JP3546906B2 - Thermal power plant wastewater treatment equipment - Google Patents

Thermal power plant wastewater treatment equipment Download PDF

Info

Publication number
JP3546906B2
JP3546906B2 JP20543196A JP20543196A JP3546906B2 JP 3546906 B2 JP3546906 B2 JP 3546906B2 JP 20543196 A JP20543196 A JP 20543196A JP 20543196 A JP20543196 A JP 20543196A JP 3546906 B2 JP3546906 B2 JP 3546906B2
Authority
JP
Japan
Prior art keywords
water
wastewater
membrane
thermal power
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20543196A
Other languages
Japanese (ja)
Other versions
JPH1028994A (en
Inventor
忠 高土居
武 佐藤
清仁 近沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP20543196A priority Critical patent/JP3546906B2/en
Publication of JPH1028994A publication Critical patent/JPH1028994A/en
Application granted granted Critical
Publication of JP3546906B2 publication Critical patent/JP3546906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電所排水の処理装置に関する。さらに詳しくは、本発明は、膜分離装置を有する火力発電所排水の処理装置において、非定常排水を処理しても膜フラックスの安定を維持し、膜の洗浄頻度を少なくし、洗浄に要する時間、工数及び薬品使用量を低減することができる火力発電所排水の処理装置に関する。
【0002】
【従来の技術】
火力発電所排水には、常時排出される排煙脱硫排水、純水装置再生排水、復水脱塩再生排水、灰処理ブロー排水、分析室排水などの定常排水と、発電所装置の補修などで数ケ月ないし数十カ月に一度、一時的に排出されるエアヒータ水洗排水、ガス−ガスヒータ水洗排水、電気集塵機水洗排水などの非定常排水とがある。火力発電所では、日常発生する定常排水を処理するための排水処理装置を利用して、非定常排水をも処理している。
定常排水は、凝集反応槽において、排水中のSS、フッ素、重金属類、CODなどの除去のために、アルミニウム化合物、鉄化合物、カルシウム化合物などの凝集剤を添加するとともに、pHを5〜8に調整して溶解金属を不溶化し、凝集処理を行う。凝集反応槽で生成した固形分の分離に、設置面積の削減と処理効率の改善のために、膜分離装置が実用化されつつある。凝集反応槽から流出する水を循環槽に導き、ポンプにより膜分離装置へ圧送し、膜を透過した処理水を得るとともに、膜を透過しない固形分を含む濃縮水を循環槽に返送する。この膜分離操作を継続すると、循環槽内の濃縮水のSS濃度は次第に上昇し、SSが高濃度になると膜分離装置の膜面ケーキの付着厚みが増し、その抵抗のために透過水量(膜フラックス)が減少する。そのため、循環槽内の濃縮水を適時に排出し、SS濃度として、0.5〜10重量%程度に保持している。排出された濃縮水は、シックナーで沈降分離し、上澄水は凝集反応槽へ返送し、濃縮汚泥は脱水機により処理して脱水ケーキとする。
このような定常排水処理に対して、非定常排水を処理する場合は、非定常排水中に含まれる2価の鉄イオンやニッケルイオンを不溶化するために、pHを8〜11まで上げて膜分離を行うが、pHが8を超えると膜面汚染が促進され、膜フラックスの低下が早く、薬品洗浄を頻繁に行うことが必要となる。また、高pHに調整した非定常排水が混入すると、あるいは、非定常排水処理後に定常排水に切り換えてpH中性処理を行うと、汚泥中の鉄、ニッケル、アルミニウムなどの一部が溶解し、処理水の水質を悪化させるので、排水処理装置内の循環水の全量を脱水処分したのち、非定常排水又は定常排水を受け入れる必要があるなどの煩雑さがあった。
【0003】
【発明が解決しようとする課題】
本発明は、膜分離装置を使用する火力発電所排水の処理において、膜フラックスを低下させることなく、定常排水処理用の装置を利用して、鉄、ニッケルなどを含む非定常排水をも安定して処理することができる火力発電所排水の処理装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、非定常排水をpH調整槽においてpH8〜11に調整し、固液分離装置において濃縮汚泥を分離し、分離水を定常排水の凝集反応槽に供給することにより、定常排水から非定常排水に切り換えるとき、膜フラックスの安定を維持し、処理水の水質を良好に保ったまま、定常排水処理用の装置を利用して非定常排水を処理し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、(A)火力発電所において発生する定常排水が供給される凝集反応槽、(B)凝集反応槽で生成した固形分を分離して処理水を得る膜分離装置、(C)膜分離装置の濃縮水が供給されて分離水と濃縮汚泥とに分けられる固液分離装置、(D)該濃縮汚泥を脱水する脱水機、及び(E)該分離水を前記の凝集反応槽に返送する返送管を有する火力発電所排水の処理装置において、(F)火力発電所において発生する非定常排水が供給され、pHを8〜11に調整するpH調整槽、及び(G)該pH調整された水を前記固液分離装置に供給する連絡配管を設けたことを特徴とする火力発電所排水の処理装置を提供するものである。
【0005】
【発明の実施の形態】
本発明装置は、火力発電所において発生する定常排水及び非定常排水の処理に適用することができる。図1は、本発明装置の一態様の工程系統図である。
火力発電所の定常排水は、凝集反応槽1に導入し、pH調整剤及び凝集剤を添加して凝集処理を行う。pH調整剤としては、酸又はアルカリを用い、凝集に適したpH、通常は5〜8に調整する。火力発電所の定常排水は、通常は酸性であるので、pH調整には、水酸化ナトリウム、水酸化カリウム、消石灰などのアルカリを使用する。凝集剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、硫酸第一鉄、塩化第二鉄、消石灰、塩化カルシウム、マグネシウム化合物などの無機凝集剤を好適に使用することができる。必要に応じて、アルギン酸ナトリウム、カルボキシメチルセルロース、ポリアクリルアミドの部分加水分解物の塩などのアニオン性高分子凝集剤、ポリエチレンイミン、ポリチオ尿素、ポリジメチルジアリルアンモニウムクロライドなどのカチオン性高分子凝集剤、ポリアクリルアミドなどのノニオン性高分子凝集剤などを用いて、分離性を改善することができる。これらの凝集剤は、1種を単独で使用することができ、2種以上を組み合わせて使用することができる。
図1において、凝集反応槽は1基として示されているが、凝集反応槽を2基設けてpH調整を2段階に行い、第1段でpH4.5〜6に調整し、第2段でpH6〜8に調整することができる。pH調整を2段階に行うことにより、生成するフロックが細かくなり、膜分離装置の膜面を傷つけるおそれがなく、膜フラックスが安定する。
凝集反応槽には、濃縮水の一部を返送し、添加することができる。濃縮水を添加することにより、濃縮水中に含まれる固形物が凝集反応槽における反応の核となり、生成するフロックが密度の高いフロックとなって、膜による分離性が向上し、膜フラックスが安定する。濃縮水中の固形物濃度は0.5〜10重量%程度であることが好ましく、固形物濃度が0.5重量%未満であると、反応の核としての効果が小さく、固形物濃度が10重量%を超えると、膜面におけるケーキ生成量が増大して、膜フラックス低下が早くなる。
【0006】
pH調整と凝集処理を行った水は、循環槽2へ移し入れ、循環ポンプ3により膜分離装置4に圧送する。使用する分離膜には特に制限はなく、例えば、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、逆浸透膜(RO膜)、ナノフィルター膜(NF膜)などを、凝集フロックの性状に応じて適宜選択して使用することができるが、多くの場合、精密ろ過膜又は限外ろ過膜を好適に使用することができる。膜エレメントの形式には特に制限はなく、例えば、平面膜締め付け型、平面膜スパイラル巻型、管状膜、中空糸膜などを使用することができる。膜分離装置の形式にも特に制限はなく、例えば、外圧式、内圧式あるいは加圧式、減圧式などを適宜選択して使用することができる。膜分離装置は、処理水又は加圧空気などにより適宜逆洗を行い、逆洗と透過を繰り返し行う。また、ある一定期間を経過して、膜フラックスが低下した場合には、酸やアルカリなどを用いて薬品洗浄を行う。膜分離装置から得られる透過水は、処理水として放流することができ、あるいは必要に応じて、高度処理や水回収に供することができる。
濃縮水は、固形分濃度を0.5〜10重量%程度に保持するために、一部を固液分離装置5に排出し、分離水と濃縮汚泥に分離する。使用する固液分離装置は、濃縮水をさらに濃縮することができるものであれば特に制限はなく、例えば、沈殿濃縮槽、傾斜板付き沈殿器、遠心分離型濃縮器などを使用することができる。固液分離装置で得られる濃縮汚泥は、脱水機6により脱水し、脱水ケーキとして処分する。使用する脱水機には特に制限はなく、例えば、真空ろ過機、フィルタープレス、ベルトプレス、遠心ろ過機、スクリュープレスなどを使用することができる。固液分離装置で得られる分離水は、返送管7を通じて凝集反応槽に返送する。
【0007】
本発明装置において、火力発電所の非定常排水は、定常排水と同時に処理することができ、あるいは定常排水の処理を停止して、非定常排水のみを処理することができる。定常排水と非定常排水を同時に処理する場合は、定常排水及び非定常排水それぞれの流入量を適宜調節することが好ましい。非定常排水は、pH調整槽8に導入し、pHを8〜11に調整する。火力発電所における非定常排水は通常は酸性であるので、pH調整剤としては、例えば、水酸化ナトリウム、水酸化カリウム、消石灰などを使用することができる。非定常排水が2価の鉄を含む場合はpH8〜9程度に調整することが好ましく、ニッケルを含む場合はpH9.5〜11程度に調整することが好ましい。pH調整槽においては、必要に応じて、アルギン酸ナトリウム、カルボキシメチルセルロース、ポリアクリルアミドの部分加水分解物の塩などのアニオン性高分子凝集剤、ポリエチレンイミン、ポリチオ尿素、ポリジメチルジアリルアンモニウムクロライドなどのカチオン性高分子凝集剤、ポリアクリルアミドなどのノニオン性高分子凝集剤などを添加することができる。
pH調整を終えた非定常排水は、連絡配管9を通じて固液分離装置5に供給する。非定常排水を定常排水と同時に処理する場合は、固液分離装置には膜分離装置の濃縮水の一部が排出されるので、pH調整を終えた非定常排水と濃縮水の混合物について固液分離処理し、上澄水を返送管7を通じて凝集反応槽1に送る。定常排水の処理を停止して、非定常排水のみを処理する場合は、pH調整を終えた非定常排水を固液分離装置に供給し、固液分離処理した上澄水を凝集反応槽1に送る。凝集反応槽に送られた固液分離装置の上澄水は、定常排水と同様にpH調整剤及び凝集剤を添加し、非定常排水にも含まれるフッ素、重金属などを不溶化する。本発明装置は、従来の火力発電所の定常排水の処理装置に、pH調整槽及び固液分離装置への連絡配管を付設したものであり、大規模な設備を増設することなく、定常排水と非定常排水の同一設備による処理を可能とする。
本発明装置によれば、火力発電所の定常排水と非定常排水を、同一の処理装置を用いて、同時に又は別々に処理して、良好な水質を有する処理水を安定して得ることができる。また、膜分離装置の膜フラックスが安定するので、薬品洗浄頻度が少なくなり、洗浄に要する時間、工数及び薬品使用量を低減することができる。
【0008】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
容量10リットルの凝集反応槽、容量20リットルの循環槽、膜面積0.036m、内径5.5mm、孔径0.2μmのポリプロピレン製チューブラ膜を備えた膜分離装置を連結した排水処理装置を用い、循環膜面流速2m/秒で膜分離しつつ、排水の処理を行った。
濃縮水側平均圧力(A)、処理水側圧力(B)、透過水量及び水温を測定し、25℃、有効圧力(A−B)0.5kg/cm換算のフラックス(m/m・日)を算出した。また、膜を透過した処理水について、鉄及びアルミニウムの濃度を測定した。
まず、定常排水である排煙脱硫排水(水質:pH5.6、SS43mg/リットル、CODMn35mg/リットル、鉄3.6mg/リットル、ニッケル1mg/リットル以下)を凝集反応槽に連続供給し、ポリ塩化アルミニウムを1,000mg/リットルになるよう添加し、水酸化ナトリウムによりpHを6.5に調整し、通水速度200リットル/日で、72時間の連続通水を行った。
次いで、通水時間72時間目から120時間目まで、定常排水の通水速度を180リットル/日として処理を継続する一方、非定常排水であるエアヒータ排水(水質:pH3.5、鉄310mg/リットル、ニッケル1mg/リットル以下)のpHを水酸化ナトリウムにより8.8に調整し、沈殿槽で静置した上澄水(水質:pH8.8、鉄1mg/リットル以下、ニッケル1mg/リットル以下)を、通水速度20リットル/日で凝集反応槽に供給した。
換算フラックスは、通水開始時20.0m/m・日、通水24時間目19.9m/m・日、通水48時間目19.7m/m・日、通水72時間目19.5m/m・日、通水74時間目19.5m/m・日、通水120時間目19.1m/m・日であった。また、処理水中の鉄及びアルミニウム濃度は、すべて1mg/リットル以下であった。
比較例1
通水時間72時間目から120時間目まで、非定常排水であるエアヒータ排水のpHを8.8に調整し、沈澱槽で静置することなくそのまま通水した以外は、実施例1と同じ操作を繰り返した。
換算フラックスは、通水開始時20.0m/m・日、通水24時間目19.8m/m・日、通水48時間目19.7m/m・日、通水72時間目19.5m/m・日、通水74時間目19.1m/m・日、通水120時間目17.2m/m・日であった。また、処理水中の鉄濃度は、通水72時間目まではすべて1mg/リットル以下であったが、通水74時間目に2.5mg/リットルとなり、通水120時間目には再び1mg/リットル以下となった。処理水中のアルミニウム濃度は、通水72時間目まではすべて1mg/リットル以下であったが、通水74時間目に3.7mg/リットルとなり、通水120時間目に4.0mg/リットルとなった。
実施例2
一般排水(水質:pH3.1、SS50mg/リットル、CODMn12mg/リットル、鉄3.5mg/リットル、ニッケル1mg/リットル以下)に、塩化第二鉄を500mg/リットルになるよう添加し、水酸化ナトリウムによりpH6.5に調整し、実施例1と同じ装置、同じ条件で72時間の連続通水を行った。
次いで、一般排水の通水を停止し、通水時間72時間目から120時間目までは、非定常排水であるエアヒータ排水(水質:pH3.0、SS800mg/リットル、鉄2,000mg/リットル、ニッケル40mg/リットル)のpHを水酸化ナトリウムにより10.5に調整し、沈殿槽で静置した上澄水(水質:pH10.5、鉄1mg/リットル以下、ニッケル1mg/リットル以下)を、通水速度200リットル/日で凝集反応槽に供給した。
換算フラックスは、通水開始時21.5m/m・日、通水24時間目21.3m/m・日、通水48時間目21.0m/m・日、通水72時間目20.7m/m・日、通水74時間目20.7m/m・日、通水120時間目20.5m/m・日であった。また、処理水中の鉄及びニッケル濃度は、すべて1mg/リットル以下であった。
比較例2
通水時間72時間目から120時間目まで、非定常排水であるエアヒータ排水を処理することなくそのまま凝集反応槽に供給し、凝集反応槽内の水のpHを水酸化ナトリウムにより10.5に調整した以外は、実施例2と同じ操作を繰り返した。
換算フラックスは、通水開始時21.5m/m・日、通水24時間目21.3m/m・日、通水48時間目21.0m/m・日、通水72時間目20.7m/m・日、通水74時間目17.0m/m・日、通水120時間目14.0m/m・日であった。また、処理水中の鉄濃度は、通水72時間目まではすべて1mg/リットル以下であったが、通水74時間目に5.5mg/リットルとなり、通水120時間目には再び1mg/リットル以下となった。処理水中のニッケル濃度は、通水72時間目まではすべて1mg/リットル以下であったが、通水74時間目に2.5mg/リットルとなり、通水120時間目には再び1mg/リットル以下となった。
実施例1、比較例1、実施例2及び比較例2について、換算フラックスの値を第1表に、処理水水質を第2表に示す。
【0009】
【表1】

Figure 0003546906
【0010】
【表2】
Figure 0003546906
【0011】
非定常排水のpHを8.8又は10.5に調整し、沈澱槽で静置した上澄水を凝集反応槽に供給する本発明装置によれば、定常排水のみの処理から定常排水と非定常排水の混合処理に切り替えた実施例1においても、また定常排水の処理を停止して非定常排水のみの処理に切り換えた実施例2においても、換算フラックスは安定しており、処理水の水質も良好である。
これに対して、沈澱槽における固液分離を行うことなく、直ちに凝集反応槽に供給した比較例1及び比較例2においては、非定常排水に切り換えると換算フラックスが低下し、また、切り換え直後に、鉄、アルミニウム、ニッケルが溶出している。換算フラックスが低下するのは、非定常排水中の汚染物質を除去するのに好適な高pHにすると、膜面汚染が促進されるpH領域となるためと考えられる。また、非定常排水への切り換え直後に金属分が溶出するのは、pH調整した非定常排水に排水処理装置内に残留していた定常排水が混合してpHが低くなり、金属が溶解したためと考えられる。
【0012】
【発明の効果】
本発明装置によれば、火力発電所の定常排水と非定常排水を同一の装置を用いて処理し、良好な水質を有する処理水を安定して得ることができる。また、膜分離装置の膜フラックスが安定するので、薬品洗浄の頻度が少なくなり、洗浄に要する時間、工数及び薬品使用量を低減し、経済的に排水処理装置を運転することができる。
【図面の簡単な説明】
【図1】
図1は、本発明装置の一態様の工程系統図である。
【符号の説明】
1 凝集反応槽
2 循環槽
3 循環ポンプ
4 膜分離装置
5 固液分離装置
6 脱水機
7 返送管
8 pH調整槽
9 連絡配管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal power plant wastewater treatment apparatus. More specifically, the present invention relates to a thermal power plant wastewater treatment device having a membrane separation device, which maintains the stability of membrane flux even when treating unsteady wastewater, reduces the frequency of membrane cleaning, and reduces the time required for cleaning. The present invention relates to a thermal power plant wastewater treatment apparatus capable of reducing man-hours and chemical consumption.
[0002]
[Prior art]
Thermal power station wastewater includes regular wastewater such as flue gas desulfurization wastewater, reclaimed wastewater reclaimed wastewater, reclaimed condensate desalinated reclaimed wastewater, ash treatment blowoff water, analysis room drainage, and repair of power plant equipment. There are unsteady drains such as an air heater flush drain, a gas-gas heater flush drain, and an electric dust collector flush drain that are temporarily discharged once every few months to several tens of months. In thermal power plants, unsteady wastewater is also treated using a wastewater treatment device for treating steady wastewater that occurs daily.
For the steady drainage, a coagulant such as an aluminum compound, an iron compound, or a calcium compound is added in the coagulation reaction tank to remove SS, fluorine, heavy metals, COD, and the like in the drainage water, and the pH is adjusted to 5 to 8. Adjustment is performed to make the dissolved metal insoluble, and a coagulation treatment is performed. In order to reduce the installation area and improve the processing efficiency for separating solids generated in the agglutination reaction tank, a membrane separation device is being put to practical use. The water flowing out of the coagulation reaction tank is guided to a circulation tank, and is pumped to a membrane separation device by a pump to obtain treated water that has passed through the membrane, and also returns concentrated water containing solids that do not pass through the membrane to the circulation tank. When this membrane separation operation is continued, the SS concentration of the concentrated water in the circulation tank gradually increases, and when the SS concentration becomes high, the adhesion thickness of the cake on the membrane surface of the membrane separation device increases. Flux). Therefore, the concentrated water in the circulation tank is discharged at an appropriate time, and the SS concentration is maintained at about 0.5 to 10% by weight. The discharged concentrated water is settled and separated by a thickener, the supernatant water is returned to the coagulation reaction tank, and the concentrated sludge is treated by a dehydrator to form a dewatered cake.
When treating unsteady wastewater with respect to such steady wastewater treatment, in order to insolubilize divalent iron ions and nickel ions contained in the unsteady wastewater, the pH is increased to 8 to 11 to perform membrane separation. When the pH exceeds 8, film surface contamination is promoted, the film flux decreases quickly, and frequent chemical cleaning is required. In addition, when the unsteady wastewater adjusted to a high pH is mixed, or when the pH is neutralized by switching to the steady wastewater after the unsteady wastewater treatment, a part of the iron, nickel, and aluminum in the sludge is dissolved, Since the quality of the treated water is deteriorated, it is necessary to dehydrate the entire amount of the circulating water in the wastewater treatment apparatus and then to receive the unsteady wastewater or the steady wastewater.
[0003]
[Problems to be solved by the invention]
The present invention, in the treatment of thermal power plant wastewater using a membrane separation device, without lowering the membrane flux, utilizing a device for steady-state wastewater treatment, to stabilize unsteady wastewater containing iron, nickel, etc. It is an object of the present invention to provide a thermal power plant wastewater treatment apparatus capable of treating wastewater.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, adjusted the unsteady wastewater to pH 8 to 11 in a pH adjustment tank, separated concentrated sludge in a solid-liquid separation device, and When switching from steady wastewater to unsteady wastewater by supplying the wastewater to the coagulation reaction tank, use the equipment for steady wastewater treatment while maintaining the stability of the membrane flux and keeping the quality of the treated water good. It has been found that the unsteady wastewater can be treated, and based on this finding, the present invention has been completed.
That is, the present invention provides (A) a coagulation reaction tank to which steady wastewater generated in a thermal power plant is supplied, (B) a membrane separation device for separating solids generated in the coagulation reaction tank to obtain treated water, A) a solid-liquid separator in which concentrated water of a membrane separation device is supplied and separated into separated water and concentrated sludge; (D) a dehydrator for dehydrating the concentrated sludge; (F) a non-stationary wastewater generated in the thermal power plant, a pH adjusting tank for adjusting the pH to 8 to 11, and (G) the pH adjusting tank. An object of the present invention is to provide a thermal power plant wastewater treatment device, which is provided with a communication pipe for supplying conditioned water to the solid-liquid separation device.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
INDUSTRIAL APPLICABILITY The apparatus of the present invention can be applied to the treatment of steady drainage and unsteady drainage generated in a thermal power plant. FIG. 1 is a process flow diagram of one embodiment of the apparatus of the present invention.
The stationary wastewater from the thermal power plant is introduced into the coagulation reaction tank 1, and a coagulation treatment is performed by adding a pH adjuster and a coagulant. As a pH adjuster, an acid or an alkali is used, and the pH is adjusted to a pH suitable for aggregation, usually 5 to 8. Since the regular wastewater from a thermal power plant is usually acidic, an alkali such as sodium hydroxide, potassium hydroxide, slaked lime or the like is used for pH adjustment. As the flocculant, for example, an inorganic flocculant such as a sulfate band, polyaluminum chloride, ferrous sulfate, ferric chloride, slaked lime, calcium chloride, and a magnesium compound can be suitably used. If necessary, sodium alginate, carboxymethylcellulose, anionic polymer flocculants such as salts of partial hydrolyzate of polyacrylamide, cationic polymer flocculants such as polyethyleneimine, polythiourea, polydimethyldiallylammonium chloride, poly The separability can be improved by using a nonionic polymer flocculant such as acrylamide. One of these coagulants can be used alone, or two or more thereof can be used in combination.
In FIG. 1, the number of agglutination reaction tanks is shown as one, but two agglutination reaction tanks are provided to adjust the pH in two stages, the pH is adjusted to 4.5 to 6 in the first stage, and the pH is adjusted in the second stage. The pH can be adjusted to 6-8. By performing the pH adjustment in two stages, the generated flocs become finer, and there is no risk of damaging the membrane surface of the membrane separation device, and the membrane flux is stabilized.
A part of the concentrated water can be returned to the flocculation reaction tank and added. By adding the concentrated water, solids contained in the concentrated water become nuclei of the reaction in the coagulation reaction tank, and the generated flocs become high-density flocs, thereby improving separability by the membrane and stabilizing the membrane flux. . The concentration of the solid in the concentrated water is preferably about 0.5 to 10% by weight. When the concentration of the solid is less than 0.5% by weight, the effect as a reaction core is small, and the concentration of the solid is 10% by weight. %, The amount of cake formed on the film surface increases, and the film flux decreases rapidly.
[0006]
The water that has been subjected to the pH adjustment and the coagulation treatment is transferred to the circulation tank 2 and is pumped to the membrane separation device 4 by the circulation pump 3. The separation membrane to be used is not particularly limited. For example, a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a reverse osmosis membrane (RO membrane), a nanofilter membrane (NF membrane), etc. Can be appropriately selected and used according to the properties of the microfiltration. In many cases, a microfiltration membrane or an ultrafiltration membrane can be suitably used. The type of the membrane element is not particularly limited, and for example, a flat membrane fastening type, a flat membrane spiral winding type, a tubular membrane, a hollow fiber membrane, and the like can be used. The type of the membrane separation device is not particularly limited, and for example, an external pressure type, an internal pressure type, a pressurized type, a depressurized type, or the like can be appropriately selected and used. The membrane separation device appropriately performs back washing with treated water or pressurized air, and repeats back washing and permeation. If the film flux decreases after a certain period, chemical cleaning is performed using an acid or an alkali. The permeated water obtained from the membrane separation device can be discharged as treated water, or can be subjected to advanced treatment and water recovery as required.
Part of the concentrated water is discharged to the solid-liquid separation device 5 in order to maintain the solid concentration at about 0.5 to 10% by weight, and separated into separated water and concentrated sludge. The solid-liquid separator to be used is not particularly limited as long as it can further concentrate the concentrated water. . The concentrated sludge obtained by the solid-liquid separation device is dehydrated by the dehydrator 6 and disposed as a dehydrated cake. The dehydrator used is not particularly limited, and for example, a vacuum filter, a filter press, a belt press, a centrifugal filter, a screw press, and the like can be used. Separated water obtained by the solid-liquid separation device is returned to the flocculation reaction tank through the return pipe 7.
[0007]
In the apparatus of the present invention, the unsteady wastewater from the thermal power plant can be treated simultaneously with the steady wastewater, or the treatment of the steady wastewater can be stopped and only the unsteady wastewater can be treated. When treating the steady drainage and the unsteady drainage at the same time, it is preferable to appropriately adjust the inflow amounts of the steady drainage and the unsteady drainage. The unsteady drainage is introduced into the pH adjusting tank 8 to adjust the pH to 8-11. Since unsteady wastewater in a thermal power plant is usually acidic, for example, sodium hydroxide, potassium hydroxide, slaked lime, or the like can be used as the pH adjuster. When the unsteady wastewater contains divalent iron, the pH is preferably adjusted to about 8 to 9, and when it contains nickel, the pH is preferably adjusted to about 9.5 to 11. In the pH adjusting tank, if necessary, anionic polymer flocculants such as sodium alginate, carboxymethylcellulose, salts of partial hydrolyzate of polyacrylamide, and cationic agents such as polyethyleneimine, polythiourea, and polydimethyldiallylammonium chloride. A polymer flocculant, a nonionic polymer flocculant such as polyacrylamide and the like can be added.
The unsteady drainage after the pH adjustment is supplied to the solid-liquid separator 5 through the communication pipe 9. When treating unsteady wastewater at the same time as steady wastewater, part of the concentrated water from the membrane separator is discharged to the solid-liquid separator. After the separation treatment, the supernatant water is sent to the flocculation reaction tank 1 through the return pipe 7. When the treatment of the stationary wastewater is stopped and only the unsteady wastewater is treated, the unsteady wastewater after the pH adjustment is supplied to the solid-liquid separator, and the supernatant water subjected to the solid-liquid separation treatment is sent to the coagulation reaction tank 1. . The supernatant water of the solid-liquid separation device sent to the coagulation reaction tank is added with a pH adjuster and a coagulant similarly to the stationary wastewater to insolubilize fluorine, heavy metals, and the like also contained in the unsteady wastewater. The apparatus of the present invention is a conventional apparatus for treating steady-state wastewater of a thermal power plant, which is provided with a connection pipe to a pH adjustment tank and a solid-liquid separation device. Enables treatment of unsteady drainage by the same equipment.
According to the device of the present invention, the steady wastewater and the unsteady wastewater of the thermal power plant can be treated simultaneously or separately using the same treatment device, and the treated water having good water quality can be stably obtained. . Further, since the membrane flux of the membrane separation device is stabilized, the frequency of chemical cleaning is reduced, and the time required for cleaning, the number of steps, and the amount of chemical used can be reduced.
[0008]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Using a wastewater treatment apparatus connected to a 10 liter agglutination reaction tank, a 20 liter circulation tank, a membrane separation apparatus equipped with a polypropylene tubular membrane having a membrane area of 0.036 m 2 , an inner diameter of 5.5 mm, and a pore diameter of 0.2 μm. The wastewater was treated while separating the membrane at a circulating membrane surface flow rate of 2 m / sec.
The concentrated water side average pressure (A), the treated water side pressure (B), the permeated water amount and the water temperature were measured, and the flux (m 3 / m 2 ) at 25 ° C. and the effective pressure (A−B) of 0.5 kg / cm 2 was measured.・ Day) was calculated. Further, the concentrations of iron and aluminum were measured for the treated water that had passed through the membrane.
First, flue gas desulfurization wastewater (water quality: pH 5.6, SS 43 mg / liter, COD Mn 35 mg / liter, iron 3.6 mg / liter, nickel 1 mg / liter or less), which is steady wastewater, is continuously supplied to the coagulation reaction tank. Aluminum chloride was added to a concentration of 1,000 mg / liter, the pH was adjusted to 6.5 with sodium hydroxide, and continuous water flow was performed at a water flow rate of 200 liter / day for 72 hours.
Next, from the 72nd hour to the 120th hour of the water passage time, the treatment is continued at a constant water flow rate of 180 liters / day, while the air heater wastewater (water quality: pH 3.5, iron 310 mg / liter), which is unsteady wastewater , Nickel 1 mg / l or less) was adjusted to 8.8 with sodium hydroxide, and the supernatant water (water quality: pH 8.8, iron 1 mg / l or less, nickel 1 mg / l or less) left standing in the sedimentation tank, The water was supplied to the coagulation reaction tank at a flow rate of 20 liters / day.
The converted flux was 20.0 m 3 / m 2 · day at the start of water flow, 19.9 m 3 / m 2 · day at 24 hours of water flow, 19.7 m 3 / m 2 · day at 48 hours of water flow, 72 hours, 19.5 m 3 / m 2 · day, 74 hours of water passage, 19.5 m 3 / m 2 · day, 120 hours of water passage, 19.1 m 3 / m 2 · day. The concentrations of iron and aluminum in the treated water were all 1 mg / liter or less.
Comparative Example 1
The same operation as in Example 1 except that the pH of the air heater drainage, which was unsteady drainage, was adjusted to 8.8 from the 72th to 120th hour of the water passage time, and the water was passed as it was without standing in the sedimentation tank. Was repeated.
The converted flux was 20.0 m 3 / m 2 · day at the start of water flow, 19.8 m 3 / m 2 · day at 24 hours of water flow, 19.7 m 3 / m 2 · day at 48 hours of water flow, and water flow At 72 hours, 19.5 m 3 / m 2 · day, at 74 hours of water passage, 19.1 m 3 / m 2 · day, and at 120 hours of water passage, 17.2 m 3 / m 2 · day. The iron concentration in the treated water was 1 mg / L or less in all cases up to the 72nd hour of water passage, but became 2.5 mg / L in the 74th hour of water passage, and again 1 mg / L in the 120th hour of water passage. It was as follows. The aluminum concentration in the treated water was all 1 mg / liter or less up to the 72nd hour of passing water, but it was 3.7 mg / liter at the 74th hour of passing water and 4.0 mg / liter at the 120th hour of passing water. Was.
Example 2
Ferric chloride was added to general wastewater (water quality: pH 3.1, SS 50 mg / L, COD Mn 12 mg / L, iron 3.5 mg / L, nickel 1 mg / L or less) to a concentration of 500 mg / L, and hydroxylated. The pH was adjusted to 6.5 with sodium, and continuous water flow was performed for 72 hours in the same apparatus and under the same conditions as in Example 1.
Then, the flow of the general wastewater was stopped, and the air heater wastewater (water quality: pH 3.0, SS 800 mg / liter, iron 2,000 mg / liter, nickel 2,000 mg / liter, nickel The pH of water (40 mg / liter) was adjusted to 10.5 with sodium hydroxide, and the supernatant water (water quality: pH 10.5, iron 1 mg / liter or less, nickel 1 mg / liter or less), which had been allowed to stand in the sedimentation tank, was passed through at a flow rate of 200 liters / day were fed to the agglutination reactor.
The converted flux is 21.5 m 3 / m 2 · day at the start of water flow, 21.3 m 3 / m 2 · day at 24 hours of water flow, 21.0 m 3 / m 2 · day at 48 hours of water flow, 72 hours 20.7m 3 / m 2 · day, water flow 74 hours 20.7m 3 / m 2 · day were water passage 120 hours 20.5m 3 / m 2 · day. The concentrations of iron and nickel in the treated water were all 1 mg / liter or less.
Comparative Example 2
From 72 hours to 120 hours of water flow, the air heater wastewater, which is unsteady wastewater, is supplied to the coagulation reaction tank without treatment, and the pH of the water in the coagulation reaction tank is adjusted to 10.5 with sodium hydroxide. The same operation as in Example 2 was repeated, except that it was performed.
The converted flux is 21.5 m 3 / m 2 · day at the start of water flow, 21.3 m 3 / m 2 · day at 24 hours of water flow, 21.0 m 3 / m 2 · day at 48 hours of water flow, It was 20.7 m 3 / m 2 · day at 72 hours, 17.0 m 3 / m 2 · day at 74 hours, and 14.0 m 3 / m 2 · day at 120 hours. The iron concentration in the treated water was 1 mg / liter or less in all cases up to the 72nd hour of water passage, but became 5.5 mg / liter in the 74th hour of water passage, and again 1 mg / liter in the 120th hour of water passage. It was as follows. The nickel concentration in the treated water was 1 mg / liter or less in all cases up to the 72th hour of passing water, but was 2.5 mg / liter in the 74th hour of passing water, and again 1 mg / liter or less in the 120th hour of passing water. became.
For Example 1, Comparative Example 1, Example 2, and Comparative Example 2, the values of the reduced flux are shown in Table 1, and the quality of the treated water is shown in Table 2.
[0009]
[Table 1]
Figure 0003546906
[0010]
[Table 2]
Figure 0003546906
[0011]
According to the apparatus of the present invention in which the pH of the unsteady wastewater is adjusted to 8.8 or 10.5 and the supernatant water left standing in the sedimentation tank is supplied to the flocculation reaction tank, the treatment from the steady wastewater only to the steady wastewater and the unsteady wastewater are performed. In Example 1 in which the treatment was switched to the wastewater mixing treatment, and in Example 2 in which the treatment of the stationary wastewater was stopped and switched to the treatment of only the unsteady wastewater, the reduced flux was stable and the quality of the treated water was low. Good.
On the other hand, in Comparative Examples 1 and 2 which were immediately supplied to the flocculation reaction tank without performing solid-liquid separation in the precipitation tank, the conversion flux decreased when switching to the unsteady drainage, and immediately after the switching, , Iron, aluminum and nickel are eluted. The reason why the reduced flux is reduced is considered to be that a high pH suitable for removing contaminants in the unsteady wastewater results in a pH region where membrane surface contamination is promoted. In addition, the reason why the metal component elutes immediately after switching to the unsteady wastewater is that the pH is lowered due to the mixing of the steady wastewater remaining in the wastewater treatment device with the pH-adjusted unsteady wastewater and the dissolution of the metal. Conceivable.
[0012]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the apparatus of this invention, the steady drainage and the unsteady drainage of a thermal power plant are treated using the same apparatus, and the treated water which has favorable water quality can be obtained stably. Further, since the membrane flux of the membrane separation device is stabilized, the frequency of chemical cleaning is reduced, the time required for cleaning, the number of steps and the amount of chemicals used are reduced, and the wastewater treatment device can be operated economically.
[Brief description of the drawings]
FIG.
FIG. 1 is a process flow diagram of one embodiment of the apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coagulation reaction tank 2 Circulation tank 3 Circulation pump 4 Membrane separation device 5 Solid-liquid separation device 6 Dehydrator 7 Return pipe 8 pH adjustment tank 9 Communication pipe

Claims (1)

(A)火力発電所において発生する定常排水が供給される凝集反応槽、(B)凝集反応槽で生成した固形分を分離して処理水を得る膜分離装置、(C)膜分離装置の濃縮水が供給されて分離水と濃縮汚泥とに分けられる固液分離装置、(D)該濃縮汚泥を脱水する脱水機、及び(E)該分離水を前記凝集反応槽に返送する返送管を有する火力発電所排水の処理装置において、(F)火力発電所において発生する非定常排水が供給され、pHを8〜11に調整するpH調整槽、及び(G)該pH調整された水を前記固液分離装置に供給する連絡配管を設けたことを特徴とする火力発電所排水の処理装置。(A) a coagulation reaction tank to which steady wastewater generated in a thermal power plant is supplied; (B) a membrane separation device that separates solids generated in the coagulation reaction tank to obtain treated water; and (C) concentration of the membrane separation device. It has a solid-liquid separation device to which water is supplied and separated into separated water and concentrated sludge, (D) a dehydrator for dewatering the concentrated sludge, and (E) a return pipe for returning the separated water to the flocculation reaction tank. In the thermal power plant wastewater treatment apparatus, (F) a non-stationary wastewater generated in the thermal power plant is supplied, and a pH adjusting tank for adjusting the pH to 8 to 11; A thermal power plant wastewater treatment device, comprising a communication pipe for supplying a liquid separation device.
JP20543196A 1996-07-15 1996-07-15 Thermal power plant wastewater treatment equipment Expired - Fee Related JP3546906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20543196A JP3546906B2 (en) 1996-07-15 1996-07-15 Thermal power plant wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20543196A JP3546906B2 (en) 1996-07-15 1996-07-15 Thermal power plant wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH1028994A JPH1028994A (en) 1998-02-03
JP3546906B2 true JP3546906B2 (en) 2004-07-28

Family

ID=16506756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20543196A Expired - Fee Related JP3546906B2 (en) 1996-07-15 1996-07-15 Thermal power plant wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP3546906B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4981726B2 (en) * 2008-03-21 2012-07-25 メタウォーター株式会社 Aggregation-membrane filtration method
JP2011139985A (en) * 2010-01-06 2011-07-21 Chugoku Electric Power Co Inc:The Sludge dehydration system
JP5358495B2 (en) * 2010-03-23 2013-12-04 中国電力株式会社 Waste water management device and waste water management method
JP6133190B2 (en) * 2013-10-09 2017-05-24 菱冷環境エンジニアリング株式会社 Oil removal device and oil removal method for oil-containing wastewater
JP6610158B2 (en) * 2015-10-19 2019-11-27 栗田工業株式会社 Method and apparatus for producing pure water

Also Published As

Publication number Publication date
JPH1028994A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JPS5916515B2 (en) Treatment method for added water and generated wastewater for cooling water circulation system and steam circulation system of thermal power plant
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3546906B2 (en) Thermal power plant wastewater treatment equipment
CN107540161A (en) High pure and ultra-fine modified calcium carbonate produces the processing method and processing system of waste water
CN110818168A (en) Smoke washing wastewater zero-discharge technical treatment system and method
RU2530041C1 (en) Method of purifying industrial waste water
JP6657720B2 (en) Steam power plant wastewater recovery method and device
JPH10180008A (en) Membrane separation device
CN114075011B (en) Treatment method and system for clean wastewater of coal-to-methanol process
JP3829364B2 (en) Wastewater aggregation treatment method
CN114873857A (en) System and method for recycling and standard-reaching discharge of carbon dodecyl alcohol ester wastewater
JP7149129B2 (en) Silica-containing water treatment method and treatment apparatus
JP4061671B2 (en) Thermal power plant wastewater treatment method
CN112939368A (en) Circulating water sewage treatment and recycling method with high desalting rate
JPH1119696A (en) Treatment of sludge waste water and water purifier
JP2002166263A (en) Water recovery utilization system
JPH1157710A (en) Device for treating waste water with membrane
JPH1015533A (en) Treatment method for drain of thermal power station
CN111051253A (en) Apparatus and method for treating silica-containing water
JP3951373B2 (en) Waste water treatment apparatus and method, water purification treatment facility
JPH0649197B2 (en) Organic wastewater treatment method
JP3697529B2 (en) Membrane-based wastewater treatment method and water purification apparatus
CN216427235U (en) Silicon chip cutting fluid resource utilization device
KR100398420B1 (en) A Removal Method of Organics in Zn-Cr Eletroplating Wastewater
JP2005007246A (en) Treatment method for organic waste water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees