JP2001293483A - Water treating method - Google Patents

Water treating method

Info

Publication number
JP2001293483A
JP2001293483A JP2000113982A JP2000113982A JP2001293483A JP 2001293483 A JP2001293483 A JP 2001293483A JP 2000113982 A JP2000113982 A JP 2000113982A JP 2000113982 A JP2000113982 A JP 2000113982A JP 2001293483 A JP2001293483 A JP 2001293483A
Authority
JP
Japan
Prior art keywords
water
slaked lime
aqueous solution
carbon dioxide
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000113982A
Other languages
Japanese (ja)
Other versions
JP4522534B2 (en
Inventor
Isao Funahashi
勲 舟橋
Shinichi Kuboki
伸一 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Techno Engineering Co Ltd
Original Assignee
Kureha Techno Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Techno Engineering Co Ltd filed Critical Kureha Techno Engineering Co Ltd
Priority to JP2000113982A priority Critical patent/JP4522534B2/en
Publication of JP2001293483A publication Critical patent/JP2001293483A/en
Application granted granted Critical
Publication of JP4522534B2 publication Critical patent/JP4522534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform highly efficient flocculating/settling treatment in water treatment and to prevent corrosion due to water at the same time. SOLUTION: The slurry of undissolved materials obtained in the production of a slaked lime aqueous solution is poured into the water controlled to pH 6.7-7.3 and 80-160 mg/L calcium bicarbonate concentration by using the slaked lime aqueous solution and carbon dioxide, then the slaked lime aqueous solution and/or carbon dioxide are poured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝集沈殿処理と水
の非腐食化を行う浄水処理方法に関する。詳しくは、消
石灰水溶液と炭酸ガスを注入処理する浄水処理方法の改
良された方法であって、浄水処理施設に消石灰水溶液製
造装置及び炭酸ガス注入装置を設けて得られる消石灰水
溶液、該消石灰水溶液製造装置からでる未溶解物、及び
炭酸ガスを浄水工程の適宜の個所に注入することによ
り、高効率凝集沈殿処理と水の非腐食性化を同時に達成
する浄水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification treatment method for performing coagulation sedimentation treatment and non-corrosion of water. More specifically, the present invention relates to an improved water purification method for injecting a slaked lime aqueous solution and carbon dioxide gas, the slaked lime aqueous solution obtained by providing a slaked lime aqueous solution production apparatus and a carbon dioxide gas injection apparatus in a water purification treatment facility, The present invention relates to a water purification treatment method that simultaneously achieves high-efficiency coagulation sedimentation treatment and non-corrosiveness of water by injecting undissolved matter and carbon dioxide gas that come out of the water purification device into appropriate places in the water purification process.

【0002】[0002]

【従来の技術】従来、表流水系の浄水処理施設において
は被処理水( 以下、原水と記す。) に凝集剤を加える凝
集沈殿・濾過処理工程が欠かせず、凝集剤としてポリ塩
化アルミニウム(PAC)や硫酸バンドが使用されてい
る。近年、表流水の水質悪化にともない凝集剤の使用量
が増大する傾向にあり、特に、着水井に導入される原水
が低温、低濁度、あるいは低アルカリ度時には凝集効率
を上げるために、凝集剤の注入率を増大させる必要があ
る。この結果、凝集剤の使用量が増大し汚泥発生量の増
加、濾過水への凝集剤の混入、凝集剤費用の増加、凝集
剤に由来する塩素イオンや硫酸イオンの増大による浄水
の腐食性の増加と言う問題が生じる。また、着水井に導
入される原水のpHが高いときには、硫酸等の酸を注入
しpHを低下させて凝集処理を行ない、その後で適正p
H値にするためアルカリ剤を注入している。しかし、遊
離炭酸やアルカリ度の低い水にあってはpH緩衝性が小
さいので、アルカリ剤の注入量を増加させると、pHが
大きく上昇し水道法の上限値(日本では8.6 )を容易に
越えてしまい消石灰水溶液を多量に注入することが難し
く、水の腐食の判定指標であるランゲリア指数を高めて
非腐食性の水に改善させることができない。さらには、
アルミニウムがアルツハイマー病の原因になると懸念さ
れている。このようなことから浄水汚泥の発生量や薬剤
費用を減少させることや、PACや硫酸バンドの注入率
の低減化の研究が進められている。
2. Description of the Related Art Conventionally, in a surface water purification system, a coagulation sedimentation / filtration step of adding a coagulant to water to be treated (hereinafter referred to as raw water) is indispensable. PAC) and sulfate bands. In recent years, the amount of coagulant used has tended to increase with the deterioration of surface water quality, especially when the raw water introduced into the landing well is at low temperature, low turbidity, or low alkalinity, the coagulation efficiency is increased. It is necessary to increase the injection rate of the agent. As a result, the amount of flocculant used increases and the amount of sludge generated increases, the flocculant is mixed into the filtered water, the cost of the flocculant increases, and the corrosiveness of the purified water increases due to the increase in chloride ions and sulfate ions derived from the flocculant. The problem of increase arises. Also, when the pH of the raw water introduced into the landing well is high, an acid such as sulfuric acid is injected to lower the pH to perform the coagulation treatment, and thereafter, the appropriate p
An alkaline agent is injected to make the H value. However, since pH buffering properties are low in free carbonic acid and water with low alkalinity, increasing the injection amount of alkaline agent greatly increases the pH and easily exceeds the upper limit of the water supply law (8.6 in Japan). As a result, it is difficult to inject a large amount of slaked lime aqueous solution, and it is not possible to increase the Langeria index, which is an index for judging water corrosion, to improve non-corrosive water. Moreover,
It is feared that aluminum causes Alzheimer's disease. For these reasons, research is being conducted on reducing the amount of purified water sludge and the cost of chemicals, and on reducing the injection rate of PAC and sulfate bands.

【0003】一方、水の非腐食化のため消石灰水溶液を
注入する技術も、例えば特許第1459175号公報に開示さ
れる消石灰水溶液を連続的に製造する装置の出現ととも
に普及しつつある。この公報に開示の装置においては、
pH12以上の水溶液には溶解し難い未溶物が残存する問
題があったが、未溶物をpH10以下に維持された水中で
処理した後、着水井に導入する方法により解決されてい
る(特許第141605号公報)。また、特許第2048482号公
報には、消石灰水溶液と炭酸ガスを併用してランゲリア
指数を上げ水の非腐食性化を図ることが開示されてい
る。さらには、特開平6-83566号公報には、消石灰水溶
液製造の際に生成した難溶解性フロックの濃度を上げ
て、このフロックを混和池に導入してアルカリ剤として
利用することが提案されているが、凝集沈殿を改善する
ものではない。高効率凝集沈殿と水の非腐食化を同時に
達成する方法が要望されている。
On the other hand, a technique for injecting an aqueous slaked lime solution to make water non-corrosive has been spreading with the advent of a device for continuously producing an aqueous slaked lime solution disclosed in, for example, Japanese Patent No. 1459175. In the device disclosed in this publication,
There was a problem that an insoluble material that was difficult to dissolve remained in an aqueous solution having a pH of 12 or more. However, it has been solved by a method in which the insoluble material is treated in water maintained at a pH of 10 or less and then introduced into a landing well. No. 141605). Further, Japanese Patent No. 2048482 discloses that an aqueous slaked lime solution and carbon dioxide gas are used in combination to increase the Langelia index to make water non-corrosive. Further, Japanese Patent Application Laid-Open No. 6-83566 proposes increasing the concentration of hardly soluble flocs generated during the production of slaked lime aqueous solution, introducing the flocs into a mixing pond and using them as an alkaline agent. However, it does not improve coagulation sedimentation. There is a need for a method for simultaneously achieving high-efficiency coagulation sedimentation and non-corrosion of water.

【0004】[0004]

【発明が解決しようとする課題】本発明者等は、このよ
うな現状に鑑み、高効率凝集沈殿と水の非腐食性化を同
時に解決させる方法について研究した結果、従来知られ
ている消石灰炭酸ガス併用注入法を改良・発展させるこ
とにより、すなわち、消石灰溶解装置から出る未溶物、
消石灰溶液及び炭酸ガスを水質に応じて浄水処理工程の
適宜の箇所に注入するとこにより、未溶解物が凝集沈殿
操作において凝集の核的機能をもち、重質なフロックを
形成し、水質改善に通常用いる消石灰溶液と炭酸ガス、
および消石灰溶解装置から出る未溶物以外に、凝集助剤
等の追加的な薬剤の使用を必要とすることなく、凝集沈
殿が効果的に行われることを見出し、本発明を完成し
た。
In view of such circumstances, the present inventors have studied a method for simultaneously solving high-efficiency coagulation sedimentation and making water non-corrosive, and as a result, conventionally known slaked lime carbonate is known. By improving and developing the combined gas injection method, that is, undissolved matter from the slaked lime dissolving device,
By injecting slaked lime solution and carbon dioxide gas into appropriate places in the water purification process according to the water quality, undissolved substances have the core function of coagulation in the coagulation sedimentation operation, forming heavy flocs and improving water quality. Normally used slaked lime solution and carbon dioxide gas,
In addition, the present inventors have found that the coagulation and precipitation can be effectively performed without requiring the use of an additional agent such as a coagulation aid other than the undissolved matter discharged from the slaked lime dissolving apparatus, and completed the present invention.

【0005】[0005]

【課題を解決するための手段】本発明は、着水井、混和
池、沈殿池、濾過池及び配水池を含む浄水処理施設に、
消石灰水溶液製造装置及び炭酸ガス注入装置を設け、消
石灰水溶液と炭酸ガスを注入して水質調整を行う浄水処
理において、被処理水のpH、アルカリ度、カルシウム
硬度等を測定してランゲリア指数を求めて、腐食防止上
から好ましい水質であるpH7.5〜8.3、アルカリ度60〜
80mg/l、ランゲリア指数-1〜0になる量の消石灰と炭酸
ガスの注入率を決定し、浄水処理施設の沈殿池またはそ
れより前の工程に、該消石灰溶液製造装置から出る未溶
解物スラリーと炭酸ガスと消石灰水溶液を注入し、pH
を6.7 〜7.3 、炭酸水素カルシウム濃度を80〜160mg/l
の間になるように調整して、pH緩衝性を上げた後に凝
集剤を注入して凝集、沈殿、濾過を行ない、さらに濾過
水に消石灰水溶液および/または炭酸ガスを注入するこ
とにより、高効率凝集沈殿と水の非腐食性化を同時に行
うことを特徴とする浄水処理方法である。
SUMMARY OF THE INVENTION The present invention relates to a water treatment facility including a landing well, a mixing pond, a sedimentation pond, a filtration pond and a distribution pond.
Provide a slaked lime aqueous solution production device and a carbon dioxide gas injection device, and inject water with slaked lime aqueous solution and carbon dioxide gas to adjust the water quality, measure the pH, alkalinity, calcium hardness, etc. of the water to be treated, and obtain the Langeria index. , PH 7.5-8.3, alkalinity 60-
80 mg / l, determine the injection rate of slaked lime and carbon dioxide gas in an amount that gives a Langerian index of -1 to 0, and in the sedimentation basin of the water purification treatment facility or in a step before it, the undissolved slurry from the slaked lime solution manufacturing apparatus And carbon dioxide gas and slaked lime aqueous solution,
6.7-7.3, calcium bicarbonate concentration 80-160mg / l
The pH is increased so that the pH buffering property is increased, and then the coagulant is injected to perform coagulation, precipitation and filtration. Further, by injecting slaked lime aqueous solution and / or carbon dioxide gas into the filtered water, high efficiency is achieved. This is a water purification method characterized by simultaneously performing coagulation sedimentation and water non-corrosion.

【0006】[0006]

【発明の実施の形態】本発明は、着水井、混和井、沈殿
池、濾過池及び配水池を含む浄水処理施設に、消石灰水
溶液製造装置及び炭酸ガス注入装置を設け、沈殿池また
はそれより前の工程に、消石灰水溶液製造装置から出る
消石灰水溶液、未溶物スラリー及び炭酸ガスを水質に応
じて注入する。本発明における未溶物スラリーとは、消
石灰水溶液製造装置においてpH11以上の消石灰水溶
液に溶解せずに残存する未溶解物を含むスラリーを指
す。この未溶解物スラリー中の固体は炭酸カルシウムを
主とし、この炭酸カルシウムに包含された未溶解の消石
灰、その他原料消石灰の不純物を含む。消石灰溶解装置
としては、例えば特許第1459175号公報に記載されてい
るような攪拌槽の下部から水を導入し、上部から消石灰
水溶液を連続的に取り出す装置を用いることができる。
未溶解物スラリーは、水の導入を停止した後に槽下部か
ら取り出す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a water purification facility including a landing well, a mixing well, a sedimentation basin, a filtration pond and a distribution pond, with a slaked lime aqueous solution production apparatus and a carbon dioxide gas injection apparatus installed therein. In the step (2), the slaked lime aqueous solution, undissolved slurry and carbon dioxide gas from the slaked lime aqueous solution production apparatus are injected according to the water quality. The undissolved slurry in the present invention refers to a slurry containing undissolved matter that remains without being dissolved in a slaked lime aqueous solution having a pH of 11 or more in a slaked lime aqueous solution manufacturing apparatus. The solid in this undissolved slurry is mainly calcium carbonate, and contains undissolved slaked lime contained in the calcium carbonate and other impurities of the raw slaked lime. As the slaked lime dissolving apparatus, for example, an apparatus described in Japanese Patent No. 1459175, in which water is introduced from a lower part of a stirring tank and a slaked lime aqueous solution is continuously extracted from an upper part, can be used.
The undissolved slurry is taken out from the lower part of the tank after the introduction of water is stopped.

【0007】本発明の実施にあたっては、浄水処理に先
立ち、予め原水のpH、アルカリ度、カルシウム硬度等
を測定してランゲリア指数を求めるとともに、処理後の
水の腐食防止上から好ましい水質であるpH7.5〜8.3、
アルカリ度60〜80mg/l、ランゲリア指数-1〜0になる量
の消石灰と炭酸ガスの注入率を決定しておく。
In practicing the present invention, prior to the water purification treatment, the pH, alkalinity, calcium hardness, etc. of the raw water are measured in advance to determine the Langeria index, and the water quality, pH 7, which is preferable from the viewpoint of preventing corrosion of the treated water. .5-8.3,
The injection rate of slaked lime and carbon dioxide gas in such an amount as to have an alkalinity of 60 to 80 mg / l and a Langeria index of -1 to 0 is determined.

【0008】炭酸ガス及び、消石灰水溶液の注入率は上
記のように予め決定された量のうち、その一部若しくは
全部を用いて凝集操作時の水のpHを調整する。例えば
原水のpHが所定のpHより高い場合は炭酸ガスを注入
して、pHが低い場合は消石灰水溶液を注入してpHを
所定のpHに調整する。このpHの調整は凝集剤の添加
後に行ってもよいが、凝集剤の添加によるpHの低下の
程度を見越して凝集剤の添加前に炭酸ガスまたは/及び
消石灰水溶液を注入することにより行うこともできる。
また、凝集操作時の水の炭酸水素カルシウム濃度が80〜
160mg/l の範囲内になるように調整する。原水の炭酸水
素カルシウム濃度が80mg/lより低い場合は緩衝能が小さ
く、凝集剤添加時のpHが所定範囲内に調整されていて
も含まれている浮遊性物質を充分に沈降分離することが
できない。炭酸水素カルシウム濃度の調整は消石灰及び
炭酸ガスを用いて行う。以下に代表的な場合について説
明する。原水の性状に応じた量の前記未溶解物を好まし
くは着水井に注入し、次いで炭酸ガスおよび消石灰水溶
液を注入して、凝集沈殿させるに好ましい性状、即ち、
pH6.7 〜7.3 、炭酸水素カルシウム濃度80〜160mg/l 、
好ましくはpH6.8 〜7.2、炭酸水素カルシウム濃度90〜1
20mg/l に調整する。このように未溶物を用いて調整す
ることにより、凝集沈殿時に凝集助剤を用いずとも重質
のフロックを形成させることが可能となる。なお、原水
の性状が低pH、低アルカリ度の場合には、先ず消石灰
水溶液および必要に応じて炭酸ガスを用いて、また原水
が高pHの場合には、先ず炭酸ガスおよび必要に応じて
消石灰水溶液を用いて、可能な範囲で凝集反応に好まし
い性状に近い性状に調整して後、未溶解物および凝集剤
を添加してもよい。未溶物および凝集剤を添加して後、
さらにpHおよび炭酸水素カルシウム濃度を調整しても
よい。また場合によっては、凝集助剤等を用いることを
排除するものではない。未溶物は、好ましくは2 〜3%
スラリーで注入する。炭酸ガスは予め求めたランゲリア
指数を-1〜0に調整するための必要量の全量または一部
を注入する。なお、炭酸ガス注入口は着水井または混和
井の広さに応じて適当箇所の水深2mより深い位置に設
ける。未溶物を着水井に注入した後、炭酸ガスを着水井
または混和井に注入し、pHを6.7〜7.3に調整する。上
記処理後のpHが6.7 以下と低い場合には消石灰水溶液
を注入してpHが上記範囲内になるよう調整する。消石
灰水溶液を必要とする場合は、消石灰溶解槽より未溶解
物を取り出す際に、必要量の消石灰水溶液とともにスラ
リーとして取り出し、着水井に加えることができる。ま
た、上記処理後のpHが7.7 より高くなる場合には、炭
酸ガスの注入量を増やして調整する。
[0008] The injection rate of the carbon dioxide gas and the slaked lime aqueous solution is adjusted to adjust the pH of the water during the coagulation operation by using a part or all of the predetermined amount as described above. For example, when the pH of the raw water is higher than a predetermined pH, carbon dioxide gas is injected, and when the pH is low, an aqueous slaked lime solution is injected to adjust the pH to the predetermined pH. This pH adjustment may be performed after the addition of the flocculant, but may be performed by injecting a carbon dioxide gas or / and an aqueous solution of slaked lime before adding the flocculant in anticipation of the degree of the pH decrease due to the addition of the flocculant. it can.
Also, the calcium bicarbonate concentration of water during the coagulation operation is 80 to
Adjust so that it is within the range of 160 mg / l. If the concentration of calcium bicarbonate in the raw water is lower than 80 mg / l, the buffer capacity is small, and even if the pH at the time of adding the flocculant is adjusted within the predetermined range, it is possible to sufficiently sediment and separate the contained floating substances. Can not. Adjustment of calcium hydrogen carbonate concentration is performed using slaked lime and carbon dioxide gas. A typical case will be described below. An amount of the undissolved material according to the properties of the raw water is preferably injected into a landing well, and then carbon dioxide gas and an aqueous solution of slaked lime are injected to obtain properties favorable for coagulation and precipitation, that is,
pH 6.7-7.3, calcium bicarbonate concentration 80-160mg / l,
Preferably pH 6.8-7.2, calcium bicarbonate concentration 90-1
Adjust to 20 mg / l. By performing adjustment using an undissolved material in this way, it is possible to form heavy flocs without using an aggregation aid during aggregation precipitation. When the raw water has a low pH and low alkalinity, first use a slaked lime aqueous solution and carbon dioxide gas as needed, and when the raw water has a high pH, first use a carbon dioxide gas and slaked lime as necessary. After adjusting the properties as close as possible to the aggregation reaction to the extent possible using an aqueous solution, the undissolved substance and the aggregation agent may be added. After adding undissolved matter and flocculant,
Further, the pH and the concentration of calcium hydrogen carbonate may be adjusted. In some cases, the use of a coagulation aid or the like is not excluded. Undissolved matter is preferably 2-3%
Inject with slurry. As the carbon dioxide gas, the whole or a part of the necessary amount for adjusting the previously determined Langeria index to -1 to 0 is injected. In addition, the carbon dioxide gas inlet is provided at an appropriate position deeper than the water depth of 2 m according to the size of the landing well or the mixing well. After the undissolved material is injected into the landing well, carbon dioxide is injected into the landing well or mixing well, and the pH is adjusted to 6.7 to 7.3. When the pH after the above treatment is as low as 6.7 or less, slaked lime aqueous solution is injected to adjust the pH within the above range. When the slaked lime aqueous solution is required, when undissolved matter is taken out from the slaked lime dissolving tank, it can be taken out as a slurry together with a required amount of slaked lime aqueous solution and added to the landing well. If the pH after the above treatment is higher than 7.7, adjust by increasing the injection amount of carbon dioxide gas.

【0009】このように調整された水は緩衝能が大きく
なり、PACなどの凝集剤を添加すると、先に加えた未
溶解物が凝集の核的機能を果たし、重質フロックが形成
されその沈降速度が速くなる。その結果、生成してくる
フロックの沈降速度が速く効率的な処理が可能となる。
また、従来使用されている凝集助剤の添加を必要としな
いこと、及び添加した未溶解物主成分である消石灰及び
炭酸カルシウムの殆どが溶解するため、分離される固形
物の量が著しく減少する。
The water thus adjusted has a large buffering capacity, and when a flocculant such as PAC is added, the previously added undissolved material performs the core function of flocculation, forming heavy flocs and causing sedimentation. Speed increases. As a result, the generated floc has a high sedimentation speed, and efficient processing can be performed.
In addition, since the addition of the conventionally used coagulation aid is not required, and since most of the added undissolved material, slaked lime and calcium carbonate, are dissolved, the amount of solids separated is significantly reduced. .

【0010】[0010]

【実施例1】原水は水温15℃、pH6.7 、アルカリ度5 mg
/l、カルシウム硬度5 mg/l、ランゲリア指数-3.8、濁度
50度の腐食性の大きい表流水であった。腐食性の小さい
浄水として水質改善目標値をpH7.8、アルカリ度70mg/
l、カルシウム硬度70mg/l、ランゲリア指数-0.5と定
め、消石灰と炭酸ガスの所要注入率を実験で求めたとこ
ろ、それぞれ48mg/l、57mg/lとなった。原水20m3/日に
対して上水質改善目標値を達成するのに必要な全消石灰
量は1kg /日、炭酸ガス量は1.2kg/日と計算された。
直径0.22m、高さ1.5m、容量0.06m3の円筒縦型低速攪拌
機付溶解槽へ1.2kgの消石灰を投入し、該溶解槽の下部
から給水してpH12以上の溢流液を中間槽に貯めた。消石
灰の80%が溶解し中間槽へ溢流した時点で溶解槽への給
水を止め、1時間静止沈降させた後に該溶解槽の下部に
残存している未溶解物を未溶解物スラリー槽に抜き出し
た。中間槽に得られた消石灰の濃度は略1500mg/lであっ
た。未溶解物スラリーはpH12.0、スラリー濃度2.9%
であり、未溶解物の成分は炭酸カルシウム57%、消石灰
40%、二酸化珪素2 %、酸化アルミ0.2 %であった。
[Example 1] Raw water: water temperature 15 ° C, pH 6.7, alkalinity 5 mg
/ l, calcium hardness 5 mg / l, Langeria index -3.8, turbidity
The surface water was highly corrosive at 50 degrees. Water quality improvement target value of pH 7.8, alkalinity 70 mg /
The required injection rates of slaked lime and carbon dioxide were determined experimentally to be 48 mg / l and 57 mg / l, respectively. The total amount of slaked lime required to achieve the water quality improvement target for raw water of 20 m 3 / day was calculated as 1 kg / day, and the carbon dioxide gas amount was calculated as 1.2 kg / day.
Diameter 0.22 m, height 1.5 m, was charged with slaked lime 1.2kg to cylindrical vertical low speed stirrer with dissolver volume 0.06 m 3, and water from the bottom of the dissolution tank pH12 or more overflow liquid in the intermediate vessel I saved. When 80% of the slaked lime was dissolved and overflowed into the intermediate tank, the water supply to the dissolving tank was stopped, and the undissolved matter remaining at the lower part of the dissolving tank was allowed to stand still for 1 hour, and the undissolved matter was transferred to the undissolved slurry tank. I took it out. The concentration of slaked lime obtained in the intermediate tank was about 1500 mg / l. Undissolved slurry pH 12.0, slurry concentration 2.9%
The components of the undissolved material are calcium carbonate 57%, slaked lime
40%, silicon dioxide 2% and aluminum oxide 0.2%.

【0011】図1に示す水処理フローにより以下のよう
に浄水処理を行った。前記原水20m3/日を着水井に取り
入れ、未溶解物スラリーを0.3 l/hで注入したところpH1
0.0になった。この混合水に炭酸ガスを57mg/lを注入
し、次いで1500mg/lの消石灰水溶液を19.3 l/h 注入し
たところ、pH7.1 、アルカリ度59mg/l、カルシウム硬度
60mg/l、炭酸水素カルシウム濃度98mg/lの水となった。
ここへPACを25mg/l注入し凝集沈殿を行った。沈殿上
澄水の濁度は3 度で凝集沈殿効率は94%の効果が得られ
た。この沈殿上澄水を砂濾過にかけたところ濁度0.1 度
の濾過水となった。濾過水に消石灰溶液を5l/hを注入し
たところ、処理水はpH7.8 、アルカリ度67mg/l、カルシ
ウム硬度72mg/l、ランゲリア指数-0.5の非腐食性水が得
られた。
The water purification treatment was performed as follows according to the water treatment flow shown in FIG. 20 m 3 / day of the raw water was taken into the landing well, and the undissolved slurry was injected at 0.3 l / h.
It became 0.0. 57 mg / l of carbon dioxide gas was injected into the mixed water, and then 19.3 l / h of an aqueous solution of slaked lime at 1500 mg / l were injected.The pH was 7.1, the alkalinity was 59 mg / l, and the calcium hardness was
The water became 60 mg / l and the concentration of calcium bicarbonate was 98 mg / l.
Here, 25 mg / l of PAC was injected to perform aggregation precipitation. The turbidity of the supernatant was 3 degrees and the coagulation / sedimentation efficiency was 94%. The supernatant water from the sediment was subjected to sand filtration to obtain filtered water having a turbidity of 0.1 °. When 5 l / h of the slaked lime solution was injected into the filtered water, non-corrosive water having a pH of 7.8, an alkalinity of 67 mg / l, a calcium hardness of 72 mg / l, and a Langeria index of -0.5 was obtained.

【0012】[0012]

【比較例】実施例と同じ原水、消石灰水溶液およびPA
Cを使用して凝集沈殿の回分実験を行った。消石灰水溶
液の注入のみでは原水にpH緩衝性がないので、1.8mg/
lと少量の消石灰の注入でpHは8.6まで上昇し、このと
きの水質はアルカリ度7mg/l、カルシウム硬度7mg/lでラ
ンゲリア指数を-1.6であり、腐食性の小さい浄水として
の好ましい水質値であるpH7.8,アルカリ度70mg/l、カル
シウム硬度7mg/lでランゲリア指数を-0.5にすることは
不可能であった。次いで凝集処理のためのpHを実施例
と同じ7.1 にするのに要する消石灰注入率を求めたとこ
ろ、0.8mg/lであった。図1に示す水処理フローによ
り、原水20m3/日に対して1500mg/lの消石灰水溶液を0.
5l/h(消石灰注入率6mg/l ) 注入し、これにPACを25
mg/l注入して、凝集沈殿を行った。沈殿上澄水の濁度は
8度と高くこれを砂濾過にかけたところ、濁度は0.5 度
の濾過水となった。この濾過水にpH7.8 となるように
消石灰水溶液を注入して得られる浄水の水質を測定した
ところ、カルシウム硬度11mg/l、アルカリ度7mg/l、ラ
ンゲリア指数-2.3で非腐食性水とならず、凝集沈殿効率
も79%と実施例に比べて低かった。
Comparative Example Same raw water, slaked lime aqueous solution and PA
Batch experiments of coagulation sedimentation were performed using C. Injection of the slaked lime aqueous solution alone has no pH buffering property in the raw water.
Injection of l and a small amount of slaked lime raises the pH to 8.6, and the water quality at this time is 7 mg / l alkalinity, 7 mg / l calcium hardness, and the Langeria index is -1.6. PH 7.8, alkalinity 70 mg / l, calcium hardness 7 mg / l, it was not possible to make the Langeria index -0.5. Next, the slaked lime injection rate required to bring the pH for coagulation treatment to 7.1, the same as in the example, was determined, and was 0.8 mg / l. According to the water treatment flow shown in FIG. 1, a slaked lime aqueous solution of 1500 mg / l is added to 20 m 3 / day of raw water.
5 l / h (slaked lime injection rate 6 mg / l) was injected, and PAC was added to this.
Aggregate precipitation was performed by injecting mg / l. The turbidity of the sedimentation supernatant water was as high as 8 ° C, and this was subjected to sand filtration. As a result, the turbidity was 0.5 ° C. When the quality of purified water obtained by injecting the slaked lime aqueous solution into the filtered water so as to have a pH of 7.8 was measured, the calcium hardness was 11 mg / l, the alkalinity was 7 mg / l, and the non-corrosive water was Langeria index of -2.3. And the coagulation sedimentation efficiency was 79%, which was lower than that of the example.

【0013】[0013]

【実施例2】原水は水温28℃.pH9.4 、アルカリ度5
7.1mg/l、カルシウム硬度58.5mg/l、ランゲリア指数1.3
、濁度30度の表流水であり、pHの高い水であった。浄
水としての水質改善目標値をpH7.8 、アルカリ度65mg/
l、カルシウム硬度58.5mg/l、ランゲリア指数-0.2と定
め、消石灰と炭酸ガスの所要注入率を実験で求めたとこ
ろ、それぞれ10mg/l、16.1mg/lであった。原水20m3/日
に対して上記水質改善目標値を達成するに必要な全消石
灰0.02kg/日、炭酸ガス0.32kg/日と計算された。直径
0.22m、高さ1.5m、容量0.06m3の円筒縦型低速攪拌機付
溶解槽へ1.2kgの消石灰を投入し、該溶解槽の下部から
給水してpH12以上の溢流液を中間槽に貯めた。消石灰の
80%が溶解し中間槽へ溢流した時点で溶解槽への給水を
止め、1時間静止沈降させた後に該溶解槽の下部に残存
している未溶解物を未溶解物スラリー槽に抜き出した。
中間槽に得られた消石灰の濃度は略1600mg/lであった。
未溶解物スラリーはpH12.1、スラリー濃度2.9%であ
った。前記原水20m3/日を図1の水処理フローにより以
下のような処理した。即ち、先ず着水井へ原水を取り入
れ、ここへ未溶解物スラリーを0.06l/h と炭酸ガスを1
6.1mg/lとなるように注入したところ、pH7.2 、アルカ
リ度58.7mg/l、カルシウム硬度60.7mg/l、ランゲリア指
数-1.0であった。次いで約1600mg/lの消石灰溶液を3l/h
を前アルカリとして注入し、PACを36mg/l注入したと
ころ、pH7.3 、アルカリ度60.5mg/l、カルシウム硬度6
7.9mg/l、ランゲリア指数-0.8であた。この水を凝集沈
殿させたところ、沈殿上澄水の濁度は4 度で凝集沈殿効
率は約87%であった。この沈殿上澄水を砂濾過にかけた
ところ、濾過水の濁度は0.1 度であった。濾過水に消石
灰溶液を2l/h注入したところ、処理水はpH7.8 、アルカ
リ度65mg/l、カルシウム硬度71.9mg/l、ランゲリア指数
-0.2の非腐食水が得られた。
Example 2 The raw water temperature was 28 ° C. pH 9.4, alkalinity 5
7.1mg / l, calcium hardness 58.5mg / l, Langeria index 1.3
It was surface water with a turbidity of 30 degrees and high pH. The target value for water quality improvement as purified water is pH 7.8, alkalinity 65mg /
The required injection rates of slaked lime and carbon dioxide gas were determined by experiments, and were determined to be 10 mg / l and 16.1 mg / l, respectively. The total slaked lime required to achieve the above water quality improvement target for 20 m 3 / day of raw water was calculated to be 0.02 kg / day and carbon dioxide 0.32 kg / day. diameter
0.22 m, height 1.5 m, the slaked lime 1.2kg were charged into a cylindrical vertical low speed stirrer with dissolver volume 0.06 m 3, pooled pH12 or more overflow liquid to the intermediate tank with water from the bottom of the dissolution tank Was. Slaked lime
When 80% was dissolved and overflowed into the intermediate tank, the water supply to the dissolving tank was stopped, and the undissolved matter remaining in the lower part of the dissolving tank was drawn out to the undissolved slurry tank after allowing to stand still for 1 hour. .
The concentration of slaked lime obtained in the intermediate tank was about 1600 mg / l.
The undissolved slurry had a pH of 12.1 and a slurry concentration of 2.9%. The raw water 20 m 3 / day was treated as follows according to the water treatment flow of FIG. That is, raw water is first introduced into the landing well, where the undissolved slurry is 0.06 l / h and carbon dioxide is added at 1
When the solution was injected so as to be 6.1 mg / l, the pH was 7.2, the alkalinity was 58.7 mg / l, the calcium hardness was 60.7 mg / l, and the Langeria index was -1.0. Then about 1600 mg / l slaked lime solution at 3 l / h
Was injected as a pre-alkali and PAC was injected at 36 mg / l, pH 7.3, alkalinity 60.5 mg / l, calcium hardness 6
It was 7.9 mg / l, and the Langeria index was -0.8. When this water was subjected to coagulation sedimentation, the turbidity of the sedimentation supernatant water was 4 degrees, and the coagulation sedimentation efficiency was about 87%. When the supernatant water of this precipitation was subjected to sand filtration, the turbidity of the filtered water was 0.1 °. When 2 l / h of the slaked lime solution was injected into the filtered water, the treated water had a pH of 7.8, an alkalinity of 65 mg / l, a calcium hardness of 71.9 mg / l, and a Langeria index.
-0.2 non-corrosive water was obtained.

【0014】[0014]

【発明の効果】本発明方法によれば、原水が低温低濁度
の水、低アルカリ度の水またはpHの高低の水質に拘わ
らず、凝集沈降させるとき凝集助剤を用いることなく重
質のフロックを形成させることができ、凝集沈殿を効果
的に行うことができ、かつ非腐食性の水を容易に得るこ
とができる。
According to the method of the present invention, regardless of the quality of raw water, low-temperature low-turbidity water, low-alkalinity water, or high-low pH water, coagulation and sedimentation can be performed without using a coagulation aid. Flock can be formed, coagulation and sedimentation can be effectively performed, and non-corrosive water can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による水処理の一例を示すフローであ
る。
FIG. 1 is a flowchart showing an example of water treatment according to the present invention.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/66 540 C02F 1/66 540Z 1/52 1/52 Z 1/68 510 1/68 510B 520 520D 520C 530 530A 530K 530L 540 540Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/66 540 C02F 1/66 540Z 1/52 1/52 Z 1/68 510 1/68 510B 520 520D 520C 530 530A 530K 530L 540 540Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 着水井、混和井、沈殿池、濾過池及び配
水池を含む浄水処理施設に、消石灰水溶液製造装置及び
炭酸ガス注入装置を設け、消石灰水溶液と炭酸ガスを注
入して水質調整を行う浄水処理において、被処理水のp
H、アルカリ度、カルシウム硬度等を測定してランゲリ
ア指数を求めて、腐食防止上から好ましい水質であるp
H7.5〜8.3、アルカリ度60〜80mg/l、ランゲリア指数-1
〜0になる量の消石灰と炭酸ガスの注入率を決定し、沈
殿池またはそれより前の工程に、消石灰水溶液製造装置
からでる未溶解物スラリーと炭酸ガスおよび消石灰水溶
液を注入してpHを6.7 〜7.3 、炭酸水素カルシウム濃
度を80〜160mg/l に調整し、凝集剤の存在下凝集、沈
殿、濾過を行ない濾過水に消石灰水溶液及び/または炭
酸ガスを注入する、高効率凝集沈殿処理と水の非腐食化
を同時に行う浄水処理方法。
1. A slaked lime aqueous solution production device and a carbon dioxide gas injection device are installed in a water treatment facility including a landing well, a mixing well, a sedimentation basin, a filtration pond, and a distribution reservoir, and water quality is adjusted by injecting the slaked lime aqueous solution and carbon dioxide gas. In the water purification process to be performed, p
H, alkalinity, calcium hardness, etc. are measured to determine the Langeria index.
H7.5-8.3, alkalinity 60-80mg / l, Langeria index -1
Determine the injection rate of slaked lime and carbon dioxide gas in an amount to become ~ 0, and inject the undissolved slurry, carbon dioxide gas and slaked lime aqueous solution from the slaked lime aqueous solution manufacturing apparatus into the sedimentation basin or a step before it to adjust the pH to 6.7. 7.3, adjusting the concentration of calcium bicarbonate to 80-160mg / l, coagulating, sedimenting and filtering in the presence of coagulant, injecting slaked lime aqueous solution and / or carbon dioxide gas into the filtered water, high efficiency coagulating sedimentation and water A water purification method that simultaneously makes non-corrosive water.
JP2000113982A 2000-04-14 2000-04-14 Water purification method Expired - Lifetime JP4522534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000113982A JP4522534B2 (en) 2000-04-14 2000-04-14 Water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000113982A JP4522534B2 (en) 2000-04-14 2000-04-14 Water purification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010028646A Division JP2010137224A (en) 2010-02-12 2010-02-12 Method for cleaning water

Publications (2)

Publication Number Publication Date
JP2001293483A true JP2001293483A (en) 2001-10-23
JP4522534B2 JP4522534B2 (en) 2010-08-11

Family

ID=18625861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113982A Expired - Lifetime JP4522534B2 (en) 2000-04-14 2000-04-14 Water purification method

Country Status (1)

Country Link
JP (1) JP4522534B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853382B1 (en) * 2006-07-28 2008-08-25 재단법인 한국계면공학연구소 Method for corrosion prevention of water distribution systems by lime slurry
KR100979250B1 (en) 2008-11-14 2010-09-01 서울특별시 Method for Supplying Water with Controlled Corrosive Characteristics
KR101129233B1 (en) * 2009-07-30 2012-03-26 신도이앤씨 (주) A water pipes corrosion prevention system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210253456A1 (en) * 2015-08-28 2021-08-19 Bryan R. Johnson Integrated Biogas Treatment and Carbon Dioxide Based Disinfection for Water Treatment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107148A (en) * 1977-03-02 1978-09-18 Hitachi Ltd Chemical injection device in purification plant
JPS58137491A (en) * 1982-02-08 1983-08-15 Mitsubishi Electric Corp Method for controlling injection of alkali agent in water purifying plant
JPH0478488A (en) * 1990-07-23 1992-03-12 Kureha Chem Ind Co Ltd Method and device for improving langelier index of city water
JPH0596285A (en) * 1991-10-02 1993-04-20 Toshiba Corp Injection control device of alkali agent
JPH0663566A (en) * 1992-08-20 1994-03-08 K P Ii:Kk Formation of slaked lime solution, slaked lime injection method and slaked lime dissolving tank
JP2001129557A (en) * 1999-11-08 2001-05-15 Japan Organo Co Ltd Water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107148A (en) * 1977-03-02 1978-09-18 Hitachi Ltd Chemical injection device in purification plant
JPS58137491A (en) * 1982-02-08 1983-08-15 Mitsubishi Electric Corp Method for controlling injection of alkali agent in water purifying plant
JPH0478488A (en) * 1990-07-23 1992-03-12 Kureha Chem Ind Co Ltd Method and device for improving langelier index of city water
JPH0596285A (en) * 1991-10-02 1993-04-20 Toshiba Corp Injection control device of alkali agent
JPH0663566A (en) * 1992-08-20 1994-03-08 K P Ii:Kk Formation of slaked lime solution, slaked lime injection method and slaked lime dissolving tank
JP2001129557A (en) * 1999-11-08 2001-05-15 Japan Organo Co Ltd Water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853382B1 (en) * 2006-07-28 2008-08-25 재단법인 한국계면공학연구소 Method for corrosion prevention of water distribution systems by lime slurry
KR100979250B1 (en) 2008-11-14 2010-09-01 서울특별시 Method for Supplying Water with Controlled Corrosive Characteristics
KR101129233B1 (en) * 2009-07-30 2012-03-26 신도이앤씨 (주) A water pipes corrosion prevention system

Also Published As

Publication number Publication date
JP4522534B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP4523731B2 (en) Water treatment equipment
JP4879590B2 (en) Method and apparatus for concentration and volume reduction of sludge
JP5753702B2 (en) Formation method of initial mother floc in high speed coagulation sedimentation basin
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP2001293483A (en) Water treating method
WO2019119475A1 (en) Method for enhancing coagulation in stages
JP7083274B2 (en) Water treatment method and water treatment equipment
JP2017159194A (en) Treatment equipment and treatment method for heavy metal-containing water
JP5767009B2 (en) Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing
JP2010137224A (en) Method for cleaning water
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
US9650266B2 (en) Method of treating suspended solids and heavy metal ions in sewage
JP4114869B2 (en) Flocculant preparation method and water treatment method using the same
JP2002079004A (en) Aggregation method
JPS5923874B2 (en) Grout injection method wastewater treatment method
CN112239252A (en) High-hardness mine water pretreatment method and system
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP2000070938A (en) Treatment of waste liquid
JPS6329599B2 (en)
JPH11276807A (en) Flocculant and flocculation sedimentation equipment using the same
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP5057955B2 (en) Sludge concentration method and sludge concentration apparatus
JP3336327B2 (en) Method and apparatus for producing slaked lime aqueous solution
JPS5832629B2 (en) Suspension flocculation treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Ref document number: 4522534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term