JP3871749B2 - Treatment method of flue gas desulfurization waste water - Google Patents

Treatment method of flue gas desulfurization waste water Download PDF

Info

Publication number
JP3871749B2
JP3871749B2 JP32219796A JP32219796A JP3871749B2 JP 3871749 B2 JP3871749 B2 JP 3871749B2 JP 32219796 A JP32219796 A JP 32219796A JP 32219796 A JP32219796 A JP 32219796A JP 3871749 B2 JP3871749 B2 JP 3871749B2
Authority
JP
Japan
Prior art keywords
membrane
cleaning
flue gas
gas desulfurization
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32219796A
Other languages
Japanese (ja)
Other versions
JPH10137542A (en
Inventor
裕之 藤田
圭子 阿部
直樹 松渓
忠 高土居
武 佐藤
清仁 近沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kurita Water Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP32219796A priority Critical patent/JP3871749B2/en
Publication of JPH10137542A publication Critical patent/JPH10137542A/en
Application granted granted Critical
Publication of JP3871749B2 publication Critical patent/JP3871749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排煙脱硫排水の処理方法に関する。さらに詳しくは、本発明は、石炭火力発電所の排煙脱硫排水の、膜を用いた固液分離濃縮工程を伴う処理において、洗浄による膜性能の回復率に優れ、膜の交換頻度を低減することができる排煙脱硫排水の処理方法、及び、さらに洗浄によって発生した洗浄廃液自体の処理を省くことができる排煙脱硫排水の処理方法に関する。
【0002】
【従来の技術】
排煙脱硫排水は、石油、石炭等の燃料を燃焼した際に発生する排煙を、洗煙、脱硫処理したときに生ずる排水であり、硫酸イオン、亜硫酸イオン、カルシウムイオン等のイオン類や石膏等の懸濁物、燃料に由来するCOD成分のほか、鉄、アルミニウム、マンガン、その他重金属等の金属や、ふっ素、シリカ等を含有している。
このような汚染物質を含む排煙脱硫排水を処理するときは、先ず排水中の汚染物質を凝集処理してできるだけ固形分として水中から分離する。固形化せず水中に溶解したままの一部のCOD成分や、除去対象となるイオンは、吸着工程、イオン除去工程、分解処理工程等により除去する。また、CODの対象となる還元性物質、例えば、亜硫酸イオン、マンガンイオン等を除去するために、酸化工程が設けられる。
酸化工程、凝集工程を経た排水は、凝集によって生成したフロックを膜によって分離する。膜分離工程で使用する膜は、処理の継続により膜面が汚染され透過水量(フラックス)が低下する。このため、透過水量が低下したときは、透過水側から処理水を逆流させる逆流洗浄や、洗浄剤を含む液で膜を洗う薬液洗浄が行われる。
従来、一般的な薬液洗浄は、通常、アルカリ液や酸液が用いられたり、これらの液を併用して行われている。ポリ塩化アルミ(PAC)、硫酸バンド、水酸化マグネシウム、塩化第二鉄、消石灰等を排液の凝集中和に用いた場合、濃縮時に発生する懸濁物質(SS)はアルカリ又は鉱酸による溶解が可能である。そのため従来は、膜の薬品洗浄は水酸化ナトリウム等のアルカリや、塩酸等の鉱酸を用いて行われていた。水酸化ナトリウムはシリカを溶解するために40〜60℃に加温し、鉱酸はその他の金属類を溶解するために常温又は加温し膜に接触させる。
しかし、排煙脱硫排水に適用した膜に対しては、アルカリや酸による洗浄効果は十分でなく、通液一定期間ごとに、通常しばしば用いられる水酸化ナトリウムや塩酸、硫酸による洗浄を繰り返すと洗浄回復率が十分でなく、徐々に膜性能が低下し、膜の交換頻度が高くなるという問題点があった。また、通常運転時のフラックス低下速度も早く、薬品洗浄実施の期間も早くなり、装置稼働率の低下、洗浄用薬品量が増大するという問題点もある。さらに薬品洗浄を実施すると洗浄廃液が生成し、洗浄廃液を別途処理する必要が生じ、設備費、薬剤費がかかる等の問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、排煙脱硫排水を酸化、凝集、膜分離により処理する際に、膜の洗浄回復率を高め、薬品洗浄実施の期間を延長して、膜の交換頻度を少なくすることができ、さらに膜の洗浄廃液を容易に処理することができる排煙脱硫排水の処理方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、排煙脱硫排水を酸化、凝集、膜分離した際の膜面の汚染において、膜の性能回復に大きな影響を与えている汚染成分が二酸化マンガンであることを解明し、膜面に沈着した二酸化マンガンは、シュウ酸を含む洗浄液で洗浄することにより除去することができ、さらに洗浄に用いたシュウ酸を含む洗浄廃液は、返送して排煙脱硫排水に混合することにより容易に処理することができることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)排煙脱硫排水を、酸化工程、凝集工程、膜分離工程に通水して処理する排煙脱硫排水の処理方法において、処理の継続によって汚染した膜をシュウ酸を含む水溶液と鉱酸水溶液とを併用して洗浄する又はシュウ酸と鉱酸の混合水溶液で洗浄することを特徴とする排煙脱硫排水の処理方法、及び、
(2)汚染した膜をシュウ酸を含む洗浄液と鉱酸水溶液とを併用して洗浄する又はシュウ酸と鉱酸の混合水溶液で洗浄することにより発生した洗浄廃液を、返送して排煙脱硫排水に混合する第(1)項記載の排煙脱硫排水の処理方法、
を提供するものである。
さらに、本発明の好ましい態様として、
(3)膜分離工程において、精密ろ過膜(MF膜)を使用する第(1)項又は第(2)項記載の排煙脱硫排水の処理方法、
)洗浄液が、シュウ酸0.05〜1重量%と鉱酸3〜15重量%を含む混合水溶液である第(1)〜(3)項記載の排煙脱硫排水の処理方法、
)濃度0.05〜1重量%のシュウ酸水溶液と濃度3〜15重量%の鉱酸水溶液を併用して洗浄する第(1)〜(3)項記載の排煙脱硫排水の処理方法、
)汚染した膜とシュウ酸を含む洗浄液を、常温〜80℃において、1〜数10時間接触せしめる第(1)〜()項記載の排煙脱硫排水の処理方法、及び、
)汚染した膜をさらにアルカリで洗浄する第(1)〜()項記載の排煙脱硫排水の処理方法、
を挙げることができる。
【0005】
【発明の実施の形態】
本発明方法は、火力発電所等の排煙脱硫装置から排出される排煙脱硫排水を、酸化工程、凝集工程、膜分離工程に通水して処理する工程に適用することができる。図1は、本発明の排煙脱硫排水の処理方法の一態様の工程系統図である。
本発明方法において、酸化工程1は、排煙脱硫排水中に含まれているマンガンイオンを酸化し、不溶性の二酸化マンガンを形成することを主たる目的とする。酸化の手段には特に制限はなく、例えば、空気曝気、あるいは、過マンガン酸塩、オゾン、塩素系酸化剤等の添加により行うことができる。図1においては、酸化工程が凝集反応槽2の前に設けられているが、凝集反応槽に酸化剤を添加し、酸化工程と凝集工程を同時に行うことも可能である。
また、マンガンイオンの除去とは関係なく、例えば、排水中の亜硫酸イオンを酸化するために空気曝気する工程を含む場合も、結果的に二酸化マンガンが生成する。また、凝集工程において撹拌のため空気撹拌する場合にも、同様に二酸化マンガンが生成する。本発明における酸化工程は、上述のような二酸化マンガン除去を目的としていない酸化工程であってもよい。
本発明方法において、酸化工程を終了した被処理水は、凝集反応槽2へ送られる。凝集反応槽における凝集工程において、被処理水にpH調整剤、凝集剤等を添加して、被処理水中の懸濁物、フッ素イオン、金属イオン、COD成分の一部等を凝集せしめる。凝集反応槽には、pH計3を備えることが好ましい。pH調整剤の添加により、被処理水中の懸濁物の凝集に適するpHとし、あるいは被処理水中に溶存するイオンが不溶化するpHとすることができる。使用するpH調整剤には特に制限はなく、例えば、水酸化ナトリウム、消石灰等のアルカリや、塩酸、硫酸等の酸を使用することができる。使用する凝集剤には特に制限はなく、例えば、硫酸アルミニウム、ポリ塩化アルミニウム、酸化アルミニウム等のアルミニウム化合物、塩化鉄、硫酸鉄、ポリ鉄等の鉄塩、消石灰、水酸化マグネシウム等の水酸化物、ポリアクリルアミド、その加水分解物、カチオン変性物、ポリアクリル酸等の高分子凝集剤等を、懸濁物の性状に応じて適宜選択して使用することができる。凝集剤の添加量は、被処理水中の除去対象物の量及び性状に応じて設定することができる。
【0006】
本発明方法において、反応凝集槽において凝集工程を終了した被処理水は、循環槽4に送られる。循環槽中の被処理水は、循環ポンプ5を用いて膜分離装置6に送液し、膜分離により凝集工程で生成した凝集フロックを水から分離する。使用する分離膜には特に制限はなく、例えば、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、逆浸透膜(RO膜)、ナノフィルター膜(NF膜)等を凝集フロックの性状に応じて適宜選択して使用することができるが、多くの場合、精密ろ過膜及び限外ろ過膜を好適に使用することができる。膜エレメントの形式には特に制限はなく、例えば、平面膜締め付け型、平面膜スパイラル巻型、管状膜、中空糸膜等を使用することができる。膜分離装置の形式にも特に制限はなく、例えば、外圧式、内圧式あるいは加圧式、減圧式等を適宜選択して使用することができる。
循環槽より循環ポンプにより膜モジュールに送液され、膜を透過した水は処理水として、そのまま又はいったん処理水槽7に入れてさらにpH調整等必要な処理を施した上で排出される。膜モジュールにおいて濃縮された被処理水は、一部は凝集反応槽へ、残部は循環槽へ循環される。凝集反応槽へ濃縮された被処理水を循環することにより、返送された汚泥が凝集反応の種晶となり、大きい、分離性のよいフロックを形成するので好ましい。循環槽へ循環された被処理水は、再度膜モジュールへ供給され、膜による固液分離が繰り返される。膜分離により、通常、数十ないし数百mg/リットルのSSを含む凝集反応槽中の被処理水は、循環槽内の汚泥のSS成分が約2重量%程度になるまで濃縮され、膜を透過した処理水中のSSは1mg/リットル以下となる。
【0007】
本発明方法においては、膜の使用により膜が汚染し、透過水量が低下したとき、膜の洗浄を行う。膜の洗浄は、逆流洗浄及び薬品洗浄によって行う。逆流洗浄は、通常、5分ないし5時間に1回程度行うのが適当であり、例えば、コンプレッサー8から処理水槽7に加圧空気を送り、処理水を加圧して膜の透過側から原水側に向かって供給し、逆流洗浄を行うことができる。逆流洗浄では膜面の汚れを完全に除去することができず、徐々に透過水量が減少するので薬品洗浄を行う。
本発明方法においては、シュウ酸を含む洗浄液で薬品洗浄を行う。シュウ酸を含む洗浄液による薬品洗浄の方法には特に制限はなく、例えば、濃度1〜10重量%のシュウ酸水溶液を用いて洗浄することができ、濃度0.05〜1重量%のシュウ酸水溶液と濃度3〜15重量%の鉱酸水溶液を併用して洗浄することができ、あるいは、シュウ酸0.05〜1重量%と鉱酸3〜15重量%を含む混合水溶液を用いて洗浄することができる。シュウ酸水溶液と鉱酸水溶液を併用する場合、洗浄の順序には制限はなく、シュウ酸水溶液で洗浄したのち鉱酸水溶液で洗浄することができ、あるいは逆に鉱酸水溶液で洗浄したのちシュウ酸水溶液で洗浄することができる。シュウ酸水溶液のみを用いる場合、シュウ酸濃度が1重量%未満であると洗浄効果が小さく、シュウ酸濃度が10重量%を超えると洗浄効果は濃度の上昇に見合っては向上しない。シュウ酸水溶液と鉱酸水溶液を併用する場合あるいはシュウ酸と鉱酸の混合水溶液を用いる場合、シュウ酸濃度が0.05重量%未満であると洗浄効果が小さく、シュウ酸濃度が1重量%を超えると洗浄効果は濃度の上昇に見合っては向上しない。シュウ酸水溶液と併用する鉱酸水溶液の濃度及びシュウ酸と鉱酸の混合水溶液中の鉱酸の濃度は、3重量%未満であると洗浄効果が小さく、15重量%を超えると洗浄効果は濃度の上昇に見合っては向上しない。膜に付着するSS成分には、通常、シュウ酸水溶液に可溶な成分と、鉱酸水溶液に可溶な成分とが混在しているため、洗浄薬剤としてシュウ酸と鉱酸とを混合し、両者を同時に作用させることにより高い洗浄効果を得ることができるので好ましい。
【0008】
本発明方法において、膜の薬品洗浄は膜の原水側へシュウ酸水溶液又はシュウ酸と鉱酸の混合水溶液を充填して行うことができる。膜とシュウ酸水溶液又はシュウ酸と鉱酸の混合水溶液の接触の際の温度は、常温〜80℃とすることが好ましい。接触の際の温度を冷却により常温未満としても特に利点はなく、むしろ洗浄効果が小さくなるおそれがある。一般に膜とシュウ酸水溶液又はシュウ酸と鉱酸の混合水溶液の接触の際の温度を上昇すると洗浄効果は向上するが、80℃を超える温度とする必要は少なく、むしろ膜の劣化をはやめるおそれがある。膜とシュウ酸水溶液又はシュウ酸と鉱酸の混合水溶液の接触時間は、1〜数10時間であることが好ましい。接触時間が1時間未満であると、膜の洗浄が十分に行われないおそれがある。接触時間は数10時間あれば十分であり、接触時間が数10時間を超えても通常は洗浄効果は向上しない。
本発明方法においては、酸洗浄に加えてアルカリ洗浄を行うことができる。アルカリ洗浄はシリカ系スケールの除去に有効であり、膜の汚染物質としてシリカが多い場合に好適に実施することができる。使用するアルカリ洗浄液には特に制限はなく、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液等を使用することができる。アルカリ洗浄液の濃度は、4〜15重量%とすることが好ましい。アルカリ洗浄液は、常温又は加温した状態で、数時間、膜に充填又は循環しながら膜に接触させることが好ましい。本発明方法において、洗浄の順序は、酸洗浄後にアルカリ洗浄でもよく、アルカリ洗浄後に酸洗浄でもよく、特に順序に制限はない。
図1に示した例では、アルカリ洗浄液はアルカリ貯槽9に、鉱酸とシュウ酸との混合酸洗浄液は酸貯槽10に用意される。洗浄に際しては、まずポンプ11を駆動してアルカリ貯槽9のアルカリ洗浄液を膜分離装置6の透過水側に供給し、配管を通ってアルカリ貯槽9に戻り、所定時間アルカリ洗浄液が循環される。次にアルカリ洗浄液を濃縮水側に入れ、循環される。その後、洗浄液は酸洗浄液に切り換えられ、酸貯槽10の酸洗浄液が同様にして酸貯槽10と膜分離装置6との間を循環され、膜を洗浄する。このようにして洗浄すると、排煙脱硫排水特有の膜汚染物質が除去され、膜性能が回復する。
そして、本発明方法の膜洗浄で発生した洗浄廃液は、排煙脱硫排水の処理工程を利用することにより、別途廃液処理装置を設けることなく処理することができる。図1の例において、膜モジュールの洗浄により発生した洗浄廃液は、アルカリ性洗浄廃液をアルカリ貯槽9及び酸性洗浄廃液を酸貯槽10に分けて貯留する。アルカリ性洗浄廃液は、洗浄に用いた水酸化ナトリウム、水酸化カリウム等を含有する。酸性洗浄廃液は、シュウ酸又はシュウ酸及び鉱酸を含有する。洗浄廃液は、ポンプ11により排煙脱硫排水に直接又は凝集反応槽に返送され、排煙脱硫排水と一定の割合で混合される。洗浄廃液の返送量は、膜モジュールの洗浄頻度及び1回の洗浄に使用する洗浄液の量によって決まるが、通常は排煙脱硫排水の数十分の一の量であるので、排煙脱硫排水の処理工程の運転効率を低下させることなく、洗浄廃液を返送することができる。排煙脱硫排水は、通常、返送される洗浄廃液中のシュウ酸を不溶性のシュウ酸カルシウムにするに十分なカルシウムイオンを含有しているが、必要に応じてpH調整に消石灰を用いる等の方法により被処理水にカルシウムイオンを供給することができる。洗浄廃液中のシュウ酸は、排煙脱硫排水の処理工程において中和され、水不溶性のシュウ酸カルシウムとなり、凝集フロックとともに膜分離装置で除去されるのでCOD負荷とならず、シュウ酸除去のための薬剤や工程を必要とせず、洗浄廃液は排煙脱硫排水と同時に処理される。また、洗浄廃液を排煙脱硫排水に混合することにより、フラックスはむしろ安定化する。この作用機構は明らかではないが、洗浄廃液を混合することによって生成するSSの粒子が膜処理に適したものとなるためと考えられる。
本発明方法においては、排煙脱硫排水の処理工程として、必要に応じて、酸化工程、凝集工程及び膜分離以外の任意の処理工程を、任意の段階に加えることができる。例えば、凝集工程で除去することができないイオン性のCOD成分の除去のために、吸着樹脂、活性炭、イオン交換樹脂等を充填した吸着塔を設けることができる。また、要求処理水質によっては、フッ素の除去率を向上させるために、フッ素吸着塔を設けることができ、さらに重金属の除去効果をあげるために、凝集工程において重金属固定剤を併用することができる。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
火力発電所脱硫排水をポリプロピレン製チューブラ精密ろ過膜(内径5.5mm、孔径0.2μm)で処理した。この精密ろ過膜の純水フラックスは、22.4m3/m2・day(at 0.5kg/cm2・25℃)である。また、排水の水質は、pH7.2、CODMn20mg/リットル、SS41mg/リットル、フッ素20mg/リットル、マンガン3.6mg/リットルであった。
原水を酸化工程においてpH8.5で空気酸化したのち、凝集反応槽でポリ塩化アルミニウム及び過マンガン酸カリウムを添加して凝集反応を行い、循環槽に送った。循環槽から循環ポンプを用いて膜モジュールに送液し、膜透過水は処理水として放流した。膜分離条件は、膜面流速2m/s、水温30〜40℃、循環水入口圧力約1kgf/cm2、循環水出口圧力約0.6kgf/cm2、膜透過水量5m3/m2・day(定流量)とした。
処理水の水質は、pH6.9、CODMn18mg/リットル、SS1mg/リットル以下、フッ素4.1mg/リットル、マンガン0.1mg/リットル以下となった。また、循環槽内の汚泥は、SS成分約2重量%まで濃縮された。
この条件で1ケ月運転した膜は、純水フラックス9.0m3/m2・dayとなった。この膜を、8重量%水酸化ナトリウム水溶液を用いて60℃で2時間洗浄し、続いてシュウ酸0.1重量%を溶解した7重量%塩酸を用いて25℃で2時間洗浄した。膜の純水フラックスは21.6m3/m2・dayとなり、膜の回復率は96.4%であった。
実施例2
実施例1に用いたものと同じ条件の精密ろ過膜を用いて、塩酸による洗浄と、シュウ酸水溶液による洗浄を逐次行った。
1ケ月運転後の純水フラックス9.0m3/m2・dayとなった膜を、8重量%水酸化ナトリウム水溶液を用いて60℃で2時間洗浄し、続いて7重量%塩酸を用いて25℃で2時間洗浄し、さらに0.5重量%シュウ酸水溶液を用いて25℃で2時間洗浄した。膜の純水フラックスは22.1m3/m2・dayとなり、膜の回復率は98.7%であった。
参考例
実施例1に用いたものと同じ条件の精密ろ過膜を用いて、シュウ酸水溶液による洗浄を行った。
1ケ月運転後の純水フラックス9.0m3/m2・dayとなった膜を、8重量%水酸化ナトリウム水溶液を用いて60℃で2時間洗浄し、続いて5重量%シュウ酸水溶液を用いて25℃で2時間洗浄した。膜の純水フラックスは21.1m3/m2・dayとなり、膜の回復率は94.2%であった。
比較例1
実施例1に用いたものと同じ条件の精密ろ過膜を用いて、シュウ酸を用いることなく、塩酸による洗浄のみを行った。
1ケ月運転後の純水フラックス9.0m3/m2・dayとなった膜を、8重量%水酸化ナトリウム水溶液を用いて60℃で2時間洗浄し、続いて7.5重量%塩酸を用いて25℃で2時間洗浄した。膜の純水フラックスは19.6m3/m2・dayとなり、膜の回復率は87.5%であった。
実施例1〜2、及び参考例のシュウ酸含む洗浄液を用いた洗浄によると、精密ろ過膜の純水フラックスの回復率が高く、膜の汚染が効率よく除去されているが、洗浄にシュウ酸を用いない比較例1では、精密ろ過膜の純水フラックスの回復率が低い。
実施例4
火力発電所脱硫排水をポリプロピレン製チューブラ精密ろ過膜(内径5.5mm、孔径0.2μm、膜面積0.036m2)で処理した。この精密ろ過膜のフラックスは、12.0m3/m2・d(0.5kgf/cm2、25℃換算)である。また、排水の水質は、pH6.5、CODMn25mg/リットル、SS150mg/リットル、フッ素25mg/リットル、マンガン3.0mg/リットル、カルシウム1,500mg/リットルであった。
排水を酸化工程において空気酸化したのち、反応槽でポリ塩化アルミニウム2,000mg/リットル及び過マンガン酸カリウム6.0mg/リットルを添加し、水酸化ナトリウムによりpHを6.5に調整して凝集反応を行い、循環槽に送った。循環槽から循環ポンプを用いて膜モジュールに送液し、膜透過水は処理水として放流した。膜分離条件は、膜面流速2m/s、水温30〜40℃、循環水入口圧力1.0kgf/cm2、循環水出口圧力0.8kgf/cm2、膜透過水量5m3/m2・d(定流量)とした。膜は、15分間に1回、処理水による10秒間の逆流洗浄を行った。
この条件で1カ月運転したところ、処理水の水質はCODMn19mg/リットル、SS0mg/リットル、フッ素7.5mg/リットル、マンガン0.2mg/リットルであった。なお、循環槽内の汚泥は、SS成分約2重量%まで濃縮された。また、フラックスは6.0m3/m2・dとなり、1日当たりのフラックス低下率は、0.20m3/m2・d2(0.5kgf/cm2、25℃換算)であった。
この膜を、8重量%水酸化ナトリウム水溶液を用いて60℃で5時間洗浄し、純水で置換後、シュウ酸0.1重量%を溶解した7重量%塩酸を用いて25℃で2時間洗浄した。膜のフラックスは、洗浄により12.0m3/m2・dに回復した。この洗浄の際に発生した洗浄廃液のCODMnは、85mg/リットルであった。
この洗浄廃液を、排煙脱硫排水に5容量%の割合で均一に添加しながら、反応槽における凝集反応及び膜分離を継続した。最初の1カ月と同じ条件で処理を行ったところ、処理水の水質はCODMn19mg/リットル、SS0mg/リットル、フッ素7.5mg/リットル、マンガン0.2mg/リットルで、最初の1カ月の処理水の水質と全く同じであった。また、40日後にフラックスが6.0m3/m2・dとなり、この間の1日当たりのフラックス低下率は0.15m3/m2・d2であった。すなわち、1日当たりのフラックスの低下率は、最初の1カ月よりも小さい。
以上の結果から、シュウ酸を含む膜洗浄廃液を排煙脱硫排水に添加し、処理した場合も、処理水質には膜洗浄廃液を添加しない場合と変化がなく、フラックスの低下率が抑制され、フラックスが安定して洗浄頻度が少なくなることが分かった。
【0010】
【発明の効果】
本発明方法によれば、二酸化マンガンのように鉱酸に難溶性のSSを含む排煙脱硫排水の膜処理の膜洗浄において、高い性能回復率を保つことができ、膜の長寿命化、ランニグクコスト低下の効果がある。さらに、膜洗浄廃液を排煙脱硫排水に混合することにより、膜洗浄廃液と排水を同時に処理し、洗浄廃液自体の処理を省くことができ、装置全体の運転効率を高めることができる。さらに、洗浄廃液を排水に混合処理することにより、膜のフラックスが安定する。
【図面の簡単な説明】
【図1】図1は、本発明の排煙脱硫排水の処理方法の一態様の工程系統図である。
【符号の説明】
1 酸化工程
2 凝集反応槽
3 pH計
4 循環槽
5 循環ポンプ
6 膜分離装置
7 処理水槽
8 コンプレッサー
9 アルカリ貯槽
10 酸貯槽
11 ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating flue gas desulfurization waste water. More specifically, the present invention is excellent in the recovery rate of membrane performance by washing and reduces the frequency of membrane replacement in the treatment of flue gas desulfurization effluent from a coal-fired power plant with a solid-liquid separation and concentration step using a membrane. More particularly, the present invention relates to a method for treating flue gas desulfurization wastewater, and a method for treating flue gas desulfurization wastewater that can eliminate the treatment of the washing waste liquid itself generated by washing.
[0002]
[Prior art]
Flue gas desulfurization drainage is drainage generated when smoke, desulfurization treatment is performed on flue gas generated when fuel such as oil and coal is burned. Ions such as sulfate ion, sulfite ion, calcium ion and gypsum In addition to COD components derived from suspensions and fuels, etc., metals such as iron, aluminum, manganese and other heavy metals, fluorine, silica and the like are contained.
When treating flue gas desulfurization waste water containing such pollutants, the pollutants in the waste water are first agglomerated and separated from water as solids as possible. Some COD components that are not solidified but dissolved in water and ions to be removed are removed by an adsorption step, an ion removal step, a decomposition treatment step, and the like. Further, an oxidizing step is provided in order to remove reducing substances that are subject to COD, such as sulfite ions and manganese ions.
The waste water that has passed through the oxidation process and the aggregation process separates flocs generated by the aggregation with a membrane. The membrane used in the membrane separation step is contaminated by the continuation of processing, and the amount of permeated water (flux) decreases. For this reason, when the amount of permeated water is reduced, back-flow cleaning for backflowing the treated water from the permeated water side and chemical cleaning for cleaning the membrane with a liquid containing a cleaning agent are performed.
Conventionally, general chemical cleaning is generally performed using an alkali solution or an acid solution, or using these solutions in combination. When polyaluminum chloride (PAC), sulfuric acid band, magnesium hydroxide, ferric chloride, slaked lime, etc. are used for coagulation neutralization of the effluent, suspended matter (SS) generated during concentration is dissolved by alkali or mineral acid Is possible. Therefore, conventionally, chemical cleaning of the membrane has been performed using an alkali such as sodium hydroxide or a mineral acid such as hydrochloric acid. Sodium hydroxide is heated to 40-60 ° C. to dissolve the silica, and the mineral acid is heated to room temperature or heated to contact other membranes to dissolve other metals.
However, for membranes applied to flue gas desulfurization wastewater, the cleaning effect with alkali or acid is not sufficient, and if washing with sodium hydroxide, hydrochloric acid or sulfuric acid, which is often used, is repeated every fixed period of time, the membrane is washed. There was a problem that the recovery rate was not sufficient, the membrane performance gradually decreased, and the membrane replacement frequency increased. In addition, the flux lowering speed during normal operation is fast, the chemical cleaning period is also shortened, the apparatus operating rate is lowered, and the amount of cleaning chemicals is increased. Further, when chemical cleaning is performed, cleaning waste liquid is generated, and it is necessary to separately process the cleaning waste liquid, which causes problems such as equipment costs and chemical costs.
[0003]
[Problems to be solved by the invention]
The present invention, when treating flue gas desulfurization wastewater by oxidation, agglomeration, membrane separation, increase the membrane cleaning recovery rate, extend the period of chemical cleaning, can reduce the frequency of membrane replacement, Further, it is an object of the present invention to provide a method for treating flue gas desulfurization effluent that can easily treat the waste liquid for washing the membrane.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have greatly affected the performance recovery of the membrane in the contamination of the membrane surface when the flue gas desulfurization wastewater is oxidized, aggregated, and membrane separated. It is clarified that the contaminating component is manganese dioxide, and manganese dioxide deposited on the film surface can be removed by washing with a cleaning solution containing oxalic acid, and the cleaning waste liquid containing oxalic acid used for cleaning is The present inventors have found that it can be easily treated by returning it and mixing it with flue gas desulfurization effluent, and based on this finding, the present invention has been completed.
That is, the present invention
(1) In a method for treating flue gas desulfurization effluent by passing the flue gas desulfurization effluent through an oxidation process, an agglomeration process, and a membrane separation process, an aqueous solution containing oxalic acid and a mineral acid method of processing waste water of flue gas desulfurization, wherein the washing with washing in combination with an aqueous solution or mixed aqueous solution of oxalic acid and a mineral acid and,
(2) Washing the contaminated membrane with a cleaning solution containing oxalic acid and a mineral acid aqueous solution or cleaning with a mixed aqueous solution of oxalic acid and mineral acid , returning the waste wastewater to flue gas desulfurization A method for treating flue gas desulfurization waste water as described in (1),
Is to provide.
Furthermore, as a preferred embodiment of the present invention,
(3) The method for treating flue gas desulfurization waste water according to (1) or (2), wherein a microfiltration membrane (MF membrane) is used in the membrane separation step,
( 4 ) The method for treating flue gas desulfurization waste water according to (1) to (3), wherein the cleaning liquid is a mixed aqueous solution containing 0.05 to 1% by weight of oxalic acid and 3 to 15% by weight of mineral acid,
( 5 ) A method for treating flue gas desulfurization waste water according to any one of (1) to (3), wherein the oxalic acid aqueous solution having a concentration of 0.05 to 1% by weight and the mineral acid aqueous solution having a concentration of 3 to 15% by weight are washed together. ,
( 6 ) The method for treating flue gas desulfurization waste water according to (1) to ( 5 ), wherein the contaminated membrane and a cleaning liquid containing oxalic acid are brought into contact at room temperature to 80 ° C. for 1 to several tens hours.
( 7 ) The method for treating flue gas desulfurization waste water according to (1) to ( 6 ), wherein the contaminated membrane is further washed with alkali,
Can be mentioned.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention can be applied to a process in which flue gas desulfurization effluent discharged from a flue gas desulfurization apparatus such as a thermal power plant is passed through an oxidation process, an aggregation process, and a membrane separation process. FIG. 1 is a process flow diagram of one embodiment of the method for treating flue gas desulfurization waste water of the present invention.
In the method of the present invention, the oxidation step 1 is mainly intended to oxidize manganese ions contained in the flue gas desulfurization waste water to form insoluble manganese dioxide. The oxidation means is not particularly limited, and can be performed by, for example, air aeration or addition of permanganate, ozone, a chlorine-based oxidant, or the like. In FIG. 1, the oxidation step is provided in front of the agglomeration reaction tank 2, but it is also possible to add an oxidizing agent to the agglomeration reaction tank and simultaneously perform the oxidation step and the agglomeration step.
Moreover, regardless of the removal of manganese ions, for example, when a step of air aeration to oxidize sulfite ions in waste water is included, manganese dioxide is produced as a result. Similarly, manganese dioxide is generated when air stirring is used for stirring in the aggregation step. The oxidation step in the present invention may be an oxidation step not aimed at removing manganese dioxide as described above.
In the method of the present invention, the water to be treated that has finished the oxidation step is sent to the agglomeration reaction tank 2. In the agglomeration step in the agglomeration reaction tank, a pH adjuster, a flocculant, and the like are added to the water to be treated to agglomerate suspensions, fluorine ions, metal ions, a part of COD components, and the like in the water to be treated. The aggregation reaction tank is preferably provided with a pH meter 3. By adding a pH adjuster, the pH can be adjusted to be suitable for agglomeration of the suspension in the water to be treated or the pH at which ions dissolved in the water to be treated are insolubilized. There is no restriction | limiting in particular in the pH adjuster to be used, For example, alkalis, such as sodium hydroxide and slaked lime, and acids, such as hydrochloric acid and a sulfuric acid, can be used. There are no particular restrictions on the flocculant used, for example, aluminum compounds such as aluminum sulfate, polyaluminum chloride and aluminum oxide, iron salts such as iron chloride, iron sulfate and polyiron, hydroxides such as slaked lime and magnesium hydroxide Polyacrylamide, its hydrolyzate, cation-modified product, and polymer flocculant such as polyacrylic acid can be appropriately selected and used according to the properties of the suspension. The amount of the flocculant added can be set according to the amount and properties of the removal target in the water to be treated.
[0006]
In the method of the present invention, the water to be treated that has finished the aggregation step in the reaction aggregation tank is sent to the circulation tank 4. The water to be treated in the circulation tank is sent to the membrane separation device 6 using the circulation pump 5, and the aggregated flocs generated in the aggregation process by membrane separation are separated from the water. The separation membrane to be used is not particularly limited. For example, microfiltration membrane (MF membrane), ultrafiltration membrane (UF membrane), reverse osmosis membrane (RO membrane), nanofilter membrane (NF membrane), etc. Although it can select and use suitably according to a property, in many cases, a microfiltration membrane and an ultrafiltration membrane can be used conveniently. There is no restriction | limiting in particular in the form of a membrane element, For example, a planar membrane clamping type | mold, a planar membrane spiral winding type | mold, a tubular membrane, a hollow fiber membrane etc. can be used. There is no restriction | limiting in particular also in the format of a membrane separator, For example, an external pressure type, an internal pressure type, a pressurization type, a pressure reduction type etc. can be selected suitably, and can be used.
The water sent from the circulation tank to the membrane module by a circulation pump and permeated through the film is discharged as treated water as it is or once after being put into the treated water tank 7 and further subjected to necessary treatment such as pH adjustment. Part of the water to be treated concentrated in the membrane module is circulated to the agglomeration reaction tank and the remainder to the circulation tank. By circulating the water to be treated concentrated in the agglomeration reaction tank, the returned sludge becomes a seed crystal for the agglomeration reaction, and a large floc having good separability is formed. The treated water circulated to the circulation tank is supplied again to the membrane module, and solid-liquid separation by the membrane is repeated. By the membrane separation, the water to be treated in the coagulation reaction tank usually containing several tens to several hundred mg / liter of SS is concentrated until the SS component of the sludge in the circulation tank is about 2% by weight. The SS in the permeated treated water is 1 mg / liter or less.
[0007]
In the method of the present invention, when the membrane is contaminated by use of the membrane and the amount of permeated water is reduced, the membrane is washed. The membrane is cleaned by back-flow cleaning and chemical cleaning. Backflow cleaning is usually performed about once every 5 minutes to 5 hours. For example, pressurized air is sent from the compressor 8 to the treated water tank 7 to pressurize the treated water and from the membrane permeate side to the raw water side. Back flow cleaning can be performed. Backflow cleaning cannot completely remove the dirt on the membrane surface, and the amount of permeated water gradually decreases, so chemical cleaning is performed.
In the method of the present invention, chemical cleaning is performed with a cleaning liquid containing oxalic acid. There is no particular limitation on the chemical cleaning method using the cleaning liquid containing oxalic acid. For example, cleaning can be performed using an aqueous oxalic acid solution having a concentration of 1 to 10% by weight, and an aqueous oxalic acid solution having a concentration of 0.05 to 1% by weight. And a mineral acid aqueous solution having a concentration of 3 to 15% by weight, or a mixed aqueous solution containing 0.05 to 1% by weight of oxalic acid and 3 to 15% by weight of a mineral acid. Can do. When using an oxalic acid aqueous solution and a mineral acid aqueous solution in combination, there is no restriction on the order of washing, and after washing with an oxalic acid aqueous solution, it can be washed with a mineral acid aqueous solution, or conversely, after washing with a mineral acid aqueous solution, oxalic acid It can be washed with an aqueous solution. When only the oxalic acid aqueous solution is used, the cleaning effect is small when the oxalic acid concentration is less than 1% by weight, and when the oxalic acid concentration exceeds 10% by weight, the cleaning effect is not improved in accordance with the increase in concentration. When using an oxalic acid aqueous solution and a mineral acid aqueous solution together or when using a mixed aqueous solution of oxalic acid and mineral acid, if the oxalic acid concentration is less than 0.05% by weight, the cleaning effect is small, and the oxalic acid concentration is 1% by weight. If exceeded, the cleaning effect will not improve in proportion to the increase in concentration. When the concentration of the mineral acid aqueous solution used in combination with the oxalic acid aqueous solution and the concentration of the mineral acid in the mixed aqueous solution of oxalic acid and mineral acid is less than 3% by weight, the cleaning effect is small. It does not improve in proportion to the rise in The SS component adhering to the film usually contains a component soluble in the oxalic acid aqueous solution and a component soluble in the mineral acid aqueous solution, so oxalic acid and mineral acid are mixed as a cleaning agent, A high cleaning effect can be obtained by making both act simultaneously, which is preferable.
[0008]
In the method of the present invention, chemical cleaning of the membrane can be performed by filling the raw water side of the membrane with an aqueous oxalic acid solution or a mixed aqueous solution of oxalic acid and mineral acid. The temperature at the time of contact between the membrane and the aqueous oxalic acid solution or the mixed aqueous solution of oxalic acid and mineral acid is preferably from room temperature to 80 ° C. There is no particular advantage even if the temperature at the time of contact is lower than room temperature by cooling, and the cleaning effect may be rather reduced. Generally, increasing the temperature at the time of contact between the membrane and an aqueous solution of oxalic acid or a mixed aqueous solution of oxalic acid and mineral acid improves the cleaning effect, but it is not necessary to set the temperature above 80 ° C., and rather the deterioration of the membrane may be stopped. There is. The contact time between the membrane and the oxalic acid aqueous solution or the mixed aqueous solution of oxalic acid and mineral acid is preferably 1 to several tens of hours. If the contact time is less than 1 hour, the membrane may not be sufficiently cleaned. A contact time of several tens of hours is sufficient, and even if the contact time exceeds several tens of hours, the cleaning effect is usually not improved.
In the method of the present invention, alkali cleaning can be performed in addition to acid cleaning. Alkaline washing is effective for removing silica-based scales, and can be suitably carried out when there is a lot of silica as a membrane contaminant. There is no restriction | limiting in particular in the alkali washing liquid to be used, For example, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, etc. can be used. The concentration of the alkaline cleaning liquid is preferably 4 to 15% by weight. The alkaline cleaning liquid is preferably brought into contact with the membrane while filling or circulating the membrane for several hours at room temperature or in a heated state. In the method of the present invention, the order of washing may be alkali washing after acid washing, or may be acid washing after alkali washing, and the order is not particularly limited.
In the example shown in FIG. 1, the alkali cleaning liquid is prepared in the alkali storage tank 9, and the mixed acid cleaning liquid of mineral acid and oxalic acid is prepared in the acid storage tank 10. In cleaning, first, the pump 11 is driven to supply the alkaline cleaning liquid in the alkaline storage tank 9 to the permeate side of the membrane separation device 6 and return to the alkaline storage tank 9 through a pipe, and the alkaline cleaning liquid is circulated for a predetermined time. Next, the alkaline cleaning liquid is added to the concentrated water side and circulated. Thereafter, the cleaning liquid is switched to the acid cleaning liquid, and the acid cleaning liquid in the acid storage tank 10 is similarly circulated between the acid storage tank 10 and the membrane separation device 6 to clean the membrane. Washing in this way removes membrane contaminants unique to flue gas desulfurization effluent and restores membrane performance.
And the washing | cleaning waste liquid generate | occur | produced by the film | membrane washing | cleaning of this invention method can be processed without providing a waste-liquid processing apparatus separately by utilizing the process process of flue gas desulfurization waste_water | drain. In the example of FIG. 1, the cleaning waste liquid generated by cleaning the membrane module stores the alkaline cleaning waste liquid separately in the alkaline storage tank 9 and the acidic cleaning waste liquid in the acid storage tank 10. The alkaline cleaning waste liquid contains sodium hydroxide, potassium hydroxide and the like used for cleaning. The acidic cleaning waste liquid contains oxalic acid or oxalic acid and mineral acid. The washing waste liquid is returned directly to the flue gas desulfurization effluent by the pump 11 or to the coagulation reaction tank, and is mixed with the flue gas desulfurization effluent at a certain ratio. The amount of cleaning waste liquid returned depends on the frequency of cleaning the membrane module and the amount of cleaning liquid used for one cleaning, but is usually one-tenth of the amount of flue gas desulfurization wastewater. The cleaning waste liquid can be returned without reducing the operation efficiency of the treatment process. The flue gas desulfurization wastewater usually contains enough calcium ions to convert the oxalic acid in the returned cleaning waste liquid into insoluble calcium oxalate, but a method such as using slaked lime to adjust the pH if necessary Thus, calcium ions can be supplied to the water to be treated. Oxalic acid in the washing waste liquid is neutralized in the treatment process of flue gas desulfurization wastewater, becomes water-insoluble calcium oxalate, and is removed by the membrane separator together with the floc floc. The cleaning waste liquid is treated at the same time as the flue gas desulfurization effluent. Moreover, the flux is rather stabilized by mixing the washing waste liquid with the flue gas desulfurization waste water. Although this mechanism of action is not clear, it is considered that SS particles produced by mixing the cleaning waste liquid are suitable for membrane treatment.
In the method of the present invention, as the treatment process of the flue gas desulfurization waste water, any treatment process other than the oxidation process, the aggregation process and the membrane separation can be added to any stage as necessary. For example, an adsorption tower filled with an adsorbent resin, activated carbon, ion exchange resin, or the like can be provided to remove an ionic COD component that cannot be removed in the aggregation step. Further, depending on the required water quality, a fluorine adsorption tower can be provided in order to improve the fluorine removal rate, and a heavy metal fixing agent can be used in combination in the agglomeration step in order to increase the heavy metal removal effect.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Thermal power plant desulfurization effluent was treated with a polypropylene tubular microfiltration membrane (inner diameter 5.5 mm, pore diameter 0.2 μm). The pure water flux of this microfiltration membrane is 22.4 m 3 / m 2 · day (at 0.5 kg / cm 2 · 25 ° C.). The water quality of the wastewater was pH 7.2, COD Mn 20 mg / liter, SS 41 mg / liter, fluorine 20 mg / liter, manganese 3.6 mg / liter.
After raw water was oxidized with air at pH 8.5 in the oxidation step, polyaluminum chloride and potassium permanganate were added in the agglomeration reaction tank to carry out an agglomeration reaction and sent to the circulation tank. The solution was sent from the circulation tank to the membrane module using a circulation pump, and the membrane permeated water was discharged as treated water. The membrane separation conditions were: membrane surface flow rate 2 m / s, water temperature 30-40 ° C., circulating water inlet pressure approximately 1 kgf / cm 2 , circulating water outlet pressure approximately 0.6 kgf / cm 2 , membrane permeate water volume 5 m 3 / m 2 · day. (Constant flow rate).
The water quality of the treated water was pH 6.9, COD Mn 18 mg / liter, SS 1 mg / liter or less, fluorine 4.1 mg / liter, manganese 0.1 mg / liter or less. Further, the sludge in the circulation tank was concentrated to about 2% by weight of the SS component.
The membrane operated for one month under these conditions had a pure water flux of 9.0 m 3 / m 2 · day. The membrane was washed with an 8 wt% aqueous sodium hydroxide solution at 60 ° C. for 2 hours, followed by washing with 7 wt% hydrochloric acid in which 0.1 wt% oxalic acid was dissolved at 25 ° C. for 2 hours. The pure water flux of the membrane was 21.6 m 3 / m 2 · day, and the membrane recovery rate was 96.4%.
Example 2
Using a microfiltration membrane under the same conditions as those used in Example 1, washing with hydrochloric acid and washing with an oxalic acid aqueous solution were sequentially performed.
The membrane having a pure water flux of 9.0 m 3 / m 2 · day after one month of operation was washed with an 8 wt% aqueous sodium hydroxide solution at 60 ° C. for 2 hours, followed by 7 wt% hydrochloric acid. The plate was washed at 25 ° C. for 2 hours, and further washed with a 0.5 wt% aqueous oxalic acid solution at 25 ° C. for 2 hours. The pure water flux of the membrane was 22.1 m 3 / m 2 · day, and the membrane recovery rate was 98.7%.
Reference Example Using a microfiltration membrane under the same conditions as those used in Example 1, washing with an oxalic acid aqueous solution was performed.
The membrane with a pure water flux of 9.0 m 3 / m 2 · day after one month of operation was washed for 2 hours at 60 ° C. with an 8 wt% aqueous sodium hydroxide solution, followed by a 5 wt% oxalic acid aqueous solution. And washed at 25 ° C. for 2 hours. The pure water flux of the membrane was 21.1 m 3 / m 2 · day, and the membrane recovery rate was 94.2%.
Comparative Example 1
Using a microfiltration membrane under the same conditions as those used in Example 1, only washing with hydrochloric acid was performed without using oxalic acid.
The membrane having a pure water flux of 9.0 m 3 / m 2 · day after one month of operation was washed for 2 hours at 60 ° C. with an 8 wt% aqueous sodium hydroxide solution, followed by 7.5 wt% hydrochloric acid. And washed at 25 ° C. for 2 hours. The pure water flux of the membrane was 19.6 m 3 / m 2 · day, and the membrane recovery rate was 87.5%.
According to the cleaning using the cleaning liquid containing oxalic acid in Examples 1 and 2 and the reference example , the recovery rate of the pure water flux of the microfiltration membrane is high, and the contamination of the membrane is efficiently removed. In Comparative Example 1 in which no is used, the recovery rate of the pure water flux of the microfiltration membrane is low.
Example 4
Thermal power plant desulfurization effluent was treated with a polypropylene tubular microfiltration membrane (inner diameter 5.5 mm, pore diameter 0.2 μm, membrane area 0.036 m 2 ). The flux of this microfiltration membrane is 12.0 m 3 / m 2 · d (0.5 kgf / cm 2 , converted to 25 ° C.). The water quality of the wastewater was pH 6.5, COD Mn 25 mg / liter, SS 150 mg / liter, fluorine 25 mg / liter, manganese 3.0 mg / liter, calcium 1,500 mg / liter.
After the waste water is oxidized in the air in the oxidation process, 2,000 mg / liter of polyaluminum chloride and 6.0 mg / liter of potassium permanganate are added in the reaction tank, and the pH is adjusted to 6.5 with sodium hydroxide to cause agglomeration reaction. And sent to the circulation tank. The solution was sent from the circulation tank to the membrane module using a circulation pump, and the membrane permeated water was discharged as treated water. Membrane separation conditions were as follows: membrane surface flow rate 2 m / s, water temperature 30-40 ° C., circulating water inlet pressure 1.0 kgf / cm 2 , circulating water outlet pressure 0.8 kgf / cm 2 , membrane permeate flow rate 5 m 3 / m 2 · d (Constant flow rate). The membrane was backwashed with treated water for 10 seconds once every 15 minutes.
When operating for one month under these conditions, the water quality of the treated water was COD Mn 19 mg / liter, SS 0 mg / liter, fluorine 7.5 mg / liter, and manganese 0.2 mg / liter. In addition, the sludge in a circulation tank was concentrated to about 2 weight% of SS components. The flux was 6.0 m 3 / m 2 · d, and the flux reduction rate per day was 0.20 m 3 / m 2 · d 2 (0.5 kgf / cm 2 , converted to 25 ° C.).
The membrane was washed with an 8 wt% aqueous sodium hydroxide solution at 60 ° C. for 5 hours, replaced with pure water, and then washed with 7 wt% hydrochloric acid in which 0.1 wt% oxalic acid was dissolved at 25 ° C. for 2 hours. Washed. The flux of the film recovered to 12.0 m 3 / m 2 · d by washing. The COD Mn of the cleaning waste liquid generated during this cleaning was 85 mg / liter.
While this washing waste liquid was uniformly added to the flue gas desulfurization effluent at a rate of 5% by volume, the coagulation reaction and membrane separation in the reaction tank were continued. When treated under the same conditions as the first month, the quality of the treated water is COD Mn 19 mg / liter, SS 0 mg / liter, fluorine 7.5 mg / liter, manganese 0.2 mg / liter. The water quality was exactly the same. Further, after 40 days, the flux was 6.0 m 3 / m 2 · d, and the flux reduction rate per day during this period was 0.15 m 3 / m 2 · d 2 . That is, the rate of flux reduction per day is less than the first month.
From the above results, even when the membrane cleaning waste liquid containing oxalic acid is added to the flue gas desulfurization wastewater and treated, there is no change to the treated water quality when the membrane cleaning waste liquid is not added, and the rate of flux reduction is suppressed, It was found that the flux was stable and the cleaning frequency was reduced.
[0010]
【The invention's effect】
According to the method of the present invention, it is possible to maintain a high performance recovery rate in the membrane cleaning of flue gas desulfurization wastewater containing SS that is sparingly soluble in mineral acids such as manganese dioxide. There is an effect of lowering the cost. Furthermore, by mixing the membrane cleaning waste liquid with the flue gas desulfurization waste water, the membrane cleaning waste liquid and the waste water can be treated at the same time, the processing of the cleaning waste liquid itself can be omitted, and the operation efficiency of the entire apparatus can be improved. Furthermore, the flux of the membrane is stabilized by mixing the waste cleaning liquid with the waste water.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of one embodiment of a method for treating flue gas desulfurization waste water of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oxidation process 2 Coagulation reaction tank 3 pH meter 4 Circulation tank 5 Circulation pump 6 Membrane separation device 7 Treated water tank 8 Compressor 9 Alkali storage tank 10 Acid storage tank 11 Pump

Claims (2)

排煙脱硫排水を、酸化工程、凝集工程、膜分離工程に通水して処理する排煙脱硫排水の処理方法において、処理の継続によって汚染した膜をシュウ酸を含む水溶液と鉱酸水溶液とを併用して洗浄する又はシュウ酸と鉱酸の混合水溶液で洗浄することを特徴とする排煙脱硫排水の処理方法。In a method for treating flue gas desulfurization wastewater that passes through an oxidation process, agglomeration process, and a membrane separation process, the flue gas desulfurization wastewater is treated with an aqueous solution containing oxalic acid and an aqueous mineral acid solution. method of processing waste water of flue gas desulfurization, which comprises washing with a mixed aqueous solution of combination with cleaning or oxalic acid and a mineral acid. 汚染した膜をシュウ酸を含む洗浄液と鉱酸水溶液とを併用して洗浄する又はシュウ酸と鉱酸の混合水溶液で洗浄することにより発生した洗浄廃液を、返送して排煙脱硫排水に混合する請求項1記載の排煙脱硫排水の処理方法。 Wash the contaminated membrane with a cleaning solution containing oxalic acid and an aqueous mineral acid solution, or return the cleaning wastewater generated by cleaning with a mixed aqueous solution of oxalic acid and mineral acid and mix it with the flue gas desulfurization effluent. The processing method of the flue gas desulfurization waste water of Claim 1.
JP32219796A 1996-11-18 1996-11-18 Treatment method of flue gas desulfurization waste water Expired - Fee Related JP3871749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32219796A JP3871749B2 (en) 1996-11-18 1996-11-18 Treatment method of flue gas desulfurization waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32219796A JP3871749B2 (en) 1996-11-18 1996-11-18 Treatment method of flue gas desulfurization waste water

Publications (2)

Publication Number Publication Date
JPH10137542A JPH10137542A (en) 1998-05-26
JP3871749B2 true JP3871749B2 (en) 2007-01-24

Family

ID=18141040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32219796A Expired - Fee Related JP3871749B2 (en) 1996-11-18 1996-11-18 Treatment method of flue gas desulfurization waste water

Country Status (1)

Country Link
JP (1) JP3871749B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033237A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for producing pure water
JP2000070685A (en) * 1998-08-27 2000-03-07 Daicel Chem Ind Ltd Metbod for washing solid-liquid separation membrane
JP2001314875A (en) * 2000-05-12 2001-11-13 Tokyo Denki Komusho:Kk Method for treating chemical washing waste liquid of separation membrane
JP4548081B2 (en) * 2004-10-05 2010-09-22 株式会社日立プラントテクノロジー Cleaning method of hollow fiber membrane
JP6202239B2 (en) * 2012-05-25 2017-09-27 三菱ケミカル株式会社 Waste water treatment apparatus and waste water treatment method
JP6052041B2 (en) * 2013-04-25 2016-12-27 Jfeエンジニアリング株式会社 Waste water treatment method and waste water treatment equipment
CN103288177B (en) * 2013-06-20 2014-08-27 天津膜天膜科技股份有限公司 Continuous membrane filtration system and water treatment method
CN103611391B (en) 2013-12-12 2016-01-20 北京博源恒升高科技有限公司 Glycols composite solution removes the method for SOx in gas
CN105948327A (en) * 2016-06-26 2016-09-21 福建碧蓝环保股份公司 Wastewater zero discharging treatment integrated equipment
CN107032547A (en) * 2017-06-07 2017-08-11 北京清新环境技术股份有限公司 A kind of SO3Removing and the charging integrated apparatus and method of desulfurization wastewater zero-emission
JP6811162B2 (en) * 2017-11-20 2021-01-13 Ihi運搬機械株式会社 Water treatment method and equipment
CN110421130A (en) * 2019-06-04 2019-11-08 重庆大学 The efficient separation method of sulphur in a kind of coal-fired flue-gas wet desulphurization gypsum
KR20210112997A (en) 2020-03-06 2021-09-15 도레이첨단소재 주식회사 method for cleaning membrane
CN112225239A (en) * 2020-09-10 2021-01-15 河南华慧有色工程设计有限公司 Method for producing and co-processing flue gas desulfurization waste liquid by sodium-alkali method through aluminum oxide

Also Published As

Publication number Publication date
JPH10137542A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
KR20060114333A (en) Installation and method for the purification of an aqueous effluent by means of oxidation and membrane filtration
JP2001149950A (en) Water treating method and water treating device
JP3319053B2 (en) Treatment method for fluoride-containing water
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JPH1199389A (en) Treatment of water containing organic component and manganese
JPH10180008A (en) Membrane separation device
JP3944973B2 (en) Reverse osmosis membrane treatment method
JP2002355683A (en) Ultrapure water making method and apparatus
JP3575238B2 (en) Water treatment method containing organic components and manganese
JP3697800B2 (en) Wastewater treatment method
JPH0975925A (en) Treatment of flue gas desulfurization waste water
JP3829364B2 (en) Wastewater aggregation treatment method
JP3546906B2 (en) Thermal power plant wastewater treatment equipment
JP3356928B2 (en) Operating method of water treatment equipment using immersion type membrane filtration device
JP6650817B2 (en) Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter
JPH11277060A (en) Apparatus for treating water containing manganese
JP4061671B2 (en) Thermal power plant wastewater treatment method
JPH11165179A (en) Method for treating fluorine-containing water
JPH1094787A (en) Membrane separation device
JP3630126B2 (en) Method of treating water containing fluorine and manganese ions
KR19980083856A (en) Recycling method of wastewater by electrodialysis and reverse osmosis membrane and its device
JP3340311B2 (en) Operating method of water treatment equipment using immersion type membrane filtration device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees