JP6811162B2 - Water treatment method and equipment - Google Patents

Water treatment method and equipment Download PDF

Info

Publication number
JP6811162B2
JP6811162B2 JP2017222547A JP2017222547A JP6811162B2 JP 6811162 B2 JP6811162 B2 JP 6811162B2 JP 2017222547 A JP2017222547 A JP 2017222547A JP 2017222547 A JP2017222547 A JP 2017222547A JP 6811162 B2 JP6811162 B2 JP 6811162B2
Authority
JP
Japan
Prior art keywords
membrane
water
porous membrane
cleaning
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017222547A
Other languages
Japanese (ja)
Other versions
JP2019093320A5 (en
JP2019093320A (en
Inventor
津田 隆
隆 津田
大助 大森
大助 大森
昭洋 田中
昭洋 田中
雅典 東都
雅典 東都
雄 川上
雄 川上
翔 御手洗
翔 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Transport Machinery Co Ltd
Kyowakiden Industry Co Ltd
Original Assignee
IHI Transport Machinery Co Ltd
Kyowakiden Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Transport Machinery Co Ltd, Kyowakiden Industry Co Ltd filed Critical IHI Transport Machinery Co Ltd
Priority to JP2017222547A priority Critical patent/JP6811162B2/en
Priority to CN201880075085.6A priority patent/CN111417597A/en
Priority to PCT/JP2018/027986 priority patent/WO2019097767A1/en
Publication of JP2019093320A publication Critical patent/JP2019093320A/en
Publication of JP2019093320A5 publication Critical patent/JP2019093320A5/ja
Application granted granted Critical
Publication of JP6811162B2 publication Critical patent/JP6811162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G45/00Lubricating, cleaning, or clearing devices
    • B65G45/10Cleaning devices
    • B65G45/22Cleaning devices comprising fluid applying means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、水処理方法及び装置に関するものである。 The present invention relates to a water treatment method and an apparatus.

一般に、石炭火力発電所の揚運炭設備において、燃料となる石炭は、貯炭場からコンベヤを用いてミルへ搬送され、該ミルで粉砕された微粉炭がボイラのバーナへ供給されて燃焼されるようになっている。 Generally, in a coal-fired power plant lifting facility, coal as fuel is transported from a coal storage yard to a mill using a conveyor, and pulverized coal crushed by the mill is supplied to a burner of a boiler and burned. It has become like.

前記コンベヤに対しては、搬送中の石炭の温度上昇に伴う自然発火の抑制や周囲への微粉炭の拡散の抑制、並びにコンベヤ自体の機能維持のために、散水が行われている。 Water is sprinkled on the conveyor in order to suppress spontaneous combustion due to a rise in the temperature of coal during transportation, to suppress diffusion of pulverized coal to the surroundings, and to maintain the function of the conveyor itself.

図4は揚運炭設備におけるコンベヤの洗浄設備の従来の一例を示す全体概要構成図である。 FIG. 4 is an overall schematic configuration diagram showing a conventional example of a conveyor cleaning facility in a coal lifting facility.

図4に示される例では、複数基の機器としてのコンベヤCに対しその所要箇所に散水ポンプ10で昇圧された洗浄水が散水ノズル(図示せず)から散水されて洗浄が行われ、被洗浄物質としての微粉炭を含む洗浄水が排水回収槽20に集められ、該排水回収槽20に集められた洗浄水は、回収ポンプ30により回収水集合槽40に送給され、該回収水集合槽40から凝集処理ユニット50へ送られるようになっている。該凝集処理ユニット50に送られた洗浄水は、微粉炭が凝集処理された後、その上澄みの洗浄水が処理水槽60を経て前記散水ポンプ10へ導かれ、再利用される形で散水洗浄が行われ、この操作が繰り返されるようになっている。 In the example shown in FIG. 4, the cleaning water boosted by the sprinkler pump 10 is sprinkled from a sprinkler nozzle (not shown) to the required locations of the conveyor C as a plurality of devices to perform cleaning, and the cleaning is performed. Washing water containing pulverized coal as a substance is collected in the drainage recovery tank 20, and the washing water collected in the drainage recovery tank 20 is sent to the recovery water collecting tank 40 by the recovery pump 30, and the recovery water collecting tank It is designed to be sent from 40 to the coagulation processing unit 50. In the washing water sent to the coagulation treatment unit 50, after the pulverized coal is coagulated, the washing water of the supernatant is guided to the sprinkler pump 10 through the treatment water tank 60 and is reused for sprinkling washing. This is done and this operation is repeated.

前記凝集処理ユニット50は、図5に示される如く、pH調整槽51と、凝集反応槽52と、凝集沈殿槽53とを備えている。 As shown in FIG. 5, the agglutination treatment unit 50 includes a pH adjusting tank 51, an agglutination reaction tank 52, and a coagulation sedimentation tank 53.

図5に示される例では、pH調整槽51において洗浄水にポリ塩化アルミニウム(PAC:Poly Aluminium Chloride)等の凝集剤が添加されて撹拌機70で撹拌され、pHが中性域に調整されつつ縣濁物質の集合体フロックが形成され、更に凝集反応槽52においてポリマー等の凝集剤が加えられ撹拌機71で撹拌されることによって、前記集合体フロックが肥大化するようになっている。その後、肥大化した集合体フロックを含む洗浄水は、凝集沈殿槽53において撹拌機72で撹拌されつつ凝集沈殿が行われ、上澄みの洗浄水が再利用されるようになっている。前記凝集沈殿槽53において凝集されて濃縮された微粉炭(被洗浄物質)は、凝集沈殿槽53の底部から凝集スラッジポンプ80で抜き出されて回収処理されるようになっている。 In the example shown in FIG. 5, in the pH adjusting tank 51, a coagulant such as Poly Aluminum Chloride (PAC) is added to the washing water and stirred by the stirrer 70, while the pH is adjusted to the neutral range. Aggregate flocs of turbid substances are formed, and a flocculant such as a polymer is further added in the agglutination reaction tank 52 and stirred by a stirrer 71, so that the aggregate flocs are enlarged. After that, the washing water containing the enlarged aggregate flocs is coagulated and settled while being stirred by the stirrer 72 in the coagulation and settling tank 53, and the supernatant wash water is reused. The pulverized coal (substance to be cleaned) that has been agglomerated and concentrated in the coagulation sedimentation tank 53 is extracted from the bottom of the coagulation sedimentation tank 53 by the coagulation sludge pump 80 and recovered.

尚、前述のような凝集沈殿を利用した揚運炭設備のコンベヤ洗浄水処理と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。 In addition, there is, for example, Patent Document 1 as a thing which shows the general technical level which is related to the conveyor washing water treatment of a coal unloading facility using coagulation sedimentation as described above.

特開平9−85255号公報Japanese Unexamined Patent Publication No. 9-85255

しかしながら、前述のような凝集沈殿の場合、前記凝集剤の添加量が不足すると、流量や水質変化の大きな微粉炭含有排水では、再利用される洗浄水に微粉炭が残留し、該洗浄水を噴射するノズルの詰りや配管の摩耗が発生する虞があった。 However, in the case of coagulation sedimentation as described above, if the amount of the coagulant added is insufficient, the pulverized coal remains in the recycled washing water in the pulverized coal-containing wastewater having a large change in flow rate and water quality, and the washing water is used. There was a risk of clogging of the injection nozzle and wear of the piping.

逆に、前記凝集剤の添加量が過剰になると、再利用される洗浄水に凝集剤が残留し、該凝集剤が配管内で凝集してしまい、配管が閉塞する虞があった。 On the contrary, if the amount of the coagulant added is excessive, the coagulant remains in the reused washing water, and the coagulant coagulates in the pipe, which may block the pipe.

又、前記凝集されて濃縮された微粉炭は、凝集剤由来の金属酸化物と微粉炭のフロックの集塊物質であり、大きな体積を占めるために、その処理コストが高くなるという不具合をも有していた。 Further, the agglomerated and concentrated pulverized coal is an agglomerate substance of a metal oxide derived from a coagulant and a floc of the pulverized coal, and has a problem that the processing cost is high because it occupies a large volume. Was.

こうした不具合を解消すべく、本発明者等は、多様な材質の多孔質膜、例えば、酢酸セルロース(CA:Cellulose Acetate)、ポリエチレン(PE:Polyethylene)、ポリアクリロニトリル(PAN:Polyacrylonitrile)、ポリスルフォン(PS:Polysulfone)、ポリエーテルスルフォン(PES:Polyethersulfone)、ポリアミド(PA:Polyamide)、ポリビニルアルコール(PVA:Polyvinyl Alcohol)、ポリビニリデンフロライド(PVDF:Polyvinylidene Difluoride)等を利用し、洗浄水を濾過して微粉炭を除去し浄化することを提案している。 In order to eliminate such problems, the present inventors have made porous membranes of various materials, for example, cellulose acetate (CA: Cellulose Acetate), polyethylene (PE: Polyethylene), polyacrylonitrile (PAN), polysulfone (polysulfone). Use PS: Polysulfone), polyethersulfone (PES: Polyethersulfone), polyamide (PA: Polyamide), polyvinyl alcohol (PVA: Polyvinyl Alcohol), polyvinylidene fluoride (PVDF: Polyvinylidene Difluoride), etc. to filter the wash water. It is proposed to remove and purify pulverized coal.

前述のような多孔質膜による膜処理は、非常に有効な手段である反面、微粉炭を含む洗浄水のような特殊な排水が対象になると、前記多孔質膜を通過する洗浄水の流速の低下が著しくなり、不可逆的な多孔質膜の閉塞につながって、該多孔質膜の回生処理が困難となり、運転を停止せざるを得なくなることが本発明者等の研究によって明らかとなった。 Membrane treatment with a porous membrane as described above is a very effective means, but when special drainage such as wash water containing pulverized coal is targeted, the flow velocity of the wash water passing through the porous membrane Studies by the present inventors have clarified that the decrease becomes remarkable, leading to irreversible blockage of the porous membrane, making it difficult to regenerate the porous membrane, and having to stop the operation.

本発明は、上記従来の問題点に鑑みてなしたもので、膜処理により洗浄水を濾過する運転を安定して継続し得る水処理方法及び装置を提供しようとするものである。 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a water treatment method and an apparatus capable of stably continuing the operation of filtering the washing water by the membrane treatment.

上記目的を達成するために、本発明の水処理方法は、揚運炭設備のコンベヤを洗浄し被洗浄物質である微粉炭を含有した洗浄水を回収する回収工程と、
該回収工程で回収した洗浄水を、ポリテトラフルオロエチレンを延伸加工したフィルタである多孔質膜で濾過して被洗浄物質を除去し浄化する膜濾過工程と、
該膜濾過工程で浄化した洗浄水を再利用する再利用工程と、
前記膜濾過工程で被洗浄物質を除去した多孔質膜の透過水量が設定値以下になった際に前記多孔質膜を苛性ソーダにて洗浄する回生工程と
を有する。
In order to achieve the above object, the water treatment method of the present invention includes a recovery step of washing the conveyor of the coal lifting facility and recovering the washing water containing pulverized coal which is a substance to be washed .
A membrane filtration step of filtering the washing water recovered in the recovery step with a porous membrane which is a filter obtained by stretching polytetrafluoroethylene to remove and purify the substance to be cleaned.
A reuse step of reusing the washing water purified in the membrane filtration step, and
It has a regeneration step of cleaning the porous membrane with caustic soda when the amount of permeated water of the porous membrane from which the substance to be cleaned has been removed in the membrane filtration step becomes equal to or less than a set value.

前記水処理方法においては、前記回生工程の前段階として、
前記多孔質膜を定期的に逆洗する逆洗工程と、
該逆洗工程で逆洗された多孔質膜の表面を洗浄する表面洗浄工程と
を有するようにすることができる。
In the water treatment method, as a preliminary step of the regeneration step,
A backwashing step of periodically backwashing the porous membrane and
It is possible to have a surface cleaning step of cleaning the surface of the porous membrane backwashed in the backwashing step.

前記水処理方法においては、前記回収工程で回収された洗浄水に含まれる被洗浄物質を沈降させた後、上澄みの洗浄水を前記膜濾過工程へ導く沈降工程を有するようにすることができる。 In the water treatment method, it is possible to have a sedimentation step of guiding the cleaning water of the supernatant to the membrane filtration step after sedimenting the substance to be cleaned contained in the cleaning water recovered in the recovery step.

一方、本発明の水処理装置は、揚運炭設備のコンベヤを洗浄し被洗浄物質である微粉炭を含有した洗浄水が導入される膜処理槽と、
該膜処理槽の内部に配置され且つ前記洗浄水を濾過して被洗浄物質を除去し浄化する、ポリテトラフルオロエチレンを延伸加工したフィルタである多孔質膜と、
該多孔質膜の透過水量が設定値以下になった際に前記多孔質膜を薬剤にて洗浄する薬剤洗浄槽と
を有する膜処理ユニットを備える。
On the other hand, the water treatment apparatus of the present invention includes a membrane treatment tank that cleans the conveyor of the coal lifting facility and introduces cleaning water containing pulverized coal as a substance to be cleaned .
A porous membrane which is a filter obtained by stretching polytetrafluoroethylene, which is arranged inside the membrane treatment tank and filters the washing water to remove and purify the substance to be washed.
The membrane treatment unit is provided with a chemical cleaning tank for cleaning the porous membrane with a chemical when the amount of permeated water of the porous membrane becomes equal to or less than a set value.

前記水処理装置において、前記膜処理ユニットは、
前記多孔質膜を逆洗する逆洗ユニットと、
該逆洗ユニットで逆洗された多孔質膜の表面を洗浄する表面洗浄ユニットと
を備えることができる。
In the water treatment apparatus, the membrane treatment unit is
A backwash unit that backwashes the porous membrane and
A surface cleaning unit for cleaning the surface of the porous membrane backwashed by the backwashing unit can be provided.

前記水処理装置において、前記膜処理ユニットは、
前記膜処理槽の上流側に設置され且つ前記被洗浄物質を沈降させた上澄みの洗浄水を前記膜処理槽へ導く沈降槽を備えることができる。
In the water treatment apparatus, the membrane treatment unit is
A settling tank installed on the upstream side of the membrane treatment tank and guiding the washing water of the supernatant on which the substance to be washed has settled to the membrane treatment tank can be provided.

前記水処理装置において、前記コンベヤは複数基配備され、該コンベヤ毎に前記膜処理ユニットが分散配備されるようにすることができる。 In the water treatment apparatus, a plurality of the conveyors can be arranged, and the membrane treatment units can be distributed and arranged for each conveyor.

本発明の水処理方法及び装置によれば、膜処理により洗浄水を濾過する運転を安定して継続し得るという優れた効果を奏し得る。 According to the water treatment method and apparatus of the present invention, it is possible to obtain an excellent effect that the operation of filtering the washing water by the membrane treatment can be stably continued.

本発明の水処理方法及び装置の一例を示すフローチャートである。It is a flowchart which shows an example of the water treatment method and apparatus of this invention. 本発明の水処理方法及び装置の一例における膜処理ユニットを示す構成図である。It is a block diagram which shows the membrane treatment unit in an example of the water treatment method and apparatus of this invention. 本発明の水処理方法及び装置の一例を示す全体概要構成図である。It is an overall schematic block diagram which shows an example of the water treatment method and apparatus of this invention. 揚運炭設備におけるコンベヤの洗浄設備の従来の一例を示す全体概要構成図である。It is an overall outline block diagram which shows the conventional example of the cleaning equipment of the conveyor in a coal-lifting equipment. 従来の凝集処理ユニットの一例を示す構成図である。It is a block diagram which shows an example of the conventional coagulation processing unit.

以下、本発明の実施の形態を添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図3は本発明の水処理方法及び装置の一例である。 1 to 3 are examples of the water treatment method and apparatus of the present invention.

本発明の水処理方法の一例は、図1に示す如く、基本となる工程として、回収工程(ステップS10参照)と、膜濾過工程(ステップS30参照)と、再利用工程(ステップS90参照)と、回生工程(ステップS80参照)とを有している。 As shown in FIG. 1, an example of the water treatment method of the present invention includes a recovery step (see step S10), a membrane filtration step (see step S30), and a reuse step (see step S90) as basic steps. , A regeneration step (see step S80).

前記回収工程は、例えば、揚運炭設備の機器としてのコンベヤC(図3参照)を洗浄し被洗浄物質としての微粉炭を含有した洗浄水を回収する工程である。 The recovery step is, for example, a step of washing the conveyor C (see FIG. 3) as an equipment of the coal lifting facility and recovering the washing water containing pulverized coal as the substance to be cleaned.

前記膜濾過工程は、前記回収工程で回収した洗浄水を多孔質膜130(図2参照)で濾過して微粉炭を除去し浄化する工程である。 The membrane filtration step is a step of filtering the washing water recovered in the recovery step with a porous membrane 130 (see FIG. 2) to remove pulverized coal and purify it.

前記再利用工程は、前記膜濾過工程で浄化した洗浄水を再利用する工程である。 The reuse step is a step of reusing the washing water purified in the membrane filtration step.

前記回生工程は、前記膜濾過工程で微粉炭を除去した多孔質膜130の透過水量が設定値以下になった際に前記多孔質膜130を薬剤にて洗浄する工程である。前記膜濾過工程で微粉炭を除去した多孔質膜130の透過水量が設定値以下になったか否かの判断は、ステップS70で行われるようになっている。 The regeneration step is a step of cleaning the porous membrane 130 with a chemical when the amount of permeated water of the porous membrane 130 from which pulverized coal has been removed in the membrane filtration step becomes equal to or less than a set value. It is determined in step S70 whether or not the amount of permeated water in the porous membrane 130 from which the pulverized coal has been removed in the membrane filtration step is equal to or less than the set value.

本発明の水処理方法の一例においては、前記回生工程の前段階として、逆洗工程(ステップS50参照)と、表面洗浄工程(ステップS60参照)とを有している。 In an example of the water treatment method of the present invention, a backwashing step (see step S50) and a surface washing step (see step S60) are included as a pre-step of the regeneration step.

前記逆洗工程は、前記多孔質膜130を定期的に逆洗する工程である。定期的な逆洗は、タイマで時間をカウントし、一定時間経過したか否かの判断(図1のステップS40参照)に基づいて行われるようになっている。 The backwashing step is a step of periodically backwashing the porous membrane 130. Periodic backwashing is performed based on counting the time with a timer and determining whether or not a certain time has elapsed (see step S40 in FIG. 1).

前記表面洗浄工程は、前記逆洗工程で逆洗された多孔質膜130の表面を洗浄する工程である。 The surface cleaning step is a step of cleaning the surface of the porous membrane 130 that has been backwashed in the backwashing step.

更に、本発明の水処理方法の一例においては、前記回収工程と膜濾過工程との間に沈降工程(ステップS20参照)を有している。 Further, in an example of the water treatment method of the present invention, a sedimentation step (see step S20) is provided between the recovery step and the membrane filtration step.

前記沈降工程は、前記回収工程で回収された洗浄水に含まれる微粉炭を沈降させた後、上澄みの洗浄水を前記膜濾過工程へ導く工程である。 The sedimentation step is a step of precipitating the pulverized coal contained in the washing water recovered in the recovery step and then guiding the washing water of the supernatant to the membrane filtration step.

本発明の水処理装置の一例は、図2に示され、膜処理槽120と、多孔質膜130と、薬剤洗浄槽140とを有する膜処理ユニット100を備えている。 An example of the water treatment apparatus of the present invention is shown in FIG. 2, and includes a membrane treatment unit 100 having a membrane treatment tank 120, a porous membrane 130, and a chemical cleaning tank 140.

前記膜処理槽120は、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水が導入されるようになっている。前記膜処理槽120の底部には、濾過用曝気ブロワ150から送給されるエアを噴射する濾過用曝気ノズル151が配設されている。 In the membrane treatment tank 120, the conveyor C (equipment) is washed and cleaning water containing pulverized coal (substance to be cleaned) is introduced. At the bottom of the membrane treatment tank 120, a filtration aeration nozzle 151 for injecting air supplied from the filtration aeration blower 150 is arranged.

前記多孔質膜130は、前記膜処理槽120の内部における前記濾過用曝気ノズル151の上方位置に、前記洗浄水を濾過して微粉炭を除去し浄化するよう配置されている。前記多孔質膜130の上端には、濾過された洗浄水を吸い上げる濾過ライン160が接続され、該濾過ライン160には、濾過ポンプ161が設けられている。前記膜処理槽120において分離された微粉炭(被洗浄物質)は、該膜処理槽120の底部から分離スラッジポンプ170で抜き出されて回収処理されるようになっている。 The porous membrane 130 is arranged above the filtration aeration nozzle 151 inside the membrane treatment tank 120 so as to filter the washing water to remove and purify pulverized coal. A filtration line 160 that sucks up the filtered washing water is connected to the upper end of the porous membrane 130, and the filtration line 160 is provided with a filtration pump 161. The pulverized coal (substance to be cleaned) separated in the membrane treatment tank 120 is extracted from the bottom of the membrane treatment tank 120 by a separation sludge pump 170 and recovered.

前記薬剤洗浄槽140は、前記多孔質膜130の透過水量が設定値以下になった際に前記多孔質膜130を前記膜処理槽120から取り出して薬剤にて洗浄するための槽である。前記薬剤洗浄槽140の底部には、回生用曝気ブロワ180から送給されるエアを噴射する回生用曝気ノズル181が配設されている。 The chemical cleaning tank 140 is a tank for taking out the porous membrane 130 from the membrane treatment tank 120 and cleaning it with a chemical when the amount of water permeated by the porous membrane 130 becomes equal to or less than a set value. At the bottom of the chemical cleaning tank 140, a regenerative aeration nozzle 181 for injecting air supplied from the regenerative aeration blower 180 is arranged.

前記膜処理ユニット100は、前記多孔質膜130を水で逆洗する逆洗ユニット190と、該逆洗ユニット190で逆洗された多孔質膜130の表面を洗浄する表面洗浄ユニット200とを備えている。前記逆洗ユニット190は、前記濾過ライン160の途中に接続される逆洗ライン191と、該逆洗ライン191に接続され逆洗水を供給する逆洗ポンプ192と、前記逆洗ライン191の途中に設けられる逆洗バルブ193と、該逆洗バルブ193に対し定期的に開信号194を出力する制御器195とを備えている。尚、前記逆洗ユニット190は、逆洗ポンプ192をブロワに代え、水の代わりにエアで逆洗を行うようにしても良い。 The membrane treatment unit 100 includes a backwash unit 190 that backwashes the porous membrane 130 with water, and a surface cleaning unit 200 that cleans the surface of the porous membrane 130 backwashed by the backwash unit 190. ing. The backwash unit 190 includes a backwash line 191 connected in the middle of the filtration line 160, a backwash pump 192 connected to the backwash line 191 to supply backwash water, and a backwash line 191 in the middle. A backwash valve 193 provided in the above and a controller 195 that periodically outputs an open signal 194 to the backwash valve 193 are provided. The backwash unit 190 may replace the backwash pump 192 with a blower and perform backwash with air instead of water.

更に、前記膜処理ユニット100は、前記膜処理槽120の上流側に設置され且つ前記微粉炭を沈降させた上澄みの洗浄水を前記膜処理槽120へ導く沈降槽110を備えている。前記沈降槽110の内部には、前記微粉炭が沈降する前に洗浄水がショートカットして膜処理槽120へ導出されることを防止するためのバッフルプレート111が設けられている。前記沈降槽110において沈降した微粉炭(被洗浄物質)は、該沈降槽110の底部から沈降スラッジポンプ210で抜き出されて回収処理されるようになっている。 Further, the membrane treatment unit 100 includes a settling tank 110 installed on the upstream side of the membrane treatment tank 120 and guiding the washing water of the supernatant on which the pulverized coal is settled to the membrane treatment tank 120. Inside the settling tank 110, a baffle plate 111 is provided to prevent the washing water from being short-cut and led out to the membrane treatment tank 120 before the pulverized coal settles. The pulverized coal (substance to be cleaned) settled in the settling tank 110 is extracted from the bottom of the settling tank 110 by a settling sludge pump 210 and recovered.

そして、前記多孔質膜130としては、ポリテトラフルオロエチレン(PTFE:Polytetrafluoroethylene)を延伸加工したフィルタを採用している。 Then, as the porous membrane 130, a filter obtained by stretching polytetrafluoroethylene (PTFE) is adopted.

又、前記薬剤としては、前記多孔質膜130がポリテトラフルオロエチレンを延伸加工したフィルタである場合、苛性ソーダ(NaOH)を用いることができる。該苛性ソーダの水溶液の濃度は、1%〜10%に設定することができる。 Further, as the chemical, caustic soda (NaOH) can be used when the porous membrane 130 is a filter obtained by stretching polytetrafluoroethylene. The concentration of the aqueous solution of caustic soda can be set to 1% to 10%.

本発明の水処理装置の一例において、前記機器は、図3に示す如く、揚運炭設備のコンベヤCであり、前記被洗浄物質は微粉炭であるが、前記コンベヤCは、複数基配備され、該コンベヤC毎に前記膜処理ユニット100が分散配備されるようになっている。尚、前記コンベヤCの所要箇所に対しては、前記膜処理ユニット100で浄化され散水ポンプ220で昇圧された洗浄水が散水ノズル(図示せず)から散水されて洗浄が行われるようになっている。 In an example of the water treatment apparatus of the present invention, as shown in FIG. 3, the device is a conveyor C of a coal lifting facility, and the substance to be cleaned is pulverized coal, but a plurality of the conveyors C are arranged. The film processing unit 100 is distributed and deployed for each conveyor C. The required parts of the conveyor C are cleaned by sprinkling the cleaning water purified by the membrane treatment unit 100 and boosted by the watering pump 220 from a watering nozzle (not shown). There is.

次に、上記水処理方法及び装置の一例の作用を説明する。 Next, the operation of an example of the above water treatment method and apparatus will be described.

先ず、図3に示す如く、例えば、揚運炭設備の機器としてのコンベヤCの所要箇所に対して、散水ポンプ220で昇圧された洗浄水が散水ノズル(図示せず)から散水されて洗浄が行われる。この時、被洗浄物質としての微粉炭を含有した洗浄水が回収される(図1のステップS10の「回収工程」参照)。 First, as shown in FIG. 3, for example, the washing water boosted by the watering pump 220 is sprinkled from a watering nozzle (not shown) to a required part of the conveyor C as an equipment of a coal lifting facility to perform cleaning. Will be done. At this time, the washing water containing pulverized coal as the substance to be washed is recovered (see "Recovery Step" in step S10 of FIG. 1).

前記回収工程で回収された洗浄水は、膜処理ユニット100に送られる。該膜処理ユニット100においては、先ず、沈降槽110で洗浄水に含まれる微粉炭が沈降する(図1のステップS20の「沈降工程」参照)。ここで、前記沈降槽110の内部にはバッフルプレート111が設けられているため、前記微粉炭が沈降する前に洗浄水がショートカットして膜処理槽120へ導出されることが防止される。前記沈降槽110において沈降した微粉炭(被洗浄物質)は、該沈降槽110の底部から沈降スラッジポンプ210で抜き出されて回収処理される。前記微粉炭を沈降させた上澄みの洗浄水は膜処理槽120へ導かれる。 The washing water recovered in the recovery step is sent to the membrane treatment unit 100. In the membrane treatment unit 100, first, the pulverized coal contained in the washing water is settled in the settling tank 110 (see “Settlement step” in step S20 of FIG. 1). Here, since the baffle plate 111 is provided inside the settling tank 110, it is possible to prevent the washing water from being short-cut and led out to the membrane treatment tank 120 before the pulverized coal settles. The pulverized coal (substance to be cleaned) settled in the settling tank 110 is extracted from the bottom of the settling tank 110 by a settling sludge pump 210 and recovered. The washing water of the supernatant in which the pulverized coal is settled is guided to the membrane treatment tank 120.

前記沈降工程として沈降槽110で洗浄水に含まれる微粉炭を沈降させた上澄みの洗浄水は、膜処理槽120へ導かれる。該膜処理槽120においては、濾過用曝気ブロワ150で昇圧されたエアが濾過用曝気ノズル151から噴射され、洗浄水は、前記濾過用曝気ノズル151の上方位置に配置された多孔質膜130で濾過されて微粉炭が除去され浄化される(図1のステップS30の「膜濾過工程」参照)。前記多孔質膜130で濾過された洗浄水は、濾過ポンプ161によって濾過ライン160から吸い上げられる。前記膜処理槽120において分離された微粉炭(被洗浄物質)は、該膜処理槽120の底部から分離スラッジポンプ170で抜き出されて回収処理される。 As the settling step, the supernatant washing water in which the pulverized coal contained in the washing water is settled in the settling tank 110 is guided to the membrane treatment tank 120. In the membrane treatment tank 120, the air boosted by the filtration aeration blower 150 is ejected from the filtration aeration nozzle 151, and the washing water is discharged from the porous membrane 130 arranged above the filtration aeration nozzle 151. It is filtered to remove pulverized coal and purified (see "Membrane Filtration Step" in step S30 of FIG. 1). The wash water filtered by the porous membrane 130 is sucked up from the filtration line 160 by the filtration pump 161. The pulverized coal (substance to be cleaned) separated in the membrane treatment tank 120 is extracted from the bottom of the membrane treatment tank 120 by a separation sludge pump 170 and recovered.

前記膜濾過工程として膜処理槽120で濾過されて浄化された洗浄水は、図3に示す散水ポンプ220で昇圧され、散水ノズル(図示せず)から散水されてコンベヤCの洗浄が行われる(図1のステップS90の「再利用工程」参照)。 The cleaning water filtered and purified in the membrane treatment tank 120 as the membrane filtration step is pressurized by the watering pump 220 shown in FIG. 3 and sprinkled from a watering nozzle (not shown) to clean the conveyor C (not shown). See "Reuse Step" in step S90 of FIG. 1).

そして、前記回収工程、沈降工程、膜濾過工程、再利用工程が行われる間、タイマで時間がカウントされ、一定時間経過したか否かの判断が行われる(図1のステップS40参照)。一定時間経過していると、図2に示す逆洗ユニット190の制御器195から逆洗バルブ193に対し開信号194が出力され、前記多孔質膜130が逆洗ポンプ192から逆洗ライン191と濾過ライン160を介して供給される水により逆洗される(図1のステップS50の「逆洗工程」参照)。尚、前記逆洗中、濾過ポンプ161は停止している。逆洗された多孔質膜130の表面は、表面洗浄ユニット200で洗浄される(図1のステップS60の「表面洗浄工程」参照)。これにより、前記多孔質膜130の目詰まりが解消される。逆洗終了後、前記逆洗バルブ193は閉じられる。 Then, while the recovery step, the sedimentation step, the membrane filtration step, and the reuse step are performed, the time is counted by the timer, and it is determined whether or not a certain time has elapsed (see step S40 in FIG. 1). After a certain period of time has elapsed, the controller 195 of the backwash unit 190 shown in FIG. 2 outputs an open signal 194 to the backwash valve 193, and the porous membrane 130 is connected to the backwash line 191 from the backwash pump 192. It is backwashed with water supplied through the filtration line 160 (see "Backwashing Step" in step S50 of FIG. 1). During the backwash, the filtration pump 161 is stopped. The surface of the backwashed porous membrane 130 is cleaned by the surface cleaning unit 200 (see “Surface cleaning step” in step S60 of FIG. 1). As a result, the clogging of the porous membrane 130 is eliminated. After the backwash is completed, the backwash valve 193 is closed.

但し、運転継続に伴い、逆洗だけでは除去しきれない多孔質膜130の目詰まりも発生する。そこで、前記多孔質膜130の透過水量が設定値以下になったか否かの判断が行われる(図1のステップS70参照)。前記多孔質膜130の透過水量が設定値以下になっている場合、前記多孔質膜130は、膜処理槽120から取り出されて薬剤洗浄槽140へ移される。該薬剤洗浄槽140には、苛性ソーダの水溶液が貯留され、回生用曝気ブロワ180で昇圧されたエアが回生用曝気ノズル181から噴射されている。前記多孔質膜130を苛性ソーダの水溶液中に浸漬して曝気することにより、前記多孔質膜130の回生が行われる(図1のステップS80の「回生工程」参照)。 However, as the operation is continued, clogging of the porous membrane 130, which cannot be completely removed by backwashing alone, also occurs. Therefore, it is determined whether or not the amount of permeated water in the porous membrane 130 is equal to or less than the set value (see step S70 in FIG. 1). When the amount of permeated water in the porous membrane 130 is equal to or less than a set value, the porous membrane 130 is taken out from the membrane treatment tank 120 and transferred to the chemical cleaning tank 140. An aqueous solution of caustic soda is stored in the chemical cleaning tank 140, and air boosted by the regenerative aeration blower 180 is injected from the regenerative aeration nozzle 181. By immersing the porous membrane 130 in an aqueous solution of caustic soda and aerating it, the porous membrane 130 is regenerated (see "Regeneration Step" in Step S80 of FIG. 1).

ここで、前記多孔質膜130として仮に、酢酸セルロース、ポリエチレン、ポリアクリロニトリル、ポリスルフォン、ポリエーテルスルフォン、ポリアミド、ポリビニルアルコール、ポリビニリデンフロライド等を利用した場合、耐久性、耐薬品性に関して充分であるとは言えないため、薬剤として苛性ソーダを用いたとすると、洗浄水を濾過して微粉炭を除去し浄化する運転を継続することは困難となる。 Here, if cellulose acetate, polyethylene, polyacrylonitrile, polysulfone, polyethersulfone, polyamide, polyvinyl alcohol, polyvinylidene fluoride or the like is used as the porous membrane 130, durability and chemical resistance are sufficient. Therefore, if caustic soda is used as a chemical, it is difficult to continue the operation of filtering the washing water to remove pulverized coal and purifying it.

しかし、本発明の水処理方法及び装置の一例においては、前記多孔質膜130がポリテトラフルオロエチレンを延伸加工したフィルタであるため、耐久性、耐薬品性に優れ、微粉炭を含む洗浄水のような特殊な排水が対象である場合であっても、前記多孔質膜130を通過する洗浄水の流速の低下を未然に防ぎ、不可逆的な多孔質膜130の閉塞につながることが避けられ、該多孔質膜130の回生処理が可能となり、運転を停止せずに円滑に進めることができる。 However, in an example of the water treatment method and apparatus of the present invention, since the porous membrane 130 is a filter obtained by stretching polytetrafluoroethylene, it is excellent in durability and chemical resistance, and cleaning water containing pulverized coal is used. Even when such special drainage is targeted, it is possible to prevent a decrease in the flow velocity of the washing water passing through the porous membrane 130 and prevent irreversible blockage of the porous membrane 130. The porous membrane 130 can be regenerated, and the operation can proceed smoothly without stopping.

こうして、膜処理により洗浄水を濾過する運転を安定して継続し得る。 In this way, the operation of filtering the washing water by the membrane treatment can be stably continued.

そして、本発明の水処理方法の一例においては、前記回生工程の前段階として、前記多孔質膜130を定期的に逆洗する逆洗工程と、該逆洗工程で逆洗された多孔質膜130の表面を洗浄する表面洗浄工程とを有している。又、本発明の水処理装置の一例においては、前記膜処理ユニット100は、前記多孔質膜130を逆洗する逆洗ユニット190と、該逆洗ユニット190で逆洗された多孔質膜130の表面を洗浄する表面洗浄ユニット200とを備えている。このように構成すると、前記多孔質膜130の薬剤による回生までの時間を延長させることができ、有効となる。 Then, in an example of the water treatment method of the present invention, as a preliminary step of the regeneration step, a backwash step of periodically backwashing the porous membrane 130 and a backwashing of the porous membrane in the backwash step are performed. It has a surface cleaning step of cleaning the surface of 130. Further, in an example of the water treatment apparatus of the present invention, the membrane treatment unit 100 includes a backwash unit 190 that backwashes the porous membrane 130 and a porous membrane 130 that is backwashed by the backwash unit 190. It is provided with a surface cleaning unit 200 for cleaning the surface. With such a configuration, the time until regeneration of the porous membrane 130 by the drug can be extended, which is effective.

本発明の水処理方法の一例においては、前記回収工程で回収された洗浄水に含まれる被洗浄物質を沈降させた後、上澄みの洗浄水を前記膜濾過工程へ導く沈降工程を有している。又、本発明の水処理装置の一例において、前記膜処理ユニット100は、前記膜処理槽120の上流側に設置され且つ前記被洗浄物質を沈降させた上澄みの洗浄水を前記膜処理槽120へ導く沈降槽110を備えている。このように構成すると、無定形炭素(アモルファスカーボン)と呼ばれて特殊な挙動をする微粉炭を、膜処理ユニット100で濾過する前に予め分離除去することができ、膜処理ユニット100での分離効率を高めることができる。 An example of the water treatment method of the present invention has a settling step of precipitating the substance to be washed contained in the washing water recovered in the recovery step and then guiding the washing water of the supernatant to the membrane filtration step. .. Further, in an example of the water treatment apparatus of the present invention, the membrane treatment unit 100 is installed on the upstream side of the membrane treatment tank 120, and the supernatant cleaning water in which the substance to be cleaned is precipitated is sent to the membrane treatment tank 120. The settling tank 110 for guiding is provided. With this configuration, pulverized coal called amorphous carbon (amorphous carbon), which has a special behavior, can be separated and removed in advance before being filtered by the membrane treatment unit 100, and can be separated by the membrane treatment unit 100. Efficiency can be increased.

本発明の水処理方法及び装置の一例において、前記多孔質膜130は、ポリテトラフルオロエチレンを延伸加工したフィルタである。このように構成すると、耐久性、耐薬品性に優れ、回生処理を有利に行える膜処理ユニット100を提供することができる。 In an example of the water treatment method and apparatus of the present invention, the porous membrane 130 is a filter obtained by stretching polytetrafluoroethylene. With such a configuration, it is possible to provide the film treatment unit 100 which is excellent in durability and chemical resistance and can advantageously perform the regenerative treatment.

本発明の水処理方法及び装置の一例において、前記薬剤は苛性ソーダである。このように構成すると、ポリテトラフルオロエチレンを延伸加工したフィルタからなる多孔質膜130の回生を効率良く行うことができる。 In an example of the water treatment method and apparatus of the present invention, the agent is caustic soda. With this configuration, the porous membrane 130 made of a filter obtained by stretching polytetrafluoroethylene can be efficiently regenerated.

本発明の水処理装置の一例において、前記機器は揚運炭設備のコンベヤCであり、前記被洗浄物質は微粉炭である。このように構成すると、従来のコンベヤCの洗浄水の処理として利用されていた凝集剤による凝集沈殿とは異なり、前記凝集剤の添加量不足による、洗浄水への微粉炭の残留は発生せず、洗浄水を噴射するノズルの詰りや配管の摩耗も発生しない。勿論、前記凝集剤の添加量過剰による、再利用される洗浄水への凝集剤の残留も発生せず、該凝集剤の配管内での凝集、配管の閉塞の心配もない。又、微粉炭は凝集されず濃縮もされないため、凝集剤由来の金属酸化物と微粉炭のフロックの集塊物質が生じることはなく、その処理コストが高くなることも避けられる。 In an example of the water treatment apparatus of the present invention, the apparatus is a conveyor C of a coal lifting facility, and the substance to be cleaned is pulverized coal. With this configuration, unlike the coagulation sedimentation by the coagulant used for treating the washing water of the conventional conveyor C, the pulverized coal does not remain in the washing water due to the insufficient amount of the coagulant added. There is no clogging of the nozzle that injects cleaning water or wear of the piping. Of course, the coagulant does not remain in the recycled washing water due to the excessive addition amount of the coagulant, and there is no concern that the coagulant is agglomerated in the pipe or the pipe is clogged. Further, since the pulverized coal is neither agglomerated nor concentrated, the metal oxide derived from the aggregating agent and the floc agglomerate of the pulverized coal are not generated, and the processing cost thereof can be avoided.

本発明の水処理装置の一例において、前記コンベヤCは複数基配備され、該コンベヤC毎に前記膜処理ユニット100が分散配備される。このように構成すると、図4に示される従来例のように複数基配備されるコンベヤCから回収される洗浄水を凝集処理ユニット50で集中的に処理するのに比べ、全体の運転効率を高め、コスト削減を図ることができる。 In an example of the water treatment apparatus of the present invention, a plurality of the conveyors C are arranged, and the membrane treatment units 100 are distributed and arranged for each of the conveyors C. With this configuration, the overall operating efficiency is improved as compared with the case where the washing water recovered from the conveyors C arranged in a plurality of units is intensively treated by the coagulation treatment unit 50 as in the conventional example shown in FIG. , Cost reduction can be achieved.

以下、本発明の水処理方法及び装置の実施例を示す。 Hereinafter, examples of the water treatment method and apparatus of the present invention will be shown.

先ず、多孔質膜130を薬剤にて洗浄し回生を行うにあたって、ポリテトラフルオロエチレン(PTFE)製の多孔質膜(ポアフロン(登録商標):住友電工製)とポリビニリデンフロライド(PVDF)製の多孔質膜(ステラポア(登録商標):三菱ケミカル製)に対し並行して、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水(排出原水:分析値は[表1]参照)を通液処理し、同等膜面積当りの換算値比較を行い、時間の経過に伴う各差圧の変化を観察したところ、[表2]に示すような結果が得られた。

Figure 0006811162


Figure 0006811162

First, when the porous membrane 130 is washed with a chemical and regenerated, a porous membrane made of polytetrafluoroethylene (PTFE) (Poaflon (registered trademark): manufactured by Sumitomo Electric) and polyvinylidene fluoride (PVDF) are used. In parallel with the porous membrane (Stellapore (registered trademark): manufactured by Mitsubishi Chemical Co., Ltd.), the conveyor C (equipment) was washed and the washing water containing pulverized coal (substance to be cleaned) (exhausted raw water: analytical values are shown in [Table]. (See 1]) was passed through the liquid, the conversion values per equivalent membrane area were compared, and the changes in each differential pressure over time were observed. As a result, the results shown in [Table 2] were obtained.
Figure 0006811162


Figure 0006811162

上記の[表2]において、初期設定条件として、透過流束は、
1.5[m3/(m2・Day)=62.5[L/h]
であり、差圧(吸引圧力)到達点の設定値は40[kPa]である。
In the above [Table 2], as an initial setting condition, the permeated flux is
1.5 [m 3 / (m 2・ Day) = 62.5 [L / h]
The set value of the differential pressure (suction pressure) arrival point is 40 [kPa].

ポリテトラフルオロエチレン(PTFE)製の多孔質膜については、120時間経過後に実透過流束の算出値が72[%]まで低下したものを、ポリビニリデンフロライド(PVDF)製の多孔質膜については、96時間経過後に実透過流束の算出値が68[%]まで低下したものを、それぞれ薬剤洗浄による回生試験に供した。 For the porous membrane made of polytetrafluoroethylene (PTFE), the calculated value of the actual permeation flux decreased to 72 [%] after 120 hours, and for the porous membrane made of polyvinylidene fluoride (PVDF). After 96 hours, the calculated value of the actual permeation flux decreased to 68 [%], and each of them was subjected to a regeneration test by chemical washing.

前記回生試験をする前に、前記多孔質膜の逆洗を水道水にて実施した。 Prior to the regeneration test, the backwash of the porous membrane was carried out with tap water.

前記水道水による逆洗の条件としては、流束を
3[m3/(m2・Day)=125[L/h]
とし、時間を5分間とした。
As a condition for backwashing with tap water, a flux is used.
3 [m 3 / (m 2・ Day) = 125 [L / h]
The time was set to 5 minutes.

その結果は、[表3]に示すようになった。

Figure 0006811162

The results are shown in [Table 3].
Figure 0006811162

前記水道水による逆洗に続いて、ポリテトラフルオロエチレン(PTFE)製の多孔質膜とポリビニリデンフロライド(PVDF)製の多孔質膜とを薬剤(クエン酸、次亜塩素酸ソーダ、苛性ソーダ)にて洗浄し回生を行った。 Following the backwash with tap water, a porous membrane made of polytetrafluoroethylene (PTFE) and a porous membrane made of polyvinylidene fluoride (PVDF) were used as chemicals (citric acid, sodium hypochlorite, caustic soda). Was washed and regenerated.

クエン酸洗浄は、以下の手順で行った。
1.水道水による逆洗後、水槽内を、0.5[%]クエン酸液で満たし、濾過用曝気ブロワを稼動し続けた。
2.8時間以上の浸漬処理を行った。
3.クエン酸液を廃棄し、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水(排出原水)に置換しつつ、pHを6以上にした。
4.定常の濾過条件にして通液した。
The citric acid washing was carried out according to the following procedure.
1. 1. After backwashing with tap water, the inside of the water tank was filled with 0.5 [%] citric acid solution, and the aeration blower for filtration was continuously operated.
The immersion treatment was carried out for 2.8 hours or more.
3. 3. The citric acid solution was discarded, the conveyor C (equipment) was washed and replaced with washing water (exhaust raw water) containing pulverized coal (substance to be cleaned), and the pH was adjusted to 6 or higher.
4. The liquid was passed under steady filtration conditions.

次亜塩素酸ソーダ洗浄は、以下の手順で行った。
1.水道水による逆洗後、水槽内を、0.05[%]次亜塩素酸ソーダ液で満たし、濾過用曝気ブロワを稼動し続けた。
2.8時間以上の浸漬処理を行った。
3.次亜塩素酸ソーダ液を廃棄し、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水(排出原水)に置換しつつ、pHを8以下にした。
4.定常の濾過条件にして通液した。
Sodium hypochlorite washing was performed according to the following procedure.
1. 1. After backwashing with tap water, the inside of the water tank was filled with 0.05 [%] sodium hypochlorite solution, and the aeration blower for filtration was continuously operated.
The immersion treatment was carried out for 2.8 hours or more.
3. 3. The sodium hypochlorite solution was discarded, the conveyor C (equipment) was washed and replaced with washing water (exhaust raw water) containing pulverized coal (substance to be cleaned), and the pH was adjusted to 8 or less.
4. The liquid was passed under steady filtration conditions.

苛性ソーダ洗浄は、以下の手順で行った。
1.水道水による逆洗後、水槽内を、10[%]苛性ソーダ液で満たし、濾過用曝気ブロワを稼動し続けた。
2.8時間以上の浸漬処理を行った。
3.苛性ソーダ液を廃棄し、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水(排出原水)に置換しつつ、pHを8以下にした。
4.定常の濾過条件にして通液した。
The caustic soda washing was carried out by the following procedure.
1. 1. After backwashing with tap water, the inside of the water tank was filled with 10 [%] caustic soda solution, and the aeration blower for filtration was continuously operated.
The immersion treatment was carried out for 2.8 hours or more.
3. 3. The caustic soda solution was discarded, the conveyor C (equipment) was washed and replaced with washing water (exhaust raw water) containing pulverized coal (substance to be cleaned), and the pH was adjusted to 8 or less.
4. The liquid was passed under steady filtration conditions.

上記の薬剤洗浄による回生結果は、[表4]に示すようになった。

Figure 0006811162

The regeneration results by the above chemical washing are shown in [Table 4].
Figure 0006811162

初期の透過流束62.5[L/h]に対する回復の割合は、
100×{1−(洗浄後の透過流束)/(初期の透過流束)}[%]
より求めた。
The rate of recovery for the initial permeation flux 62.5 [L / h] is
100 × {1- (permeated flux after washing) / (initial permeated flux)} [%]
I asked for more.

因みに、ポリビニリデンフロライド(PVDF)製の多孔質膜は、その膜面が薄く茶褐色になった。即ち、ポリビニリデンフロライド(PVDF)製の多孔質膜は苛性ソーダに弱い傾向を示すことが判明した。 Incidentally, the porous film made of polyvinylidene fluoride (PVDF) had a light brown surface. That is, it was found that the porous membrane made of polyvinylidene fluoride (PVDF) tends to be vulnerable to caustic soda.

そして、本実施例の結果から、ポリテトラフルオロエチレン(PTFE)製の多孔質膜は、薬剤として苛性ソーダを用いて洗浄することにより回生を行うことが、極めて有効であると言える。 From the results of this example, it can be said that it is extremely effective to regenerate the porous membrane made of polytetrafluoroethylene (PTFE) by washing it with caustic soda as a drug.

尚、本発明の水処理方法及び装置は、上述の一例や実施例にのみ限定されるものではなく、石炭火力発電所の揚運炭設備におけるコンベヤの洗浄以外にも適用可能なこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The water treatment method and apparatus of the present invention are not limited to the above-mentioned examples and examples, and can be applied to other than cleaning conveyors in coal-fired power plant lifting facilities, etc. Of course, various changes can be made without departing from the gist of the present invention.

100 膜処理ユニット
110 沈降槽
120 膜処理槽
130 多孔質膜
140 薬剤洗浄槽
190 逆洗ユニット
200 表面洗浄ユニット
C コンベヤ(機器)
100 Membrane treatment unit 110 Sedimentation tank 120 Membrane treatment tank 130 Porous membrane 140 Chemical cleaning tank 190 Backwash unit 200 Surface cleaning unit C Conveyor (equipment)

Claims (7)

揚運炭設備のコンベヤを洗浄し被洗浄物質である微粉炭を含有した洗浄水を回収する回収工程と、
該回収工程で回収した洗浄水を、ポリテトラフルオロエチレンを延伸加工したフィルタである多孔質膜で濾過して被洗浄物質を除去し浄化する膜濾過工程と、
該膜濾過工程で浄化した洗浄水を再利用する再利用工程と、
前記膜濾過工程で被洗浄物質を除去した多孔質膜の透過水量が設定値以下になった際に前記多孔質膜を苛性ソーダにて洗浄する回生工程と
を有する水処理方法。
A recovery process that cleans the conveyor of the coal lifting facility and recovers the washing water containing pulverized coal , which is the substance to be cleaned .
A membrane filtration step of filtering the washing water recovered in the recovery step with a porous membrane which is a filter obtained by stretching polytetrafluoroethylene to remove and purify the substance to be cleaned.
A reuse step of reusing the washing water purified in the membrane filtration step, and
A water treatment method comprising a regeneration step of washing the porous membrane with caustic soda when the amount of permeated water of the porous membrane from which the substance to be cleaned has been removed in the membrane filtration step becomes equal to or less than a set value.
前記回生工程の前段階として、
前記多孔質膜を定期的に逆洗する逆洗工程と、
該逆洗工程で逆洗された多孔質膜の表面を洗浄する表面洗浄工程と
を有する請求項1記載の水処理方法。
As a preliminary step to the regeneration process,
A backwashing step of periodically backwashing the porous membrane and
The water treatment method according to claim 1, further comprising a surface cleaning step of cleaning the surface of the porous membrane backwashed in the backwashing step.
前記回収工程で回収された洗浄水に含まれる被洗浄物質を沈降させた後、上澄みの洗浄水を前記膜濾過工程へ導く沈降工程を有する請求項1又は2記載の水処理方法。 The water treatment method according to claim 1 or 2, further comprising a sedimentation step of precipitating the substance to be cleaned contained in the wash water recovered in the recovery step and then guiding the wash water of the supernatant to the membrane filtration step. 揚運炭設備のコンベヤを洗浄し被洗浄物質である微粉炭を含有した洗浄水が導入される膜処理槽と、
該膜処理槽の内部に配置され且つ前記洗浄水を濾過して被洗浄物質を除去し浄化する、ポリテトラフルオロエチレンを延伸加工したフィルタである多孔質膜と、
該多孔質膜の透過水量が設定値以下になった際に前記多孔質膜を苛性ソーダにて洗浄する薬剤洗浄槽と
を有する膜処理ユニットを備えた水処理装置。
A membrane treatment tank that cleans the conveyor of the coal lifting facility and introduces cleaning water containing pulverized coal , which is the substance to be cleaned ,
A porous membrane which is a filter obtained by stretching polytetrafluoroethylene, which is arranged inside the membrane treatment tank and filters the washing water to remove and purify the substance to be washed.
A water treatment apparatus including a membrane treatment unit having a chemical cleaning tank for cleaning the porous membrane with caustic soda when the amount of permeated water in the porous membrane becomes equal to or less than a set value.
前記膜処理ユニットは、
前記多孔質膜を逆洗する逆洗ユニットと、
該逆洗ユニットで逆洗された多孔質膜の表面を洗浄する表面洗浄ユニットと
を備えた請求項記載の水処理装置。
The membrane processing unit is
A backwash unit that backwashes the porous membrane and
The water treatment apparatus according to claim 4, further comprising a surface cleaning unit for cleaning the surface of the porous membrane backwashed by the backwashing unit.
前記膜処理ユニットは、
前記膜処理槽の上流側に設置され且つ前記被洗浄物質を沈降させた上澄みの洗浄水を前記膜処理槽へ導く沈降槽を備えた請求項又は記載の水処理装置。
The membrane processing unit is
The water treatment apparatus according to claim 4 or 5 , further comprising a settling tank installed on the upstream side of the membrane treatment tank and guiding the washing water of the supernatant on which the substance to be cleaned is settled to the membrane treatment tank.
前記コンベヤは複数基配備され、該コンベヤ毎に前記膜処理ユニットが分散配備される請求項4−6のいずれか一項に記載の水処理装置。 The water treatment apparatus according to any one of claims 4-6 , wherein a plurality of the conveyors are arranged and the membrane treatment units are distributed and arranged for each conveyor.
JP2017222547A 2017-11-20 2017-11-20 Water treatment method and equipment Active JP6811162B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017222547A JP6811162B2 (en) 2017-11-20 2017-11-20 Water treatment method and equipment
CN201880075085.6A CN111417597A (en) 2017-11-20 2018-07-25 Water treatment method and apparatus
PCT/JP2018/027986 WO2019097767A1 (en) 2017-11-20 2018-07-25 Method and device for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017222547A JP6811162B2 (en) 2017-11-20 2017-11-20 Water treatment method and equipment

Publications (3)

Publication Number Publication Date
JP2019093320A JP2019093320A (en) 2019-06-20
JP2019093320A5 JP2019093320A5 (en) 2020-11-26
JP6811162B2 true JP6811162B2 (en) 2021-01-13

Family

ID=66540117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222547A Active JP6811162B2 (en) 2017-11-20 2017-11-20 Water treatment method and equipment

Country Status (3)

Country Link
JP (1) JP6811162B2 (en)
CN (1) CN111417597A (en)
WO (1) WO2019097767A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3871749B2 (en) * 1996-11-18 2007-01-24 東北電力株式会社 Treatment method of flue gas desulfurization waste water
CN1334251A (en) * 2001-08-31 2002-02-06 上海乐富门水处理工程有限公司 Process for treating waste water with coal ash
JP2004267892A (en) * 2003-03-07 2004-09-30 Toshiba Corp Wastewater treatment equipment
JP2006043655A (en) * 2004-08-09 2006-02-16 Japan Organo Co Ltd Water treating apparatus and operation method therefor
JP2009233569A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Membrane separation method
CN101525191B (en) * 2009-04-27 2011-04-13 河南洁源膜分离科技有限公司 Coking wastewater membrane method treating process
JP2011115712A (en) * 2009-12-02 2011-06-16 Mitsubishi Heavy Ind Ltd Washing method of filter membrane
CN103249472B (en) * 2010-12-10 2015-05-27 东丽株式会社 Chemical cleaning method for immersed membrane element
CN115121124A (en) * 2014-08-29 2022-09-30 三菱电机株式会社 Method and apparatus for cleaning filtration membrane, and water treatment system
CN204474371U (en) * 2014-12-23 2015-07-15 三达膜科技(厦门)有限公司 A kind for the treatment of unit of coal washing waste water

Also Published As

Publication number Publication date
CN111417597A (en) 2020-07-14
JP2019093320A (en) 2019-06-20
WO2019097767A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP4241684B2 (en) Membrane module cleaning method
JP6719970B2 (en) Membrane filtration system and membrane filtration method
JP2007130523A (en) Membrane washing method for water treatment system
JP2003266072A (en) Membrane filtration method
JP4309633B2 (en) Water treatment method
JP2019209324A (en) Wastewater treatment system and wastewater treatment method
WO2019150604A1 (en) Method and apparatus for treating coal wastewater
KR20150046093A (en) Water production method
WO2017159303A1 (en) Method for treating waste water having high hardness
JP2007090249A (en) Method for cleaning membrane deaerator
JP5017922B2 (en) Water treatment method
JP6811162B2 (en) Water treatment method and equipment
CN210457682U (en) Cleaning system of water treatment system based on reverse osmosis membrane
JP2021508356A (en) Pickling method for steel sheet
KR101973736B1 (en) Method for production of sludge dewatering cake in ceramic membrane filtration process using submerged membrane and pressurized membrane
JP4569200B2 (en) Water treatment method and membrane filtration water treatment device operation method
KR101973738B1 (en) Method for cleaning of ceramic membrane filtration system using submerged membrane and pressurized membrane
JP2007152193A (en) Water purification device and method
CN106267934B (en) A kind of high molecular polymer is the regeneration method of filter aid initiation blocking filtrate
JPH119972A (en) Membrane filtration apparatus and membrane filtration method
JP2005046801A (en) Water treatment method and apparatus therefor
CN217511590U (en) Cleaning system of milipore filter
WO2021106574A1 (en) Coal wastewater treatment method and device
JP4125390B2 (en) Waste water recycling equipment
CN114849487A (en) Cleaning system and method for ultrafiltration membrane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201023

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6811162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250