JP2001129563A - Ph control method of water - Google Patents

Ph control method of water

Info

Publication number
JP2001129563A
JP2001129563A JP31664099A JP31664099A JP2001129563A JP 2001129563 A JP2001129563 A JP 2001129563A JP 31664099 A JP31664099 A JP 31664099A JP 31664099 A JP31664099 A JP 31664099A JP 2001129563 A JP2001129563 A JP 2001129563A
Authority
JP
Japan
Prior art keywords
water
treated
carbon dioxide
dissolving
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31664099A
Other languages
Japanese (ja)
Inventor
Toru Sekiya
透 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP31664099A priority Critical patent/JP2001129563A/en
Publication of JP2001129563A publication Critical patent/JP2001129563A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate the pH control of water to be treated, to reduce apparatus cost and running cost and to prevent the discharge of carbon dioxide to the atmosphere in a pH control method of water for adding a slaked lime aqueous solution to water to be treated to raise the pH of water to be treated and subsequently adding carbonic acid to water to be treated to lower the pH thereof. SOLUTION: Carbonic acid is added to water to be treated by directly dissolving carbon dioxide in water to be treated through a gas permeable membrane. For example, carbon dioxide in a carbon dioxide cylinder 44 is introduced into a carbon dioxide dissolving apparatus using a gas permeable membrane through a carbon dioxide introducing pipe 46 and dissolved in the water to be treated in a carbon dioxide dissolving tank 40 through the gas permeable membrane by the carbon dioxide dissolving device 50.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水道水、一般産業
用水、工業用水、排水等のpH調整方法に関し、さらに
詳述すると、消石灰及び炭酸を用いた水のpH調整方法
に関する。
The present invention relates to a method for adjusting the pH of tap water, general industrial water, industrial water, waste water, and the like, and more particularly, to a method of adjusting the pH of water using slaked lime and carbonic acid.

【0002】[0002]

【従来の技術】図3は従来の水道水製造工程の一例を示
すフロー図である。図中2は緩速攪拌槽、4は凝集沈殿
槽、6は砂濾過槽、8は炭酸水混合槽、10は処理水
槽、12は砂濾過槽6と炭酸水混合槽8との間の配管に
接続された消石灰水溶液添加機構、14は炭酸水混合槽
8に接続された炭酸水添加機構、16は炭酸水混合槽8
と処理水槽10との間の配管に接続されたpH計を示
す。
2. Description of the Related Art FIG. 3 is a flowchart showing an example of a conventional tap water production process. In the figure, 2 is a slow stirring tank, 4 is a coagulation sedimentation tank, 6 is a sand filtration tank, 8 is a carbonated water mixing tank, 10 is a treatment water tank, and 12 is a pipe between the sand filtration tank 6 and the carbonated water mixing tank 8. , A reference numeral 14 denotes a carbonated water mixing mechanism connected to the carbonated water mixing tank 8, and 16 denotes a carbonated water mixing tank 8.
2 shows a pH meter connected to a pipe between the water tank and the treatment water tank 10.

【0003】消石灰水溶液添加機構12は、消石灰水溶
液貯槽18、注入管20及び注入ポンプ22を具備し、
注入ポンプ22の作動により、消石灰水溶液貯槽18内
の消石灰水溶液を注入管20を通して炭酸水混合槽8と
処理水槽10との間の配管を流れる被処理水に添加する
ものである。
The slaked lime aqueous solution adding mechanism 12 includes a slaked lime aqueous solution storage tank 18, an injection pipe 20 and an injection pump 22.
By operating the injection pump 22, the slaked lime aqueous solution in the slaked lime aqueous solution storage tank 18 is added to the water to be treated flowing through the pipe between the carbonated water mixing tank 8 and the treated water tank 10 through the injection pipe 20.

【0004】炭酸水添加機構14は、炭酸ガスボンベ2
4、注入弁26、混合器28、圧力水管30及び注入管
32を具備し、混合器28において圧力水管30からの
水に炭酸ガスボンベ24からの炭酸ガスを加圧下で吹き
込んで溶解させることにより炭酸水を製造し、この炭酸
水を注入管32を通して炭酸水混合槽8内の被処理水に
添加するものである。なお、炭酸水混合槽8には大気開
放管34が連結されている。
[0004] The carbonated water addition mechanism 14 includes a carbon dioxide gas cylinder 2.
4. An injection valve 26, a mixer 28, a pressure water pipe 30 and an injection pipe 32 are provided. In the mixer 28, carbon dioxide from the carbon dioxide gas cylinder 24 is blown into the water from the pressure water pipe 30 under pressure to dissolve the carbon dioxide. Water is produced, and the carbonated water is added to the water to be treated in the carbonated water mixing tank 8 through the injection pipe 32. An open-to-atmosphere pipe 34 is connected to the carbonated water mixing tank 8.

【0005】図3の工程による処理は次のように行われ
る。まず、凝集剤が添加されて急速攪拌槽(図示せず)
で攪拌された被処理水は、緩速攪拌機2に導入されてさ
らに攪拌された後、凝集沈殿槽4、砂濾過槽6で順次処
理される。
[0005] The processing in the process of FIG. 3 is performed as follows. First, a flocculant is added and a rapid stirring tank (not shown)
The water to be treated, which has been stirred in, is introduced into the slow stirrer 2 and further stirred, and then sequentially treated in the coagulation sedimentation tank 4 and the sand filtration tank 6.

【0006】次いで、濾過後の被処理水に消石灰水溶液
添加機構12から消石灰(水酸化カルシウム)の水溶液
が添加される。被処理水に消石灰水溶液を添加するの
は、被処理水のpHを飲料水基準(pH5.8〜8.
6)の範囲に調整するため、及び、被処理水のランゲリ
ア指数を改善するためである。ランゲリア指数とは、水
の腐食性の指標であり、ランゲリア指数の値がプラスで
あると炭酸カルシウムが水中から析出し、マイナスであ
ると炭酸カルシウムが水中に溶解し、ゼロであると析出
も溶解もしない状態であるとされ、水のランゲリア指数
を−1以上とすることにより、配管の腐食を防止できる
とされている。水のランゲリア指数を改善する方法とし
ては、水に消石灰水溶液及び炭酸水を順次添加する方法
が多用されている。
Then, an aqueous solution of slaked lime (calcium hydroxide) is added from the slaked lime aqueous solution adding mechanism 12 to the filtered water to be treated. The reason why the slaked lime aqueous solution is added to the water to be treated is that the pH of the water to be treated is based on drinking water (pH 5.8 to 8.
This is for adjusting to the range of 6) and for improving the Langeria index of the water to be treated. The Langeria index is an index of the corrosiveness of water.If the value of the Langeria index is positive, calcium carbonate precipitates out of water, if negative, calcium carbonate dissolves in water, and if it is zero, the precipitation also dissolves. It is said that the state is not present, and that the corrosion of the piping can be prevented by setting the water's Langelia index to -1 or more. As a method of improving the Langeria index of water, a method of sequentially adding a slaked lime aqueous solution and carbonated water to water is often used.

【0007】その後、被処理水は炭酸水混合槽8に導入
され、ここで被処理水に炭酸水添加機構14から炭酸水
が添加される。被処理水に炭酸水を添加するのは、消石
灰水溶液の添加によって被処理水のpHが高くなりすぎ
た場合に被処理水のpHを低下させるため、及び、被処
理水のランゲリア指数を改善するためである。すなわ
ち、消石灰水溶液の添加によって被処理水のpHは上昇
するが、pHの上昇の程度は水質により大幅に異なり、
緩衝性の低い水質では水道の水質基準であるpH8.6
を超えることもあり、そのような場合は酸を注入してp
Hを再調整することが必要になる。酸としては塩酸や硫
酸を用いることも考えられるが、このような強い酸では
急激なpHの低下を招きやすく、再調整用の酸としては
使用しにくい。これに対し、炭酸は弱い酸であるため急
激なpHの低下はなく、再調整用の酸として非常に適し
ている。また、消石灰は炭酸との反応で炭酸水素カルシ
ウムを生成するが、ランゲリア指数の改善のためには炭
酸水素カルシウムが多いことが望ましく、そのために消
石灰と炭酸が必要とされ、特に消石灰を添加した後に炭
酸を添加するのが炭酸水素カルシウム生成のために好ま
しい。さらに、炭酸の添加により、次の効果が得られ
る。すなわち、被処理水に添加した消石灰水溶液中には
固形の不純物として炭酸カルシウムが含まれることがあ
るが、これを炭酸との反応によって溶解性の炭酸水素カ
ルシウムに変えることにより、水の透明度を高めること
ができる。この場合、被処理水への炭酸水の添加量は、
pH計16で測定した炭酸水混合槽8からの流出水のp
Hに基づいて制御される。
Thereafter, the water to be treated is introduced into the carbonated water mixing tank 8, where the carbonated water is added to the water to be treated from the carbonated water addition mechanism 14. The addition of carbonated water to the water to be treated is intended to lower the pH of the water to be treated when the pH of the water to be treated becomes too high due to the addition of the slaked lime aqueous solution, and to improve the Langerian index of the water to be treated. That's why. In other words, although the pH of the water to be treated rises due to the addition of the slaked lime aqueous solution, the degree of the rise in the pH greatly differs depending on the water quality,
In water quality with low buffering property, pH 8.6 which is a water quality standard of tap water
In such a case, an acid is injected and p
It is necessary to readjust H. It is conceivable to use hydrochloric acid or sulfuric acid as the acid, but such a strong acid tends to cause a sharp drop in pH, and is difficult to use as a reconditioning acid. On the other hand, since carbonic acid is a weak acid, it does not cause a sharp drop in pH, and is very suitable as an acid for readjustment. Also, slaked lime produces calcium bicarbonate by reaction with carbonic acid, but it is desirable that calcium bicarbonate is large in order to improve the Langerian index, and therefore slaked lime and carbonic acid are required, especially after adding slaked lime Addition of carbonic acid is preferred for the production of calcium bicarbonate. Further, the following effects can be obtained by adding carbonic acid. That is, calcium carbonate as a solid impurity may be contained in the slaked lime aqueous solution added to the water to be treated, but by converting this into soluble calcium bicarbonate by reaction with carbonic acid, the transparency of water is increased. be able to. In this case, the amount of carbonated water added to the water to be treated is
pH of effluent from carbonated water mixing tank 8 measured by pH meter 16
It is controlled based on H.

【0008】[0008]

【発明が解決しようとする課題】前述したように、水道
水の製造工程では、被処理水に消石灰水溶液を添加して
被処理水のpHを上昇させた後、さらに炭酸を添加して
被処理水のpHを低下させることが行われる。このよう
な操作は、一般産業用水、工業用水、排水等のpH調整
においても行われる。この場合、被処理水への炭酸の添
加は、従来、図3に示した炭酸水添加機構のように、水
に炭酸ガスを吹き込んで炭酸水を製造した後、この炭酸
水を被処理水に注入することにより行っているが、この
ような炭酸の添加方法は、次のような欠点を有するもの
であった。
As described above, in the process of producing tap water, the pH of the water to be treated is increased by adding an aqueous solution of slaked lime to the water to be treated, and then further adding carbonic acid to the water to be treated. Lowering the pH of the water is performed. Such an operation is also performed in pH adjustment of general industrial water, industrial water, wastewater, and the like. In this case, the addition of carbonic acid to the water to be treated is conventionally performed by blowing carbon dioxide gas into water to produce carbonated water as in the carbonated water addition mechanism shown in FIG. Although the method is performed by injection, such a method of adding carbonic acid has the following disadvantages.

【0009】水に炭酸ガスを吹き込んで溶解させる方
法では、炭酸ガスの水への溶解効率が悪く、また目的と
する量の炭酸ガスを水に溶解することが難しい。そのた
め、被処理水に注入する炭酸水の炭酸濃度を所定値に制
御することが困難であり、その結果、被処理水のpHの
制御が難しくなる。 水に炭酸ガスを吹き込んで溶解させる方法では、炭酸
ガスの水への溶解効率を良くして炭酸水の炭酸濃度を高
めるためには、加圧下で炭酸ガスの溶解操作を行う必要
があり、装置コスト、ランニングコストが高くなる。 炭酸ガスを水に溶解して炭酸水を製造するプロセス
と、それを被処理水に注入するプロセスという2段階の
プロセスを必要とするため、この点でも装置コスト、ラ
ンニングコストが高くなる。 加圧下で製造した炭酸水を常圧下で被処理水に注入し
た場合、注入時に炭酸ガスが大気中に放出される。
In the method of dissolving carbon dioxide by blowing it into water, the efficiency of dissolving carbon dioxide in water is low, and it is difficult to dissolve a desired amount of carbon dioxide in water. Therefore, it is difficult to control the carbonic acid concentration of the carbonated water to be injected into the water to be treated to a predetermined value, and as a result, it becomes difficult to control the pH of the water to be treated. In the method of dissolving carbon dioxide by blowing carbon dioxide into water, it is necessary to perform an operation of dissolving carbon dioxide under pressure in order to improve the efficiency of dissolving carbon dioxide in water and increase the carbon dioxide concentration of carbonated water. Cost and running cost increase. Since a two-stage process is required, a process of dissolving carbon dioxide gas in water to produce carbonated water and a process of injecting the same into the water to be treated, the equipment cost and running cost also increase in this respect. When carbonated water produced under pressure is injected into the water to be treated under normal pressure, carbon dioxide is released into the atmosphere at the time of injection.

【0010】また、被処理水への炭酸の添加方法とし
て、被処理水に消石灰水溶液を注入した後に、炭酸ガス
を被処理水に直接吹き込むことも行われるが、この方法
には前記と同様に、炭酸ガスの被処理水への溶解効率
が悪く、また目的とする量の炭酸ガスを被処理水に溶解
することが難しいため、被処理水のpHの制御が難しい
という問題があった。また、前記と同様に、炭酸ガス
の被処理水への溶解効率を良くするためには加圧下で炭
酸ガスの溶解操作を行う必要があり、装置コスト、ラン
ニングコストが高くなるという問題もあった。
As a method of adding carbonic acid to the water to be treated, a method of injecting an aqueous solution of slaked lime into the water to be treated and then directly blowing carbon dioxide gas into the water to be treated is also performed. In addition, the efficiency of dissolving the carbon dioxide gas in the water to be treated is low, and it is difficult to dissolve a desired amount of carbon dioxide gas in the water to be treated, so that it is difficult to control the pH of the water to be treated. Further, similarly to the above, in order to improve the dissolving efficiency of the carbon dioxide gas in the water to be treated, it is necessary to perform the operation of dissolving the carbon dioxide gas under pressure, and there is a problem that the apparatus cost and the running cost increase. .

【0011】本発明は、前述した事情に鑑みてなされた
もので、被処理水に消石灰水溶液を添加して被処理水の
pHを上昇させた後、被処理水に炭酸を添加して被処理
水のpHを低下させる水のpH調整方法であって、被処
理水のpHの制御が容易であるとともに、装置コスト、
ランニングコストが安く、しかも炭酸ガスが大気中に放
出されることを防止することができる水のpH調整方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and after adding an aqueous solution of slaked lime to the water to be treated to raise the pH of the water to be treated, carbonic acid is added to the water to be treated to be treated. A method for adjusting the pH of water for lowering the pH of water, wherein the pH of the water to be treated is easily controlled, and the cost of the apparatus is reduced.
An object of the present invention is to provide a method for adjusting the pH of water, which has a low running cost and can prevent carbon dioxide from being released into the atmosphere.

【0012】[0012]

【課題を解決するための手段】本発明は、前記目的を達
成するため、被処理水に消石灰水溶液を添加して被処理
水のpHを上昇させた後、被処理水に炭酸を添加して被
処理水のpHを低下させるに当たり、前記被処理水への
炭酸の添加を、被処理水にガス透過膜を介して炭酸ガス
を直接溶解することにより行うことを特徴とする水のp
H調整方法を提供する。
According to the present invention, in order to achieve the above object, an aqueous solution of slaked lime is added to the water to be treated to raise the pH of the water to be treated, and then carbonic acid is added to the water to be treated. In lowering the pH of the water to be treated, the addition of carbonic acid to the water to be treated is carried out by directly dissolving carbon dioxide gas in the water to be treated via a gas permeable membrane.
An H adjustment method is provided.

【0013】ガス透過膜は、膜の一面側に液体、他面側
に気体を接触させた状態で上記気体を膜を介して分子状
態のまま液体に直接溶解するものである。本発明では、
このようなガス透過膜を介して被処理水に炭酸ガスを溶
解するので、通常の曝気操作とは異なり、被処理水への
炭酸ガスの溶解効率をほぼ100%と高くすることがで
き、かつ目的とする量の炭酸ガスを被処理水に溶解する
ことができる。したがって、被処理水のpHの制御が容
易になる。また、炭酸ガスの溶解操作は常圧下で行えば
よく、加圧下で行う必要がないとともに、ガス透過膜を
介しての炭酸ガスの水への溶解という1段階のプロセス
で被処理水に炭酸を添加できるので、装置コスト、ラン
ニングコストを低減することができる。さらに、被処理
水への炭酸ガスの溶解効率はほぼ100%であるため、
炭酸ガス溶解時に炭酸ガスが大気中に放出されることが
ない。
A gas permeable membrane is one in which a liquid is directly in contact with a liquid on one side of the membrane and a gas on the other side of the membrane in a molecular state through the membrane in a molecular state. In the present invention,
Since carbon dioxide is dissolved in the water to be treated through such a gas permeable membrane, the dissolving efficiency of the carbon dioxide in the water to be treated can be increased to almost 100%, unlike a normal aeration operation, and A desired amount of carbon dioxide can be dissolved in the water to be treated. Therefore, the pH of the water to be treated can be easily controlled. In addition, the operation of dissolving carbon dioxide gas may be performed under normal pressure, and it is not necessary to perform the operation under pressure. In addition, carbon dioxide is dissolved in water to be treated in a one-step process of dissolving carbon dioxide gas in water through a gas permeable membrane. Since it can be added, the equipment cost and the running cost can be reduced. Furthermore, since the dissolving efficiency of carbon dioxide in the water to be treated is almost 100%,
Carbon dioxide is not released into the atmosphere when carbon dioxide is dissolved.

【0014】また、ランゲリア指数の改善のために被処
理水に消石灰水溶液と炭酸を添加する際においても、水
質の変化により目的とする炭酸添加量が変化する。さら
に、ランゲリア指数の改善においても、炭酸添加量と共
に被処理水のpHを管理する必要がある。このような場
合においても、水に炭酸ガスを吹き込んで炭酸水を製造
した後、この炭酸水を被処理水に注入する方法では、前
記と同様に被処理水への炭酸添加量及び被処理水のpH
の制御が難しいが、ガス透過膜を介して被処理水に炭酸
ガスを溶解する本発明では、これらの不具合を解消する
ことができる。
[0014] Also, when adding slaked lime aqueous solution and carbonic acid to the water to be treated to improve the Langeria index, the desired amount of carbonic acid changes due to the change in water quality. Furthermore, it is necessary to control the pH of the water to be treated as well as the amount of added carbonic acid in improving the Langeria index. Even in such a case, the method of injecting the carbonated water into the water to be treated after injecting the carbon dioxide gas into the water and then injecting the carbonated water into the water to be treated is the same as described above in terms of the amount of carbon dioxide added to the water to be treated and the water to be treated. PH
However, the present invention in which carbon dioxide is dissolved in water to be treated via a gas permeable membrane can solve these problems.

【0015】本発明で用いるガス透過膜の材質に限定は
なく、炭酸ガスを透過させ、かつ被処理水を透過させな
い膜であればいずれのものでも使用することができる
が、合成樹脂製の多孔質膜や非多孔質膜、例えば、ポリ
エチレン、ポリプロピレン、ポリメチルペンテン等のポ
リオレフィン製の膜、ポリ四フッ化エチレン、ポリフッ
化ビニリデン(PVDF)等のフッ素樹脂製の膜、ポリ
スルホン製の膜、シリコーンゴム製の膜などを好適に用
いることができる。また、ガス透過膜の形状にも制限は
なく、平膜、チューブラー膜、スパイラル膜、中空糸膜
等の任意の形状のものを用いることができる。
The material of the gas permeable membrane used in the present invention is not limited, and any membrane can be used as long as it is permeable to carbon dioxide gas and not permeable to water to be treated. Membrane or non-porous membrane, for example, a membrane made of polyolefin such as polyethylene, polypropylene, polymethylpentene, a membrane made of fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride (PVDF), a membrane made of polysulfone, silicone A rubber film or the like can be suitably used. The shape of the gas permeable membrane is not limited, and any shape such as a flat membrane, a tubular membrane, a spiral membrane, and a hollow fiber membrane can be used.

【0016】[0016]

【発明の実施の形態】次に、図面を参照して本発明の実
施の形態を示すが、本発明は下記例に限定されるもので
はない。図1は本発明を用いた水道水製造工程の一例を
示すフロー図である。図1の製造工程は、図3の製造工
程において、砂濾過槽6と処理水槽10との間に炭酸水
混合槽8に代えて炭酸ガス溶解槽40を設置するととも
に、該炭酸ガス溶解槽40に炭酸水添加機構14に代え
て炭酸ガス溶解機構42を接続したものである。なお、
図1のその他の部分は図3と同じであるため、図1にお
いて図3と同一構成の部分には同一参照符号を付してそ
の説明を省略する。
Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples. FIG. 1 is a flowchart showing an example of a tap water production process using the present invention. The manufacturing process of FIG. 1 is different from the manufacturing process of FIG. 3 in that a carbon dioxide gas dissolving tank 40 is provided between the sand filtration tank 6 and the treated water tank 10 in place of the carbonated water mixing tank 8, and the carbon dioxide gas dissolving tank 40 A carbon dioxide dissolving mechanism 42 is connected in place of the carbonated water adding mechanism 14. In addition,
The other parts in FIG. 1 are the same as those in FIG. 3, and therefore, in FIG. 1, the parts having the same configuration as in FIG.

【0017】炭酸ガス溶解機構42は、炭酸ガスボンベ
44、炭酸ガス導入管46、注入弁48及びガス透過膜
を用いた炭酸ガス溶解装置50を具備し、炭酸ガス溶解
装置50が炭酸ガス溶解槽40内の被処理水中に入れら
れている。炭酸ガス溶解装置50は、具体的には、図2
に模式的に示すように、炭酸ガス導入管46に連結され
た容器52の下部に両端開口の多数本の中空糸膜状のガ
ス透過膜54がU字状に固定された構造を有する。
The carbon dioxide gas dissolving mechanism 42 includes a carbon dioxide gas cylinder 44, a carbon dioxide gas introducing pipe 46, an injection valve 48, and a carbon dioxide gas dissolving device 50 using a gas permeable membrane. In the water to be treated. The carbon dioxide dissolving device 50 is, specifically, shown in FIG.
As schematically shown in FIG. 3, a plurality of hollow fiber membrane-shaped gas permeable membranes 54 having both ends opened are fixed in a U-shape at a lower portion of a container 52 connected to a carbon dioxide gas introducing pipe 46.

【0018】本例の炭酸ガス溶解機構42は、炭酸ガス
ボンベ44内の炭酸ガスを炭酸ガス導入管46を通して
炭酸ガス溶解装置50の容器52内に導入するととも
に、この炭酸ガスを中空糸膜状のガス透過膜54の内部
に流すもので、これにより炭酸ガス溶解槽40内の被処
理水にガス透過膜54を介して炭酸ガスを直接溶解する
ものである。この場合、ガス透過膜54内の炭酸ガスの
圧力は、通常、被処理水の圧力(常圧)より0.1〜
3.0kg/cm2(約0.01〜0.3Pa)程度高
い圧力にすればよい。また、ガス透過膜54内に流す炭
酸ガスの圧力及び流量を調節することにより、被処理水
に溶解する炭酸ガス量を制御することができる。
The carbon dioxide gas dissolving mechanism 42 of the present embodiment introduces the carbon dioxide gas in the carbon dioxide gas cylinder 44 into the container 52 of the carbon dioxide gas dissolving device 50 through the carbon dioxide gas introducing pipe 46, and converts the carbon dioxide gas into a hollow fiber membrane. The gas flows into the gas permeable membrane 54, whereby the carbon dioxide gas is directly dissolved in the water to be treated in the carbon dioxide gas dissolving tank 40 via the gas permeable membrane 54. In this case, the pressure of the carbon dioxide gas in the gas permeable membrane 54 is usually 0.1 to 10 times higher than the pressure of the water to be treated (normal pressure).
The pressure may be as high as about 3.0 kg / cm 2 (about 0.01 to 0.3 Pa). Further, by adjusting the pressure and the flow rate of the carbon dioxide gas flowing through the gas permeable membrane 54, the amount of carbon dioxide dissolved in the water to be treated can be controlled.

【0019】図1の工程による処理は次のように行われ
る。消石灰水溶液添加機構12によって被処理水に消石
灰水溶液を添加するまでの工程は図3の工程と同じであ
る。次いで、図1の工程では、被処理水は炭酸ガス溶解
槽40に導入され、ここで前記のようにして炭酸ガス溶
解機構42によって被処理水にガス透過膜54を介して
炭酸ガスが溶解される。被処理水に炭酸を添加するの
は、前述したのと同様の目的のためである。この場合、
被処理水への炭酸ガスの溶解量は、pH計16で測定し
た炭酸ガス溶解槽40からの流出水のpHに基づいて制
御される。
The processing in the step of FIG. 1 is performed as follows. Steps until the slaked lime aqueous solution is added to the water to be treated by the slaked lime aqueous solution adding mechanism 12 are the same as the steps in FIG. Next, in the step of FIG. 1, the water to be treated is introduced into the carbon dioxide gas dissolving tank 40, where the carbon dioxide gas is dissolved in the water to be treated via the gas permeable membrane 54 by the carbon dioxide gas dissolving mechanism 42 as described above. You. The addition of carbonic acid to the water to be treated is for the same purpose as described above. in this case,
The amount of carbon dioxide dissolved in the water to be treated is controlled based on the pH of the effluent from the carbon dioxide dissolving tank 40 measured by the pH meter 16.

【0020】なお、炭酸ガス溶解装置の構造は図2の構
造に限定されるものではなく、被処理水にガス透過膜を
介して炭酸ガスを直接溶解できるものであればどのよう
な構造であってもよい。また、炭酸ガス溶解装置は炭酸
ガス溶解槽を設けずに配管内に直接設置してもよい。さ
らに、炭酸ガス溶解槽に撹拌機等の撹拌手段を設け、消
石灰と炭酸との反応をより速やかに行わせるようにして
もよい。
The structure of the apparatus for dissolving carbon dioxide gas is not limited to the structure shown in FIG. 2, but may be any structure capable of directly dissolving carbon dioxide gas in the water to be treated via a gas permeable membrane. You may. Further, the carbon dioxide gas dissolving device may be directly installed in the pipe without providing a carbon dioxide gas dissolving tank. Further, a stirring means such as a stirrer may be provided in the carbon dioxide gas dissolving tank so that the reaction between slaked lime and carbonic acid can be performed more quickly.

【0021】また、上述した被処理水への炭酸ガスの溶
解は、消石灰水溶液の添加によって被処理水のpHが高
くなりすぎたときに被処理水のpHを低下させる場合、
及び、被処理水のランゲリア指数を改善する場合におい
て、炭酸ガスの溶解量は異なっても全く同じ操作で行う
ことができる。
The above-mentioned dissolution of carbon dioxide gas in the water to be treated is performed when the pH of the water to be treated is lowered when the pH of the water to be treated becomes too high due to the addition of the slaked lime aqueous solution.
Further, in the case of improving the Langeria index of the water to be treated, the same operation can be performed even if the amount of dissolved carbon dioxide is different.

【0022】[0022]

【発明の効果】以上のように、本発明に係る水のpH調
整方法によれば、被処理水への炭酸ガスの溶解効率をほ
ぼ100%とすることができ、かつ目的とする量の炭酸
ガスを被処理水に溶解することができるので、被処理水
のpHの制御を容易に行うことができる。また、炭酸ガ
スの溶解操作は常圧下で行えばよいとともに、ガス透過
膜を介しての炭酸ガスの水への溶解という1段階のプロ
セスで被処理水に炭酸を添加できるので、装置コスト、
ランニングコストを低減することができる。しかも、被
処理水への炭酸ガスの溶解効率はほぼ100%であるた
め、炭酸ガス溶解時に炭酸ガスが大気中に放出されるこ
とがない。また、ランゲリア指数の改善のために被処理
水に消石灰水溶液と炭酸を添加する際においても、被処
理水への炭酸添加量及び被処理水のpHの制御を容易に
行うことができる。
As described above, according to the method for adjusting the pH of water according to the present invention, the dissolving efficiency of carbon dioxide in the water to be treated can be made almost 100%, and the desired amount of carbon dioxide can be obtained. Since the gas can be dissolved in the water to be treated, the pH of the water to be treated can be easily controlled. In addition, the operation of dissolving the carbon dioxide gas may be performed under normal pressure, and the carbon dioxide can be added to the water to be treated in a one-stage process of dissolving the carbon dioxide gas in water through the gas permeable membrane.
Running costs can be reduced. Moreover, since the dissolving efficiency of carbon dioxide in the water to be treated is almost 100%, the carbon dioxide is not released into the atmosphere when dissolving the carbon dioxide. Also, when adding slaked lime aqueous solution and carbonic acid to the water to be treated for the purpose of improving the Langeria index, the amount of carbonic acid added to the water to be treated and the pH of the water to be treated can be easily controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を用いた水道水製造工程の一例を示すフ
ロー図である。
FIG. 1 is a flowchart showing an example of a tap water production process using the present invention.

【図2】図1の工程で用いた炭酸ガス溶解機構の炭酸ガ
ス溶解装置を模式的に示す図である。
FIG. 2 is a view schematically showing a carbon dioxide gas dissolving device having a carbon dioxide gas dissolving mechanism used in the step of FIG. 1;

【図3】従来の水道水製造工程の一例を示すフロー図で
ある。
FIG. 3 is a flowchart showing an example of a conventional tap water production process.

【符号の説明】[Explanation of symbols]

2 緩速攪拌槽 4 凝集沈殿槽 6 砂濾過槽 8 炭酸水混合槽 10 処理水槽 12 消石灰水溶液添加機構 14 炭酸水添加機構 16 pH計 40 炭酸ガス溶解槽 42 炭酸ガス溶解機構 44 炭酸ガスボンベ 46 炭酸ガス導入管 48 注入弁 50 炭酸ガス溶解装置 52 容器 54 ガス透過膜 2 Slow stirring tank 4 Coagulation sedimentation tank 6 Sand filtration tank 8 Carbonated water mixing tank 10 Treatment water tank 12 Slaked lime aqueous solution addition mechanism 14 Carbonated water addition mechanism 16 pH meter 40 Carbon dioxide gas dissolution tank 42 Carbon dioxide gas dissolution mechanism 44 Carbon dioxide gas cylinder 46 Carbon dioxide gas Inlet pipe 48 Injection valve 50 Carbon dioxide gas dissolving device 52 Container 54 Gas permeable membrane

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/66 510 C02F 1/66 510K 521 521C 530 530C B01F 1/00 B01F 1/00 B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/66 510 C02F 1/66 510K 521 521C 530 530C B01F 1/00 B01F 1/00 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理水に消石灰水溶液を添加して被処
理水のpHを上昇させた後、被処理水に炭酸を添加して
被処理水のpHを低下させるに当たり、前記被処理水へ
の炭酸の添加を、被処理水にガス透過膜を介して炭酸ガ
スを直接溶解することにより行うことを特徴とする水の
pH調整方法。
1. An aqueous solution of slaked lime is added to the water to be treated to raise the pH of the water to be treated, and then carbonic acid is added to the water to be treated to lower the pH of the water to be treated. Wherein the addition of carbonic acid is performed by directly dissolving carbon dioxide gas in the water to be treated via a gas permeable membrane.
JP31664099A 1999-11-08 1999-11-08 Ph control method of water Pending JP2001129563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31664099A JP2001129563A (en) 1999-11-08 1999-11-08 Ph control method of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31664099A JP2001129563A (en) 1999-11-08 1999-11-08 Ph control method of water

Publications (1)

Publication Number Publication Date
JP2001129563A true JP2001129563A (en) 2001-05-15

Family

ID=18079290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31664099A Pending JP2001129563A (en) 1999-11-08 1999-11-08 Ph control method of water

Country Status (1)

Country Link
JP (1) JP2001129563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137224A (en) * 2010-02-12 2010-06-24 Kureha Engineering Co Ltd Method for cleaning water
CN110540282A (en) * 2019-09-20 2019-12-06 上海城市水资源开发利用国家工程中心有限公司 Water pH value adjusting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137224A (en) * 2010-02-12 2010-06-24 Kureha Engineering Co Ltd Method for cleaning water
CN110540282A (en) * 2019-09-20 2019-12-06 上海城市水资源开发利用国家工程中心有限公司 Water pH value adjusting method

Similar Documents

Publication Publication Date Title
JP5954182B2 (en) Cleaning method for separation membrane module
AU2011233096B2 (en) Method for cleaning separation membrane module, and method for fresh water generation
KR101335186B1 (en) Wastewater treatment device and wastewater treatment method
CN103492054B (en) Method for cleaning membrane module
JP6432914B2 (en) Water treatment method and water treatment apparatus
CN106132518B (en) Water treatment method and water treatment device using membrane
US20070068876A1 (en) Sludge treatment method and sludge treatment apparatus
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
WO2000027756A1 (en) Water treating method
CN108793642A (en) A kind of dyeing waste water advanced treatment system and processing method
CN110143664B (en) Micro-nano aeration BAF treatment device and treatment process
JPWO2017149758A1 (en) Membrane filtration apparatus, filtration membrane cleaning method, and filtration membrane manufacturing method
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
EP3587678B1 (en) Water supply management system and method and computer-readable recording medium including instructon for performing the method
JP2009006209A (en) Cleaning method of hollow fiber membrane module
CN208762364U (en) Dyeing waste water advanced treatment system
JP2001129563A (en) Ph control method of water
JP2002177956A (en) Water cleaning method and water cleaning plant
CN109354339A (en) A kind of anaerobic sludge digestion liquid cooperates with the method and system of processing with high-concentration garbage percolate
JP2001129557A (en) Water treatment method
JP3552580B2 (en) Method and apparatus for treating human wastewater
JP2005074386A (en) Method for preparing clear water
JP3534155B2 (en) Pure water production equipment
JP2005246157A (en) Water treatment method and water treatment apparatus
Rahman et al. Pursuing the effect of aeration, pH increment, and H2O2 coupled with UV irradiation on the removal efficiency of manganese by microfilter membrane