JPS5923874B2 - Grout injection method wastewater treatment method - Google Patents

Grout injection method wastewater treatment method

Info

Publication number
JPS5923874B2
JPS5923874B2 JP9511680A JP9511680A JPS5923874B2 JP S5923874 B2 JPS5923874 B2 JP S5923874B2 JP 9511680 A JP9511680 A JP 9511680A JP 9511680 A JP9511680 A JP 9511680A JP S5923874 B2 JPS5923874 B2 JP S5923874B2
Authority
JP
Japan
Prior art keywords
wastewater
tank
separated
water
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9511680A
Other languages
Japanese (ja)
Other versions
JPS5721989A (en
Inventor
俊朗 丸山
貞美 江「村」
章造 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP9511680A priority Critical patent/JPS5923874B2/en
Publication of JPS5721989A publication Critical patent/JPS5721989A/en
Publication of JPS5923874B2 publication Critical patent/JPS5923874B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 この発明はグラウト注入工法における排水、特に水ガラ
ス系薬液によるグラウト注入工法に際して生ずる排水の
処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater in grouting methods, particularly wastewater generated during grouting methods using water glass-based chemicals.

水ガラス薬液注入による土壌の土質安定化および湧水防
止には周知の如く、LW工法と称する水ガラス・セメン
ト系の懸濁型又は半懸濁型の薬液を注入する方法と、セ
メントを使用しない溶液型の注入工法があり、それぞれ
適用する土壌の性状および湧水圧力に応じて土壌の安定
化および止水が行われている。
As is well known, there are two methods for stabilizing the soil quality and preventing spring water by injecting water glass chemicals: the LW method, which involves injecting suspended or semi-suspended water glass/cement chemicals, and the other method, which does not use cement. There are solution-type injection methods, each of which stabilizes the soil and stops water depending on the properties of the soil and spring water pressure.

しかしながら、かかる注入工法において、湧水や流水そ
の他土木工事の施工に伴って土木排水(以下グラウト排
水という)が多量に発生する。
However, in such a grouting method, a large amount of civil engineering drainage (hereinafter referred to as grout drainage) is generated due to spring water, running water, and other civil engineering works.

このグラウト排水は懸濁状から溶液状まで工事現場では
大きな問題となっており、特に、水ガラス薬液注入工法
におけるグラウト排水には土砂の混入と共にその薬液が
随伴されるため強いアルカリ性を帯び、その処理を一層
難かしくしている。
This grout drainage, ranging from suspension to solution, is a big problem at construction sites.In particular, grout drainage in the water glass chemical injection method is contaminated with earth and sand, and is accompanied by the chemical, which makes it highly alkaline. This makes processing even more difficult.

例えば、排水中の珪酸ソーダの濃度が高い場合は単に中
和するとゲル化して含水量の大きい分離し難い汚泥とな
り、一方、それが低い場合には、ゲル化することなく溶
存する。
For example, if the concentration of sodium silicate in wastewater is high, simply neutralizing it will result in gelation and result in a sludge with a high water content that is difficult to separate, whereas if the concentration is low, it will dissolve without gelling.

従来、かかるグラウト排水に対して、多くの場合、硫酸
で中和処理して、沈澱分離しているが、上記の点に加え
て、セメント粒子が懸濁している場合には、これをも中
和消費するので多量の硫酸を必要とするのみならず、分
離困難な汚泥となる。
Conventionally, such grout drainage is often neutralized with sulfuric acid and separated by precipitation, but in addition to the above points, if cement particles are suspended, this is also neutralized. Not only does it require a large amount of sulfuric acid, but it also produces sludge that is difficult to separate.

又特に、LW工法における排水に生じ易いのであるが、
排水によっては珪酸ソーダ中の珪酸分がコロイド化して
白濁現象が起き、この白濁は前記の中和処理や凝集剤で
は殆ど凝集できないため、通常の分離操作では除去でき
ない。
In addition, this is particularly likely to occur with drainage in the LW construction method,
Depending on the wastewater, the silicic acid content in the sodium silicate becomes a colloid and a cloudy phenomenon occurs, and since this cloudiness can hardly be flocculated by the above-mentioned neutralization treatment or flocculant, it cannot be removed by normal separation operations.

本発明者らは、グラウト排水の白濁現象は排水中の珪酸
イオンと2価の陽イオン特にCa+がある特定の関係に
ある場合に生じ、この関係を取り除けば発生しないとい
う事実、更に効果的な中和処理をも達成できることの知
見に基づいて、石灰乳と炭酸ガスを主たる薬剤として用
いてグラウト排水を効果的に処理する技術を開発しすで
に出願した(特願昭54−108195号)。
The present inventors discovered the fact that the white turbidity phenomenon of grout drainage occurs when there is a certain relationship between silicate ions and divalent cations, especially Ca+, in the drainage, and that it does not occur if this relationship is removed. Based on the knowledge that neutralization treatment can also be achieved, a technology for effectively treating grout wastewater using milk of lime and carbon dioxide gas as the main chemicals has been developed and has already been filed (Japanese Patent Application No. 108195/1982).

この方法はグラウト排水に石灰乳を添加後置液分離前に
炭酸ガスを導入するものであるが、炭酸ガス導入口に炭
酸カルシウムが析出して閉そくするトラブルが発生し易
く、また炭酸ガスの導入工程が適切でないなどの問題が
あって、更に改良すべく鋭意研究の結果本発明を完成し
た。
In this method, carbon dioxide gas is introduced after adding milk of lime to the grout drainage and before separating the liquid. However, problems such as calcium carbonate depositing at the carbon dioxide gas inlet and blockage tend to occur, and the introduction of carbon dioxide gas is difficult. There were problems such as the process being inappropriate, and as a result of intensive research to further improve the process, the present invention was completed.

すなわち本発明は、水ガラス系グラウト注入工法から生
ずる排水を処理するに当り安定に流量調整された該排水
に対し石灰乳スラリーを添加して少なくともpH11,
5において反応させる工程、次いで処理排水スラリーに
凝集剤を添加して凝集沈降させて固液分離する工程、次
いでこの分離排水に炭酸水を添加して過剰Ca+を不溶
化せしめて分離除去する工程、次いで前工程で分離され
た処理排水を中和すると共に他方分離汚泥は要すれば濃
縮後脱水処理することを特徴とするグラウト注入工法排
水の処理方法にかかる。
That is, in the present invention, when treating wastewater generated from a water glass grout injection method, milky lime slurry is added to the wastewater whose flow rate has been stably adjusted so that the pH is at least 11,
5, a step of reacting in step 5, then a step of adding a coagulant to the treated wastewater slurry to cause coagulation and sedimentation to separate solid-liquid, then a step of adding carbonated water to the separated wastewater to insolubilize excess Ca + and separating and removing it. The present invention relates to a method for treating wastewater from grout injection method, which is characterized in that the treated wastewater separated in the previous step is neutralized, and the separated sludge is concentrated and dehydrated if necessary.

水ガラス系グラウト排水において、特に処理困難な排水
は外観的特徴がカオリンやセメント粒子による白濁でな
く全体的に白濁したものでpHが高く、沈澱汚泥量が多
いものである。
Among water glass grout wastewater, wastewater that is particularly difficult to treat has an appearance that is not cloudy due to kaolin or cement particles but is cloudy overall, has a high pH, and has a large amount of settled sludge.

このような排水は現場の事情にもよるが、多くの場合、
水ガラス使用量の多い施工の際に出現する。
This kind of drainage depends on the circumstances at the site, but in many cases,
Appears during construction where a large amount of water glass is used.

この理由は恐らく珪酸ソーダの溶存量に対してゲル化を
促進させる塩類濃度が低いため、排水中のpHの影響と
相俟って珪酸イオンがコロイド化して微細な珪酸ゲル粒
子を生成し、その粒子がゲル化するまで成長しないこと
によるものと思われる。
The reason for this is probably that the concentration of salts that promote gelation is low relative to the dissolved amount of sodium silicate, which, together with the influence of pH in the wastewater, causes silicate ions to colloid and form fine silicate gel particles. This seems to be due to the fact that the particles do not grow until they gel.

本発明ではこのような通常の中和処理では殆ど解決され
ない白濁排水のみならず、水ガラス薬液を用いた土質安
定化工法によって生ずる排水すなわちグラウト排水は全
て適用される。
The present invention is applicable not only to cloudy wastewater, which cannot be solved by ordinary neutralization treatment, but also to all wastewater generated by soil stabilization methods using water glass chemicals, that is, grout drainage.

以下添付図面に従って本発明に係るグラウト排水処理シ
ステムを説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A grout wastewater treatment system according to the present invention will be described below with reference to the accompanying drawings.

まず、グラウト排水を処理するに当って該排水はできる
だけ安定に流量を調整したものであることが必要である
First, when treating grout drainage, it is necessary that the flow rate of the drainage is adjusted as stably as possible.

このため、排水調整池1の如き排水ピットを坑内又は坑
外の適当な場所に設はグラウト排水を送り込むことが望
ましい。
For this reason, it is desirable to set up a drainage pit such as the drainage regulating pond 1 at an appropriate location inside or outside the mine to send the grout drainage.

グラウト排水はグラウト注入工法、土質および環境など
によって水質および水量は常に変化し、°これを直接扱
うことは条件の多様性のゆえに適切でない。
The water quality and quantity of grout drainage constantly changes depending on the grout injection method, soil quality, environment, etc. ° It is not appropriate to deal with this directly due to the diversity of conditions.

従って、グラウト排水を緩衝して、水質および水量をで
きるだけ一定の被処理排水とすることが望ましい。
Therefore, it is desirable to buffer the grout wastewater so that the water quality and quantity of the treated wastewater can be kept as constant as possible.

流量は基本的にはほぼ100%の確率で設計値になるよ
うにシステムに流さねばならない。
Basically, the flow rate must flow through the system so that it reaches the designed value with almost 100% probability.

システムに入る流量が変動すると以下の反応槽2におけ
る反応時間が保たれず反応を生じないまま次へ移行し、
沈澱槽4からフロックがキャリーオーバーすることにも
なりかねない。
If the flow rate entering the system fluctuates, the following reaction time in reaction tank 2 will not be maintained and the process will proceed to the next step without any reaction occurring.
There is also a possibility that flocs may carry over from the settling tank 4.

同様に水質もできる限り変動の少ないことが望ましい。Similarly, it is desirable for water quality to have as little fluctuation as possible.

かかる理由から排水調整池1は設けられるものであり、
池容量は、前記の理由を考慮して長期的予測を基本に推
定して設定することが望ましい。
For this reason, the drainage regulating pond 1 is provided,
It is desirable to estimate and set the pond capacity based on long-term predictions, taking into account the above reasons.

なお、原則的に高濁水の状態で処理する方が、水量負荷
、水質負荷の変動並びに凝集−フロックの生成の観点か
ら望ましいので、できる限り予め清水と濁水を分離すべ
きである。
In principle, it is preferable to treat water in a highly turbid state from the viewpoint of changes in water volume load, water quality load, and formation of flocs, so clear water and turbid water should be separated in advance as much as possible.

か(して排水調整池1から流量ができるだけ安定した状
態の被処理排水が反応槽2へ移送される。
(Thus, the wastewater to be treated is transferred from the wastewater adjustment pond 1 to the reaction tank 2 in a state where the flow rate is as stable as possible.

この場合、流路において水質を検査するための分析機器
が組込まれて反応槽2へ供給される排水の水質が事前に
測定されることが望ましい。
In this case, it is desirable that an analytical device for testing the water quality be installed in the flow path to measure the water quality of the wastewater supplied to the reaction tank 2 in advance.

もつともこの流路排水を定期的に採取して水質検査する
ことであっても差支えない。
Of course, there is no problem even if this channel drainage water is periodically sampled and the water quality is tested.

このように、反応槽2においてできるだけ安定した流量
に調整された該排水に対して石灰乳貯槽11より石灰乳
スラリーを添加して反応させる。
In this way, milk of lime slurry is added from the milk of lime storage tank 11 to the waste water whose flow rate is adjusted to be as stable as possible in the reaction tank 2, and the slurry is caused to react.

この工程において他のカルシウム塩も使用することがで
きるが、特に石灰乳スラリーが珪酸イオンを実質的に除
くことができかつ取扱いや経済的な実用上の点からも最
もすぐれている。
Although other calcium salts can be used in this step, milk-of-lime slurry is particularly preferred as it substantially removes silicate ions and is the best from a handling, economical and practical point of view.

従って排水や現場の事情によってはこれとやや劣るが均
等的な他の難溶性カルシウム塩、例えばセメント類、焼
成ドロマイトの如きスラリーも用いることは可能である
Therefore, depending on the drainage and site conditions, it is also possible to use other poorly soluble calcium salts, such as slurries such as cements and calcined dolomite, which are slightly inferior but equivalent.

本反応は排水中のpHが少なくとも11.5望ましくは
11.8以上で行わせることが重要である。
It is important that this reaction is carried out at a pH of at least 11.5, preferably 11.8 or higher in the waste water.

この理由は前記値以下の場合は、残留珪酸イオンが多く
なって珪酸イオンの除去効果が低下すると共に、効果的
な量の凝集剤によるフロック形成が円滑に行われ難くな
ることによる。
The reason for this is that if the amount is less than the above value, the amount of residual silicate ions increases, reducing the silicate ion removal effect and making it difficult to smoothly form flocs using an effective amount of flocculant.

この工程では少なくとも珪酸イオン、コロイドなどの全
球酸分がCa”と反応して次の沈澱槽4で行われる凝集
剤で容易に凝集沈降する程度のサイズまで生成させるこ
とが必要である。
In this step, it is necessary to generate at least global acid components such as silicate ions and colloids with Ca'' to a size that can be easily flocculated and precipitated with a flocculant in the next settling tank 4.

従って、石灰乳はその限度において添加すれば極めて経
済的な消費で処理することができる。
Milk of lime can therefore be processed with very economical consumption if added within that limit.

すなわち、石灰乳の添加量は、排水中の全珪酸分に対口
モル比CaO/SiO3が少なくとも0.5であること
を要し、一方その上限は特に限定はなく、経済的な条件
で設定すればよいが、多くの場合1〜4の範囲が適当で
ある。
In other words, the amount of milk of lime added must be such that the molar ratio CaO/SiO3 to the total silicic acid content in the wastewater is at least 0.5, while the upper limit is not particularly limited and may be set based on economic conditions. However, in most cases, a range of 1 to 4 is appropriate.

なお、排水中の全珪酸分とは、主として排水中の溶存珪
酸ソーダの珪酸分を意味するが、他にコロイドシリカや
微細な珪酸カルシウムなどの存在である場合には、それ
らも含めた珪酸分をいうものとする。
The total silicic acid content in wastewater mainly means the silicic acid content of dissolved sodium silicate in the wastewater, but if colloidal silica or fine calcium silicate are present, the silicic acid content also includes them. shall mean.

また、上記の理由から反応時間として、少なくとも20
分程度、望ましくは30分程度の滞留時間が保持される
ことが必要である。
Also, for the above reasons, the reaction time should be at least 20
It is necessary to maintain a residence time of about 30 minutes, preferably about 30 minutes.

なお以上の如き反応を行わせる場合、工事の現場の実情
又は排水の実情によっては必ずしも排水調整池1と反応
槽2のシステムを組むことが困難であるとか必要性のな
い場合がある。
In addition, when carrying out the reaction as described above, it may be difficult or unnecessary to assemble a system of the drainage regulating pond 1 and the reaction tank 2 depending on the actual situation of the construction site or the actual situation of drainage.

従って、このようなときは、例えば排水調整池1内で排
水流量の調整と同時に反応槽2を兼ねた前記反応を行わ
せることも可能であり、又排水調整池1の代りに排水調
整槽を設けるとか、更には排水調整池や排水調整槽など
を複数設けることもそれぞれの現場の実情に応じて処理
システムを設計すればよい。
Therefore, in such a case, it is possible, for example, to adjust the flow rate of wastewater in the wastewater regulating pond 1 and simultaneously carry out the reaction described above, which also serves as the reaction tank 2.Also, it is possible to use a wastewater regulating tank instead of the wastewater regulating pond 1. The treatment system may be designed according to the actual situation at each site, or even a plurality of wastewater regulating ponds or wastewater regulating tanks may be provided.

要は変動する水量や水質を緩衝させて、できるだけ安定
な流量、水質の排水に対して前記の反応を効果的に行わ
せるように構成する。
The point is to buffer the fluctuating water quantity and water quality so that the above-mentioned reaction can be carried out effectively for discharged water with as stable a flow rate and water quality as possible.

次に処理排水は、沈澱槽4へ移送され、ここにおいて固
液分離される。
Next, the treated wastewater is transferred to the settling tank 4, where it is separated into solid and liquid.

この固液分離を円滑に行わせるために凝集剤を添加して
お(ことが必要で、添加場所は沈澱槽4内はもちろんの
ことそれ以前の工程で添加しても差支えない。
In order to perform this solid-liquid separation smoothly, it is necessary to add a flocculant, and it can be added not only in the sedimentation tank 4, but also in a step before that.

例えば反応槽2が多段式の場合には後段に凝集剤を添加
して反応槽2と沈澱槽4の間に管内混合機の如きフロラ
キュレータ−3を設けておくと反応後粗大フロックが形
成されて沈澱槽4での固液分離が円滑に行われることが
多い。
For example, if the reaction tank 2 is a multi-stage type, adding a flocculant to the latter stage and installing a flocculator 3 such as an in-tube mixer between the reaction tank 2 and the settling tank 4 will prevent the formation of coarse flocs after the reaction. Therefore, solid-liquid separation in the settling tank 4 is often performed smoothly.

この場合、沈澱槽4での沈降分離を効果あらしめるため
、スラッジ濃縮槽9からの濃縮汚泥を一部循環してフロ
ラキュレータ−3の前に戻したり、又は沈降促進のため
凝集助剤を少量添加することもよい。
In this case, in order to make the sedimentation and separation in the sedimentation tank 4 more effective, a portion of the thickened sludge from the sludge thickening tank 9 is circulated and returned to the front of the Floraculator 3, or a small amount of coagulation aid is added to promote sedimentation. It may also be added.

しかし、このプロセスは必ずしも必要でなくフロラキュ
レータ−3も実情に応じて設ければよい。
However, this process is not necessarily necessary, and the flora curator 3 may be provided depending on the actual situation.

上記によらない場合には、沈澱槽4は凝集剤の添加後急
速攪拌を要する凝集槽を兼ねたものが好ましく、又、他
の態様として、この沈澱槽4は現場の事情によっては急
速攪拌槽を設けた沈澱池として構成することもできる。
In cases where the above does not apply, it is preferable that the sedimentation tank 4 doubles as a flocculation tank that requires rapid stirring after adding the flocculant, and in another embodiment, the sedimentation tank 4 may be a rapid stirring tank depending on the circumstances at the site. It can also be configured as a sedimentation basin with a

この場合、従来多様されている上向流式沈澱池よりも横
流式沈澱池の方が優れている。
In this case, a cross-flow type sedimentation tank is superior to the conventional up-flow type sedimentation tank.

即ち上向流式では水面積負荷(上昇流速)以下の沈降速
度を有する粒子の全量がキャリーオーバーするのに対し
、横流式では水面積負荷以上の粒子を除去しうるからで
あり、土木排水のように流量変動のはげしい場合は特に
有効である。
In other words, in the upflow method, the entire amount of particles with a sedimentation velocity less than the water area load (upward velocity) is carried over, whereas in the crossflow method, particles with a sedimentation velocity higher than the water area load can be removed, which is a problem in civil engineering drainage. This is particularly effective in cases where the flow rate fluctuates rapidly.

なお、凝集剤としては、例えば塩基性塩化アルミニウム
、硫酸アルミニウム、硫酸鉄あるいは塩化鉄などの公知
の無機凝集剤、有機凝集剤としては代表的なものでポリ
アクリルアミドの加水分解物、アクリル酸とアクリルア
ミドのコポリマーなどであり、それらの1種又は2種以
上の混合物を使用する。
Examples of flocculants include known inorganic flocculants such as basic aluminum chloride, aluminum sulfate, iron sulfate, and iron chloride; typical organic flocculants include polyacrylamide hydrolyzate, acrylic acid and acrylamide. copolymers, etc., and one or a mixture of two or more of them is used.

か(して沈澱槽4にて上澄水と汚泥に固液分離され、処
理排水の上澄液は炭酸カルシウム析出槽5に移送される
Then, the treated wastewater is separated into solid and liquid into supernatant water and sludge in the settling tank 4, and the supernatant liquid of the treated wastewater is transferred to the calcium carbonate precipitation tank 5.

ここにおいて処理排水中の過剰Ca”が炭酸水の供給に
より炭酸カルシウムへの反応を生じて不溶化し分離除去
される。
Here, excess Ca'' in the treated wastewater is reacted to calcium carbonate by supplying carbonated water, becomes insolubilized, and is separated and removed.

この場合、CO2ガスの導入による場合も当然可能であ
るがしばしばガス導入口に炭酸カルシウムの析出による
閉そくが生じるので液化CO□タンク12から飽和炭酸
水貯槽13を経て供給することが必要であり、また、こ
の反応はpH10前後で行うことが最も効果的であり、
更に必要に応じて凝集剤の添加をすることもよい。
In this case, it is naturally possible to introduce CO2 gas, but since the gas inlet is often blocked by calcium carbonate precipitation, it is necessary to supply it from the liquefied CO□ tank 12 through the saturated carbonated water storage tank 13. Additionally, this reaction is most effective when carried out at a pH of around 10.
Furthermore, a flocculant may be added if necessary.

次いで沈澱槽7に処理排水が移行され、ここにおいて主
として炭酸カルシウムとの固液分離の処理が行われる。
The treated wastewater is then transferred to the settling tank 7, where it is mainly subjected to solid-liquid separation from calcium carbonate.

この場合も前記の反応工程および固液分離工程と同様の
システムと装置を採用することができる。
In this case as well, the same system and apparatus as in the reaction step and solid-liquid separation step described above can be employed.

例えば、炭酸カルシウム析出槽5において反応後凝集剤
を添加し、粗大フロックを形成させるため適当なフロラ
キュレータ−6を経て沈澱槽7に移行させるようにすれ
ば固液分離を円滑に行うことができる。
For example, solid-liquid separation can be smoothly performed by adding a flocculant after the reaction in the calcium carbonate precipitation tank 5 and transferring it to the settling tank 7 via a suitable flocculator 6 to form coarse flocs. .

次いで、ここで処理された上澄排水は約pH10前後の
アルカリ性であるので中和槽8にて中和されて実質的に
無害な排水となって放水される。
Next, since the supernatant wastewater treated here is alkaline with a pH of about 10, it is neutralized in a neutralization tank 8 and is discharged as substantially harmless wastewater.

この中和剤は炭酸水又は炭酸ガスで中和するのが好まし
いが、必要によっては他の酸性化剤例えば硫酸、塩酸等
の水溶液な用いても差支えない。
The neutralizing agent is preferably carbonated water or carbon dioxide gas, but if necessary, other acidifying agents such as sulfuric acid, hydrochloric acid, etc. may be used in aqueous solutions.

一方、各固液分離工程から排出される分離汚泥は脱水機
10により脱水されて処理されるが、この処理能力を高
めるべく、要すればスラッジ濃縮槽9を経て脱水処理す
ることが適当である。
On the other hand, the separated sludge discharged from each solid-liquid separation process is dehydrated and treated by a dehydrator 10, but in order to increase this treatment capacity, it is appropriate to dehydrate it through a sludge thickening tank 9 if necessary. .

このスラッジはほとんど有害物を含まないのでそのまま
適当な場所へ埋立処理すればよい。
Since this sludge contains almost no harmful substances, it can simply be disposed of in a landfill at an appropriate location.

脱水機10から分離された液、同じくスラッジ濃縮槽9
かも分離された液は前の処理工程のいずれか又は中和槽
8へ移送することができるが、通常は図面の如く排水調
整池1へ移送する。
Liquid separated from the dehydrator 10, also in the sludge thickening tank 9
The separated liquid can be transferred to any of the previous treatment steps or to the neutralization tank 8, but normally it is transferred to the wastewater adjustment pond 1 as shown in the drawing.

かくして、本発明によれば、単純な薬剤と簡便な操作で
、処理困難とされている水ガラスを用いるグラウト排水
を経済的に有利に無害化することができる。
Thus, according to the present invention, grout wastewater using water glass, which is considered difficult to treat, can be rendered harmless economically and advantageously using simple chemicals and simple operations.

特に、処理排水中の珪酸イオンはSiO□として50p
pm以下のレベルまで低下させることの意義は大きい。
In particular, silicate ions in treated wastewater are 50p as SiO□.
It is of great significance to lower it to a level below pm.

実施例 LW工法におけるグラウト排水を排水調整池1に送り込
みポンプで171j/1ni1tの流量で反応槽2へ移
送する。
The grout drainage in the Example LW construction method is sent to the drainage regulating pond 1 and transferred to the reaction tank 2 by a pump at a flow rate of 171j/1ni1t.

この移送の際のモニタリングにより、pH: 11.5
、濁度:880.珪酸ソーダ(Si02): 1850
ppmと測定された。
By monitoring during this transfer, pH: 11.5
, turbidity: 880. Sodium silicate (Si02): 1850
It was measured as ppm.

なおこの排水は懸濁物を分離しても分離液は乳白濁を示
し、濁度は150であった。
Even if the suspended matter was separated from this wastewater, the separated liquid showed milky turbidity and had a turbidity of 150.

一方、石灰乳貯槽11より20 g/lの消石灰スラリ
ーを反応槽2へ0.301/rniILの割合で添加し
、pH11,9で反応させる。
On the other hand, 20 g/l of slaked lime slurry is added from the lime milk storage tank 11 to the reaction tank 2 at a ratio of 0.301/rniIL and reacted at pH 11.9.

この反応槽における平均滞留時間は30分間であった。The average residence time in this reactor was 30 minutes.

次いで、凝集剤貯槽14より適量の塩基性塩化アルミニ
ウム溶液を添加し続けてから管内混合機のフロラキュレ
ータ−3を経て沈澱池4へ送る。
Next, an appropriate amount of basic aluminum chloride solution is continuously added from the flocculant storage tank 14, and then sent to the settling tank 4 via the flocculator 3, which is an in-tube mixer.

次いで、上澄液は炭酸カルシウム析出槽5へ移行して液
化CO□タンク12から調製した飽和炭酸水を飽和炭酸
水貯槽13より供給して炭酸カルシウム析出槽5内のp
Hを10に定常化する。
Next, the supernatant liquid is transferred to the calcium carbonate precipitation tank 5 and the saturated carbonated water prepared from the liquefied CO□ tank 12 is supplied from the saturated carbonated water storage tank 13 to
Make H constant at 10.

次いで同様に、少量の前記凝集剤を添加した後、フロラ
キュレータ−6を経て沈澱槽7へ送り固液分離する。
Then, in the same manner, after adding a small amount of the flocculant, the flocculator 6 sends the flocculant to the settling tank 7 for solid-liquid separation.

次いで、上澄液は中和槽8に移行されここで炭酸水によ
ってpH7,5まで中和されそのまま放流する。
Next, the supernatant liquid is transferred to a neutralization tank 8, where it is neutralized to pH 7.5 with carbonated water and discharged as it is.

一方沈澱池4および沈澱槽Tより排出される分離汚泥は
スラッジ濃縮槽9を経て脱水機10にかけられケーキと
なる。
On the other hand, the separated sludge discharged from the settling tank 4 and the settling tank T is passed through a sludge thickening tank 9 and applied to a dehydrator 10 to form a cake.

かくして処理されたグラウト排水は、残留5in2:2
5ppm 、Ca廿15 、濁度1.3の実質的に
99m 無害化されたものであり一方ケーキは全くの無害である
ので工事現場の埋立用土として用いた。
The grout wastewater thus treated has a residual 5in2:2
5 ppm, Ca - 15, and turbidity of 1.3, it was practically rendered harmless. On the other hand, the cake was completely harmless, so it was used as landfill soil at a construction site.

【図面の簡単な説明】[Brief explanation of drawings]

添付図は本発明に係るグラウト排水処理システムの一実
施態様を示すフローチャートである。 1・・・・・・排水調整池、2・・・・・・反応槽、3
・・・・・・フロラキュレータ−,4・・・・・・沈澱
池(槽)、5・・・・・・炭酸カルシウム析出槽、6・
・・・・・フロラキュレータ−,7・・・・・・沈澱槽
(池)、8・・・・・・中和槽、9・・・・・・スラッ
ジ濃縮槽、10・・・・・・脱水機、11・・・・・・
石灰乳貯槽、12・・・・・・液化CO□タンク、13
・・・・・飽和炭酸水貯槽、14・・・・・・凝集剤貯
槽。
The attached figure is a flowchart showing one embodiment of the grout wastewater treatment system according to the present invention. 1... Drainage adjustment pond, 2... Reaction tank, 3
... Floraculator -, 4 ... Sedimentation tank (tank), 5 ... Calcium carbonate precipitation tank, 6.
... Floraculator, 7 ... Sedimentation tank (pond), 8 ... Neutralization tank, 9 ... Sludge concentration tank, 10 ...・Dehydrator, 11...
Lime milk storage tank, 12... Liquefied CO□ tank, 13
... Saturated carbonated water storage tank, 14 ... Flocculant storage tank.

Claims (1)

【特許請求の範囲】[Claims] 1 水ガラス系グラウト注入工法から生ずる排水を処理
するに当り安定に流量調整された該排水に対し石灰乳ス
ラリーを添加して少な(ともpH11,5において反応
させる工程、次いで処理排水スラリーに凝集剤を添加し
て凝集沈降させて固液分離する工程、次いでこの分離排
水に炭酸水を添加して過剰Ca”を不溶化せしめて分離
除去する工程、次いで前工程で分離された処理排水を中
和すると共に他方分離汚泥は要すれば濃縮後脱水処理す
る工程からなることを特徴とするグラウト注入工法排水
の処理方法。
1. When treating wastewater generated from the water glass grout injection method, a lime milk slurry is added to the wastewater whose flow rate has been adjusted stably and reacted at a pH of 11.5, and then a flocculant is added to the treated wastewater slurry. A step of adding carbonated water to the separated wastewater to cause coagulation and sedimentation for solid-liquid separation, then a step of adding carbonated water to this separated wastewater to insolubilize and separate and remove excess Ca, and then neutralizing the treated wastewater separated in the previous step. A grout injection method wastewater treatment method comprising the steps of condensing the separated sludge and then dewatering the separated sludge, if necessary.
JP9511680A 1980-07-14 1980-07-14 Grout injection method wastewater treatment method Expired JPS5923874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9511680A JPS5923874B2 (en) 1980-07-14 1980-07-14 Grout injection method wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9511680A JPS5923874B2 (en) 1980-07-14 1980-07-14 Grout injection method wastewater treatment method

Publications (2)

Publication Number Publication Date
JPS5721989A JPS5721989A (en) 1982-02-04
JPS5923874B2 true JPS5923874B2 (en) 1984-06-05

Family

ID=14128864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9511680A Expired JPS5923874B2 (en) 1980-07-14 1980-07-14 Grout injection method wastewater treatment method

Country Status (1)

Country Link
JP (1) JPS5923874B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112475U (en) * 1984-12-24 1986-07-16
JPS62111381A (en) * 1985-11-08 1987-05-22 松下冷機株式会社 Sales memory for vending machine
JPS62231395A (en) * 1986-03-31 1987-10-09 松下冷機株式会社 Sales memory for vending machine
JPH0270277U (en) * 1988-11-11 1990-05-29

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320092A (en) * 1986-07-14 1988-01-27 Sanee Kogyo Kk Solid-liquid separator
JPH01215389A (en) * 1988-02-24 1989-08-29 Sato Kogyo Co Ltd Treatment of waste water containing water glass
CN112573708A (en) * 2020-12-14 2021-03-30 山西晋城无烟煤矿业集团有限责任公司 Silicon removal method for waste water discharged from spacecraft gasification process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112475U (en) * 1984-12-24 1986-07-16
JPS62111381A (en) * 1985-11-08 1987-05-22 松下冷機株式会社 Sales memory for vending machine
JPS62231395A (en) * 1986-03-31 1987-10-09 松下冷機株式会社 Sales memory for vending machine
JPH0270277U (en) * 1988-11-11 1990-05-29

Also Published As

Publication number Publication date
JPS5721989A (en) 1982-02-04

Similar Documents

Publication Publication Date Title
CN106007046B (en) A kind of desulfurization wastewater hardness ions recycling pretreating process
CN100450943C (en) Method and system unit for flue gas desulfurization and wastewater treatment
US11634345B2 (en) Waste water treatment method and waste water treatment apparatus
JPWO2008120704A1 (en) Fluorine-containing wastewater treatment apparatus and treatment method
CN111777135A (en) Slurry desalting system and method for limestone desulfurization system
JP3653422B2 (en) Waste water treatment method and waste water treatment equipment
US3947350A (en) Process of preparing sewage sludge for dewatering
CN106746108A (en) A kind of desulfurization wastewater recycling treatment system and method
JPS5923874B2 (en) Grout injection method wastewater treatment method
CN212864234U (en) Slurry desalting device of limestone desulfurization system
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
CN113023952A (en) Rare earth molten salt electrolysis fluorine-containing wastewater treatment method
JPS6329599B2 (en)
JPS5845908B2 (en) Grout injection method wastewater treatment method
JP2002079004A (en) Aggregation method
CN113060870A (en) Triple-box type desulfurization wastewater treatment method
CN211497218U (en) Desulfurization waste water ammonia nitrogen processing system
CN211111421U (en) Desulfurization wastewater treatment equipment
JPS6020074B2 (en) How to treat grout wastewater
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP3339352B2 (en) Sludge treatment method
JPH1034199A (en) Treatment of tap water sludge
US10759685B2 (en) Water softening treatment using in-situ ballasted flocculation system
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP7295535B2 (en) water treatment method