WO2019097767A1 - Method and device for water treatment - Google Patents

Method and device for water treatment Download PDF

Info

Publication number
WO2019097767A1
WO2019097767A1 PCT/JP2018/027986 JP2018027986W WO2019097767A1 WO 2019097767 A1 WO2019097767 A1 WO 2019097767A1 JP 2018027986 W JP2018027986 W JP 2018027986W WO 2019097767 A1 WO2019097767 A1 WO 2019097767A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
porous membrane
water treatment
backwashing
Prior art date
Application number
PCT/JP2018/027986
Other languages
French (fr)
Japanese (ja)
Inventor
津田 隆
大助 大森
昭洋 田中
雅典 東都
雄 川上
翔 御手洗
Original Assignee
Ihi運搬機械株式会社
協和機電工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi運搬機械株式会社, 協和機電工業株式会社 filed Critical Ihi運搬機械株式会社
Priority to CN201880075085.6A priority Critical patent/CN111417597A/en
Publication of WO2019097767A1 publication Critical patent/WO2019097767A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G45/00Lubricating, cleaning, or clearing devices
    • B65G45/10Cleaning devices
    • B65G45/22Cleaning devices comprising fluid applying means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a water treatment method and apparatus.
  • coal serving as fuel is transported from a coal storage station to a mill using a conveyor, and pulverized coal pulverized in the mill is supplied to a burner of a boiler and burned. It is supposed to be.
  • Sprinkling is performed to the above-mentioned conveyor for the control of the spontaneous combustion with the temperature rise of coal under conveyance, the control of diffusion of the pulverized coal to the circumference, and maintenance of the function of the conveyor itself.
  • FIG. 1 is a whole schematic block diagram showing an example of a conventional cleaning equipment of a conveyor in a lifting coal equipment.
  • the washing water pressurized by the water pouring pump 10 is sprinkled from a water sprinkling nozzle (not shown) to the conveyor C as a plurality of devices and the washing is performed, and the fine powder as the substance to be washed Wash water containing charcoal is collected in the drainage recovery tank 20, and the wash water collected in the drainage recovery tank 20 is supplied to the collection water collecting tank 40 by the collection pump 30, and aggregation treatment is carried out from the collection water collecting tank 40. It is sent to the unit 50.
  • the washing water sent to the aggregation treatment unit 50 is subjected to aggregation treatment of pulverized coal, and then the supernatant washing water is led to the water distribution pump 10 through the treatment water tank 60 and is reused in the form of being reused. It is done and this operation is to be repeated.
  • the aggregation treatment unit 50 includes a pH adjustment tank 51, an aggregation reaction tank 52, and an aggregation sedimentation tank 53, as shown in FIG.
  • a coagulant such as poly aluminum chloride (PAC: Poly Aluminum Chloride) is added to the washing water in the pH adjustment tank 51, and the mixture is stirred by the stirrer 70 to adjust the pH to a neutral range.
  • An aggregate floc of suspended matter is formed, and further, an aggregating agent such as a polymer is added in the agglutination reaction tank 52, and the aggregate floc is enlarged by being stirred by the agitator 71.
  • the washing water containing the enlarged aggregate floc is coagulated and precipitated while being stirred by the stirrer 72 in the coagulation sedimentation tank 53, and the supernatant washing water is reused.
  • the pulverized coal (substance to be washed) which is coagulated and concentrated in the coagulating settling tank 53 is extracted from the bottom of the coagulating settling tank 53 by the coagulated sludge pump 80 and is recovered and processed.
  • patent document 1 shows the general technical level relevant to the conveyor washing water treatment of the lifting and hauling coal installation which utilized the above-mentioned aggregation sedimentation.
  • the coagulant when the addition amount of the coagulant is excessive, the coagulant remains in the recycled washing water, and the coagulant may be coagulated in the pipe, and the pipe may be clogged.
  • the agglomerated and concentrated pulverized coal is an agglomerated material of metal oxide derived from flocculant and floc of pulverized coal, and occupies a large volume, so that there is a problem that the processing cost becomes high.
  • the agglomerated and concentrated pulverized coal is an agglomerated material of metal oxide derived from flocculant and floc of pulverized coal, and occupies a large volume, so that there is a problem that the processing cost becomes high.
  • porous membranes of various materials for example, cellulose acetate (CA: Cellulose Acetate), polyethylene (PE: Polyethylene), polyacrylonitrile (PAN: Polyacrylonitrile), polysulfone ( PS: Polysulfone), polyethersulfone (PES: Polyethersulfone), polyamide (PA: Polyamide), polyvinyl alcohol (PVA: Polyvinyl Alcohol), polyvinylidene fluoride (PVDF: Polyvinylidene Difluoride) etc., and washing water is filtered It is proposed to remove and purify pulverized coal.
  • CA Cellulose Acetate
  • PE Polyethylene
  • PAN Polyacrylonitrile
  • PS Polysulfone
  • PES polyethersulfone
  • PA Polyamide
  • PVA Polyvinyl Alcohol
  • PVDF Polyvinylidene fluoride
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a water treatment method and apparatus capable of stably continuing the operation of filtering washing water by membrane treatment.
  • the water treatment method of the present invention comprises a recovery step of washing equipment and recovering wash water containing a substance to be washed; A membrane filtration step of filtering the cleaning water recovered in the recovery step with a porous membrane to remove and purify the substance to be cleaned; A recycling step of recycling the cleaning water purified in the membrane filtration step; And a regeneration step of washing the porous membrane with a drug when the amount of permeated water of the porous membrane from which the substance to be washed has been removed in the membrane filtration step becomes equal to or less than a set value.
  • a backwashing step of periodically backwashing the porous membrane As a step before the regeneration step, A backwashing step of periodically backwashing the porous membrane; And a surface cleaning step of cleaning the surface of the porous membrane backwashed in the backwashing step.
  • the water treatment method may include a sedimentation step of leading the washing water of the supernatant to the membrane filtration step after settling the substance to be washed contained in the washing water recovered in the recovery step.
  • the porous membrane can be a filter formed by stretching polytetrafluoroethylene.
  • the agent can be caustic soda.
  • the device may be a conveyor of a lifting coal facility, and the to-be-cleaned material may be pulverized coal.
  • a membrane treatment tank into which washing water containing a substance to be washed is introduced.
  • a porous membrane disposed inside the membrane treatment tank and filtering the washing water to remove and purify the substance to be washed;
  • medical solution cleaning tank which wash
  • the membrane treatment unit is A backwashing unit for backwashing the porous membrane; And a surface cleaning unit for cleaning the surface of the porous membrane backwashed by the backwashing unit.
  • the membrane treatment unit is It is possible to provide a sedimentation tank which is installed on the upstream side of the membrane processing tank and guides the washing water of the supernatant obtained by settling the substance to be washed to the membrane processing tank.
  • the porous membrane can be a filter formed by drawing polytetrafluoroethylene.
  • the agent may be caustic soda.
  • the device may be a conveyor of lifting coal equipment, and the material to be cleaned may be pulverized coal.
  • a plurality of the conveyors can be provided, and the membrane treatment units can be distributed and provided for each of the conveyors.
  • 3 to 5 show an example of the water treatment method and apparatus of the present invention.
  • One example of the water treatment method of the present invention is, as shown in FIG. 3, as a basic step, a recovery step (see step S10), a membrane filtration step (see step S30), and a reuse step (see step S90). And the regeneration step (see step S80).
  • the recovery step is, for example, a step of cleaning a conveyor C (see FIG. 5) as an apparatus for lifting and transporting coal and recovering cleaning water containing pulverized coal as a substance to be cleaned.
  • the membrane filtration step is a step of filtering the cleaning water recovered in the recovery step with the porous membrane 130 (see FIG. 4) to remove pulverized coal and purify it.
  • the reuse step is a step of reusing the cleaning water purified in the membrane filtration step.
  • the regeneration step is a step of washing the porous membrane 130 with a drug when the amount of water permeated from the porous membrane 130 from which pulverized coal has been removed in the membrane filtration step becomes equal to or less than a set value.
  • the determination as to whether or not the amount of permeated water of the porous membrane 130 from which pulverized coal has been removed in the membrane filtration step has become equal to or less than a set value is made in step S70.
  • a backwashing step (see step S50) and a surface cleaning step (see step S60) are included as steps before the regeneration step.
  • the backwashing step is a step of periodically backwashing the porous membrane 130.
  • the periodic backwashing is performed by counting time with a timer and determining whether or not a predetermined time has elapsed (see step S40 in FIG. 3).
  • the surface cleaning step is a step of cleaning the surface of the porous membrane 130 backwashed in the backwashing step.
  • a sedimentation step (see step S20) is included between the recovery step and the membrane filtration step.
  • the sedimentation step is a step of guiding the supernatant wash water to the membrane filtration step after settling pulverized coal contained in the wash water recovered in the recovery step.
  • FIG. 4 An example of the water treatment apparatus of the present invention is shown in FIG. 4 and comprises a membrane treatment unit 100 having a membrane treatment tank 120, a porous membrane 130, and a drug washing tank 140.
  • the film processing tank 120 cleans the conveyor C (equipment) so that cleaning water containing pulverized coal (substance to be cleaned) is introduced.
  • a filtration aeration nozzle 151 for injecting the air supplied from the filtration aeration blower 150 is disposed.
  • the porous membrane 130 is disposed at a position above the filtration aeration nozzle 151 inside the membrane processing tank 120 so as to filter the cleaning water and remove and purify pulverized coal.
  • a filtration line 160 for sucking up the filtered washing water is connected, and a filtration pump 161 is provided at the filtration line 160.
  • the pulverized coal (substance to be washed) separated in the membrane treatment tank 120 is extracted from the bottom of the membrane treatment tank 120 by a separation sludge pump 170 and is recovered and processed.
  • the drug washing tank 140 is a tank for taking out the porous membrane 130 from the membrane treatment tank 120 and washing with a drug when the amount of permeated water of the porous membrane 130 becomes equal to or less than a set value.
  • a regeneration aeration nozzle 181 for injecting the air supplied from the regeneration aeration blower 180 is disposed.
  • the membrane processing unit 100 includes a backwashing unit 190 for backwashing the porous membrane 130 with water, and a surface cleaning unit 200 for cleaning the surface of the porous membrane 130 backwashed by the backwashing unit 190.
  • the backwashing unit 190 includes a backwashing line 191 connected to the middle of the filtration line 160, a backwashing pump 192 connected to the backwashing line 191 and supplying backwashing water, and a middle of the backwashing line 191.
  • a controller 195 which periodically outputs an open signal 194 to the backwash valve 193.
  • the backwashing unit 190 may replace the backwashing pump 192 with a blower and perform backwashing with air instead of water.
  • the film processing unit 100 is provided with a sedimentation tank 110 installed on the upstream side of the film processing tank 120 and guiding the cleaning water of the supernatant obtained by settling the pulverized coal to the film processing tank 120.
  • a baffle plate 111 is provided inside the settling tank 110 for preventing the cleaning water from being short-cut and led to the membrane processing tank 120 before the pulverized coal settles.
  • the pulverized coal (substance to be washed) settled in the sedimentation tank 110 is extracted from the bottom of the sedimentation tank 110 by a sedimentation sludge pump 210 and is recovered and processed.
  • porous membrane 130 a filter obtained by drawing and processing polytetrafluoroethylene (PTFE: Polytetrafluoroethylene) is adopted.
  • PTFE Polytetrafluoroethylene
  • caustic soda NaOH
  • concentration of the aqueous solution of caustic soda can be set to 1% to 10%.
  • the equipment is a conveyor C of a lifting coal facility as shown in FIG. 5 and the substance to be cleaned is pulverized coal, but a plurality of conveyors C are provided
  • the film processing units 100 are distributed and disposed for each of the conveyors C.
  • the cleaning water purified by the membrane processing unit 100 and pressurized by the water spray pump 220 is sprayed from a water spray nozzle (not shown) to perform cleaning.
  • cleaning water pressurized by a water distribution pump 220 is sprayed from a sprinkle nozzle (not shown) to perform cleaning.
  • washing water containing pulverized coal as a substance to be washed is recovered (see “recovery step” in step S10 of FIG. 3).
  • the wash water recovered in the recovery step is sent to the membrane processing unit 100.
  • pulverized coal contained in the washing water is sedimented in the sedimentation tank 110 (see “sedimentation process" in step S20 of FIG. 3).
  • the baffle plate 111 is provided inside the settling tank 110, it is prevented that the cleaning water is short-cut and led out to the membrane processing tank 120 before the pulverized coal settles.
  • the pulverized coal (substance to be washed) sedimented in the sedimentation tank 110 is extracted from the bottom of the sedimentation tank 110 by a sedimentation sludge pump 210 and is recovered and processed.
  • the wash water of the supernatant obtained by settling the pulverized coal is introduced to the membrane treatment tank 120.
  • the wash water of the supernatant obtained by settling the pulverized coal contained in the washing water in the sedimentation tank 110 as the sedimentation step is led to the membrane treatment tank 120.
  • the air pressurized by the filtration aeration blower 150 is injected from the filtration aeration nozzle 151, and the washing water is a porous membrane 130 disposed above the filtration aeration nozzle 151. It is filtered to remove pulverized coal and purified (see "membrane filtration step" in step S30 of FIG. 3).
  • the washing water filtered by the porous membrane 130 is sucked up from the filtration line 160 by the filtration pump 161.
  • the pulverized coal (substance to be washed) separated in the membrane treatment tank 120 is extracted from the bottom of the membrane treatment tank 120 by the separation sludge pump 170 and is recovered.
  • the wash water filtered and purified in the membrane treatment tank 120 as the membrane filtration step is pressurized by a water spray pump 220 shown in FIG. 5 and sprayed from a water spray nozzle (not shown) to clean the conveyor C ( Refer to the "reuse step" in step S90 of FIG.
  • the timer counts time, and it is determined whether a predetermined time has elapsed (see step S40 in FIG. 3).
  • an open signal 194 is output from the controller 195 of the backwashing unit 190 shown in FIG. 4 to the backwashing valve 193, and the porous membrane 130 receives the backwashing line 191 from the backwashing pump 192. It backwashes with the water supplied via the filtration line 160 (refer to "backwashing process" of step S50 of FIG. 3).
  • the filtration pump 161 is stopped during the backwashing.
  • the surface of the backwashed porous membrane 130 is cleaned by the surface cleaning unit 200 (see “surface cleaning step” in step S60 of FIG. 3). Thus, clogging of the porous membrane 130 is eliminated.
  • the backwashing valve 193 is closed.
  • step S70 in FIG. 3 it is determined whether the water permeability of the porous membrane 130 has become equal to or less than the set value (see step S70 in FIG. 3).
  • the porous membrane 130 is taken out of the membrane treatment tank 120 and transferred to the chemical cleaning tank 140.
  • An aqueous solution of caustic soda is stored in the medicine cleaning tank 140, and air pressurized by the regenerative aeration blower 180 is jetted from the regenerative aeration nozzle 181.
  • the porous film 130 is regenerated by immersing the porous film 130 in an aqueous solution of caustic soda, thereby allowing regeneration of the porous film 130 (see “regeneration step” in step S80 of FIG. 3).
  • porous membrane 130 if cellulose acetate, polyethylene, polyacrylonitrile, polysulfone, polyether sulfone, polyamide, polyvinyl alcohol, polyvinylidene fluoride and the like are temporarily used as the porous membrane 130, sufficient durability and chemical resistance can be obtained. If caustic soda is used as the drug, it is difficult to continue the operation of filtering the washing water to remove and purify the pulverized coal.
  • the porous membrane 130 is a filter obtained by drawing and processing polytetrafluoroethylene, it is excellent in durability and chemical resistance, and the washing water containing pulverized coal is used. Even in the case where such special drainage is targeted, it is possible to prevent in advance the lowering of the flow velocity of the washing water passing through the porous membrane 130 and to avoid leading to the irreversible clogging of the porous membrane 130, The regeneration process of the porous membrane 130 becomes possible, and the process can be smoothly advanced without stopping the operation.
  • the membrane treatment unit 100 includes a backwashing unit 190 for backwashing the porous membrane 130, and a porous membrane 130 backwashed by the backwashing unit 190. And a surface cleaning unit 200 for cleaning the surface.
  • the water treatment method of the present invention has a sedimentation step of leading the washing water of the supernatant to the membrane filtration step after settling the substance to be washed contained in the washing water recovered in the recovery step.
  • the membrane treatment unit 100 is disposed upstream of the membrane treatment tank 120, and the washing water of the supernatant obtained by settling the substance to be washed is sent to the membrane treatment tank 120.
  • the settling tank 110 which leads is provided. According to this configuration, pulverized carbon called amorphous carbon (amorphous carbon) and having special behavior can be separated and removed in advance before filtration by the membrane processing unit 100, and separation in the membrane processing unit 100 can be performed. Efficiency can be improved.
  • the porous membrane 130 is a filter formed by stretching polytetrafluoroethylene. With such a configuration, it is possible to provide the film processing unit 100 that is excellent in durability and chemical resistance and can perform regenerative processing in an advantageous manner.
  • the agent is caustic soda.
  • the device is a conveyor C of a lifting coal facility, and the material to be cleaned is pulverized coal.
  • the residual pulverized coal in the cleaning water does not occur due to the insufficient addition amount of the coagulant.
  • the addition amount of the coagulant does not cause the remaining of the coagulant in the recycled wash water, and there is no concern of the aggregation of the coagulant in the pipe and the clogging of the pipe.
  • pulverized coal is neither agglomerated nor concentrated, agglomerated material of metal oxide derived from flocculant and floc of pulverized coal is not generated, and increase in the processing cost can be avoided.
  • a plurality of the conveyors C are provided, and the film treatment units 100 are dispersedly provided for each of the conveyors C.
  • the overall operation efficiency is improved as compared to intensively treating the cleaning water collected from the plurality of conveyors C deployed as in the conventional example shown in FIG. Cost reduction can be achieved.
  • a porous membrane made of polytetrafluoroethylene (PTFE) (Poreflon (registered trademark): made by Sumitomo Electric Co., Ltd.) and polyvinylidene fluoride (PVDF) are used. Washing water (discharged raw water) containing pulverized coal (substance to be washed) by washing the conveyor C (equipment) in parallel to a porous membrane (STERAPORE (registered trademark): manufactured by Mitsubishi Chemical): 1) Pass through treatment, compare the conversion value per equivalent membrane area, and observe changes in each differential pressure over time. The results shown in Table 2 were obtained.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the set value of the differential pressure (suction pressure) reaching point is 40 [kPa].
  • porous membranes made of polytetrafluoroethylene PTFE
  • porous membranes made of polyvinylidene fluoride PVDF
  • porous membrane made of polytetrafluoroethylene (PTFE) and the porous membrane made of polyvinylidene fluoride (PVDF) are used as a drug (citric acid, sodium hypochlorite, caustic soda) It was washed and regenerated.
  • Citric acid washing was performed according to the following procedure. 1. After backwashing with tap water, the water tank was filled with 0.5% citric acid solution, and the aeration blower for filtration was kept operating. The immersion treatment was performed for 2.8 hours or more. 3. The citric acid solution was discarded, and the conveyor C (equipment) was washed and replaced with washing water (discharge raw water) containing pulverized coal (substance to be washed), and the pH was made 6 or more. 4. The solution was allowed to flow under constant filtration conditions.
  • the hypochlorous acid sodium cleaning was performed according to the following procedure. 1. After backwashing with tap water, the water tank was filled with 0.05% sodium hypochlorite solution, and the aeration blower for filtration was kept operating. The immersion treatment was performed for 2.8 hours or more. 3. The hypochlorous acid soda solution was discarded, and the conveyor C (equipment) was cleaned and replaced with washing water (discharge raw water) containing pulverized coal (substance to be washed), and the pH was adjusted to 8 or less. 4. The solution was allowed to flow under constant filtration conditions.
  • the caustic soda wash was performed according to the following procedure. 1. After backwashing with tap water, the water tank was filled with 10% caustic soda solution, and the aeration blower for filtration was kept operating. The immersion treatment was performed for 2.8 hours or more. 3. The caustic soda solution was discarded, and the above-mentioned conveyor C (equipment) was washed and replaced with washing water (discharge raw water) containing pulverized coal (substance to be washed) to make the pH 8 or less. 4. The solution was allowed to flow under constant filtration conditions.
  • the recovery rate for the initial permeation flux of 62.5 [L / h] is 100 ⁇ ⁇ 1- (permeation flux after washing) / (initial permeation flux) ⁇ [%] It asked for.
  • the porous membrane made of polyvinylidene fluoride (PVDF) was thin and brown on its surface. That is, it was found that porous membranes made of polyvinylidene fluoride (PVDF) tend to be weak to caustic soda.
  • water treatment method and apparatus of the present invention are not limited to only the above-described examples and embodiments, and can be applied to cleaning of conveyors in lifting coal facilities of a coal-fired power plant etc.
  • various changes can be made without departing from the scope of the present invention.
  • Reference Signs List 100 membrane processing unit 110 settling tank 120 membrane processing tank 130 porous membrane 140 chemical cleaning tank 190 reverse cleaning unit 200 surface cleaning unit C conveyor (equipment)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This method for water treatment comprises: a recovery step for recovering washing water that has been used for washing a device and that contains flushed-out substances; a membrane filtration step for cleaning the washing water recovered in the recovery step by filtering out and removing the flushed-out substances using a porous membrane; a reuse step for reusing the washing water cleaned in the membrane filtration step; and a regeneration step for washing the porous membrane using a chemical agent when the permeate flow rate of the porous membrane, which has been used to remove the flushed-out substances in the membrane filtration step, becomes equal to or lower than a set value, wherein the porous membrane is a filter obtained by stretching a polytetrafluoroethylene, and the chemical agent is caustic soda.

Description

水処理方法及び装置Water treatment method and apparatus
 本発明は、水処理方法及び装置に関するものである。 The present invention relates to a water treatment method and apparatus.
 一般に、石炭火力発電所の揚運炭設備において、燃料となる石炭は、貯炭場からコンベヤを用いてミルへ搬送され、該ミルで粉砕された微粉炭がボイラのバーナへ供給されて燃焼されるようになっている。 In general, in a coal transportation facility of a coal thermal power plant, coal serving as fuel is transported from a coal storage station to a mill using a conveyor, and pulverized coal pulverized in the mill is supplied to a burner of a boiler and burned. It is supposed to be.
 前記コンベヤに対しては、搬送中の石炭の温度上昇に伴う自然発火の抑制や周囲への微粉炭の拡散の抑制、並びにコンベヤ自体の機能維持のために、散水が行われている。 Sprinkling is performed to the above-mentioned conveyor for the control of the spontaneous combustion with the temperature rise of coal under conveyance, the control of diffusion of the pulverized coal to the circumference, and maintenance of the function of the conveyor itself.
 図1は揚運炭設備におけるコンベヤの洗浄設備の従来の一例を示す全体概要構成図である。 FIG. 1 is a whole schematic block diagram showing an example of a conventional cleaning equipment of a conveyor in a lifting coal equipment.
 図1に示される例では、複数基の機器としてのコンベヤCに対し散水ポンプ10で昇圧された洗浄水が散水ノズル(図示せず)から散水されて洗浄が行われ、被洗浄物質としての微粉炭を含む洗浄水が排水回収槽20に集められ、該排水回収槽20に集められた洗浄水は、回収ポンプ30により回収水集合槽40に送給され、該回収水集合槽40から凝集処理ユニット50へ送られるようになっている。該凝集処理ユニット50に送られた洗浄水は、微粉炭が凝集処理された後、その上澄みの洗浄水が処理水槽60を経て前記散水ポンプ10へ導かれ、再利用される形で散水洗浄が行われ、この操作が繰り返されるようになっている。 In the example shown in FIG. 1, the washing water pressurized by the water pouring pump 10 is sprinkled from a water sprinkling nozzle (not shown) to the conveyor C as a plurality of devices and the washing is performed, and the fine powder as the substance to be washed Wash water containing charcoal is collected in the drainage recovery tank 20, and the wash water collected in the drainage recovery tank 20 is supplied to the collection water collecting tank 40 by the collection pump 30, and aggregation treatment is carried out from the collection water collecting tank 40. It is sent to the unit 50. The washing water sent to the aggregation treatment unit 50 is subjected to aggregation treatment of pulverized coal, and then the supernatant washing water is led to the water distribution pump 10 through the treatment water tank 60 and is reused in the form of being reused. It is done and this operation is to be repeated.
 前記凝集処理ユニット50は、図2に示される如く、pH調整槽51と、凝集反応槽52と、凝集沈殿槽53とを備えている。 The aggregation treatment unit 50 includes a pH adjustment tank 51, an aggregation reaction tank 52, and an aggregation sedimentation tank 53, as shown in FIG.
 図2に示される例では、pH調整槽51において洗浄水にポリ塩化アルミニウム(PAC:Poly Aluminium Chloride)等の凝集剤が添加されて撹拌機70で撹拌され、pHが中性域に調整されつつ縣濁物質の集合体フロックが形成され、更に凝集反応槽52においてポリマー等の凝集剤が加えられ撹拌機71で撹拌されることによって、前記集合体フロックが肥大化するようになっている。その後、肥大化した集合体フロックを含む洗浄水は、凝集沈殿槽53において撹拌機72で撹拌されつつ凝集沈殿が行われ、上澄みの洗浄水が再利用されるようになっている。前記凝集沈殿槽53において凝集されて濃縮された微粉炭(被洗浄物質)は、凝集沈殿槽53の底部から凝集スラッジポンプ80で抜き出されて回収処理されるようになっている。 In the example shown in FIG. 2, a coagulant such as poly aluminum chloride (PAC: Poly Aluminum Chloride) is added to the washing water in the pH adjustment tank 51, and the mixture is stirred by the stirrer 70 to adjust the pH to a neutral range. An aggregate floc of suspended matter is formed, and further, an aggregating agent such as a polymer is added in the agglutination reaction tank 52, and the aggregate floc is enlarged by being stirred by the agitator 71. Thereafter, the washing water containing the enlarged aggregate floc is coagulated and precipitated while being stirred by the stirrer 72 in the coagulation sedimentation tank 53, and the supernatant washing water is reused. The pulverized coal (substance to be washed) which is coagulated and concentrated in the coagulating settling tank 53 is extracted from the bottom of the coagulating settling tank 53 by the coagulated sludge pump 80 and is recovered and processed.
 尚、前述のような凝集沈殿を利用した揚運炭設備のコンベヤ洗浄水処理と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。 In addition, there exists patent document 1 as an example which shows the general technical level relevant to the conveyor washing water treatment of the lifting and hauling coal installation which utilized the above-mentioned aggregation sedimentation.
特開平9-85255号公報JP-A-9-85255
 しかしながら、前述のような凝集沈殿の場合、前記凝集剤の添加量が不足すると、流量や水質変化の大きな微粉炭含有排水では、再利用される洗浄水に微粉炭が残留し、該洗浄水を噴射するノズルの詰りや配管の摩耗が発生する虞があった。 However, in the case of coagulated sedimentation as described above, when the addition amount of the coagulant is insufficient, pulverized coal-containing drainage with a large amount of pulverized coal-containing drainage whose flow rate and water quality change is large remains pulverized coal and is used as cleaning water. There is a possibility that clogging of the jet nozzle and abrasion of the piping may occur.
 逆に、前記凝集剤の添加量が過剰になると、再利用される洗浄水に凝集剤が残留し、該凝集剤が配管内で凝集してしまい、配管が閉塞する虞があった。 On the contrary, when the addition amount of the coagulant is excessive, the coagulant remains in the recycled washing water, and the coagulant may be coagulated in the pipe, and the pipe may be clogged.
 又、前記凝集されて濃縮された微粉炭は、凝集剤由来の金属酸化物と微粉炭のフロックの集塊物質であり、大きな体積を占めるために、その処理コストが高くなるという不具合をも有していた。 In addition, the agglomerated and concentrated pulverized coal is an agglomerated material of metal oxide derived from flocculant and floc of pulverized coal, and occupies a large volume, so that there is a problem that the processing cost becomes high. Was.
 こうした不具合を解消すべく、本発明者等は、多様な材質の多孔質膜、例えば、酢酸セルロース(CA:Cellulose Acetate)、ポリエチレン(PE:Polyethylene)、ポリアクリロニトリル(PAN:Polyacrylonitrile)、ポリスルフォン(PS:Polysulfone)、ポリエーテルスルフォン(PES:Polyethersulfone)、ポリアミド(PA:Polyamide)、ポリビニルアルコール(PVA:Polyvinyl Alcohol)、ポリビニリデンフロライド(PVDF:Polyvinylidene Difluoride)等を利用し、洗浄水を濾過して微粉炭を除去し浄化することを提案している。 In order to solve these problems, the present inventors have found that porous membranes of various materials, for example, cellulose acetate (CA: Cellulose Acetate), polyethylene (PE: Polyethylene), polyacrylonitrile (PAN: Polyacrylonitrile), polysulfone ( PS: Polysulfone), polyethersulfone (PES: Polyethersulfone), polyamide (PA: Polyamide), polyvinyl alcohol (PVA: Polyvinyl Alcohol), polyvinylidene fluoride (PVDF: Polyvinylidene Difluoride) etc., and washing water is filtered It is proposed to remove and purify pulverized coal.
 前述のような多孔質膜による膜処理は、非常に有効な手段である反面、微粉炭を含む洗浄水のような特殊な排水が対象になると、前記多孔質膜を通過する洗浄水の流速の低下が著しくなり、不可逆的な多孔質膜の閉塞につながって、該多孔質膜の回生処理が困難となり、運転を停止せざるを得なくなることが本発明者等の研究によって明らかとなった。 While the membrane treatment with the porous membrane as described above is a very effective means, when special drainage such as washing water containing pulverized coal is targeted, the flow velocity of the washing water passing through the porous membrane is It has become clear from the studies of the present inventors that the decrease is remarkable, which leads to irreversible plugging of the porous membrane, which makes it difficult to regenerate the porous membrane and the operation has to be stopped.
 本発明は、上記従来の問題点に鑑みてなしたもので、膜処理により洗浄水を濾過する運転を安定して継続し得る水処理方法及び装置を提供しようとするものである。 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a water treatment method and apparatus capable of stably continuing the operation of filtering washing water by membrane treatment.
 上記目的を達成するために、本発明の水処理方法は、機器を洗浄し被洗浄物質を含有した洗浄水を回収する回収工程と、
  該回収工程で回収した洗浄水を多孔質膜で濾過して被洗浄物質を除去し浄化する膜濾過工程と、
  該膜濾過工程で浄化した洗浄水を再利用する再利用工程と、
  前記膜濾過工程で被洗浄物質を除去した多孔質膜の透過水量が設定値以下になった際に前記多孔質膜を薬剤にて洗浄する回生工程と
  を有する。
In order to achieve the above object, the water treatment method of the present invention comprises a recovery step of washing equipment and recovering wash water containing a substance to be washed;
A membrane filtration step of filtering the cleaning water recovered in the recovery step with a porous membrane to remove and purify the substance to be cleaned;
A recycling step of recycling the cleaning water purified in the membrane filtration step;
And a regeneration step of washing the porous membrane with a drug when the amount of permeated water of the porous membrane from which the substance to be washed has been removed in the membrane filtration step becomes equal to or less than a set value.
 前記水処理方法においては、前記回生工程の前段階として、
  前記多孔質膜を定期的に逆洗する逆洗工程と、
  該逆洗工程で逆洗された多孔質膜の表面を洗浄する表面洗浄工程と
  を有するようにすることができる。
In the water treatment method, as a step before the regeneration step,
A backwashing step of periodically backwashing the porous membrane;
And a surface cleaning step of cleaning the surface of the porous membrane backwashed in the backwashing step.
 前記水処理方法においては、前記回収工程で回収された洗浄水に含まれる被洗浄物質を沈降させた後、上澄みの洗浄水を前記膜濾過工程へ導く沈降工程を有するようにすることができる。 The water treatment method may include a sedimentation step of leading the washing water of the supernatant to the membrane filtration step after settling the substance to be washed contained in the washing water recovered in the recovery step.
 前記水処理方法において、前記多孔質膜は、ポリテトラフルオロエチレンを延伸加工したフィルタとすることができる。 In the water treatment method, the porous membrane can be a filter formed by stretching polytetrafluoroethylene.
 前記水処理方法において、前記薬剤は苛性ソーダとすることができる。 In the water treatment method, the agent can be caustic soda.
 前記水処理方法において、前記機器は揚運炭設備のコンベヤであり、前記被洗浄物質は微粉炭とすることができる。 In the water treatment method, the device may be a conveyor of a lifting coal facility, and the to-be-cleaned material may be pulverized coal.
 一方、本発明の水処理装置は、機器を洗浄し被洗浄物質を含有した洗浄水が導入される膜処理槽と、
  該膜処理槽の内部に配置され且つ前記洗浄水を濾過して被洗浄物質を除去し浄化する多孔質膜と、
  該多孔質膜の透過水量が設定値以下になった際に前記多孔質膜を薬剤にて洗浄する薬剤洗浄槽と
  を有する膜処理ユニットを備える。
On the other hand, in the water treatment apparatus of the present invention, there is provided a membrane treatment tank into which washing water containing a substance to be washed is introduced.
A porous membrane disposed inside the membrane treatment tank and filtering the washing water to remove and purify the substance to be washed;
And the chemical | medical solution cleaning tank which wash | cleans the said porous membrane by a chemical | medical agent, when the water permeation amount of this porous membrane becomes below in a setting value.
 前記水処理装置において、前記膜処理ユニットは、
  前記多孔質膜を逆洗する逆洗ユニットと、
  該逆洗ユニットで逆洗された多孔質膜の表面を洗浄する表面洗浄ユニットと
  を備えることができる。
In the water treatment apparatus, the membrane treatment unit is
A backwashing unit for backwashing the porous membrane;
And a surface cleaning unit for cleaning the surface of the porous membrane backwashed by the backwashing unit.
 前記水処理装置において、前記膜処理ユニットは、
  前記膜処理槽の上流側に設置され且つ前記被洗浄物質を沈降させた上澄みの洗浄水を前記膜処理槽へ導く沈降槽を備えることができる。
In the water treatment apparatus, the membrane treatment unit is
It is possible to provide a sedimentation tank which is installed on the upstream side of the membrane processing tank and guides the washing water of the supernatant obtained by settling the substance to be washed to the membrane processing tank.
 前記水処理装置において、前記多孔質膜は、ポリテトラフルオロエチレンを延伸加工したフィルタとすることができる。 In the water treatment apparatus, the porous membrane can be a filter formed by drawing polytetrafluoroethylene.
 前記水処理装置において、前記薬剤は苛性ソーダとすることができる。 In the water treatment device, the agent may be caustic soda.
 前記水処理装置において、前記機器は揚運炭設備のコンベヤであり、前記被洗浄物質は微粉炭とすることができる。 In the water treatment apparatus, the device may be a conveyor of lifting coal equipment, and the material to be cleaned may be pulverized coal.
 前記水処理装置において、前記コンベヤは複数基配備され、該コンベヤ毎に前記膜処理ユニットが分散配備されるようにすることができる。 In the water treatment apparatus, a plurality of the conveyors can be provided, and the membrane treatment units can be distributed and provided for each of the conveyors.
 本発明の水処理方法及び装置によれば、膜処理により洗浄水を濾過する運転を安定して継続し得るという優れた効果を奏し得る。 ADVANTAGE OF THE INVENTION According to the water treatment method and apparatus of this invention, the outstanding effect that the driving | operation which filters wash water by membrane treatment can be continued stably can be produced.
揚運炭設備におけるコンベヤの洗浄設備の従来の一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example of the former of the washing | cleaning installation of the conveyor in a lift transportation charcoal installation. 従来の凝集処理ユニットの一例を示す構成図である。It is a block diagram which shows an example of the conventional aggregation process unit. 本発明の水処理方法及び装置の一例を示すフローチャートである。It is a flowchart which shows an example of the water treatment method and apparatus of this invention. 本発明の水処理方法及び装置の一例における膜処理ユニットを示す構成図である。It is a block diagram which shows the membrane treatment unit in an example of the water treatment method and apparatus of this invention. 本発明の水処理方法及び装置の一例を示す全体概要構成図である。It is a whole outline block diagram which shows an example of the water treatment method and apparatus of this invention.
 以下、本発明の実施の形態を添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
 図3~図5は本発明の水処理方法及び装置の一例である。 3 to 5 show an example of the water treatment method and apparatus of the present invention.
 本発明の水処理方法の一例は、図3に示す如く、基本となる工程として、回収工程(ステップS10参照)と、膜濾過工程(ステップS30参照)と、再利用工程(ステップS90参照)と、回生工程(ステップS80参照)とを有している。 One example of the water treatment method of the present invention is, as shown in FIG. 3, as a basic step, a recovery step (see step S10), a membrane filtration step (see step S30), and a reuse step (see step S90). And the regeneration step (see step S80).
 前記回収工程は、例えば、揚運炭設備の機器としてのコンベヤC(図5参照)を洗浄し被洗浄物質としての微粉炭を含有した洗浄水を回収する工程である。 The recovery step is, for example, a step of cleaning a conveyor C (see FIG. 5) as an apparatus for lifting and transporting coal and recovering cleaning water containing pulverized coal as a substance to be cleaned.
 前記膜濾過工程は、前記回収工程で回収した洗浄水を多孔質膜130(図4参照)で濾過して微粉炭を除去し浄化する工程である。 The membrane filtration step is a step of filtering the cleaning water recovered in the recovery step with the porous membrane 130 (see FIG. 4) to remove pulverized coal and purify it.
 前記再利用工程は、前記膜濾過工程で浄化した洗浄水を再利用する工程である。 The reuse step is a step of reusing the cleaning water purified in the membrane filtration step.
 前記回生工程は、前記膜濾過工程で微粉炭を除去した多孔質膜130の透過水量が設定値以下になった際に前記多孔質膜130を薬剤にて洗浄する工程である。前記膜濾過工程で微粉炭を除去した多孔質膜130の透過水量が設定値以下になったか否かの判断は、ステップS70で行われるようになっている。 The regeneration step is a step of washing the porous membrane 130 with a drug when the amount of water permeated from the porous membrane 130 from which pulverized coal has been removed in the membrane filtration step becomes equal to or less than a set value. The determination as to whether or not the amount of permeated water of the porous membrane 130 from which pulverized coal has been removed in the membrane filtration step has become equal to or less than a set value is made in step S70.
 本発明の水処理方法の一例においては、前記回生工程の前段階として、逆洗工程(ステップS50参照)と、表面洗浄工程(ステップS60参照)とを有している。 In an example of the water treatment method according to the present invention, a backwashing step (see step S50) and a surface cleaning step (see step S60) are included as steps before the regeneration step.
 前記逆洗工程は、前記多孔質膜130を定期的に逆洗する工程である。定期的な逆洗は、タイマで時間をカウントし、一定時間経過したか否かの判断(図3のステップS40参照)に基づいて行われるようになっている。 The backwashing step is a step of periodically backwashing the porous membrane 130. The periodic backwashing is performed by counting time with a timer and determining whether or not a predetermined time has elapsed (see step S40 in FIG. 3).
 前記表面洗浄工程は、前記逆洗工程で逆洗された多孔質膜130の表面を洗浄する工程である。 The surface cleaning step is a step of cleaning the surface of the porous membrane 130 backwashed in the backwashing step.
 更に、本発明の水処理方法の一例においては、前記回収工程と膜濾過工程との間に沈降工程(ステップS20参照)を有している。 Furthermore, in an example of the water treatment method of the present invention, a sedimentation step (see step S20) is included between the recovery step and the membrane filtration step.
 前記沈降工程は、前記回収工程で回収された洗浄水に含まれる微粉炭を沈降させた後、上澄みの洗浄水を前記膜濾過工程へ導く工程である。 The sedimentation step is a step of guiding the supernatant wash water to the membrane filtration step after settling pulverized coal contained in the wash water recovered in the recovery step.
 本発明の水処理装置の一例は、図4に示され、膜処理槽120と、多孔質膜130と、薬剤洗浄槽140とを有する膜処理ユニット100を備えている。 An example of the water treatment apparatus of the present invention is shown in FIG. 4 and comprises a membrane treatment unit 100 having a membrane treatment tank 120, a porous membrane 130, and a drug washing tank 140.
 前記膜処理槽120は、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水が導入されるようになっている。前記膜処理槽120の底部には、濾過用曝気ブロワ150から送給されるエアを噴射する濾過用曝気ノズル151が配設されている。 The film processing tank 120 cleans the conveyor C (equipment) so that cleaning water containing pulverized coal (substance to be cleaned) is introduced. At the bottom of the membrane processing tank 120, a filtration aeration nozzle 151 for injecting the air supplied from the filtration aeration blower 150 is disposed.
 前記多孔質膜130は、前記膜処理槽120の内部における前記濾過用曝気ノズル151の上方位置に、前記洗浄水を濾過して微粉炭を除去し浄化するよう配置されている。前記多孔質膜130の上端には、濾過された洗浄水を吸い上げる濾過ライン160が接続され、該濾過ライン160には、濾過ポンプ161が設けられている。前記膜処理槽120において分離された微粉炭(被洗浄物質)は、該膜処理槽120の底部から分離スラッジポンプ170で抜き出されて回収処理されるようになっている。 The porous membrane 130 is disposed at a position above the filtration aeration nozzle 151 inside the membrane processing tank 120 so as to filter the cleaning water and remove and purify pulverized coal. At the upper end of the porous membrane 130, a filtration line 160 for sucking up the filtered washing water is connected, and a filtration pump 161 is provided at the filtration line 160. The pulverized coal (substance to be washed) separated in the membrane treatment tank 120 is extracted from the bottom of the membrane treatment tank 120 by a separation sludge pump 170 and is recovered and processed.
 前記薬剤洗浄槽140は、前記多孔質膜130の透過水量が設定値以下になった際に前記多孔質膜130を前記膜処理槽120から取り出して薬剤にて洗浄するための槽である。前記薬剤洗浄槽140の底部には、回生用曝気ブロワ180から送給されるエアを噴射する回生用曝気ノズル181が配設されている。 The drug washing tank 140 is a tank for taking out the porous membrane 130 from the membrane treatment tank 120 and washing with a drug when the amount of permeated water of the porous membrane 130 becomes equal to or less than a set value. At the bottom of the medicine cleaning tank 140, a regeneration aeration nozzle 181 for injecting the air supplied from the regeneration aeration blower 180 is disposed.
 前記膜処理ユニット100は、前記多孔質膜130を水で逆洗する逆洗ユニット190と、該逆洗ユニット190で逆洗された多孔質膜130の表面を洗浄する表面洗浄ユニット200とを備えている。前記逆洗ユニット190は、前記濾過ライン160の途中に接続される逆洗ライン191と、該逆洗ライン191に接続され逆洗水を供給する逆洗ポンプ192と、前記逆洗ライン191の途中に設けられる逆洗バルブ193と、該逆洗バルブ193に対し定期的に開信号194を出力する制御器195とを備えている。尚、前記逆洗ユニット190は、逆洗ポンプ192をブロワに代え、水の代わりにエアで逆洗を行うようにしても良い。 The membrane processing unit 100 includes a backwashing unit 190 for backwashing the porous membrane 130 with water, and a surface cleaning unit 200 for cleaning the surface of the porous membrane 130 backwashed by the backwashing unit 190. ing. The backwashing unit 190 includes a backwashing line 191 connected to the middle of the filtration line 160, a backwashing pump 192 connected to the backwashing line 191 and supplying backwashing water, and a middle of the backwashing line 191. And a controller 195 which periodically outputs an open signal 194 to the backwash valve 193. The backwashing unit 190 may replace the backwashing pump 192 with a blower and perform backwashing with air instead of water.
 更に、前記膜処理ユニット100は、前記膜処理槽120の上流側に設置され且つ前記微粉炭を沈降させた上澄みの洗浄水を前記膜処理槽120へ導く沈降槽110を備えている。前記沈降槽110の内部には、前記微粉炭が沈降する前に洗浄水がショートカットして膜処理槽120へ導出されることを防止するためのバッフルプレート111が設けられている。前記沈降槽110において沈降した微粉炭(被洗浄物質)は、該沈降槽110の底部から沈降スラッジポンプ210で抜き出されて回収処理されるようになっている。 Furthermore, the film processing unit 100 is provided with a sedimentation tank 110 installed on the upstream side of the film processing tank 120 and guiding the cleaning water of the supernatant obtained by settling the pulverized coal to the film processing tank 120. Inside the settling tank 110, a baffle plate 111 is provided for preventing the cleaning water from being short-cut and led to the membrane processing tank 120 before the pulverized coal settles. The pulverized coal (substance to be washed) settled in the sedimentation tank 110 is extracted from the bottom of the sedimentation tank 110 by a sedimentation sludge pump 210 and is recovered and processed.
 そして、前記多孔質膜130としては、ポリテトラフルオロエチレン(PTFE:Polytetrafluoroethylene)を延伸加工したフィルタを採用している。 And, as the porous membrane 130, a filter obtained by drawing and processing polytetrafluoroethylene (PTFE: Polytetrafluoroethylene) is adopted.
 又、前記薬剤としては、前記多孔質膜130がポリテトラフルオロエチレンを延伸加工したフィルタである場合、苛性ソーダ(NaOH)を用いることができる。該苛性ソーダの水溶液の濃度は、1%~10%に設定することができる。 In addition, as the chemical, when the porous membrane 130 is a filter formed by stretching polytetrafluoroethylene, caustic soda (NaOH) can be used. The concentration of the aqueous solution of caustic soda can be set to 1% to 10%.
 本発明の水処理装置の一例において、前記機器は、図5に示す如く、揚運炭設備のコンベヤCであり、前記被洗浄物質は微粉炭であるが、前記コンベヤCは、複数基配備され、該コンベヤC毎に前記膜処理ユニット100が分散配備されるようになっている。尚、前記コンベヤCに対しては、前記膜処理ユニット100で浄化され散水ポンプ220で昇圧された洗浄水が散水ノズル(図示せず)から散水されて洗浄が行われるようになっている。 In an example of the water treatment apparatus according to the present invention, the equipment is a conveyor C of a lifting coal facility as shown in FIG. 5 and the substance to be cleaned is pulverized coal, but a plurality of conveyors C are provided The film processing units 100 are distributed and disposed for each of the conveyors C. For the conveyor C, the cleaning water purified by the membrane processing unit 100 and pressurized by the water spray pump 220 is sprayed from a water spray nozzle (not shown) to perform cleaning.
 次に、上記水処理方法及び装置の一例の作用を説明する。 Next, the operation of an example of the water treatment method and apparatus will be described.
 先ず、図5に示す如く、例えば、揚運炭設備の機器としてのコンベヤCに対して、散水ポンプ220で昇圧された洗浄水が散水ノズル(図示せず)から散水されて洗浄が行われる。この時、被洗浄物質としての微粉炭を含有した洗浄水が回収される(図3のステップS10の「回収工程」参照)。 First, as shown in FIG. 5, for example, with respect to a conveyor C as a machine of a coal transportation facility, cleaning water pressurized by a water distribution pump 220 is sprayed from a sprinkle nozzle (not shown) to perform cleaning. At this time, washing water containing pulverized coal as a substance to be washed is recovered (see "recovery step" in step S10 of FIG. 3).
 前記回収工程で回収された洗浄水は、膜処理ユニット100に送られる。該膜処理ユニット100においては、先ず、沈降槽110で洗浄水に含まれる微粉炭が沈降する(図3のステップS20の「沈降工程」参照)。ここで、前記沈降槽110の内部にはバッフルプレート111が設けられているため、前記微粉炭が沈降する前に洗浄水がショートカットして膜処理槽120へ導出されることが防止される。前記沈降槽110において沈降した微粉炭(被洗浄物質)は、該沈降槽110の底部から沈降スラッジポンプ210で抜き出されて回収処理される。前記微粉炭を沈降させた上澄みの洗浄水は膜処理槽120へ導かれる。 The wash water recovered in the recovery step is sent to the membrane processing unit 100. In the film processing unit 100, first, pulverized coal contained in the washing water is sedimented in the sedimentation tank 110 (see "sedimentation process" in step S20 of FIG. 3). Here, since the baffle plate 111 is provided inside the settling tank 110, it is prevented that the cleaning water is short-cut and led out to the membrane processing tank 120 before the pulverized coal settles. The pulverized coal (substance to be washed) sedimented in the sedimentation tank 110 is extracted from the bottom of the sedimentation tank 110 by a sedimentation sludge pump 210 and is recovered and processed. The wash water of the supernatant obtained by settling the pulverized coal is introduced to the membrane treatment tank 120.
 前記沈降工程として沈降槽110で洗浄水に含まれる微粉炭を沈降させた上澄みの洗浄水は、膜処理槽120へ導かれる。該膜処理槽120においては、濾過用曝気ブロワ150で昇圧されたエアが濾過用曝気ノズル151から噴射され、洗浄水は、前記濾過用曝気ノズル151の上方位置に配置された多孔質膜130で濾過されて微粉炭が除去され浄化される(図3のステップS30の「膜濾過工程」参照)。前記多孔質膜130で濾過された洗浄水は、濾過ポンプ161によって濾過ライン160から吸い上げられる。前記膜処理槽120において分離された微粉炭(被洗浄物質)は、該膜処理槽120の底部から分離スラッジポンプ170で抜き出されて回収処理される。 The wash water of the supernatant obtained by settling the pulverized coal contained in the washing water in the sedimentation tank 110 as the sedimentation step is led to the membrane treatment tank 120. In the membrane processing tank 120, the air pressurized by the filtration aeration blower 150 is injected from the filtration aeration nozzle 151, and the washing water is a porous membrane 130 disposed above the filtration aeration nozzle 151. It is filtered to remove pulverized coal and purified (see "membrane filtration step" in step S30 of FIG. 3). The washing water filtered by the porous membrane 130 is sucked up from the filtration line 160 by the filtration pump 161. The pulverized coal (substance to be washed) separated in the membrane treatment tank 120 is extracted from the bottom of the membrane treatment tank 120 by the separation sludge pump 170 and is recovered.
 前記膜濾過工程として膜処理槽120で濾過されて浄化された洗浄水は、図5に示す散水ポンプ220で昇圧され、散水ノズル(図示せず)から散水されてコンベヤCの洗浄が行われる(図3のステップS90の「再利用工程」参照)。 The wash water filtered and purified in the membrane treatment tank 120 as the membrane filtration step is pressurized by a water spray pump 220 shown in FIG. 5 and sprayed from a water spray nozzle (not shown) to clean the conveyor C ( Refer to the "reuse step" in step S90 of FIG.
 そして、前記回収工程、沈降工程、膜濾過工程、再利用工程が行われる間、タイマで時間がカウントされ、一定時間経過したか否かの判断が行われる(図3のステップS40参照)。一定時間経過していると、図4に示す逆洗ユニット190の制御器195から逆洗バルブ193に対し開信号194が出力され、前記多孔質膜130が逆洗ポンプ192から逆洗ライン191と濾過ライン160を介して供給される水により逆洗される(図3のステップS50の「逆洗工程」参照)。尚、前記逆洗中、濾過ポンプ161は停止している。逆洗された多孔質膜130の表面は、表面洗浄ユニット200で洗浄される(図3のステップS60の「表面洗浄工程」参照)。これにより、前記多孔質膜130の目詰まりが解消される。逆洗終了後、前記逆洗バルブ193は閉じられる。 Then, while the recovery step, the settling step, the membrane filtration step, and the reuse step are performed, the timer counts time, and it is determined whether a predetermined time has elapsed (see step S40 in FIG. 3). When a predetermined time has elapsed, an open signal 194 is output from the controller 195 of the backwashing unit 190 shown in FIG. 4 to the backwashing valve 193, and the porous membrane 130 receives the backwashing line 191 from the backwashing pump 192. It backwashes with the water supplied via the filtration line 160 (refer to "backwashing process" of step S50 of FIG. 3). The filtration pump 161 is stopped during the backwashing. The surface of the backwashed porous membrane 130 is cleaned by the surface cleaning unit 200 (see “surface cleaning step” in step S60 of FIG. 3). Thus, clogging of the porous membrane 130 is eliminated. After the backwashing is completed, the backwashing valve 193 is closed.
 但し、運転継続に伴い、逆洗だけでは除去しきれない多孔質膜130の目詰まりも発生する。そこで、前記多孔質膜130の透過水量が設定値以下になったか否かの判断が行われる(図3のステップS70参照)。前記多孔質膜130の透過水量が設定値以下になっている場合、前記多孔質膜130は、膜処理槽120から取り出されて薬剤洗浄槽140へ移される。該薬剤洗浄槽140には、苛性ソーダの水溶液が貯留され、回生用曝気ブロワ180で昇圧されたエアが回生用曝気ノズル181から噴射されている。前記多孔質膜130を苛性ソーダの水溶液中に浸漬して曝気することにより、前記多孔質膜130の回生が行われる(図3のステップS80の「回生工程」参照)。 However, as the operation continues, clogging of the porous membrane 130 which can not be removed only by backwashing also occurs. Therefore, it is determined whether the water permeability of the porous membrane 130 has become equal to or less than the set value (see step S70 in FIG. 3). When the amount of permeated water of the porous membrane 130 is equal to or less than the set value, the porous membrane 130 is taken out of the membrane treatment tank 120 and transferred to the chemical cleaning tank 140. An aqueous solution of caustic soda is stored in the medicine cleaning tank 140, and air pressurized by the regenerative aeration blower 180 is jetted from the regenerative aeration nozzle 181. The porous film 130 is regenerated by immersing the porous film 130 in an aqueous solution of caustic soda, thereby allowing regeneration of the porous film 130 (see “regeneration step” in step S80 of FIG. 3).
 ここで、前記多孔質膜130として仮に、酢酸セルロース、ポリエチレン、ポリアクリロニトリル、ポリスルフォン、ポリエーテルスルフォン、ポリアミド、ポリビニルアルコール、ポリビニリデンフロライド等を利用した場合、耐久性、耐薬品性に関して充分であるとは言えないため、薬剤として苛性ソーダを用いたとすると、洗浄水を濾過して微粉炭を除去し浄化する運転を継続することは困難となる。 Here, if cellulose acetate, polyethylene, polyacrylonitrile, polysulfone, polyether sulfone, polyamide, polyvinyl alcohol, polyvinylidene fluoride and the like are temporarily used as the porous membrane 130, sufficient durability and chemical resistance can be obtained. If caustic soda is used as the drug, it is difficult to continue the operation of filtering the washing water to remove and purify the pulverized coal.
 しかし、本発明の水処理方法及び装置の一例においては、前記多孔質膜130がポリテトラフルオロエチレンを延伸加工したフィルタであるため、耐久性、耐薬品性に優れ、微粉炭を含む洗浄水のような特殊な排水が対象である場合であっても、前記多孔質膜130を通過する洗浄水の流速の低下を未然に防ぎ、不可逆的な多孔質膜130の閉塞につながることが避けられ、該多孔質膜130の回生処理が可能となり、運転を停止せずに円滑に進めることができる。 However, in one example of the water treatment method and apparatus of the present invention, since the porous membrane 130 is a filter obtained by drawing and processing polytetrafluoroethylene, it is excellent in durability and chemical resistance, and the washing water containing pulverized coal is used. Even in the case where such special drainage is targeted, it is possible to prevent in advance the lowering of the flow velocity of the washing water passing through the porous membrane 130 and to avoid leading to the irreversible clogging of the porous membrane 130, The regeneration process of the porous membrane 130 becomes possible, and the process can be smoothly advanced without stopping the operation.
 こうして、膜処理により洗浄水を濾過する運転を安定して継続し得る。 Thus, the operation of filtering washing water by membrane treatment can be stably continued.
 そして、本発明の水処理方法の一例においては、前記回生工程の前段階として、前記多孔質膜130を定期的に逆洗する逆洗工程と、該逆洗工程で逆洗された多孔質膜130の表面を洗浄する表面洗浄工程とを有している。又、本発明の水処理装置の一例においては、前記膜処理ユニット100は、前記多孔質膜130を逆洗する逆洗ユニット190と、該逆洗ユニット190で逆洗された多孔質膜130の表面を洗浄する表面洗浄ユニット200とを備えている。このように構成すると、前記多孔質膜130の薬剤による回生までの時間を延長させることができ、有効となる。 And, in one example of the water treatment method of the present invention, a backwashing step of periodically backwashing the porous membrane 130 as a step prior to the regeneration step, and a porous membrane backwashed in the backwashing step And a surface cleaning step of cleaning the surface of 130. In one example of the water treatment apparatus of the present invention, the membrane treatment unit 100 includes a backwashing unit 190 for backwashing the porous membrane 130, and a porous membrane 130 backwashed by the backwashing unit 190. And a surface cleaning unit 200 for cleaning the surface. With this configuration, the time until regeneration of the porous membrane 130 by the drug can be extended, which is effective.
 本発明の水処理方法の一例においては、前記回収工程で回収された洗浄水に含まれる被洗浄物質を沈降させた後、上澄みの洗浄水を前記膜濾過工程へ導く沈降工程を有している。又、本発明の水処理装置の一例において、前記膜処理ユニット100は、前記膜処理槽120の上流側に設置され且つ前記被洗浄物質を沈降させた上澄みの洗浄水を前記膜処理槽120へ導く沈降槽110を備えている。このように構成すると、無定形炭素(アモルファスカーボン)と呼ばれて特殊な挙動をする微粉炭を、膜処理ユニット100で濾過する前に予め分離除去することができ、膜処理ユニット100での分離効率を高めることができる。 In one example of the water treatment method of the present invention, it has a sedimentation step of leading the washing water of the supernatant to the membrane filtration step after settling the substance to be washed contained in the washing water recovered in the recovery step. . Further, in the example of the water treatment apparatus of the present invention, the membrane treatment unit 100 is disposed upstream of the membrane treatment tank 120, and the washing water of the supernatant obtained by settling the substance to be washed is sent to the membrane treatment tank 120. The settling tank 110 which leads is provided. According to this configuration, pulverized carbon called amorphous carbon (amorphous carbon) and having special behavior can be separated and removed in advance before filtration by the membrane processing unit 100, and separation in the membrane processing unit 100 can be performed. Efficiency can be improved.
 本発明の水処理方法及び装置の一例において、前記多孔質膜130は、ポリテトラフルオロエチレンを延伸加工したフィルタである。このように構成すると、耐久性、耐薬品性に優れ、回生処理を有利に行える膜処理ユニット100を提供することができる。 In one example of the water treatment method and apparatus of the present invention, the porous membrane 130 is a filter formed by stretching polytetrafluoroethylene. With such a configuration, it is possible to provide the film processing unit 100 that is excellent in durability and chemical resistance and can perform regenerative processing in an advantageous manner.
 本発明の水処理方法及び装置の一例において、前記薬剤は苛性ソーダである。このように構成すると、ポリテトラフルオロエチレンを延伸加工したフィルタからなる多孔質膜130の回生を効率良く行うことができる。 In one example of the water treatment method and apparatus of the present invention, the agent is caustic soda. With this configuration, regeneration of the porous film 130 formed of a filter obtained by drawing and processing polytetrafluoroethylene can be efficiently performed.
 本発明の水処理装置の一例において、前記機器は揚運炭設備のコンベヤCであり、前記被洗浄物質は微粉炭である。このように構成すると、従来のコンベヤCの洗浄水の処理として利用されていた凝集剤による凝集沈殿とは異なり、前記凝集剤の添加量不足による、洗浄水への微粉炭の残留は発生せず、洗浄水を噴射するノズルの詰りや配管の摩耗も発生しない。勿論、前記凝集剤の添加量過剰による、再利用される洗浄水への凝集剤の残留も発生せず、該凝集剤の配管内での凝集、配管の閉塞の心配もない。又、微粉炭は凝集されず濃縮もされないため、凝集剤由来の金属酸化物と微粉炭のフロックの集塊物質が生じることはなく、その処理コストが高くなることも避けられる。 In an example of the water treatment apparatus according to the present invention, the device is a conveyor C of a lifting coal facility, and the material to be cleaned is pulverized coal. According to this configuration, unlike the coagulant precipitation by a coagulant that has been used as the treatment of the cleaning water of the conventional conveyor C, the residual pulverized coal in the cleaning water does not occur due to the insufficient addition amount of the coagulant. There is no clogging of the nozzle that jets the washing water or abrasion of the piping. Of course, the addition amount of the coagulant does not cause the remaining of the coagulant in the recycled wash water, and there is no concern of the aggregation of the coagulant in the pipe and the clogging of the pipe. In addition, since pulverized coal is neither agglomerated nor concentrated, agglomerated material of metal oxide derived from flocculant and floc of pulverized coal is not generated, and increase in the processing cost can be avoided.
 本発明の水処理装置の一例において、前記コンベヤCは複数基配備され、該コンベヤC毎に前記膜処理ユニット100が分散配備される。このように構成すると、図1に示される従来例のように複数基配備されるコンベヤCから回収される洗浄水を凝集処理ユニット50で集中的に処理するのに比べ、全体の運転効率を高め、コスト削減を図ることができる。 In an example of the water treatment apparatus of the present invention, a plurality of the conveyors C are provided, and the film treatment units 100 are dispersedly provided for each of the conveyors C. When configured in this manner, the overall operation efficiency is improved as compared to intensively treating the cleaning water collected from the plurality of conveyors C deployed as in the conventional example shown in FIG. Cost reduction can be achieved.
 以下、本発明の水処理方法及び装置の実施例を示す。 Hereinafter, the Example of the water treatment method and apparatus of this invention is shown.
 先ず、多孔質膜130を薬剤にて洗浄し回生を行うにあたって、ポリテトラフルオロエチレン(PTFE)製の多孔質膜(ポアフロン(登録商標):住友電工製)とポリビニリデンフロライド(PVDF)製の多孔質膜(ステラポア(登録商標):三菱ケミカル製)に対し並行して、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水(排出原水:分析値は[表1]参照)を通液処理し、同等膜面積当りの換算値比較を行い、時間の経過に伴う各差圧の変化を観察したところ、[表2]に示すような結果が得られた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
First, when the porous membrane 130 is washed with a drug and regenerated, a porous membrane made of polytetrafluoroethylene (PTFE) (Poreflon (registered trademark): made by Sumitomo Electric Co., Ltd.) and polyvinylidene fluoride (PVDF) are used. Washing water (discharged raw water) containing pulverized coal (substance to be washed) by washing the conveyor C (equipment) in parallel to a porous membrane (STERAPORE (registered trademark): manufactured by Mitsubishi Chemical): 1) Pass through treatment, compare the conversion value per equivalent membrane area, and observe changes in each differential pressure over time. The results shown in Table 2 were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記の[表2]において、初期設定条件として、透過流束は、
  1.5[m3/(m2・Day)=62.5[L/h]
であり、差圧(吸引圧力)到達点の設定値は40[kPa]である。
In the above [Table 2], as an initial setting condition, the permeation flux is
1.5 [m 3 / (m 2 · Day) = 62.5 [L / h]
The set value of the differential pressure (suction pressure) reaching point is 40 [kPa].
 ポリテトラフルオロエチレン(PTFE)製の多孔質膜については、120時間経過後に実透過流束の算出値が72[%]まで低下したものを、ポリビニリデンフロライド(PVDF)製の多孔質膜については、96時間経過後に実透過流束の算出値が68[%]まで低下したものを、それぞれ薬剤洗浄による回生試験に供した。 Regarding porous membranes made of polytetrafluoroethylene (PTFE), porous membranes made of polyvinylidene fluoride (PVDF) for which the calculated value of actual permeation flux has decreased to 72 [%] after 120 hours have elapsed The thing of which the calculated value of actual permeation flux fell to 68 [%] after 96 hours passed was subjected to the regeneration test by drug cleaning.
 前記回生試験をする前に、前記多孔質膜の逆洗を水道水にて実施した。 Before carrying out the regenerative test, backwashing of the porous membrane was carried out with tap water.
 前記水道水による逆洗の条件としては、流束を
  3[m3/(m2・Day)=125[L/h]
とし、時間を5分間とした。
As a condition of the backwashing with the tap water, flux 3 [m 3 / (m 2 · Day) = 125 [L / h]
And the time was 5 minutes.
 その結果は、[表3]に示すようになった。
Figure JPOXMLDOC01-appb-T000003
The results are as shown in [Table 3].
Figure JPOXMLDOC01-appb-T000003
 前記水道水による逆洗に続いて、ポリテトラフルオロエチレン(PTFE)製の多孔質膜とポリビニリデンフロライド(PVDF)製の多孔質膜とを薬剤(クエン酸、次亜塩素酸ソーダ、苛性ソーダ)にて洗浄し回生を行った。 Following backwashing with tap water, the porous membrane made of polytetrafluoroethylene (PTFE) and the porous membrane made of polyvinylidene fluoride (PVDF) are used as a drug (citric acid, sodium hypochlorite, caustic soda) It was washed and regenerated.
 クエン酸洗浄は、以下の手順で行った。
1.水道水による逆洗後、水槽内を、0.5[%]クエン酸液で満たし、濾過用曝気ブロワを稼動し続けた。
2.8時間以上の浸漬処理を行った。
3.クエン酸液を廃棄し、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水(排出原水)に置換しつつ、pHを6以上にした。
4.定常の濾過条件にして通液した。
Citric acid washing was performed according to the following procedure.
1. After backwashing with tap water, the water tank was filled with 0.5% citric acid solution, and the aeration blower for filtration was kept operating.
The immersion treatment was performed for 2.8 hours or more.
3. The citric acid solution was discarded, and the conveyor C (equipment) was washed and replaced with washing water (discharge raw water) containing pulverized coal (substance to be washed), and the pH was made 6 or more.
4. The solution was allowed to flow under constant filtration conditions.
 次亜塩素酸ソーダ洗浄は、以下の手順で行った。
1.水道水による逆洗後、水槽内を、0.05[%]次亜塩素酸ソーダ液で満たし、濾過用曝気ブロワを稼動し続けた。
2.8時間以上の浸漬処理を行った。
3.次亜塩素酸ソーダ液を廃棄し、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水(排出原水)に置換しつつ、pHを8以下にした。
4.定常の濾過条件にして通液した。
The hypochlorous acid sodium cleaning was performed according to the following procedure.
1. After backwashing with tap water, the water tank was filled with 0.05% sodium hypochlorite solution, and the aeration blower for filtration was kept operating.
The immersion treatment was performed for 2.8 hours or more.
3. The hypochlorous acid soda solution was discarded, and the conveyor C (equipment) was cleaned and replaced with washing water (discharge raw water) containing pulverized coal (substance to be washed), and the pH was adjusted to 8 or less.
4. The solution was allowed to flow under constant filtration conditions.
 苛性ソーダ洗浄は、以下の手順で行った。
1.水道水による逆洗後、水槽内を、10[%]苛性ソーダ液で満たし、濾過用曝気ブロワを稼動し続けた。
2.8時間以上の浸漬処理を行った。
3.苛性ソーダ液を廃棄し、前記コンベヤC(機器)を洗浄し微粉炭(被洗浄物質)を含有した洗浄水(排出原水)に置換しつつ、pHを8以下にした。
4.定常の濾過条件にして通液した。
The caustic soda wash was performed according to the following procedure.
1. After backwashing with tap water, the water tank was filled with 10% caustic soda solution, and the aeration blower for filtration was kept operating.
The immersion treatment was performed for 2.8 hours or more.
3. The caustic soda solution was discarded, and the above-mentioned conveyor C (equipment) was washed and replaced with washing water (discharge raw water) containing pulverized coal (substance to be washed) to make the pH 8 or less.
4. The solution was allowed to flow under constant filtration conditions.
 上記の薬剤洗浄による回生結果は、[表4]に示すようになった。
Figure JPOXMLDOC01-appb-T000004
The result of regeneration by the above drug cleaning is as shown in [Table 4].
Figure JPOXMLDOC01-appb-T000004
 初期の透過流束62.5[L/h]に対する回復の割合は、
  100×{1-(洗浄後の透過流束)/(初期の透過流束)}[%]
より求めた。
The recovery rate for the initial permeation flux of 62.5 [L / h] is
100 × {1- (permeation flux after washing) / (initial permeation flux)} [%]
It asked for.
 因みに、ポリビニリデンフロライド(PVDF)製の多孔質膜は、その膜面が薄く茶褐色になった。即ち、ポリビニリデンフロライド(PVDF)製の多孔質膜は苛性ソーダに弱い傾向を示すことが判明した。 Incidentally, the porous membrane made of polyvinylidene fluoride (PVDF) was thin and brown on its surface. That is, it was found that porous membranes made of polyvinylidene fluoride (PVDF) tend to be weak to caustic soda.
 そして、本実施例の結果から、ポリテトラフルオロエチレン(PTFE)製の多孔質膜は、薬剤として苛性ソーダを用いて洗浄することにより回生を行うことが、極めて有効であると言える。 And from the results of this example, it can be said that regeneration of a porous membrane made of polytetrafluoroethylene (PTFE) is extremely effective by washing with caustic soda as a drug.
 尚、本発明の水処理方法及び装置は、上述の一例や実施例にのみ限定されるものではなく、石炭火力発電所の揚運炭設備におけるコンベヤの洗浄以外にも適用可能なこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 In addition, the water treatment method and apparatus of the present invention are not limited to only the above-described examples and embodiments, and can be applied to cleaning of conveyors in lifting coal facilities of a coal-fired power plant etc. Of course, various changes can be made without departing from the scope of the present invention.
100        膜処理ユニット
110        沈降槽
120        膜処理槽
130        多孔質膜
140        薬剤洗浄槽
190        逆洗ユニット
200        表面洗浄ユニット
  C        コンベヤ(機器)
Reference Signs List 100 membrane processing unit 110 settling tank 120 membrane processing tank 130 porous membrane 140 chemical cleaning tank 190 reverse cleaning unit 200 surface cleaning unit C conveyor (equipment)

Claims (13)

  1.  機器を洗浄し被洗浄物質を含有した洗浄水を回収する回収工程と、
      該回収工程で回収した洗浄水を多孔質膜で濾過して被洗浄物質を除去し浄化する膜濾過工程と、
      該膜濾過工程で浄化した洗浄水を再利用する再利用工程と、
      前記膜濾過工程で被洗浄物質を除去した多孔質膜の透過水量が設定値以下になった際に前記多孔質膜を薬剤にて洗浄する回生工程と
      を有する水処理方法。
    A recovery step of cleaning the device and recovering the cleaning water containing the substance to be cleaned;
    A membrane filtration step of filtering the cleaning water recovered in the recovery step with a porous membrane to remove and purify the substance to be cleaned;
    A recycling step of recycling the cleaning water purified in the membrane filtration step;
    A regeneration step of washing the porous membrane with a drug when the amount of permeated water of the porous membrane from which the substance to be washed has been removed in the membrane filtration step becomes equal to or less than a set value.
  2.  前記回生工程の前段階として、
      前記多孔質膜を定期的に逆洗する逆洗工程と、
      該逆洗工程で逆洗された多孔質膜の表面を洗浄する表面洗浄工程と
      を有する請求項1記載の水処理方法。
    As a step before the regeneration process,
    A backwashing step of periodically backwashing the porous membrane;
    The water treatment method according to claim 1, further comprising: surface cleaning step of cleaning the surface of the porous membrane backwashed in the backwashing step.
  3.  前記回収工程で回収された洗浄水に含まれる被洗浄物質を沈降させた後、上澄みの洗浄水を前記膜濾過工程へ導く沈降工程を有する請求項1又は2記載の水処理方法。 The water treatment method according to claim 1 or 2, further comprising a sedimentation step of leading the supernatant wash water to the membrane filtration step after settling the substance to be washed contained in the wash water recovered in the recovery step.
  4.  前記多孔質膜は、ポリテトラフルオロエチレンを延伸加工したフィルタである請求項1~3の何れか一項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 3, wherein the porous membrane is a filter formed by drawing polytetrafluoroethylene.
  5.  前記薬剤は苛性ソーダである請求項4記載の水処理方法。 The water treatment method according to claim 4, wherein the agent is caustic soda.
  6.  前記機器は揚運炭設備のコンベヤであり、前記被洗浄物質は微粉炭である請求項1~5の何れか一項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 5, wherein the device is a conveyor of a lifting coal facility, and the material to be cleaned is pulverized coal.
  7.  機器を洗浄し被洗浄物質を含有した洗浄水が導入される膜処理槽と、
      該膜処理槽の内部に配置され且つ前記洗浄水を濾過して被洗浄物質を除去し浄化する多孔質膜と、
      該多孔質膜の透過水量が設定値以下になった際に前記多孔質膜を薬剤にて洗浄する薬剤洗浄槽と
      を有する膜処理ユニットを備えた水処理装置。
    A membrane treatment tank in which washing water containing a substance to be washed is introduced by washing the device;
    A porous membrane disposed inside the membrane treatment tank and filtering the washing water to remove and purify the substance to be washed;
    A water treatment apparatus comprising: a membrane treatment unit comprising: a chemical washing tank for washing the porous membrane with a drug when the amount of permeated water of the porous membrane falls below a set value.
  8.  前記膜処理ユニットは、
      前記多孔質膜を逆洗する逆洗ユニットと、
      該逆洗ユニットで逆洗された多孔質膜の表面を洗浄する表面洗浄ユニットと
      を備えた請求項7記載の水処理装置。
    The membrane processing unit
    A backwashing unit for backwashing the porous membrane;
    The water treatment apparatus according to claim 7, further comprising: a surface cleaning unit that cleans the surface of the porous membrane backwashed by the backwashing unit.
  9.  前記膜処理ユニットは、
      前記膜処理槽の上流側に設置され且つ前記被洗浄物質を沈降させた上澄みの洗浄水を前記膜処理槽へ導く沈降槽を備えた請求項7又は8記載の水処理装置。
    The membrane processing unit
    9. The water treatment apparatus according to claim 7, further comprising a sedimentation tank disposed upstream of the membrane treatment tank and guiding wash water of a supernatant obtained by settling the substance to be washed to the membrane treatment tank.
  10.  前記多孔質膜は、ポリテトラフルオロエチレンを延伸加工したフィルタである請求項7~9の何れか一項に記載の水処理装置。 The water treatment device according to any one of claims 7 to 9, wherein the porous membrane is a filter formed by stretching polytetrafluoroethylene.
  11.  前記薬剤は苛性ソーダである請求項10記載の水処理装置。 The water treatment device according to claim 10, wherein the agent is caustic soda.
  12.  前記機器は揚運炭設備のコンベヤであり、前記被洗浄物質は微粉炭である請求項7~11の何れか一項に記載の水処理装置。 The water treatment apparatus according to any one of claims 7 to 11, wherein the device is a conveyor of a lifting coal facility, and the substance to be cleaned is pulverized coal.
  13.  前記コンベヤは複数基配備され、該コンベヤ毎に前記膜処理ユニットが分散配備される請求項12記載の水処理装置。 The water treatment apparatus according to claim 12, wherein a plurality of the conveyors are provided, and the membrane treatment units are distributed and disposed for each of the conveyors.
PCT/JP2018/027986 2017-11-20 2018-07-25 Method and device for water treatment WO2019097767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880075085.6A CN111417597A (en) 2017-11-20 2018-07-25 Water treatment method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222547 2017-11-20
JP2017222547A JP6811162B2 (en) 2017-11-20 2017-11-20 Water treatment method and equipment

Publications (1)

Publication Number Publication Date
WO2019097767A1 true WO2019097767A1 (en) 2019-05-23

Family

ID=66540117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027986 WO2019097767A1 (en) 2017-11-20 2018-07-25 Method and device for water treatment

Country Status (3)

Country Link
JP (1) JP6811162B2 (en)
CN (1) CN111417597A (en)
WO (1) WO2019097767A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137542A (en) * 1996-11-18 1998-05-26 Tohoku Electric Power Co Inc Treatment of flue gas desulfurization waste water
JP2004267892A (en) * 2003-03-07 2004-09-30 Toshiba Corp Wastewater treatment equipment
JP2006043655A (en) * 2004-08-09 2006-02-16 Japan Organo Co Ltd Water treating apparatus and operation method therefor
JP2009233569A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Membrane separation method
JP2011115712A (en) * 2009-12-02 2011-06-16 Mitsubishi Heavy Ind Ltd Washing method of filter membrane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334251A (en) * 2001-08-31 2002-02-06 上海乐富门水处理工程有限公司 Process for treating waste water with coal ash
CN101525191B (en) * 2009-04-27 2011-04-13 河南洁源膜分离科技有限公司 Coking wastewater membrane method treating process
CN103249472B (en) * 2010-12-10 2015-05-27 东丽株式会社 Chemical cleaning method for immersed membrane element
CN106794428A (en) * 2014-08-29 2017-05-31 三菱电机株式会社 The cleaning method and cleaning device and water treatment system of filter membrane
CN204474371U (en) * 2014-12-23 2015-07-15 三达膜科技(厦门)有限公司 A kind for the treatment of unit of coal washing waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137542A (en) * 1996-11-18 1998-05-26 Tohoku Electric Power Co Inc Treatment of flue gas desulfurization waste water
JP2004267892A (en) * 2003-03-07 2004-09-30 Toshiba Corp Wastewater treatment equipment
JP2006043655A (en) * 2004-08-09 2006-02-16 Japan Organo Co Ltd Water treating apparatus and operation method therefor
JP2009233569A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Membrane separation method
JP2011115712A (en) * 2009-12-02 2011-06-16 Mitsubishi Heavy Ind Ltd Washing method of filter membrane

Also Published As

Publication number Publication date
CN111417597A (en) 2020-07-14
JP2019093320A (en) 2019-06-20
JP6811162B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP6689435B2 (en) Wastewater treatment system and wastewater treatment method
WO2019150604A1 (en) Method and apparatus for treating coal wastewater
CN211612271U (en) Environment-friendly semiconductor cutting grinding water microporous filtration system
WO2017159303A1 (en) Method for treating waste water having high hardness
JP7101453B2 (en) Cleaning method of ceramic filtration membrane, filtration membrane device and filtration container
KR20150046093A (en) Water production method
RU2756224C1 (en) Method for etching sheet steel
WO2019097767A1 (en) Method and device for water treatment
JP5017922B2 (en) Water treatment method
KR100352740B1 (en) Pretreatment Method of Water Reuse System using Air Flotation and Continuous Microfilter
JP6616593B2 (en) Membrane cleaning method
KR20140081552A (en) Submerged membrane apparatus and method for purifying water
KR101973736B1 (en) Method for production of sludge dewatering cake in ceramic membrane filtration process using submerged membrane and pressurized membrane
CN103086477B (en) Beverage waste water membrane-method recycling method and device
KR101091092B1 (en) Two step advanced water purification apparatus
CN217511590U (en) Cleaning system of milipore filter
JP2014151278A (en) Method for cleaning sand filter apparatus
JP7016339B2 (en) Coal wastewater treatment method and equipment
JP2005046801A (en) Water treatment method and apparatus therefor
WO2021106574A1 (en) Coal wastewater treatment method and device
JP2019005710A (en) Membrane filtration method, membrane filtration system and filtration membrane washing method
CN203095677U (en) Beverage wastewater recycling method using membrane process
CN114849487A (en) Cleaning system and method for ultrafiltration membrane
JP7117099B2 (en) Apparatus and method for treating iron/manganese-containing water
JP2009000585A (en) Membrane filtration apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877841

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 18877841

Country of ref document: EP

Kind code of ref document: A1