JP4981726B2 - Aggregation-membrane filtration method - Google Patents

Aggregation-membrane filtration method Download PDF

Info

Publication number
JP4981726B2
JP4981726B2 JP2008073185A JP2008073185A JP4981726B2 JP 4981726 B2 JP4981726 B2 JP 4981726B2 JP 2008073185 A JP2008073185 A JP 2008073185A JP 2008073185 A JP2008073185 A JP 2008073185A JP 4981726 B2 JP4981726 B2 JP 4981726B2
Authority
JP
Japan
Prior art keywords
water
tank
membrane
flocculant
filtration method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008073185A
Other languages
Japanese (ja)
Other versions
JP2009226285A (en
Inventor
和徳 伊藤
直樹 村田
均 米川
光一 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008073185A priority Critical patent/JP4981726B2/en
Publication of JP2009226285A publication Critical patent/JP2009226285A/en
Application granted granted Critical
Publication of JP4981726B2 publication Critical patent/JP4981726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、浄水処理のほか、下水再生水処理、海水淡水化前処理などに用いられる凝集−膜ろ過方法に関するものである。   The present invention relates to a flocculation-membrane filtration method used for sewage reclaimed water treatment, seawater desalination pretreatment, etc., in addition to water purification treatment.

浄水処理の分野では長年にわたり砂ろ過が用いられてきたが、最近では砂ろ過よりも除去性能が安定し、砂ろ過では除去できなかった原虫などの微生物をも確実に除去することができる膜ろ過が普及しつつある。しかし膜ろ過では原水中のSS等により膜の細孔が詰まってしまう膜ファウリングが発生し、膜ろ過流束が次第に低下することが避けられない。そこで分離膜の逆洗頻度を高めたり、薬品を使用して分離膜を洗浄するなどの対策が実施されているが、これらは設備の稼働率を低下させる原因となるので、できるだけ頻度を低下させることが望ましい。   Sand filtration has been used for many years in the field of water purification, but recently it has more stable removal performance than sand filtration and membrane filtration that can reliably remove protozoa and other microorganisms that could not be removed by sand filtration. Is spreading. However, in membrane filtration, membrane fouling that clogs the pores of the membrane due to SS in the raw water occurs, and it is inevitable that the membrane filtration flux gradually decreases. Therefore, measures such as increasing the frequency of backwashing of the separation membrane and cleaning the separation membrane with chemicals are being implemented, but these cause the operating rate of the equipment to decrease, so the frequency should be reduced as much as possible. It is desirable.

またこれとともに、膜分離の前処理である凝集処理条件を検討することによって、膜ファウリングを抑制することも行われている。その手法は、適正注入法とスイープフロキュレーション法とに大別される。   Along with this, membrane fouling is also suppressed by examining the agglomeration treatment conditions, which are pretreatments for membrane separation. The method is roughly divided into a proper injection method and a sweep flocculation method.

適正注入法はAL/T比(凝集剤中のAL量と原水の濁度との比)を0.05〜0.2程度の適正比になるように原水濁度に応じて凝集剤の注入量を制御する方法である。この方法は凝集剤の注入量を少なくすることができるが、その反面、原水中の汚濁物を完全に凝集させることができないため、汚濁物質の除去効果が低く、また膜ファウリングの抑制効果も低いいという欠点がある。   The appropriate injection method controls the injection amount of the flocculant according to the raw water turbidity so that the AL / T ratio (the ratio of the AL amount in the flocculant and the turbidity of the raw water) is an appropriate ratio of about 0.05 to 0.2. Is the method. This method can reduce the injection amount of the flocculant, but on the other hand, since the pollutants in the raw water cannot be completely agglomerated, the effect of removing pollutants is low and the effect of suppressing membrane fouling is also low. There is a disadvantage that it is low.

一方、スイープフロキュレーション法は凝集剤を適正注入法よりも多め(AL/T比が0.2以上)に注入し、微細な粒子を取込んでフロック化し易くする方法である。原水中の微小な粒子をマイクロフロック化できるので汚濁物質の除去効果が高いだけでなく、膜ファウリングの抑制にも有効である。しかしその反面、凝集剤の注入量が多くなってランニングコストが高くなるという欠点がある。   On the other hand, the sweep flocculation method is a method in which a larger amount of the flocculant than the proper injection method (AL / T ratio is 0.2 or more) is injected, and fine particles are taken in and easily flocculated. Since micro particles in the raw water can be converted into micro flocs, not only is the contaminant removal effect high, but it is also effective in suppressing membrane fouling. On the other hand, however, there is a disadvantage that the amount of the flocculant injected increases and the running cost increases.

このように、適正注入法とスイープフロキュレーション法には一長一短があるが、通常は膜ファウリングの抑制効果に優れたスイープフロキュレーション法が採用されており、ランニングコストの増加を招いていた。   As described above, the proper injection method and the sweep flocculation method have their merits and demerits, but usually the sweep flocculation method that is excellent in the suppression effect of membrane fouling is adopted, which causes an increase in running cost. .

このため、凝集処理と膜分離とを効果的に組み合わせ、凝集剤の注入量を抑制しつつ膜ファウリングの抑制と処理水質の向上を図ることが求められている。そこで特許文献1に示すように、反応槽の内部に凝集剤を貯留させることによって凝集剤の注入量を抑制する提案がなされている。とくにその図2に示される例では、槽外設置された分離膜でクロスフローろ過を行った濃縮水(膜返送水)を反応槽に返送し、凝集剤の有効利用を図っている。   For this reason, it is required to effectively combine agglomeration treatment and membrane separation, and to suppress membrane fouling and improve the quality of treated water while suppressing the injection amount of the aggregating agent. Therefore, as shown in Patent Document 1, a proposal has been made to suppress the injection amount of the flocculant by storing the flocculant inside the reaction tank. In particular, in the example shown in FIG. 2, concentrated water (membrane return water) that has been subjected to cross flow filtration with a separation membrane installed outside the tank is returned to the reaction tank to effectively use the flocculant.

しかしながら、この特許文献1のフローでは凝集剤と原水とが常に急速撹拌されているため、分離膜からの返送水中のフロックにG値(撹拌強度を示す数値)が大きい強い撹拌を加える。このため、返送水中のフロックが破壊されてしまうこととなる。しかも最近の研究によれば、フロックの凝集と破壊を繰り返すと次第に再凝集性が低下してしまい、どのような凝集剤を加えてもフロックが形成されにくくなることが判明している。従って特許文献1のように反応槽の内部に凝集剤を貯留し、槽内水のクロスフローろ過を行っても、凝集剤の注入量を増加しなければ、膜ファウリングの抑制効果は次第に低下し、処理水質も悪化していくこととなる。
特開2001−70758号公報
However, since the flocculant and raw water are always rapidly stirred in the flow of Patent Document 1, strong stirring with a large G value (a numerical value indicating stirring strength) is added to flocs in the return water from the separation membrane. For this reason, the floc in return water will be destroyed. Moreover, according to recent studies, it has been found that if flocs are repeatedly agglomerated and broken, the reagglomeration property gradually decreases, and it becomes difficult to form flocs by adding any flocculant. Therefore, even if the flocculant is stored in the reaction tank as in Patent Document 1 and cross-flow filtration of the water in the tank is performed, if the amount of flocculant injected is not increased, the effect of suppressing membrane fouling gradually decreases. However, the quality of treated water will also deteriorate.
JP 2001-70758 A

従って本発明の目的は上記した従来技術の問題点を解決し、フロックの成長と破壊に関係する撹拌強度を考慮に入れ、凝集剤の注入量を抑制しつつ膜ファウリングの抑制と処理水質の向上を安定的に達成することができる新規な凝集−膜ろ過方法を提供することである。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, taking into consideration the stirring strength related to the growth and destruction of flocs, and suppressing membrane fouling and controlling the quality of treated water while suppressing the amount of flocculant injected. It is to provide a novel coagulation-membrane filtration method capable of stably achieving the improvement.

上記の課題を解決するためになされた本発明の凝集−膜ろ過方法は、原水に凝集剤を添加して急速撹拌槽においてマイクロフロックを形成し、反応槽においてエアレーション撹拌を行ってフロックを粗大化し、沈殿槽において粗大フロックを沈降分離して上澄水を槽外設置された分離膜に送水するとともに槽底水を反応槽に返送し、分離膜はクロスフローろ過を行って処理水を取り出す一方、膜返送水を反応槽に返送することを特徴とするものである。反応槽は緩やかな撹拌条件であれば、パドルを使った撹拌方式でも良く、沈澱槽は別槽にする必要はなく、反応槽の1部に沈澱させる機構をもたせることでも良いものとする。   The coagulation-membrane filtration method of the present invention made to solve the above problems is to add a flocculant to raw water to form a micro floc in a rapid stirring tank, and aeration stirring in a reaction tank to coarsen the floc. In the sedimentation tank, coarse flocs are settled and separated, and the supernatant water is sent to the separation membrane installed outside the tank and the bottom water is returned to the reaction tank. The membrane return water is returned to the reaction tank. As long as the reaction tank has a gentle stirring condition, a stirring system using a paddle may be used, and the precipitation tank does not need to be a separate tank, and a mechanism for precipitation may be provided in a part of the reaction tank.

なお請求項2のように、水源がアンモニア、溶解性マンガン、臭気物質を同時に含む複合汚濁水源である場合には、急速撹拌槽の前段において、原水に塩素と粉末活性炭を添加することができる。また請求項3のように、沈殿槽の上澄水にさらに凝集剤を添加して分離膜に送水することができる。   If the water source is a complex polluted water source containing ammonia, soluble manganese and odorous substances at the same time as in claim 2, chlorine and powdered activated carbon can be added to the raw water in the preceding stage of the rapid stirring tank. Further, as in claim 3, a flocculant can be further added to the supernatant water of the precipitation tank, and water can be sent to the separation membrane.

いずれの発明においても、請求項4のように、膜返送水の一部を反応槽に返送することができ、反応槽のみならず、急速撹拌槽にも返送することができる。   In any of the inventions, as in claim 4, a part of the membrane return water can be returned to the reaction tank, and can be returned not only to the reaction tank but also to the rapid stirring tank.

また請求項5のように、原水への凝集剤の添加率を0.5〜20mg-PAC/Lとすることが好ましく、請求項2のように2段注入を行う場合には、沈殿槽の上澄水への凝集剤添加率を0.5〜10mg-PAC/Lとすることが好ましい。   Moreover, it is preferable that the addition rate of the flocculant to the raw water is 0.5 to 20 mg-PAC / L as in claim 5, and when performing two-stage injection as in claim 2, the supernatant water of the precipitation tank It is preferable to set the flocculant addition ratio to 0.5 to 10 mg-PAC / L.

本発明の凝集−膜ろ過方法によれば、急速撹拌槽においてマイクロフロックを形成したうえ、反応槽においてエアレーションもしくはパドルによる緩やかな撹拌を行ってフロックを成長させ粗大化させる。そしてさらに沈殿槽において粗大フロックを沈降分離し、破壊されにくいマイクロフロックを含む上澄水のみを槽外設置された分離膜に送り、クロスフローろ過を行う。このため分離膜の粒子数負荷が低減されることと、膜孔径よりも大きく破壊されにくいフロックをろ過するため、膜ファウリングが抑制されるとともに、処理水質を向上させることができる。   According to the coagulation-membrane filtration method of the present invention, micro flocs are formed in a rapid stirring tank, and then flocs are grown and coarsened by gentle stirring by aeration or paddle in a reaction tank. Further, coarse flocs are settled and separated in a sedimentation tank, and only the supernatant water containing micro flocs that are not easily destroyed is sent to a separation membrane installed outside the tank, and crossflow filtration is performed. For this reason, since the particle number load of the separation membrane is reduced and the floc that is larger than the membrane pore size and is not easily destroyed is filtered, membrane fouling is suppressed and the quality of the treated water can be improved.

また、沈殿槽の槽底水を反応槽に返送することにより、濃縮された未反応の凝集剤や再凝集性の残っている凝集フロックを原水と緩速撹拌条件下で接触させる。これによりフロックの破壊と再凝集性の劣化を抑制しつつ、凝集剤の凝集効果を有効利用することができる。このため低注入率でスイープフロキュレーションが可能となり、原水への凝集剤の添加量を0.5〜20mg-PAC/Lにまで減少させることができるので、ランニングコストを低下させることができる。このようにして、凝集剤の注入量を抑制しつつ膜ファウリングの抑制と処理水質の向上を安定的に達成することができる。   Further, by returning the bottom water of the precipitation tank to the reaction tank, the concentrated unreacted flocculant and the remaining flocculent floc are brought into contact with the raw water under slow stirring conditions. As a result, the coagulant effect of the coagulant can be effectively utilized while suppressing breakage of the floc and deterioration of the reaggregability. For this reason, sweep flocculation is possible at a low injection rate, and the amount of flocculant added to the raw water can be reduced to 0.5 to 20 mg-PAC / L, so that the running cost can be reduced. In this way, it is possible to stably achieve suppression of membrane fouling and improvement of treated water quality while suppressing the injection amount of the flocculant.

また請求項3のように、沈殿槽の上澄水にさらに凝集剤を添加したうえで分離膜に送水すれば、それまでの工程で凝集しきれなかった微細粒子を凝集させ、膜ファウリングの抑制と処理水質向上の効果を一段と高めることができる。なおこの2段目の凝集剤注入は微細粒子の凝集を目的とするため、撹拌のG値が多少高くなってもフロックの成長や再凝集性に悪影響を与えることはない。このような2段注入を行う場合には、沈殿槽の上澄水への凝集剤添加率を0.5〜10mg-PAC/Lとすればよい。   Further, as in claim 3, if a flocculant is further added to the supernatant water of the precipitation tank and then sent to the separation membrane, fine particles that could not be aggregated in the previous steps are aggregated to suppress membrane fouling. And the effect of improving treated water quality can be further enhanced. Since the second-stage flocculant injection is aimed at agglomeration of fine particles, even if the G value of the agitation is somewhat high, floc growth and reaggregation are not adversely affected. When performing such two-stage injection, the flocculant addition rate to the supernatant water of the precipitation tank may be 0.5 to 10 mg-PAC / L.

また請求項2のように、急速撹拌槽の前段において原水に塩素と粉末活性炭を添加すれば、槽設備をそのままで原水中のアンモニア、マンガン、臭気物質、溶存有機物などを除去することができるので、複合汚濁水源にも対応することができる。なおこの場合には粉末活性炭を取り込んだマイクロフロックが形成されることとなり、反応槽において活性炭を長時間滞留させることができるため、臭気物質、溶存有機物などの除去効率を高めることが可能となる。   In addition, if chlorine and powdered activated carbon are added to the raw water at the front stage of the rapid stirring tank as in claim 2, ammonia, manganese, odorous substances, dissolved organic substances, etc. in the raw water can be removed without changing the tank equipment. It is also possible to deal with complex polluted water sources. In this case, micro flocs incorporating powdered activated carbon are formed, and the activated carbon can be retained in the reaction tank for a long time, so that the removal efficiency of odorous substances, dissolved organic substances and the like can be increased.

以下に図面を参照しつつ、本発明の好ましい実施形態を示す。
図1は請求項1の発明の実施形態を示す図であり、1は原水が流入する急速撹拌槽、2はその後段に配置された反応槽、3はその後段に配置された沈殿槽、4は槽外設置型の分離膜である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing an embodiment of the invention of claim 1, wherein 1 is a rapid stirring tank into which raw water flows, 2 is a reaction tank disposed in the subsequent stage, 3 is a precipitation tank disposed in the subsequent stage, 4 Is a separation membrane installed outside the tank.

原水は先ず急速撹拌槽1に入り、凝集剤供給器5から凝集剤が注入され、撹拌装置6により高いG値で急速撹拌される。凝集剤は急速撹拌槽1の直前位置で注入することもできる。凝集剤の種類としてはPAC,塩鉄、PSI、硫酸バン土などの適宜の種類を原水の性状に応じて選択すればよく、この点は従来と同様である。しかし従来に比較して凝集剤の注入率は低く、0.5〜20mg-PAC/Lでよい。この数値はPACを用いて表現されているが、他の凝集剤の場合には換算するものとする。なお0.5mg-PAC/L未満では凝集力が不足し、20mg-PAC/Lを越えると凝集剤の注入量抑制という本発明の目的が達成できなくなる。
ただし、原水の濁度が上昇した際は、適正注入の目安であるALT比(0.05〜0.2)を考慮して、凝集剤の注入率を調整する。
The raw water first enters the rapid agitation tank 1, and the aggregating agent is injected from the aggregating agent feeder 5, and rapidly agitated at a high G value by the agitation device 6. The flocculant can also be injected immediately before the rapid stirring tank 1. As a kind of the flocculant, an appropriate kind such as PAC, iron salt, PSI, or vanous sulfate may be selected according to the properties of the raw water, and this point is the same as the conventional one. However, the injection rate of the flocculant is lower than before, and it may be 0.5 to 20 mg-PAC / L. This number is expressed using PAC, but it is converted for other flocculants. If the amount is less than 0.5 mg-PAC / L, the cohesive force is insufficient, and if it exceeds 20 mg-PAC / L, the object of the present invention, that is, suppressing the injection amount of the flocculant cannot be achieved.
However, when the turbidity of the raw water rises, the injection rate of the flocculant is adjusted in consideration of the ALT ratio (0.05 to 0.2) that is a standard for proper injection.

急速撹拌槽1においてマイクロフロックが形成された原水は、次に反応槽2に流入する。反応槽2はエアレーション装置7を備えた曝気槽である。曝気方式は全面曝気方式であっても部分曝気による旋回流方式であってもよく、エアレーション装置7による緩速撹拌が行われる。そのG値は急速撹拌槽1よりも低く、フロックの粗大化が進行する。なお後述するように後段から凝集剤含有水が返送されるので、急速撹拌槽1における凝集剤の注入率が低くてもスイープフロキュレーションが可能である。なおエアレーション装置7を使用することにより、槽底部が嫌気状態となることを確実に防止できる。   The raw water in which micro flocs are formed in the rapid stirring tank 1 then flows into the reaction tank 2. The reaction tank 2 is an aeration tank provided with an aeration device 7. The aeration method may be a full-surface aeration method or a swirl flow method by partial aeration, and slow agitation by the aeration apparatus 7 is performed. The G value is lower than that of the rapid stirring tank 1, and the flocs are increased in size. As will be described later, since the flocculant-containing water is returned from the latter stage, sweep flocculation is possible even if the injection rate of the flocculant in the rapid stirring tank 1 is low. In addition, by using the aeration apparatus 7, it can prevent reliably that a tank bottom part will be in an anaerobic state.

反応槽2からの溢流水は、沈殿槽3に流入する。ここでは粗大化したフロックが沈降分離される。撹拌は行われないのでG値は非常に低くなる。このように本発明では後段に行くほどG値が次第に低下するので、フロックの破壊が進行することがない。沈殿槽3の上澄水はポンプ8を介して槽外設置された分離膜4に送水されるが、粗大化したフロックは沈降分離されており、分離膜4の粒子数負荷が軽減されることと、膜孔径よりも大きく破壊されにくいフロックをろ過するため、膜ファウリングが抑制される。なおこの実施形態では沈殿槽3の内部に傾斜板9が設置してあり、沈降分離性を向上させている。   The overflow water from the reaction tank 2 flows into the settling tank 3. Here, coarse flocs are separated by settling. Since the stirring is not performed, the G value becomes very low. In this way, in the present invention, the G value gradually decreases as it goes to the subsequent stage, so that the destruction of the floc does not proceed. The supernatant water of the sedimentation tank 3 is sent to the separation membrane 4 installed outside the tank via the pump 8, but the coarse flocs are settled and separated, and the particle number load on the separation membrane 4 is reduced. In order to filter flocs that are larger than the membrane pore size and are not easily destroyed, membrane fouling is suppressed. In this embodiment, an inclined plate 9 is installed inside the sedimentation tank 3 to improve sedimentation separation.

沈殿槽3の槽底水は粗大化したフロックのほかに、未反応の凝集剤をも含む。そこで沈殿槽3の槽底水は、返送ポンプ12により槽底水返送ライン10を経由して反応槽2に返送される。これによって反応槽2における凝集剤濃度は高まり、前述したスイープフロキュレーションが可能となる。反応槽2におけるG値は低いので、返送されたフロックは破壊されにくい。   The bottom water of the settling tank 3 contains unreacted flocculant in addition to the coarse flocs. Therefore, the bottom water of the sedimentation tank 3 is returned to the reaction tank 2 by the return pump 12 via the tank bottom water return line 10. As a result, the concentration of the flocculant in the reaction tank 2 is increased, and the above-described sweep flocculation becomes possible. Since the G value in the reaction tank 2 is low, the returned floc is not easily destroyed.

分離膜4の種類は特に限定されるものではないが、この実施形態で使用されているモノリス型のセラミックろ過膜がより好ましい。ろ過方式はクロスフローろ過であり、膜透過水は処理水として取り出される。前段に置いてフロックの破壊が進行せず、しかも粗大フロックが取り除かれて粒子数負荷が軽減された状態で膜ろ過が行われるので、膜ファウリングが抑制されるとともに、安定した処理水質を達成することができる。   The type of the separation membrane 4 is not particularly limited, but a monolith type ceramic filtration membrane used in this embodiment is more preferable. The filtration method is cross flow filtration, and the membrane permeated water is taken out as treated water. Membrane filtration is performed in a state where floc destruction does not proceed and the coarse floc is removed and the particle number load is reduced, so that membrane fouling is suppressed and stable treated water quality is achieved. can do.

分離膜4を通過した濃縮水は、膜返送水として膜返送水返送ライン11を介して反応槽2に返送される。この膜返送水には濃縮された凝集剤が含まれているので、反応槽2に返送することによって、凝集剤の凝集作用を有効利用することができる。これらの理由によって、本発明では少量の凝集剤によってスイープフロキュレーションが可能となる。   The concentrated water that has passed through the separation membrane 4 is returned to the reaction tank 2 through the membrane return water return line 11 as membrane return water. Since this membrane return water contains the concentrated flocculant, the flocculant action of the flocculant can be effectively utilized by returning it to the reaction tank 2. For these reasons, sweep flocculation is possible with a small amount of flocculant in the present invention.

図3-1、2は請求項3の実施形態を示す図である。請求項1と組み合わせたものが図3−1、請求項2と組み合わせたものが図3−2である。
この実施形態では、沈殿槽の上澄水に第2の凝集剤供給器16から凝集剤がさらに注入され、スタティックミキサ17により撹拌されたうえで、分離膜4に送水される。この2段目の凝集剤の添加はそれまでに凝集できなかった微小粒子を凝集させ、ファウリングに影響する粒子数を低減させるために行われるものである。その凝集剤の添加率は0.5〜10mg-PAC/Lが適当である。この範囲よりも多いと凝集剤の削減という本発明の目的に反する。
FIGS. 3-1 and 2 are views showing an embodiment of claim 3. A combination with claim 1 is shown in FIG. 3-1, and a combination with claim 2 is shown in FIG. 3-2.
In this embodiment, the flocculant is further injected from the second flocculant supply device 16 into the supernatant water of the precipitation tank, stirred by the static mixer 17, and then fed to the separation membrane 4. The addition of the second-stage aggregating agent is performed to agglomerate fine particles that could not be agglomerated so far, and to reduce the number of particles affecting fouling. The addition rate of the flocculant is suitably 0.5 to 10 mg-PAC / L. If it is more than this range, it is contrary to the object of the present invention of reducing the flocculant.

また図3−2の実施形態では、急速撹拌槽1の前段に混和槽14を設置し、活性炭供給装置15から粉末活性炭を供給して原水と混和する。結合塩素は粉末活性炭と反応して脱窒される。また原水中の臭気物質や溶存有機物も粉末活性炭に吸着される。   Moreover, in embodiment of FIG. 3-2, the mixing tank 14 is installed in the front | former stage of the rapid stirring tank 1, powdered activated carbon is supplied from the activated carbon supply apparatus 15, and it mixes with raw | natural water. Bound chlorine reacts with powdered activated carbon and is denitrified. In addition, odorous substances and dissolved organic substances in the raw water are also adsorbed on the powdered activated carbon.

このように塩素と粉末活性炭とが添加された原水は他の実施形態と同様に急速撹拌槽1に送られて凝集剤を添加され、粉末活性炭を取り込んだマイクロフロックが形成される。さらに反応槽2ではエアレーション撹拌が行われるが、凝集剤と同様に粉末活性炭も反応槽2において濃縮されるため、そのSRTを5〜20日程度の長時間確保することができ、その間に臭気物質や溶存有機物の吸着が十分に行われる。さらに沈殿槽3では粉末活性炭を取り込んだ粗大なフロックは沈降分離され、分離膜の負荷を軽減することは他の実施形態と同様である。   In this way, the raw water to which chlorine and powdered activated carbon are added is sent to the rapid stirring tank 1 and the flocculant is added to form micro flocs incorporating powdered activated carbon, as in the other embodiments. Furthermore, although aeration stirring is performed in the reaction tank 2, since the activated carbon powder is also concentrated in the reaction tank 2 in the same manner as the flocculant, the SRT can be secured for a long time of about 5 to 20 days, during which the odor substance Adsorption of dissolved organic matter is sufficiently performed. Further, in the sedimentation tank 3, the coarse floc that has taken in the powdered activated carbon is settled and separated, and the load on the separation membrane is reduced as in the other embodiments.

このように、図3−1、図3−2のフローを用いれば槽設備を変更することなく、複合汚染水源にも対応することができるが、他の実施形態において説明した作用効果はそのまま得ることができることはいうまでもない。   Thus, if the flow of FIGS. 3A and 3B is used, it is possible to cope with a complex contaminated water source without changing the tank equipment, but the effects described in the other embodiments are obtained as they are. It goes without saying that it can be done.

なお、スタティックミキサ17による撹拌はG値が高い撹拌となるが、それまでに凝集できなかった微小粒子を凝集させることを目的としており、かつ流入してくるのは破壊されにくいフロックを含有する水であるので、フロックの成長や再凝集性の問題は生じない。その他の構成は第1の実施形態と同様であるから、対応する部分に同一の番号を付して説明を繰り返すことを略す。   The agitation by the static mixer 17 is agitation with a high G value, but the purpose is to agglomerate fine particles that have not been agglomerated so far. Therefore, the problem of floc growth and re-aggregation does not occur. Since the other configuration is the same as that of the first embodiment, the same reference numerals are assigned to the corresponding portions, and the description is not repeated.

図2は請求項2の実施形態を示す図である。
これは水源がアンモニア、マンガン、臭気物質などを同時に含む複合汚染水源である場合に有効なフローであり、槽設備は他の実施形態のままで、塩素と粉末活性炭を添加するだけでよい。この実施形態では原水をpH調整したうえで、塩素供給装置13から次亞塩素酸ナトリウムを添加し、アンモニアを結合塩素(ジクロラミン)化するとともに、マンガンイオンを酸化して不溶化させる。酸化されたマンガンは分離膜4において分離除去することができる。
FIG. 2 is a view showing an embodiment of claim 2.
This is an effective flow when the water source is a combined polluted water source containing ammonia, manganese, odorous substances and the like at the same time. The tank equipment remains the same as that of the other embodiment, and only chlorine and powdered activated carbon need be added. In this embodiment, after adjusting the pH of the raw water, sodium hypochlorite is added from the chlorine supply device 13 to convert ammonia into bound chlorine (dichloromine) and to oxidize and insolubilize manganese ions. Oxidized manganese can be separated and removed in the separation membrane 4.

なお、何れの実施形態においても、沈殿槽3の沈降物は反応槽2に返送され、反応槽2から定期的に系外に排出する。また、運転条件によっては、沈殿槽3からも系外に排出し、系内の濁質量を制御する。   In any embodiment, the sediment in the sedimentation tank 3 is returned to the reaction tank 2 and periodically discharged from the reaction tank 2 to the outside of the system. Further, depending on the operating conditions, it is also discharged out of the system from the sedimentation tank 3, and the turbid mass in the system is controlled.

以上に説明したように、本発明によればフロックの成長と破壊に関係する撹拌強度を考慮に入れ、凝集剤の注入量を抑制しつつ膜ファウリングの抑制と処理水質の向上を安定的に達成することができる。   As described above, according to the present invention, the stirring strength related to the growth and breakage of flocs is taken into consideration, and the suppression of membrane fouling and the improvement of the quality of treated water are stably performed while suppressing the injection amount of the flocculant. Can be achieved.

請求項1の発明の実施形態を示すフロー図である。It is a flowchart which shows embodiment of invention of Claim 1. 請求項2の発明の実施形態を示すフロー図である。It is a flowchart which shows embodiment of invention of Claim 2. 請求項3の発明の実施形態を示すフロー図である。It is a flowchart which shows embodiment of invention of Claim 3.

符号の説明Explanation of symbols

1 急速撹拌槽
2 反応槽
3 沈殿槽
4 分離膜
5 凝集剤供給器
6 撹拌装置
7 エアレーション装置
8 ポンプ
9 傾斜板
10 槽底水返送ライン
11 膜返送水返送ライン
12 返送ポンプ
16 第2の凝集剤供給器
17 スタティックミキサ
13 塩素供給装置
14 混和槽
15 活性炭供給装置
DESCRIPTION OF SYMBOLS 1 Rapid stirring tank 2 Reaction tank 3 Precipitation tank 4 Separation membrane 5 Coagulant feeder 6 Stirrer 7 Aeration apparatus 8 Pump 9 Inclined plate 10 Tank bottom water return line 11 Membrane return water return line 12 Return pump 16 Second flocculant Feeder 17 Static mixer 13 Chlorine feeder 14 Mixing tank 15 Activated carbon feeder

Claims (6)

原水に凝集剤を添加して急速撹拌槽においてマイクロフロックを形成し、反応槽においてエアレーション撹拌を行ってフロックを粗大化し、沈殿槽において粗大フロックを沈降分離して上澄水を槽外設置された分離膜に送水するとともに槽底水を反応槽に返送し、分離膜はクロスフローろ過を行って処理水を取り出す一方、膜返送水を反応槽に返送することを特徴とする凝集−膜ろ過方法。   A flocculant is added to the raw water to form micro flocs in the rapid stirring tank, aeration stirring is performed in the reaction tank to coarsen the flocs, and the coarse flocs are settled and separated in the settling tank, and the supernatant water is separated outside the tank. An agglomeration-membrane filtration method characterized in that water is sent to the membrane and the bottom water is returned to the reaction vessel, and the separation membrane performs cross-flow filtration to extract treated water, while returning the membrane return water to the reaction vessel. 急速撹拌槽の前段において、原水に塩素と粉末活性炭を添加することを特徴とする請求項1記載の凝集−膜ろ過方法。   The aggregation-membrane filtration method according to claim 1, wherein chlorine and powdered activated carbon are added to the raw water in a stage preceding the rapid stirring tank. 沈殿槽の上澄水にさらに凝集剤を添加して分離膜に送水することを特徴とする請求項1または2記載の凝集−膜ろ過方法。   The coagulation-membrane filtration method according to claim 1 or 2, wherein a flocculant is further added to the supernatant water of the precipitation tank, and water is fed to the separation membrane. 膜返送水の一部を反応槽に返送することを特徴とする請求項1〜3の何れかに記載の凝集−膜ろ過方法。   The aggregation-membrane filtration method according to any one of claims 1 to 3, wherein a part of the membrane return water is returned to the reaction tank. 原水への凝集剤の添加率を0.5〜20mg-PAC/Lとしたことを特徴とする請求項1〜4の何れかに記載の凝集−膜ろ過方法。   The coagulation-membrane filtration method according to any one of claims 1 to 4, wherein an addition rate of the coagulant to the raw water is 0.5 to 20 mg-PAC / L. 沈殿槽の上澄水への凝集剤の添加率を0.5〜10mg-PAC/Lとしたことを特徴とする請求項3記載の凝集−膜ろ過方法。   The coagulation-membrane filtration method according to claim 3, wherein the addition rate of the flocculant to the supernatant water of the precipitation tank is 0.5 to 10 mg-PAC / L.
JP2008073185A 2008-03-21 2008-03-21 Aggregation-membrane filtration method Active JP4981726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073185A JP4981726B2 (en) 2008-03-21 2008-03-21 Aggregation-membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073185A JP4981726B2 (en) 2008-03-21 2008-03-21 Aggregation-membrane filtration method

Publications (2)

Publication Number Publication Date
JP2009226285A JP2009226285A (en) 2009-10-08
JP4981726B2 true JP4981726B2 (en) 2012-07-25

Family

ID=41242346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073185A Active JP4981726B2 (en) 2008-03-21 2008-03-21 Aggregation-membrane filtration method

Country Status (1)

Country Link
JP (1) JP4981726B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845117B2 (en) * 2011-03-30 2016-01-20 メタウォーター株式会社 Chemical injection control method and chemical injection control device
CN102329055A (en) * 2011-09-08 2012-01-25 集美大学 Aquaculture sewage treatment method
CN102493545B (en) * 2011-12-09 2013-12-18 天津大学 Rain sewage retention tank with function of coagulation sedimentation
KR101185223B1 (en) 2012-07-17 2012-09-21 엘지전자 주식회사 Water treatment apparatus with circulating flow path and water treating method using the same
JP5524299B2 (en) * 2012-09-05 2014-06-18 株式会社東芝 Membrane filtration system
KR101398996B1 (en) * 2013-06-20 2014-05-28 지에스건설 주식회사 Water treatment system and method using rapid coagulation and sedimentation with active carbon
JP6008807B2 (en) * 2013-08-21 2016-10-19 大成建設株式会社 Decontamination method and in-vehicle decontamination apparatus
US11459248B2 (en) 2017-04-24 2022-10-04 Metawater Co., Ltd. Method of removing soluble manganese
CN114573182B (en) * 2022-02-14 2023-05-02 徐州紫聚石化设备有限公司 Membrane separation process and device for sewage treatment
CN115304185A (en) * 2022-08-08 2022-11-08 青岛尚禹环保设备科技有限公司 Ultrafiltration membrane filtration equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546906B2 (en) * 1996-07-15 2004-07-28 栗田工業株式会社 Thermal power plant wastewater treatment equipment
JP4408524B2 (en) * 2000-03-29 2010-02-03 義公 渡辺 Fresh water system
JP3680742B2 (en) * 2001-02-21 2005-08-10 日立プラント建設株式会社 Method for treating wastewater containing dioxins

Also Published As

Publication number Publication date
JP2009226285A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4981726B2 (en) Aggregation-membrane filtration method
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
AU2009214074B2 (en) Process for treating water by a nanofiltration or reverse osmosis membrane system permitting high conversion rates due to the elimination of organic matter
US7384573B2 (en) Compositions for wastewater treatment
JP2011230038A (en) Water treatment apparatus
JP2015112593A (en) Apparatus and method for treating waste water having high hardness
JP2007029826A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
KR101758986B1 (en) Methods for electronic wastewater treatment at an ultra-low concentration of contaminants adapting microfiltration membrane bioreactor process and selective heavy metal removal process
JP2009066508A (en) Coagulation method for organic matter-containing water
JP6359257B2 (en) Method and apparatus for treating manganese-containing water
KR20080051863A (en) Waste water of food treatment apparatus and using the method
CN111847764A (en) Method for treating printing and dyeing wastewater based on catalytic oxidation of ozone
JP4861349B2 (en) Reclaimed water production method
KR100673841B1 (en) High concentration organic wastewater treatment method use of ceramic coagulant
JP2006204977A (en) Method and apparatus for treating biologically treated water-containing water
JP5818148B2 (en) Outside tank type membrane separation activated sludge method and activated sludge treatment equipment
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
Thiruvenkatachari et al. Flocculation—cross-flow microfiltration hybrid system for natural organic matter (NOM) removal using hematite as a flocculent
JP2010000476A (en) Organic wastewater treatment method and apparatus
JP6662558B2 (en) Water treatment method and water treatment device
JP2004275884A (en) Waste water treating method, waste water treating apparatus and treating system
WO2004045740A1 (en) Purification agent for wastewater and sludge water
JP2010029768A (en) Method and apparatus for treating organic wastewater
JP2006095363A (en) Treatment apparatus of wastewater containing organic nitrogen compound
JP2008023417A (en) Water purifying apparatus and water purifying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4981726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250