate) the particles of the reaction product in the wastewater. That, BF 4 - decomposition produced in the decomposition reaction vessel 31, to flock the fluorine ions or boron ions insolubilized by defluorination treatment tank 34 and the deboronation treatment tank 35.
 ここで、凝集剤は、脱フッ素処理槽34や脱ホウ素処理槽35にて生成した不溶性物質の粒子をフロック化させるために添加する。具体的に、凝集剤としては、酸性領域ではノニオン性高分子凝集剤を用い、酸性から弱酸性領域では弱アニオン系高分子凝集剤を用い、また弱酸性から弱アルカリ性領域では中性アニオン系高分子凝集剤を用いることが好ましいが、得られるフロックの沈降性や清澄性等に応じて適宜選択することが望ましい。また、凝集剤は、1種単独で用いても2種以上を併用してもよい。さらに、凝集剤としては、高分子凝集剤に限られず、不溶性物質をフロック化させ得るものであれば、無機凝集剤を用いてもよい。なお、凝集剤の添加量としては、処理する廃水に対して、例えば0.5mg/L~15mg/Lの濃度範囲とする。 Here, the flocculant is added to flock the particles of the insoluble material generated in the defluorination treatment tank 34 and the deboronation treatment tank 35. Specifically, as the flocculant, a nonionic polymer flocculant is used in the acidic region, a weak anionic polymer flocculant is used in the acidic to weakly acidic region, and a neutral anionic high concentration agent is used in the weakly acidic to weakly alkaline region. It is preferable to use a molecular flocculant, but it is desirable to select it appropriately according to the sedimentation and clarity of the resulting floc. Moreover, a flocculant may be used individually by 1 type, or may use 2 or more types together. Further, the flocculant is not limited to a polymer flocculant, and an inorganic flocculant may be used as long as it can flock insoluble substances. The addition amount of the flocculant is, for example, a concentration range of 0.5 mg / L to 15 mg / L with respect to the wastewater to be treated.
 凝集槽36においては、凝集剤を添加した後、例えばタービン型攪拌機、プロペラ型攪拌機等によって廃水を攪拌しながら処理することが好ましい。このように攪拌することで、凝集剤によるフロック化を促進させることができる。 In the flocculation tank 36, after adding the flocculant, it is preferable to treat the waste water with stirring with, for example, a turbine stirrer or a propeller stirrer. By stirring in this way, flocking by the flocculant can be promoted.
 (5)沈降処理について(沈降槽)
 このようにして、凝集槽36において不溶性物質がフロック化されると、その沈降性を有したフロックが沈降槽37内において沈降し、清澄な上澄水、すなわち処理後水が得られるようになる(沈降分離処理)。
(5) About sedimentation treatment (sedimentation tank)
In this way, when the insoluble substance is floculated in the coagulation tank 36, the floc having the sedimentation property is settled in the sedimentation tank 37, and a clear supernatant water, that is, water after treatment is obtained ( Sedimentation treatment).
 具体的には、沈降槽37においては、廃水に含有されていたフッ素はCaFとして、またホウ素はホウ酸として沈降分離され、上澄水中のフッ素及びホウ素が低濃度まで処理されて、処理後水が得られるようになる。なお、固液分離された固体成分、すなわちフッ素やホウ素を含んだフロックは、沈殿物として沈降槽37から払い出される。 Specifically, in the sedimentation tank 37, the fluorine contained in the wastewater is separated as CaF 2 and boron is precipitated and separated as boric acid, and the fluorine and boron in the supernatant water are treated to a low concentration, and after the treatment Water can be obtained. The solid component separated by solid-liquid separation, that is, floc containing fluorine or boron is discharged from the settling tank 37 as a precipitate.
 1  廃水処理システム
 10  フッ素除去装置
 11  フッ素除去反応槽
 12  沈降槽
 20  BF 濃度測定装置
 21  容器
 22  送液部
 23  イオン電極装置部
 30  分解処理装置
 31  BF 分解反応槽
 32  制御部
 33  薬剤添加部
 34  脱フッ素処理槽
 35  脱ホウ素処理槽
 36  凝集槽
 37  沈降槽
1 wastewater treatment system 10 fluorine removal apparatus 11 for removing fluorine reaction vessel 12 sedimentation tank 20 BF 4 - concentration measuring apparatus 21 vessel 22 liquid supply unit 23 ion electrode device 30 decomposition treating apparatus 31 BF 4 - decomposition reactor 32 controller 33 drugs Addition part 34 Defluorination treatment tank 35 Deboronation treatment tank 36 Coagulation tank 37 Sedimentation tank

Claims (5)

  1.  フッ素と共に、難分解性のBF を含有する廃水の処理方法であって、
     前記廃水に含まれる遊離フッ素イオンを除去するフッ素除去工程と、
     前記遊離フッ素イオンを除去した廃水中のBF 濃度を測定するBF 測定工程と、
     前記BF 測定工程にて測定されたBF の濃度に基づいて該BF を分解する分解工程と、を有し、
     前記BF 測定工程では、前記廃水のpHを4以下に調整してBF 濃度を測定し、
     前記分解工程では、前記廃水に、前記BF の濃度に基づいて添加量を決定した多価金属又はその金属塩を添加する
     ことを特徴とする廃水の処理方法。
    With fluorine, BF 4 of persistent - a processing method for wastewater containing,
    A fluorine removal step for removing free fluorine ions contained in the waste water;
    A measuring step, - BF 4 for measuring the concentration - BF 4 in the wastewater obtained by removing the free fluorine ion
    The BF 4 - measuring step BF 4 was measured at - based on the concentration of the BF 4 - anda decomposition step of decomposing the,
    In the measurement step, by adjusting the pH of the wastewater to 4 below BF 4 - - the BF 4 was measured density,
    In the decomposing step, the wastewater treatment method is characterized in that a polyvalent metal or a metal salt thereof whose addition amount is determined based on the concentration of BF 4 is added to the wastewater.
  2.  前記BF 測定工程では、前記廃水をBF 電極に接触させてBF 濃度を測定することを特徴とする請求項1に記載の廃水の処理方法。 The BF 4 - in the measuring step, the wastewater BF 4 - processing method of waste water according to claim 1, characterized in that measuring the concentration - in contact with the electrode BF 4.
  3.  前記フッ素除去工程では、前記廃水中の遊離フッ素イオンの濃度が0.1mol/L未満となるようにすることを特徴とする請求項1又は2に記載の廃水の処理方法。 The wastewater treatment method according to claim 1 or 2, wherein in the fluorine removal step, the concentration of free fluorine ions in the wastewater is less than 0.1 mol / L.
  4.  前記フッ素除去工程では、カルシウム塩を用いて前記遊離フッ素イオンの沈殿物を生成させて除去することを特徴とする請求項1又は2に記載の排水の処理方法。 The wastewater treatment method according to claim 1 or 2, wherein in the fluorine removal step, a precipitate of the free fluorine ions is generated and removed using a calcium salt.
  5.  フッ素と共に、難分解性のBF を含有する廃水の処理システムであって、
     前記廃水に含まれる遊離フッ素イオンを除去するフッ素除去装置と、
     前記遊離フッ素イオンを除去した廃水中のBF 濃度を測定するBF 濃度測定装置と、
     前記BF 濃度測定装置にて測定されたBF 濃度に基づいて前記廃水中のBF を分解する分解処理装置と、を備え、
     前記BF 濃度測定装置では、前記廃水のpHを4以下に調整してBF 電極を用いてBF 濃度を測定し、
     前記分解処理装置は、
     前記廃水に多価金属又はその金属塩を添加してBF を分解する分解反応部と、
     前記分解反応部に前記多価金属又はその金属塩を添加する薬剤添加部と、
     前記多価金属又はその金属塩の添加量を決定する制御部と、を備え、
     前記制御部は、前記BF 濃度測定装置にて測定されたBF 濃度に関する情報に基づいて前記多価金属又はその金属塩の添加量を決定し、前記薬剤添加部に対して該添加量に関する情報を送る
     ことを特徴とする廃水の処理システム。
     
    With fluorine, BF 4 of persistent - a processing system wastewater containing,
    A fluorine removing device for removing free fluorine ions contained in the waste water;
    A concentration measuring device, - BF 4 for measuring the concentration - BF 4 in the wastewater obtained by removing the free fluorine ion
    The BF 4 - BF 4 was measured by the concentration measuring device - and a decomposition treatment unit degrades, - BF 4 of the waste water on the basis of the density
    The BF 4 - in a concentration measuring apparatus, BF 4 by adjusting the pH of the wastewater to 4 below - using electrodes BF 4 - to determine the concentration,
    The decomposition processing apparatus includes:
    And decomposing the decomposition reaction unit, - BF 4 with a polyvalent metal or metal salt thereof to said waste water
    A drug addition part for adding the polyvalent metal or a metal salt thereof to the decomposition reaction part;
    A controller for determining the amount of the polyvalent metal or metal salt thereof added,
    Wherein the control unit, the BF 4 - concentration measuring device BF 4 was measured at - determining the amount of the polyvalent metal or a metal salt thereof based on the information on the concentration, the addition to the drug addition unit Wastewater treatment system characterized by sending information on volume.
PCT/JP2015/060249 2015-03-31 2015-03-31 Method for treating wastewater, and system for treating wastewater WO2016157452A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017508959A JP6728546B2 (en) 2015-03-31 2015-03-31 Wastewater treatment method, wastewater treatment system
PCT/JP2015/060249 WO2016157452A1 (en) 2015-03-31 2015-03-31 Method for treating wastewater, and system for treating wastewater
KR1020177029308A KR102434086B1 (en) 2015-03-31 2015-03-31 Wastewater treatment method, and wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060249 WO2016157452A1 (en) 2015-03-31 2015-03-31 Method for treating wastewater, and system for treating wastewater

Publications (1)

Publication Number Publication Date
WO2016157452A1 true WO2016157452A1 (en) 2016-10-06

Family

ID=57004838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060249 WO2016157452A1 (en) 2015-03-31 2015-03-31 Method for treating wastewater, and system for treating wastewater

Country Status (3)

Country Link
JP (1) JP6728546B2 (en)
KR (1) KR102434086B1 (en)
WO (1) WO2016157452A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106348503A (en) * 2016-10-10 2017-01-25 昆明理工大学 Method for removing high-fluoride-containing wastewater through ultrasonic strengthening
JP2019143530A (en) * 2018-02-20 2019-08-29 いすゞ自動車株式会社 Fuel tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233605A (en) * 2008-03-27 2009-10-15 Eco System Akita Kk Treatment method of boron fluoride-containing water
JP2011027722A (en) * 2009-06-24 2011-02-10 Central Res Inst Of Electric Power Ind Method and system of simultaneously measuring bf4- and f-
JP2011104459A (en) * 2009-11-12 2011-06-02 Sumitomo Metal Mining Engineering Co Ltd Waste water treatment method
JP2014200745A (en) * 2013-04-05 2014-10-27 オルガノ株式会社 Method of treating fluorine-containing waste liquid and apparatus of fluorine-containing waste liquid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107394A (en) * 1988-10-14 1990-04-19 Nec Corp Treatment method for waste water produced in washing of metal plating
JP4650384B2 (en) 2006-09-22 2011-03-16 栗田工業株式会社 Treatment method for fluorine-containing wastewater
JP4858449B2 (en) 2008-01-18 2012-01-18 栗田工業株式会社 Treatment method for fluorine-containing wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233605A (en) * 2008-03-27 2009-10-15 Eco System Akita Kk Treatment method of boron fluoride-containing water
JP2011027722A (en) * 2009-06-24 2011-02-10 Central Res Inst Of Electric Power Ind Method and system of simultaneously measuring bf4- and f-
JP2011104459A (en) * 2009-11-12 2011-06-02 Sumitomo Metal Mining Engineering Co Ltd Waste water treatment method
JP2014200745A (en) * 2013-04-05 2014-10-27 オルガノ株式会社 Method of treating fluorine-containing waste liquid and apparatus of fluorine-containing waste liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106348503A (en) * 2016-10-10 2017-01-25 昆明理工大学 Method for removing high-fluoride-containing wastewater through ultrasonic strengthening
JP2019143530A (en) * 2018-02-20 2019-08-29 いすゞ自動車株式会社 Fuel tank

Also Published As

Publication number Publication date
JPWO2016157452A1 (en) 2018-01-25
KR20170132206A (en) 2017-12-01
JP6728546B2 (en) 2020-07-22
KR102434086B1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP2007130518A (en) Fluorine and/or phosphorus treatment method of chelating agent-containing water, and apparatus
JP4831397B2 (en) Wastewater coagulation sedimentation method
JP4423676B2 (en) Method and apparatus for treating phosphorus-containing water
WO2016157452A1 (en) Method for treating wastewater, and system for treating wastewater
JP4584185B2 (en) Method and apparatus for treating wastewater containing boron
JP4905397B2 (en) Method and apparatus for treating fluorine-containing water
JP5157040B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4661132B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2002292204A5 (en)
JP2017064569A (en) Method and apparatus for treating fluorine-containing wastewater
JP4647640B2 (en) Crystallization reactor and crystallization reaction method
JP2010269309A (en) Boron-containing wastewater treatment method and apparatus
JP2002292204A (en) Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same
JP4678599B2 (en) Treatment method for wastewater containing phosphoric acid
JP5046250B2 (en) Wastewater treatment method
JP6045964B2 (en) Borofluoride ion-containing wastewater treatment method and borofluoride ion-containing wastewater treatment apparatus
JP6467578B2 (en) Method for treating hydrofluoric acid-containing waste liquid
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
KR101273168B1 (en) Treatment process for fluorine compounds containing water
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4190679B2 (en) Method and apparatus for treating phosphorus-containing water
JP2003266083A (en) Treatment method for fluorine-containing wastewater and apparatus therefor
JP5162210B2 (en) Crystallization reactor and crystallization reaction method
JP4601644B2 (en) Crystallization reactor and crystallization reaction method
JP2003024953A (en) Method for treating water containing fluorine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177029308

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15887604

Country of ref document: EP

Kind code of ref document: A1