JP4548081B2 - Cleaning method of hollow fiber membrane - Google Patents

Cleaning method of hollow fiber membrane Download PDF

Info

Publication number
JP4548081B2
JP4548081B2 JP2004292669A JP2004292669A JP4548081B2 JP 4548081 B2 JP4548081 B2 JP 4548081B2 JP 2004292669 A JP2004292669 A JP 2004292669A JP 2004292669 A JP2004292669 A JP 2004292669A JP 4548081 B2 JP4548081 B2 JP 4548081B2
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
fiber membrane
treatment
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004292669A
Other languages
Japanese (ja)
Other versions
JP2006102634A (en
Inventor
学 松本
陽介 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004292669A priority Critical patent/JP4548081B2/en
Publication of JP2006102634A publication Critical patent/JP2006102634A/en
Application granted granted Critical
Publication of JP4548081B2 publication Critical patent/JP4548081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は中空糸膜の洗浄方法に係り、特に上水処理設備の膜ろ過装置に用いられる中空糸膜の洗浄方法、及びそれが適用される水処理設備に関する。   The present invention relates to a method for cleaning a hollow fiber membrane, and more particularly to a method for cleaning a hollow fiber membrane used in a membrane filtration device of a water treatment facility, and a water treatment facility to which the method is applied.

上水処理設備では、まず、河川等から原水を取水し、これを凝集沈殿処理している。凝集沈殿処理は、ポリ塩化アルミニウム(PAC)等の凝集剤を原水に注入することによって、原水中の懸濁物質を凝集させてフロックを形成し、このフロックを沈殿させている。そして、沈澱後の上澄液を摂取し、砂等でろ過し、さらに殺菌処理を行うことによって、飲用の上水を得ている。   In the water treatment facility, first, raw water is taken from a river or the like, and this is coagulated and settled. In the coagulation sedimentation treatment, a flocculant such as polyaluminum chloride (PAC) is injected into the raw water to agglomerate suspended substances in the raw water to form flocs, and the flocs are precipitated. And drinking supernatant is obtained by ingesting the supernatant liquid after precipitation, filtering with sand etc., and also performing a sterilization process.

近年では、上記の凝集沈殿処理に加えて膜ろ過処理を行う方法が開発されている。膜ろ過処理では、UF膜(限界ろ過膜)やMF膜(精密ろ過膜)を中空の糸状に形成した中空糸膜を利用し、この中空糸膜に原水を通過させることによって、原水中の懸濁物質等を除去している。このような膜ろ過処理は、膜の孔径よりも寸法の大きな物質を除去することができるので、膜の孔径の選択によっては大腸菌等の細菌類まで取り除くことができる。   In recent years, a method of performing membrane filtration in addition to the above aggregation and precipitation treatment has been developed. In the membrane filtration treatment, a hollow fiber membrane in which a UF membrane (ultrafiltration membrane) or an MF membrane (microfiltration membrane) is formed in a hollow thread shape is used, and raw water is passed through the hollow fiber membrane, thereby Remove turbid substances. Such a membrane filtration treatment can remove substances having a size larger than the pore size of the membrane, so that bacteria such as Escherichia coli can be removed depending on the choice of the pore size of the membrane.

ところで、膜ろ過処理は、膜面に懸濁物質が付着するため、処理時間に伴ってろ過効率が低下し、膜面の洗浄が必要となる。そこで、ろ過運転時とは反対方向に通水する逆洗処理を行うことが知られている。また、逆洗処理を行っても、膜面の閉塞が徐々に進行するので、薬品を膜モジュールに循環させる薬液洗浄処理を定期的に行うことが知られている(例えば特許文献1参照)。このような逆洗処理や薬品洗浄処理を行うことによって、膜面に付着した付着物を膜面から剥離させることができ、膜ろ過処理を長期間にわたって安定して行うことができる。
特開2004−130307号公報
By the way, in the membrane filtration treatment, since suspended substances adhere to the membrane surface, the filtration efficiency decreases with the treatment time, and the membrane surface needs to be cleaned. Therefore, it is known to perform a backwash process for passing water in the direction opposite to that during the filtration operation. Further, even when the backwashing process is performed, since the membrane surface is gradually blocked, it is known to periodically perform the chemical cleaning process for circulating the chemicals to the membrane module (see, for example, Patent Document 1). By performing such back washing treatment or chemical washing treatment, deposits attached to the membrane surface can be peeled off from the membrane surface, and the membrane filtration treatment can be performed stably over a long period of time.
JP 2004-130307 A

しかしながら、上述のように凝集沈殿処理の後に膜ろ過処理を行う場合には、逆洗処理や薬液洗浄処理を行っても十分な洗浄効果が得られず、膜面の閉塞の進行が速いという問題があった。これは、凝集沈殿処理で残存する微細な金属フロックが膜ろ過処理した際に膜面が付着するためであり、この金属フロックが膜面に一旦付着すると、逆洗処理や薬品洗浄処理を行っても剥離しにくいという問題があった。また、従来の上水処理設備は、薬液洗浄処理における薬液の使用量が多く、コストが著しく高いという問題や、薬液洗浄処理によって膜面をかえって痛めてしまい、膜面の寿命が短くなるという問題があった。   However, when the membrane filtration treatment is performed after the coagulation sedimentation treatment as described above, there is a problem that sufficient washing effect cannot be obtained even if the back washing treatment or the chemical solution washing treatment is performed, and the progress of the clogging of the membrane surface is fast. was there. This is because when the fine metal floc remaining in the coagulation sedimentation treatment is subjected to membrane filtration treatment, the membrane surface adheres. Once this metal floc adheres to the membrane surface, back washing treatment or chemical washing treatment is performed. However, it was difficult to peel off. In addition, the conventional water treatment equipment has a problem that the amount of chemical used in the chemical cleaning process is large and the cost is remarkably high, and the film surface is damaged by the chemical cleaning process and the life of the film surface is shortened. was there.

本発明はこのような事情に鑑みて成されたもので、凝集沈殿処理の後に膜ろ過処理を行う場合であっても、膜の閉塞を抑制することができ、且つ、コストを削減できる中空糸膜の洗浄方法、及びそれが適用される水処理設備を提供することを目的とする。   The present invention has been made in view of such circumstances, and even when a membrane filtration treatment is performed after a coagulation sedimentation treatment, a hollow fiber that can suppress membrane clogging and can reduce costs. It aims at providing the washing | cleaning method of a film | membrane, and the water treatment equipment to which it is applied.

請求項1に記載の発明は前記目的を達成するために、上水処理設備の膜濾過装置に用いられる中空糸膜であって、凝集沈殿処理により生じた金属フロックを含有する処理水を膜ろ過処理する中空糸膜の洗浄方法において、前記中空糸膜を有する膜モジュール内にpHが1〜3の硫酸酸性の洗浄液を3〜15分保持して静置する静置時間を設けるとともに、前記静置時間後に前記膜モジュールから排液した酸性洗浄液を、前記凝集沈殿処理前の処理水に返送することを特徴とする。 In order to achieve the above object, the invention according to claim 1 is a hollow fiber membrane used in a membrane filtration device of a water treatment facility, and the treated water containing metal floc generated by the coagulation sedimentation treatment is subjected to membrane filtration. In the method for cleaning a hollow fiber membrane to be treated, the membrane module having the hollow fiber membrane is provided with a standing time for holding the sulfuric acid cleaning solution having a pH of 1 to 3 for 3 to 15 minutes , the acidic cleaning solution is drained from the membrane module to post-time, characterized in that it returned to the treated water prior to the flocculation process.

請求項1の発明によれば、酸性の洗浄液を膜モジュール内に所定時間保持する静置時間を設けるようにしたので、中空糸膜の洗浄効果を向上させることができ、且つ、酸性洗浄液の使用量を大幅に削減することができる。特に凝集沈殿処理後の処理水に含まれる金属フロックは、前記静置時間を設けることによって、膜面を損傷することなく溶解させることができ、膜面の閉塞を効果的に抑制することができる。   According to the first aspect of the present invention, since the standing time for holding the acidic cleaning liquid in the membrane module for a predetermined time is provided, the cleaning effect of the hollow fiber membrane can be improved, and the use of the acidic cleaning liquid The amount can be greatly reduced. In particular, the metal flocs contained in the treated water after the coagulation sedimentation treatment can be dissolved without damaging the membrane surface by providing the standing time, and the membrane surface can be effectively prevented from being blocked. .

また、請求項1の発明によれば、膜モジュールから排液した酸性の洗浄液を、凝集沈殿処理前の処理水に返送したので、この処理水のpHを下げることができ、凝集沈殿処理に適したpHに調整することができる。よって、凝集沈殿処理時に使用するpH調整剤の使用量を減少させることができ、コストを削減することができる。   Further, according to the invention of claim 1, since the acidic cleaning liquid discharged from the membrane module is returned to the treated water before the coagulation sedimentation treatment, the pH of the treated water can be lowered, which is suitable for the coagulation sedimentation treatment. PH can be adjusted. Therefore, the usage-amount of the pH adjuster used at the time of a coagulation sedimentation process can be reduced, and cost can be reduced.

請求項1の発明によれば、中空糸膜を有する膜モジュール内にpHが1〜3の硫酸酸性の洗浄液を3〜15分保持して静置する静置時間を設けるようにしたので、膜面を痛めつけることなく、中空糸膜に付着した金属フロックを効率良く溶解させることができる。According to the first aspect of the present invention, the membrane module having a hollow fiber membrane is provided with a standing time in which the sulfuric acid acidic cleaning solution having a pH of 1 to 3 is held for 3 to 15 minutes and left to stand. The metal floc attached to the hollow fiber membrane can be efficiently dissolved without damaging the surface.

請求項2に記載の発明は請求項1の発明において、前記静置時間における前記膜モジュール内のpHを均一に制御することを特徴とする。請求項3の発明によれば、膜モジュール内のpHを均一に制御することによって、金属フロックの溶解の効率をさらに向上させることができる。 According to a second aspect of the present invention, in the first aspect of the invention, the pH in the membrane module during the standing time is uniformly controlled. According to invention of Claim 3, the efficiency of melt | dissolution of a metal floc can be further improved by controlling pH in a membrane module uniformly.

請求項3に記載の発明は請求項1又は2の発明において、前記凝集沈殿処理前の処理水のpHを測定し、該pHの測定値に応じて前記酸性の洗浄液のpHを調節することを特徴とする。したがって、膜モジュール内から排液した酸性の洗浄液によって凝集沈殿処理前の処理水のpHを適切な値に制御することができる。 According to a third aspect of the present invention, in the first or second aspect of the invention, the pH of the treated water before the coagulation sedimentation treatment is measured, and the pH of the acidic cleaning solution is adjusted according to the measured value of the pH. Features. Therefore, the pH of the treated water before the coagulation sedimentation treatment can be controlled to an appropriate value by the acidic cleaning liquid drained from the membrane module.

本発明に係る中空糸膜の洗浄方法及び水処理設備によれば、酸性の洗浄液を膜モジュール内に所定時間保持して静置する静置時間を設けるようにしたので、中空糸膜の洗浄効果を向上させることができ、且つ、酸洗浄液の使用量を大幅に削減することができる。   According to the hollow fiber membrane cleaning method and the water treatment facility according to the present invention, since the acidic cleaning liquid is held in the membrane module for a predetermined time and allowed to stand, a cleaning effect of the hollow fiber membrane is provided. And the amount of the acid cleaning solution used can be greatly reduced.

以下、添付図面に従って本発明に係る中空糸膜の洗浄方法及び水処理設備の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of a method for cleaning a hollow fiber membrane and a water treatment facility according to the present invention will be described with reference to the accompanying drawings.

図1は、本発明が適用される水処理設備の概略構成を示す模式図である。同図に示すように水処理設備10は主として、原水槽12、凝集沈殿処理装置14、供給槽15、膜ろ過処理装置(膜モジュール)16、処理水槽18、及び酸洗浄液槽20で構成される。   FIG. 1 is a schematic diagram showing a schematic configuration of a water treatment facility to which the present invention is applied. As shown in the figure, the water treatment facility 10 is mainly composed of a raw water tank 12, a coagulation sedimentation treatment apparatus 14, a supply tank 15, a membrane filtration treatment apparatus (membrane module) 16, a treatment water tank 18, and an acid cleaning liquid tank 20. .

原水槽12には原水管22が接続されており、この原水管22を介して原水が供給され、貯留される。原水槽12には、pH計24が設けられており、このpH計24によって原水槽12内の原水のpHが測定される。pH計24は、後述の制御装置62に接続されており、pH計24の測定値を示す信号が制御装置62に出力される。   A raw water pipe 22 is connected to the raw water tank 12, and raw water is supplied and stored through the raw water pipe 22. The raw water tank 12 is provided with a pH meter 24, and the pH meter 24 measures the pH of the raw water in the raw water tank 12. The pH meter 24 is connected to a control device 62 described later, and a signal indicating the measured value of the pH meter 24 is output to the control device 62.

原水槽12は、配管26を介して凝集沈殿処理装置14に接続されており、原水槽12の原水が凝集沈殿処理装置14に送水される。凝集沈殿処理装置14は、硫酸アルミニウムやポリ塩化アルミニウム等の凝集剤を添加することによって、原水中の懸濁物質、溶存有機物を凝集させてフロックを形成し、沈殿させる装置であり、具体的には、凝集池、沈殿池、処理水の貯留池等で構成される。   The raw water tank 12 is connected to the coagulation sedimentation processing device 14 via a pipe 26, and the raw water in the raw water tank 12 is sent to the coagulation sedimentation processing device 14. The coagulation sedimentation processing apparatus 14 is an apparatus for coagulating suspended substances and dissolved organic substances in raw water to form flocs by adding a coagulant such as aluminum sulfate or polyaluminum chloride, and specifically, Consists of a coagulation basin, a sedimentation basin, a reservoir for treated water, and the like.

凝集沈殿処理装置14で凝集沈殿した沈殿物(水酸化アルミニウム等)は、汚泥引抜管28を介して定期的、或いは連続的に引き抜かれ、汚泥処理部30に移送される。汚泥処理部30は、汚泥濃縮槽や汚泥脱水機等から成り、沈殿物を濃縮・脱水する。濃縮・脱水された沈殿物は、必要に応じて焼却或いは廃棄処分される。   A precipitate (aluminum hydroxide or the like) coagulated and precipitated by the coagulation sedimentation processing device 14 is withdrawn regularly or continuously via the sludge extraction tube 28 and transferred to the sludge treatment unit 30. The sludge treatment unit 30 includes a sludge concentration tank, a sludge dehydrator, and the like, and concentrates and dehydrates the precipitate. The concentrated and dehydrated precipitate is incinerated or disposed of as necessary.

一方、凝集沈殿処理装置14で得られた上澄み液は、配管31を介して供給槽15に供給されて一旦貯留され、膜ろ過処理装置16で膜ろ過処理を行う際に配管32を介して送水される。配管32には、送液するためのポンプXと、配管32を開閉するための弁Aが配設されており、弁Aは後述の制御装置62によって操作される。また、配管32には、弁Aと膜ろ過処理装置16の間の位置に、ドレン配管34が接続される。ドレン配管34の途中には、制御装置62によって操作される弁Dが配設されており、ドレン配管34の先端は原水槽12に接続される。よって、膜ろ過処理装置16内のドレンをドレン配管34を介して原水槽12に戻すことができる。なお、符号33は、膜ろ過処理装置16にエアを供給するエア供給管であり、このエア供給管33はブロア等のエア供給手段(不図示)に接続される。また、エア供給管33には弁Iが設けられており、この弁Iは後述の制御装置62によって開閉制御される。   On the other hand, the supernatant liquid obtained by the coagulation sedimentation processing device 14 is supplied to the supply tank 15 through the piping 31 and temporarily stored, and when the membrane filtration processing device 16 performs the membrane filtration processing, the water is sent through the piping 32. Is done. The pipe 32 is provided with a pump X for feeding liquid and a valve A for opening and closing the pipe 32, and the valve A is operated by a control device 62 described later. Further, a drain pipe 34 is connected to the pipe 32 at a position between the valve A and the membrane filtration processing device 16. A valve D operated by the control device 62 is disposed in the middle of the drain pipe 34, and the tip of the drain pipe 34 is connected to the raw water tank 12. Therefore, the drain in the membrane filtration apparatus 16 can be returned to the raw water tank 12 via the drain pipe 34. Reference numeral 33 denotes an air supply pipe for supplying air to the membrane filtration processing device 16, and the air supply pipe 33 is connected to air supply means (not shown) such as a blower. The air supply pipe 33 is provided with a valve I, and the valve I is controlled to be opened and closed by a control device 62 described later.

膜ろ過処理装置16は、密閉された円筒状のケース36を備え、このケース36の下端に前記配管32が接続され、ケース36の上端には処理水管38が接続される。ケース36の内部は、仕切り板40によってケース36内の下部(以下、一次側という)と上部(以下、二次側という)とに仕切られている。仕切り板40には、複数の開口40a、40a…が形成されており、各開口40aを臨むようにして、筒状の中空糸膜42が取り付けられる。したがって、ケース36内の一次側と二次側は中空糸膜42を介してのみ連通され、流体が一次側から二次側に流れる過程において流体中の浮遊物が中空糸膜42によって除去される。なお、図1には、膜ろ過処理装置16の構成を示す模式図として、三本の中空糸膜42のみを示したが、実際には数千本の中空糸膜42が平行に取り付けられる。また、中空糸膜42の下端は閉塞されるとともに、ポリウレタン等の樹脂によってケース36に固定される。さらに、図1には、一つのケース36のみを示したがこれに限定するものではなく、複数のケース36を並列に配置してもよい。   The membrane filtration device 16 includes a sealed cylindrical case 36, the pipe 32 is connected to the lower end of the case 36, and the treated water pipe 38 is connected to the upper end of the case 36. The inside of the case 36 is partitioned by a partition plate 40 into a lower part (hereinafter referred to as a primary side) and an upper part (hereinafter referred to as a secondary side) in the case 36. A plurality of openings 40a, 40a, ... are formed in the partition plate 40, and a cylindrical hollow fiber membrane 42 is attached so as to face each opening 40a. Therefore, the primary side and the secondary side in the case 36 are communicated only via the hollow fiber membrane 42, and suspended matter in the fluid is removed by the hollow fiber membrane 42 in the process in which the fluid flows from the primary side to the secondary side. . In FIG. 1, only three hollow fiber membranes 42 are shown as a schematic diagram showing the configuration of the membrane filtration apparatus 16, but in reality, thousands of hollow fiber membranes 42 are attached in parallel. The lower end of the hollow fiber membrane 42 is closed and fixed to the case 36 with a resin such as polyurethane. Furthermore, although only one case 36 is shown in FIG. 1, the present invention is not limited to this, and a plurality of cases 36 may be arranged in parallel.

中空糸膜42の素材としては、例えば、ポリビニルアルコール系樹脂により親水化処理されたポリスルホン系樹脂、架橋または非架橋の親水性高分子が添加されたポリスルホン系樹脂、ポリビニルアルコール系樹脂、ポリアクリロニトリル系樹脂、セルロース系樹脂、親水化されたポリオレフィン系樹脂、ポリフッ化ビニリデンなどが使用される。また、中空糸膜42は限外濾過膜や精密濾過膜が使用され、その孔径は例えば0. 001〜10μmが好ましく、0. 01〜8μmがより好ましく、0.1〜7μmがさらに好ましい。また、中空糸膜42の外径は、中空糸膜42の強度およびモジュールあたりの膜面積を確保する観点から、200〜3000μmの範囲内に設定することが好ましく、500〜2000μmの範囲内であることがより好ましい。中空糸膜42の厚さは、50〜700μmの範囲にあることが好ましく、100〜600μmの範囲であることがより好ましい。   Examples of the material of the hollow fiber membrane 42 include a polysulfone resin hydrophilized with a polyvinyl alcohol resin, a polysulfone resin to which a crosslinked or non-crosslinked hydrophilic polymer is added, a polyvinyl alcohol resin, and a polyacrylonitrile resin. Resins, cellulose resins, hydrophilized polyolefin resins, polyvinylidene fluoride, and the like are used. The hollow fiber membrane 42 may be an ultrafiltration membrane or a microfiltration membrane, and the pore diameter is preferably 0.001 to 10 μm, more preferably 0.01 to 8 μm, and still more preferably 0.1 to 7 μm. The outer diameter of the hollow fiber membrane 42 is preferably set in the range of 200 to 3000 μm, and in the range of 500 to 2000 μm, from the viewpoint of securing the strength of the hollow fiber membrane 42 and the membrane area per module. It is more preferable. The thickness of the hollow fiber membrane 42 is preferably in the range of 50 to 700 μm, and more preferably in the range of 100 to 600 μm.

前述したケース36内の一次側の上部(すなわち、仕切り板40の近傍)には、戻し配管46が接続される。戻し配管46は途中で四本に分岐されており、そのうち分岐配管46a、46b、46cはそれぞれ、原水槽12、供給槽15、配管32に接続されており、この分岐配管46a、46b、46cにはそれぞれ弁E、F、Gが配設される。一方、分岐配管46dはエア抜き管としてケース36の近傍に配置されるとともに上方に向けて開口され、弁Hが配設される。これらの弁E〜Hは制御装置62によって開閉制御される。   A return pipe 46 is connected to the upper part of the primary side in the case 36 (that is, in the vicinity of the partition plate 40). The return pipe 46 is branched into four on the way, and the branch pipes 46a, 46b, 46c are connected to the raw water tank 12, the supply tank 15, and the pipe 32, respectively, and are connected to the branch pipes 46a, 46b, 46c. Are provided with valves E, F and G, respectively. On the other hand, the branch pipe 46d is arranged in the vicinity of the case 36 as an air vent pipe and is opened upward, and a valve H is provided. These valves E to H are controlled to open and close by a control device 62.

ケース36の一次側の出入り口(すなわち、配管32との接続部と、配管46との接続部)には、pH計44、44が設けられる。このpH計44は後述の制御装置62に接続され、制御装置62にpH計44の測定値の信号が出力される。なお、pH計44の個数や配置は特に限定するものではないが、ケース36内のpHの分布が分かるように分散して配置されることが好ましく、例えばケース36に複数のpH計44を直接取り付けてもよい。   The pH meters 44 and 44 are provided at the entrance / exit on the primary side of the case 36 (that is, the connection portion with the pipe 32 and the connection portion with the pipe 46). The pH meter 44 is connected to a control device 62 to be described later, and a signal indicating the measured value of the pH meter 44 is output to the control device 62. The number and arrangement of the pH meters 44 are not particularly limited, but are preferably distributed and arranged so that the pH distribution in the case 36 can be understood. For example, a plurality of pH meters 44 are directly attached to the case 36. It may be attached.

ケース36の上端に接続された処理水管38は、弁Bを介して処理水槽18に接続される。よって、膜ろ過処理装置16でろ過処理された処理水は、処理水管38を介して処理水槽18に送液されて貯留され、この処理水が浄水として引き出される。   The treated water pipe 38 connected to the upper end of the case 36 is connected to the treated water tank 18 via the valve B. Therefore, the treated water filtered by the membrane filtration treatment device 16 is sent and stored in the treated water tank 18 through the treated water pipe 38, and this treated water is drawn out as purified water.

処理水管38には、弁Bよりも膜ろ過処理装置16側に洗浄液配管48が接続されており、この洗浄液配管48に弁Cが配設される。また、洗浄液配管48は途中で分岐され、一方の分岐管48aがポンプYを介して処理水槽18に接続され、もう一方の分岐管48bがポンプZを介して酸洗浄液槽20に接続される。したがって、ポンプYを駆動すると、処理水槽18内の処理水が処理水管38を介して膜ろ過処理装置16に逆流される。また、ポンプZを駆動すると、酸洗浄液槽20内の酸洗浄液が膜ろ過処理装置16に送液される。   A cleaning liquid pipe 48 is connected to the treated water pipe 38 closer to the membrane filtration processing device 16 than the valve B, and the valve C is disposed in the cleaning liquid pipe 48. Further, the cleaning liquid pipe 48 is branched in the middle, one branch pipe 48 a is connected to the treated water tank 18 via the pump Y, and the other branch pipe 48 b is connected to the acid cleaning liquid tank 20 via the pump Z. Therefore, when the pump Y is driven, the treated water in the treated water tank 18 flows back to the membrane filtration device 16 via the treated water pipe 38. When the pump Z is driven, the acid cleaning liquid in the acid cleaning liquid tank 20 is sent to the membrane filtration device 16.

酸洗浄液槽20の内部には、攪拌翼50を有する攪拌手段が設けられており、必要に応じて酸洗浄液槽20内を攪拌混合できるようになっている。酸洗浄液槽20には、pH計60が設けられており、このpH計60が制御装置62に接続される。また、酸洗浄液槽20の上方には、硫酸が貯留された硫酸タンク52と、水が貯留された水タンク54が設けられる。硫酸タンク52、水タンク54はそれぞれ配管56、58によって酸洗浄液槽20に連通されており、これらの配管56、58にはそれぞれ弁J、Kが配設されている。したがって、弁J、Kを開閉することによって、硫酸タンク52内の硫酸、或いは水タンク54内の水を酸洗浄液槽20に補充することができる。これにより、酸洗浄液槽20内の酸性洗浄液のpHを調整することができる。なお、弁J、Kは制御装置62によって開閉操作され、pH計60の測定値が、所望のpH値になるように制御される。所望のpH値とは、中空糸膜42の膜面に付着した金属フロック(アルミ)を溶解するのに適したpH(通常1〜3)であり、このpH値は、原水槽12のpH計24によって調整される。   A stirring means having a stirring blade 50 is provided inside the acid cleaning liquid tank 20 so that the inside of the acid cleaning liquid tank 20 can be stirred and mixed as necessary. The acid cleaning liquid tank 20 is provided with a pH meter 60, and this pH meter 60 is connected to the control device 62. Further, a sulfuric acid tank 52 storing sulfuric acid and a water tank 54 storing water are provided above the acid cleaning liquid tank 20. The sulfuric acid tank 52 and the water tank 54 are communicated with the acid cleaning liquid tank 20 through pipes 56 and 58, respectively, and valves J and K are provided in these pipes 56 and 58, respectively. Therefore, the acid cleaning liquid tank 20 can be replenished with the sulfuric acid in the sulfuric acid tank 52 or the water in the water tank 54 by opening and closing the valves J and K. Thereby, the pH of the acidic cleaning liquid in the acid cleaning liquid tank 20 can be adjusted. The valves J and K are opened and closed by the control device 62 and controlled so that the measured value of the pH meter 60 becomes a desired pH value. The desired pH value is a pH (usually 1 to 3) suitable for dissolving metal floc (aluminum) adhering to the membrane surface of the hollow fiber membrane 42, and this pH value is a pH meter of the raw water tank 12. 24 is adjusted.

上述したように、弁A〜KとポンプX〜Zは制御装置62によって集中管理される。制御装置62は、不図示の逆洗処理用タイマと酸洗浄処理用タイマに基づいて弁A〜KとポンプX〜Zを操作し、膜ろ過処理、逆洗処理、酸洗浄処理を切り替えるようになっている。以下に各処理について図2に従って説明する。   As described above, the valves A to K and the pumps X to Z are centrally managed by the control device 62. The control device 62 operates the valves A to K and the pumps X to Z on the basis of a timer for backwashing processing and a timer for acid cleaning processing (not shown) so as to switch between membrane filtration processing, backwashing processing, and acid cleaning processing. It has become. Each process will be described below with reference to FIG.

制御装置62は、まず逆洗処理用タイマの時間t1 と酸洗浄処理用タイマの時間t2 を0にリセットし(ステップS1)、その後、膜ろ過処理を行う(ステップS2)。膜ろ過処理では、図1の弁A、Bが開かれ、弁C〜Iが閉じられるとともに、ポンプXが駆動される。これにより、凝集沈殿処理装置14内の上澄み液が膜ろ過処理装置16に送られ、中空糸膜42を通過してろ過処理された後、処理水槽18に送液されて貯留される。この膜ろ過運転によって、上澄み液に含まれる懸濁物質等が中空糸膜42によって補集され、取り除かれる。また、凝集沈殿処理後に残存する金属フロックも中空糸膜42に付着し、取り除かれる。 Controller 62, the time t 1 and the acid cleaning treatment timer time t 2 of the backwash process timer is reset to 0 first (step S1), the Thereafter, the membrane filtration process (step S2). In the membrane filtration process, the valves A and B in FIG. 1 are opened, the valves C to I are closed, and the pump X is driven. As a result, the supernatant liquid in the coagulation sedimentation processing device 14 is sent to the membrane filtration processing device 16, passed through the hollow fiber membrane 42 and filtered, and then sent to the treated water tank 18 and stored. By this membrane filtration operation, suspended substances and the like contained in the supernatant liquid are collected by the hollow fiber membrane 42 and removed. Further, the metal floc remaining after the coagulation sedimentation treatment is also attached to the hollow fiber membrane 42 and removed.

なお、上記の操作は全ろ過方式の場合であり、クロスフロー方式を選択する場合には、弁Fを開いて液の一部を膜ろ過処理装置16の一次側と供給槽15との間で循環させる。これにより、中空糸膜42の膜面に、クロスフローを与えることができ、膜面の閉塞を抑制することができる。   In addition, said operation is a case of a total filtration system, and when selecting a cross flow system, the valve F is opened and a part of liquid is sent between the primary side of the membrane filtration apparatus 16 and the supply tank 15. Circulate. Thereby, a cross flow can be given to the membrane surface of the hollow fiber membrane 42, and blockage of the membrane surface can be suppressed.

膜ろ過運転を連続して行うと、中空糸膜42の膜面の閉塞が進行するため、一次側と二次側との差圧が上昇し、膜ろ過効率が低下する。そこで、制御装置62は、タイマの時間t1 が、逆洗処理を行うまでの期間αに達したかを判別し(ステップS3)、所定の期間αに達した場合には、さらにタイマの時間t2 が、酸洗浄処理を行うまでの期間βに達したかを判別し(ステップS4)、達していない場合には逆洗処理を行う(ステップS5)。また、所定の期間βに達していた場合には、酸洗浄処理(ステップS6)を行う。 When the membrane filtration operation is continuously performed, the membrane surface of the hollow fiber membrane 42 is blocked, so that the differential pressure between the primary side and the secondary side increases, and the membrane filtration efficiency decreases. Therefore, the control device 62 determines whether or not the timer time t 1 has reached the period α until the backwash process is performed (step S3). It is determined whether t 2 has reached the period β until the acid cleaning process is performed (step S4). If not, the back cleaning process is performed (step S5). If the predetermined period β has been reached, an acid cleaning process (step S6) is performed.

逆洗処理では、弁C、E、Iが開かれ、弁A、B、D、F、G、Hが閉じられるとともに、ポンプYが駆動される。これにより、処理水槽18内の処理水が膜ろ過処理装置16のケース36内の二次側に送られるとともに、エアがケース36内の一次側に供給される。二次側に送水された処理水は一次側に流れ、その際に中空糸膜42の膜面を、ろ過運転時と反対方向に逆流する。したがって、膜面に付着した付着物が剥離され、膜面の逆洗が行われる。また、一次側に供給されたエアは気泡となってケース36内を上昇し、これによって中空糸膜42の膜面に剪断力が付与され、膜面が洗浄される。膜面を洗浄した後の洗浄廃液とエアは、戻し配管46(分岐配管46a)を介して原水槽12に戻される。したがって、逆洗によって膜面から剥離した付着物を、凝集沈殿処理装置14によって除去することができる。以上のような逆洗処理運転を定期的に行うことによって、中空糸膜42の膜閉塞を抑制することができ、中空糸膜42の寿命を延長できるとともに、ろ過運転を長期間にわたって安定して行うことができる。   In the backwash process, the valves C, E, and I are opened, the valves A, B, D, F, G, and H are closed, and the pump Y is driven. Thereby, the treated water in the treated water tank 18 is sent to the secondary side in the case 36 of the membrane filtration apparatus 16 and air is supplied to the primary side in the case 36. The treated water sent to the secondary side flows to the primary side, and at that time, the membrane surface of the hollow fiber membrane 42 flows backward in the direction opposite to that during the filtration operation. Therefore, the deposits attached to the film surface are peeled off, and the film surface is back-washed. Further, the air supplied to the primary side becomes bubbles and rises inside the case 36, whereby a shearing force is applied to the membrane surface of the hollow fiber membrane 42 and the membrane surface is washed. The cleaning waste liquid and the air after cleaning the membrane surface are returned to the raw water tank 12 via the return pipe 46 (branch pipe 46a). Therefore, the deposits peeled off from the film surface by backwashing can be removed by the coagulation sedimentation processing device 14. By periodically performing the backwashing operation as described above, the membrane blockage of the hollow fiber membrane 42 can be suppressed, the life of the hollow fiber membrane 42 can be extended, and the filtration operation can be stably performed over a long period of time. It can be carried out.

ところで、逆洗処理を行うに従って、洗浄効果が低下し、膜閉塞が進行する。特に本実施の形態のように凝集沈殿処理後に膜ろ過を行った場合には、膜閉塞の進行が速くなる。これは、中空糸膜42の膜面に付着した付着物のうち、金属フロックが逆洗処理を行っても膜面に残存するためである。そこで、本実施の形態では、酸性の洗浄液による酸洗浄処理運転を一定期間βごとに行う。   By the way, as the back washing treatment is performed, the washing effect is reduced and the membrane is blocked. In particular, when membrane filtration is performed after the coagulation sedimentation treatment as in the present embodiment, the progress of membrane clogging is accelerated. This is because, among the deposits attached to the membrane surface of the hollow fiber membrane 42, the metal floc remains on the membrane surface even after the backwash treatment. Therefore, in the present embodiment, an acid cleaning treatment operation using an acidic cleaning liquid is performed every β during a certain period.

図3に示すように酸洗浄処理では、まず酸性洗浄液の注入が行われる(ステップS10)。すなわち、図1の弁C、Eが開かれ、弁A、B、D、F、G、H、Iが閉じられるとともに、ポンプZが駆動される。これにより、酸洗浄液槽20内の酸性洗浄液が膜ろ過処理装置16のケース36内の二次側に供給される。そして、ケース36内が酸性洗浄液で満たされたと判断した後、逆洗処理用タイマの時間t2 を0にリセットし(ステップS11)、その後、静置状態に移行する(ステップS12)。なお、ケース36内が酸性洗浄液で満たされたかどうかの判断は、pH計44、44の測定値が所望のpH値(通常1〜3)になったかどうかで判断される。また、静置状態への移行は、弁A〜Iを閉じることによって行われる。すなわち、弁A〜Iを閉じることによって、酸性洗浄液がケース36内に保持され、ケース36外への酸性洗浄液の出入りのない静置状態になる。静置状態は所定時間γの間、保持される。ここで、静置状態の時間γは、中空糸膜42に付着した金属フロックを溶解するのに十分な時間に設定され、例えば3分〜15分に設定される。なお、静置状態の時間γは常に一定の時間でもよいが、中空糸膜42の使用時間に伴って徐々に長くなるように設定してもよい。 As shown in FIG. 3, in the acid cleaning process, an acidic cleaning solution is first injected (step S10). That is, the valves C and E in FIG. 1 are opened, the valves A, B, D, F, G, H, and I are closed, and the pump Z is driven. Thereby, the acidic cleaning liquid in the acid cleaning liquid tank 20 is supplied to the secondary side in the case 36 of the membrane filtration processing device 16. After the inside of the case 36 it is determined to have been filled with acidic cleaning solution, the time t 2 of the backwash process timer is reset to 0 (step S11), and then proceeds to the stationary state (step S12). Whether or not the case 36 is filled with the acidic cleaning solution is determined based on whether or not the measured values of the pH meters 44 and 44 have reached a desired pH value (usually 1 to 3). The transition to the stationary state is performed by closing the valves A to I. That is, by closing the valves A to I, the acidic cleaning liquid is held in the case 36, and a stationary state in which the acidic cleaning liquid does not enter and leave the case 36 is obtained. The stationary state is maintained for a predetermined time γ. Here, the time γ in the stationary state is set to a time sufficient to dissolve the metal floc attached to the hollow fiber membrane 42, and is set to 3 to 15 minutes, for example. The stationary state time γ may always be a constant time, but may be set to gradually increase with the use time of the hollow fiber membrane 42.

静置状態を所定時間γの間、保持した後(ステップS13)、酸性洗浄液の排水を行う(ステップS14)。酸性洗浄液の排水は、弁D、Eを開くことによって行われ、これによって、ケース36内の酸性洗浄液が排水されて原水槽12に送液され、原水槽12内の原水が酸性洗浄液と混合されて原水のpH値が低下する。したがって、通常、7.5〜7.8である原水のpHを下げることができ、凝集沈殿処理に適した範囲(6.8〜7)に近づけることができる。よって、凝集沈殿処理時に使用されるpH調整剤の使用量を削減することができる。   After holding the stationary state for a predetermined time γ (step S13), the acidic cleaning liquid is drained (step S14). The acidic cleaning liquid is drained by opening the valves D and E, whereby the acidic cleaning liquid in the case 36 is drained and sent to the raw water tank 12, and the raw water in the raw water tank 12 is mixed with the acidic cleaning liquid. As a result, the pH value of the raw water decreases. Therefore, the pH of the raw water, which is usually 7.5 to 7.8, can be lowered, and can be brought close to the range (6.8 to 7) suitable for the coagulation sedimentation treatment. Therefore, the usage-amount of the pH adjuster used at the time of a coagulation sedimentation process can be reduced.

酸性洗浄液の排水後、タイマの時間t2 を0にリセットし(ステップS15)、酸性洗浄液の濯ぎ処理が行われる(ステップS16)。濯ぎ処理は、逆洗処理と同様に弁C、E、Iを開き、弁A、B、D、F、G、Hを閉じるとともに、ポンプYを駆動することによって行われる。これによって処理水槽18内の処理水がケース36の二次側に供給されるとともに、エアがケース36の一次側に供給される。そして、ケース36内の二次側から一次側に流れることによって中空糸膜42の膜面が逆洗されるとともにエアによって膜面に剪断力が付与されて洗浄され、ケース36内に残存する酸性洗浄液が取り除かれる。すなわち、ケース36内の濯ぎ洗浄と逆洗洗浄が同時に行われる。このような濯ぎ処理は、ケース36内の酸性洗浄液が完全に除去されるような時間λの間、行われる(ステップS17)。以上の処理によって酸洗浄処理が終了する。 After draining the acidic cleaning solution, it resets the timer time t 2 to 0 (step S15), and rinsing processes of acid cleaning liquid is performed (step S16). The rinsing process is performed by opening the valves C, E, and I, closing the valves A, B, D, F, G, and H and driving the pump Y as in the backwash process. As a result, the treated water in the treated water tank 18 is supplied to the secondary side of the case 36 and air is supplied to the primary side of the case 36. Then, by flowing from the secondary side to the primary side in the case 36, the membrane surface of the hollow fiber membrane 42 is backwashed, and the shearing force is applied to the membrane surface by the air to be washed, and the acid remaining in the case 36 The cleaning solution is removed. That is, rinsing and backwashing in the case 36 are performed simultaneously. Such a rinsing process is performed for a time λ such that the acidic cleaning liquid in the case 36 is completely removed (step S17). The acid cleaning process is completed by the above process.

なお、上述したフローでは、膜ろ過処理、逆洗処理、酸洗浄処理をタイマによって切り替えるようにしたが、これに限定するものではなく、中空糸膜42の一次側と二次側との差圧を測定し、この測定値が所定のしきい値を超えた場合に処理を切り替えるようにしてもよい。   In the above-described flow, the membrane filtration process, the backwash process, and the acid wash process are switched by a timer, but the present invention is not limited to this, and the differential pressure between the primary side and the secondary side of the hollow fiber membrane 42 And the processing may be switched when the measured value exceeds a predetermined threshold value.

図4は中空糸膜42の膜面に付着した金属フロックの溶解量と、静置時間との関係を示している。同図に示すように、pH4の酸性洗浄液をケース36内に保持しても、膜面に付着した金属フロックを溶解できなかったのに対し、pH1〜3の酸性洗浄液をケース36内に所定時間保持して静置することによって、膜面の金属フロックを溶解することができる。酸性洗浄液を保持する静置時間は、図4に示すように、3分以上(好ましくは5分以上)で十分な効果が得られた。また、15分を越えて保持しても洗浄効果は上がらなかった。したがって、15分を越えて保持しても、酸性洗浄液による中空糸膜42の膜面の痛みが激しくなり、かえって、中空糸膜42の寿命が短くなることが分かる。以上により、酸性洗浄液を保持する静置時間は、3分以上15分以下が好ましく、5分以上15分以下がより好ましい。   FIG. 4 shows the relationship between the dissolution time of the metal floc adhered to the membrane surface of the hollow fiber membrane 42 and the standing time. As shown in the figure, even though the acidic cleaning solution having a pH of 4 was held in the case 36, the metal floc adhered to the film surface could not be dissolved, whereas the acidic cleaning solution having a pH of 1 to 3 was kept in the case 36 for a predetermined time. The metal floc on the film surface can be dissolved by holding and standing. As shown in FIG. 4, the standing time for holding the acidic cleaning solution was 3 minutes or more (preferably 5 minutes or more), and a sufficient effect was obtained. In addition, the cleaning effect did not increase even after holding for more than 15 minutes. Therefore, it can be seen that, even if maintained for more than 15 minutes, the membrane surface of the hollow fiber membrane 42 becomes more painful due to the acidic cleaning liquid, and instead the life of the hollow fiber membrane 42 is shortened. As described above, the standing time for holding the acidic cleaning liquid is preferably 3 minutes or more and 15 minutes or less, and more preferably 5 minutes or more and 15 minutes or less.

図5は、中空糸膜42の前後の差圧の経時変化を示している。同図において、点線は酸洗浄処理を行わなかった比較例であり、実線は酸洗浄処理を行った本実施例である。なお、同図は、測定値の大きな変動のみを実線或いは点線で示したものであり、実際には、逆洗処理や酸洗浄処理の前後において、差圧が小さく変動している。   FIG. 5 shows the change over time in the differential pressure before and after the hollow fiber membrane 42. In the figure, the dotted line is a comparative example in which the acid cleaning process was not performed, and the solid line is the present example in which the acid cleaning process was performed. In the figure, only large fluctuations in measured values are shown by solid lines or dotted lines. Actually, the differential pressure fluctuates slightly before and after backwashing or acid washing.

同図に示すように、酸洗浄処理を行わなかった比較例では、1カ月程度で差圧が加速度的に上昇し、2カ月経過後には差圧が上がり過ぎて使えなくなった。これに対して、酸洗浄処理を定期的に行った本実施例では、差圧が上昇しなくなり、一定の期間で十分なろ過性能が得られた。したがって、本実施例では、酸洗浄処理を定期的に行うことによって、中空糸膜42の性能を確実に回復させることができ、長期間にわたって安定した処理を行うことができる。   As shown in the figure, in the comparative example in which the acid cleaning treatment was not performed, the differential pressure increased at an accelerated rate in about one month, and after two months, the differential pressure increased so that it was not usable. In contrast, in this example in which the acid cleaning treatment was periodically performed, the differential pressure did not increase, and sufficient filtration performance was obtained in a certain period. Therefore, in the present embodiment, the performance of the hollow fiber membrane 42 can be reliably recovered by performing the acid cleaning treatment periodically, and the treatment can be performed stably over a long period of time.

なお、図5には示さなかったが、酸性洗浄液を循環させながら中空糸膜42に供給させた場合も測定した。この場合には、差圧の変動は本実施例と似ていたが、本実施例よりも中空糸膜42の痛みが激しく、中空糸膜42の寿命が短かった。また、酸性洗浄液を循環させた場合は、本実施例のように静置時間を設けた場合よりも、酸性洗浄液の使用量が非常に多いという問題や、循環用ポンプの動力費が嵩むという問題もあった。   Although not shown in FIG. 5, the measurement was also performed when the acidic cleaning liquid was supplied to the hollow fiber membrane 42 while circulating. In this case, the fluctuation of the differential pressure was similar to that of this example, but the pain of the hollow fiber membrane 42 was more severe than that of this example, and the life of the hollow fiber membrane 42 was shorter. Further, when the acidic cleaning liquid is circulated, there is a problem that the amount of the acidic cleaning liquid used is much larger than the case where the standing time is provided as in this embodiment, and the power cost of the circulating pump is increased. There was also.

以上説明したように本実施の形態では、酸性洗浄液をケース36内に所定時間保持して静置する静置時間を設けるようにしたので、中空糸膜42の膜面を損傷することなく、膜面に付着した金属フロックを溶解させることができ、中空糸膜42の寿命を延長させることができるとともに、酸性洗浄液の使用量や循環用ポンプの動力を削減でき、低コストでの膜洗浄を行うことができる。   As described above, in the present embodiment, the acidic cleaning liquid is kept in the case 36 for a predetermined time and is allowed to stand, so that the membrane surface of the hollow fiber membrane 42 is not damaged. Metal flocs adhering to the surface can be dissolved, the life of the hollow fiber membrane 42 can be extended, the amount of acidic cleaning liquid used and the power of the circulation pump can be reduced, and membrane cleaning can be performed at low cost. be able to.

ところで、上述した酸洗浄処理において、ケース36に送られる酸性洗浄液のpHは、原水槽12の原水のpH(すなわちpH計24の測定値)によって調整される。具体的には、原水のpHを、凝集沈殿処理に適した6.8〜7と比較し、原水のpHがこれよりも非常に高い場合には、酸洗浄液槽20のpHを低下させて1に近い値になるように調整する。また、原水のpHが前記の適性範囲に近い場合には酸洗浄液槽20のpHを上昇させて3に近い値になるように調整する。これにより、酸性洗浄液の廃液を原水槽12内の原水に混合した際に、原水のpHを6.8〜7により近づけることができ、凝集沈殿処理時のpH調整剤の使用量を大幅に削減することができる。   By the way, in the acid cleaning treatment described above, the pH of the acidic cleaning liquid sent to the case 36 is adjusted by the pH of the raw water in the raw water tank 12 (that is, the measured value of the pH meter 24). Specifically, the pH of the raw water is compared with 6.8 to 7 suitable for the coagulation sedimentation treatment. If the pH of the raw water is much higher than this, the pH of the acid cleaning liquid tank 20 is decreased to 1 Adjust to a value close to. Moreover, when the pH of raw | natural water is close to the said suitable range, the pH of the acid cleaning liquid tank 20 is raised and it adjusts so that it may become a value close | similar to 3. As a result, when the waste solution of the acidic cleaning liquid is mixed with the raw water in the raw water tank 12, the pH of the raw water can be made closer to 6.8 to 7, and the amount of the pH adjuster used during the coagulation sedimentation process can be greatly reduced. can do.

なお、上述した実施形態において、酸性洗浄液の静置の際にケース36内でpHを均一化するようにしてもよい。例えば、二つのpH計44、44の測定値に所定の差が生じた際に弁Iを開き、ケース36内にエアを数秒間供給する。このエアが気泡となってケース36内を上昇することによって中空糸膜42の膜面に剪断力が付与され膜面が洗浄されるとともに、ケース36内が攪拌され、ケース36内のpHが均一化される。これにより、中空糸膜42の膜面に付着した金属フロックの溶解が効果的に行われ、中空糸膜42の洗浄効果が大きくなる。なお、ケース36内のエアは、弁Hを開くことによって分岐配管46dから引き抜かれる。   In the above-described embodiment, the pH may be made uniform in the case 36 when the acidic cleaning liquid is allowed to stand. For example, when a predetermined difference occurs between the measured values of the two pH meters 44, 44, the valve I is opened and air is supplied into the case 36 for several seconds. When the air rises in the case 36 as bubbles, a shearing force is applied to the membrane surface of the hollow fiber membrane 42 to clean the membrane surface, and the inside of the case 36 is agitated, so that the pH in the case 36 is uniform. It becomes. Thereby, the metal floc adhering to the membrane surface of the hollow fiber membrane 42 is effectively dissolved, and the cleaning effect of the hollow fiber membrane 42 is increased. The air in the case 36 is pulled out from the branch pipe 46d by opening the valve H.

ケース36内のpHを均一化する方法は、エアの供給に限定されるものではなく、酸性洗浄液を循環させるようにしてもよい。酸性洗浄液の循環は、弁C、Eを閉じてポンプZを停止した後、弁A、Gを開いてポンプXを駆動させる。これにより、ケース36内の酸性洗浄液が分岐配管46cと配管32を介して循環され、ケース36内のpHが均一化される。   The method for homogenizing the pH in the case 36 is not limited to the supply of air, and an acidic cleaning solution may be circulated. In the circulation of the acidic cleaning liquid, the valves C and E are closed and the pump Z is stopped, and then the valves A and G are opened to drive the pump X. Thereby, the acidic cleaning liquid in the case 36 is circulated through the branch pipe 46c and the pipe 32, and the pH in the case 36 is made uniform.

なお、上述したエアの供給や酸性洗浄液の循環を、酸洗浄処理よりも少ない頻度で定期的に行うようにしてもよい。   In addition, you may make it perform the supply of the air mentioned above, and the circulation of acidic cleaning liquid regularly with less frequency than an acid cleaning process.

本発明に係る水処理設備の構成を示す模式図The schematic diagram which shows the structure of the water treatment equipment which concerns on this invention 制御方法を示すフローチャートFlow chart showing control method 図2の酸洗浄処理を説明するフローチャートThe flowchart explaining the acid cleaning process of FIG. 酸洗浄処理の効果を示す図Diagram showing the effect of acid cleaning treatment 膜ろ過処理装置における差圧の経時変化を示す図The figure which shows the time-dependent change of the differential pressure | voltage in a membrane filtration processing apparatus

符号の説明Explanation of symbols

10…水処理設備、12…原水槽、14…凝集沈殿処理装置、15…供給槽、16…膜ろ過処理装置、18…処理水槽、20…酸洗浄液槽、22…原水管、24…pH計、36…ケース、40…仕切り板、42…中空糸膜、44…pH計、52…硫酸タンク、54…水タンク、62…制御装置、A〜K…弁、X〜Z…ポンプ   DESCRIPTION OF SYMBOLS 10 ... Water treatment equipment, 12 ... Raw water tank, 14 ... Coagulation sedimentation processing apparatus, 15 ... Supply tank, 16 ... Membrane filtration processing apparatus, 18 ... Treatment water tank, 20 ... Acid washing liquid tank, 22 ... Raw water pipe, 24 ... pH meter 36 ... Case, 40 ... Partition plate, 42 ... Hollow fiber membrane, 44 ... pH meter, 52 ... Sulfuric acid tank, 54 ... Water tank, 62 ... Control device, AK ... Valve, XZ ... Pump

Claims (3)

上水処理設備の膜濾過装置に用いられる中空糸膜であって、凝集沈殿処理により生じた金属フロックを含有する処理水を膜ろ過処理する中空糸膜の洗浄方法において、
前記中空糸膜を有する膜モジュール内にpHが1〜3の硫酸酸性の洗浄液を3〜15分保持して静置する静置時間を設けるとともに、
前記静置時間後に前記膜モジュール内から排液した酸性洗浄液を、前記凝集沈殿処理前の処理水に返送することを特徴とする中空糸膜の洗浄方法。
In a hollow fiber membrane used in a membrane filtration device of a water treatment facility, the membrane filtration treatment of the treated water containing metal floc generated by the coagulation sedimentation treatment,
In the membrane module having the hollow fiber membrane, a sulfuric acid acidic cleaning solution having a pH of 1 to 3 is held for 3 to 15 minutes and allowed to stand,
A method for washing a hollow fiber membrane, wherein the acidic washing liquid drained from the membrane module after the standing time is returned to the treated water before the coagulation sedimentation treatment.
前記静置時間における前記膜モジュール内の前記洗浄液のpHを均一に制御することを特徴とする請求項1に記載の中空糸膜の洗浄方法。   The method for cleaning a hollow fiber membrane according to claim 1, wherein the pH of the cleaning liquid in the membrane module during the standing time is uniformly controlled. 前記凝集沈殿処理前の処理水のpHを測定し、該pHの測定値に応じて前記硫酸酸性の洗浄液のpHを調節することを特徴とする請求項1又は2に記載の中空糸膜の洗浄方法。   The pH of the treated water before the coagulation sedimentation treatment is measured, and the pH of the sulfuric acid acidic washing solution is adjusted according to the measured value of the pH, The hollow fiber membrane washing according to claim 1 or 2 Method.
JP2004292669A 2004-10-05 2004-10-05 Cleaning method of hollow fiber membrane Expired - Lifetime JP4548081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292669A JP4548081B2 (en) 2004-10-05 2004-10-05 Cleaning method of hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292669A JP4548081B2 (en) 2004-10-05 2004-10-05 Cleaning method of hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2006102634A JP2006102634A (en) 2006-04-20
JP4548081B2 true JP4548081B2 (en) 2010-09-22

Family

ID=36372933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292669A Expired - Lifetime JP4548081B2 (en) 2004-10-05 2004-10-05 Cleaning method of hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP4548081B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453711B2 (en) * 2006-03-29 2014-03-26 東レ株式会社 Cleaning method for external pressure hollow fiber membrane module
JP5249104B2 (en) * 2009-03-27 2013-07-31 メタウォーター株式会社 Membrane filtration system and cleaning method thereof
JP5467793B2 (en) * 2009-04-20 2014-04-09 オルガノ株式会社 Operation method of submerged membrane separator
EP2703066A4 (en) * 2011-04-25 2014-12-03 Toray Industries Method for cleaning membrane module
JP6202239B2 (en) * 2012-05-25 2017-09-27 三菱ケミカル株式会社 Waste water treatment apparatus and waste water treatment method
EP3056911B1 (en) * 2013-09-12 2021-09-08 Hitachi High-Tech Corporation Nozzle cleaning method and automated analyzer
JP7213711B2 (en) * 2019-02-13 2023-01-27 株式会社クラレ Water treatment device and water treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066972A (en) * 1996-08-28 1998-03-10 Nomura Micro Sci Co Ltd Cleaning and regenerating method of separation membrane for water treatment
JPH10137542A (en) * 1996-11-18 1998-05-26 Tohoku Electric Power Co Inc Treatment of flue gas desulfurization waste water
JPH119973A (en) * 1997-06-26 1999-01-19 Ebara Corp Method for filtration back-washing of membrane module for turbidity removal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066972A (en) * 1996-08-28 1998-03-10 Nomura Micro Sci Co Ltd Cleaning and regenerating method of separation membrane for water treatment
JPH10137542A (en) * 1996-11-18 1998-05-26 Tohoku Electric Power Co Inc Treatment of flue gas desulfurization waste water
JPH119973A (en) * 1997-06-26 1999-01-19 Ebara Corp Method for filtration back-washing of membrane module for turbidity removal

Also Published As

Publication number Publication date
JP2006102634A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4635666B2 (en) Water treatment method
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
JP2002530188A (en) Filtration of water using immersion membrane
JPH10286441A (en) Cleaning method of hollow yarn membrane module and filtration device used for the method
JP2007245078A (en) Water treatment system and water treatment process
JP3735883B2 (en) Membrane separation apparatus and membrane module cleaning method
JP4548081B2 (en) Cleaning method of hollow fiber membrane
KR20180008175A (en) Pressurized membrane water treatment apparatus
JP2013202481A (en) Cleaning method of separation membrane module
JP2014008439A (en) Membrane separation type water treatment apparatus and method for cleaning water treatment separation membrane
JP7021461B2 (en) Water treatment method, water treatment equipment and control method of addition of cake layer forming substance to raw water
JP3405911B2 (en) Backwashing method of internal pressure type turbidity membrane module by flow rate and pressure fluctuation
JP6613323B2 (en) Water treatment apparatus and water treatment method
JPH06190251A (en) Method and apparatus for treatment of water containing turbid component
JP4840285B2 (en) Cleaning method for submerged membrane module
JPH11169851A (en) Water filter and its operation
JP2007203249A (en) Water treating apparatus and method
JP2008246424A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus
JP2006281022A (en) Method and apparatus for cleaning of separation membrane module
JP2013034938A (en) Method for washing membrane module
JP6530931B2 (en) Method of desalting, method of cleaning demineralizer and demineralizer
JP2017176951A (en) Method for cleaning separation membrane module
JP2016043279A (en) Membrane separation device using internal pressure type hollow yarn membrane and operational method
JP2010227851A (en) Membrane filtration system and method of cleaning the same
JP6264095B2 (en) Membrane module cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4548081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250